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Abstract

Audio-Visual Source Localization (AVSL) aims to locate sounding objects within
video frames given the paired audio clips. Existing methods predominantly rely on
self-supervised contrastive learning of audio-visual correspondence. Without any
bounding-box annotations, they struggle to achieve precise localization, especially
for small objects, and suffer from blurry boundaries and false positives. Moreover,
the naive semi-supervised method is poor in fully leveraging the information of
abundant unlabeled data. In this paper, we propose a novel semi-supervised learn-
ing framework for AVSL, namely Dual Mean-Teacher (DMT), comprising two
teacher-student structures to circumvent the confirmation bias issue. Specifically,
two teachers, pre-trained on limited labeled data, are employed to filter out noisy
samples via the consensus between their predictions, and then generate high-quality
pseudo-labels by intersecting their confidence maps. The sufficient utilization of
both labeled and unlabeled data and the proposed unbiased framework enable DMT
to outperform current state-of-the-art methods by a large margin, with CIoU of
90.4% and 48.8% on Flickr-SoundNet and VGG-Sound Source, obtaining 8.9%,
9.6% and 4.6%, 6.4% improvements over self- and semi-supervised methods re-
spectively, given only < 3% positional-annotations. We also extend our framework
to some existing AVSL methods and consistently boost their performance. Our
code is available at https://github.com/gyx-gloria/DMT.

1 Introduction
Visual and auditory perception is crucial for observing the world. When we hear a sound, our
brain will extract semantic information and locate the sounding source. In this work, we focus on
Audio-Visual Source Localization (AVSL) [1, 2], with the purpose of accurately locating sounding
objects in frames based on their paired audio clips. Beyond this scope, AVSL also plays a crucial
role in many downstream tasks including environmental perception [3], navigation [4, 5], sound
separation [6, 7] and event localization [8]. Therefore, accurate localization is of utmost importance.

In the literature of AVSL [9, 10, 11], the conventional paradigm is to employ self-supervised
contrastive learning based on audio-visual correspondence. However, most of them suffer from some
serious challenges. From the performance perspective, there are issues such as blurry boundaries,
inability to converge to specific objects, and the predicted sounding regions that are too large to
accurately locate objects, especially small objects. In terms of the learning stage, a single model
alone is unable to recognize and filter out false positives, i.e., noisy samples with no visible sounding
sources, which could affect the entire learning process of the model.
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Figure 1: Comparison of existing Audio-Visual Source Localization (AVSL) methods and the
proposed Dual Mean-Teacher (DMT). Left: DMT has greatly addressed severe issues including
inaccurate small object localization, blurry boundaries, and instability. Right: DMT outperforms
previous by a large margin on Flickr and VGG-ss datasets.

In essence, AVSL is a dense prediction task, which can not be directly accomplished from a shared
global image representation [12], requiring models to capture fine local features in order to accurately
predict object locations, i.e., achieving precise pixel-level localization is not feasible without positional
annotations. Unluckily, the number of samples with location labels is extremely limited. As a result,
we resort to Semi-Supervised Learning [13] (SSL) to fully leverage the labeled data.

Considering that self-supervised AVSL is not fully learnable, Attention10k [14, 15] extended the
self-supervised model to an SSL model by directly appending a supervised loss on labeled data,
which is the first semi-supervised attempt in the field. Nevertheless, simply leveraging labeled data
might lead to overfitting and neglect to fully harness the underlying unlabeled data. Given these
issues, we resort to pseudo-labeling [16]. However, directly introducing pseudo-labeling could lead
to confirmation bias [17] which cannot be adequately rectified by a single model.

To tackle these challenges, we break away from traditional self-supervised learning and propose
a more sophisticated Semi-Supervised Audio-Visual Source Localization (SS-AVSL) framework,
called Dual Mean-Teacher (DMT), which adopts a double teacher-student structure in a two-stage
training manner. We consider previous AVSL methods as a single student unit. To fully leverage
positional annotations and training data, we extend it to a classic semi-supervised framework Mean-
Teacher [18]. To address the issue of confirmation bias, we expand it into a dual independent
teacher-student structure with designed modules of Noise Filtering, Intersections of Pseudo-Labels
(IPL), as shown in Figure 2. Specifically, teachers are pre-trained on a limited amount of labeled data
in Warm-Up stage, establishing a solid foundation, in the subsequent Unbiased-Learning Stage, dual
teachers filter out noisy samples and rectify pseudo-labels. In more detail, the Noise Filtering module
effectively rejects noise samples by leveraging consensus, i.e., agreement, between dual teachers,
ensuring high-quality training data, then IPL module generates precise pseudo-labels by intersecting
the predictions from both teachers. DMT eliminates the influence of confirmation bias by rejecting
noisy samples and improving the quality of pseudo-labels, which effectively tackles the issues of
false positives and greatly improves localization performance.

In summary, our method contributes to the following three aspects. Firstly, we introduce a novel
unbiased framework based on a pseudo-labeling mechanism for semi-supervised AVSL, which could
maximize the utilization of both labeled and unlabeled data, effectively address the challenge of
limited annotated data, and mitigate the issue of confirmation bias. Moreover, compared to existing
approaches, DMT achieves much remarkable localization performance, with better small object
localization and stronger generalization capability, which significantly elevate the performance of
current methods. Finally, DMT can be summarized as a semi-supervised learning paradigm and
could be combined with existing (weakly-supervised) AVSL methods to consistently boost their
performance.

2 Related Works

Semi-Supervised Learning. Semi-Supervised Learning (SSL) [13, 19] leverages a small amount
of labeled data to unlock the potential of unlabeled data for better model learning. One line of
work relies on consistency regularization [18, 20, 21] to encourage models to behave similarly under
different perturbations. An orthogonal idea is to generate high-quality pseudo-labels [16, 22] on
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unlabeled data to retrain models for better performance. The quality of pseudo-labels is crucial.
Current methods [23, 24, 25] combine the above two paradigms to achieve remarkable results.

Audio-Visual Source Localization. The key to Audio-Visual Sound Localization (AVSL) en-
deavors to establish the correspondence between visual objects and their corresponding sounds
by contrastive learning [26, 27]. Most existing methods predominantly utilize self-supervised or
weakly-supervised approaches (for all of them employ pre-trained backbone). Some classical works,
such as Attention10k [14, 15], DMC [2], LVS [28], EZVSL [9], SSPL [29], SSL-TIE [30] achieve
improving performance over time. Other methods like DSOL [31], CoarsetoFine [32], mix and
localize [33], and AVGN [11] pay attention to multi-source localization. In addition, some studies
also address the issue of false positives and false negatives in self-supervised learning. For example,
SLAVC [10] focuses on false positives and effectively overcomes the overfitting issue. IER [34]
proposes a label-free method that targets the suppression of non-sounding objects, while Robust [35]
considers both false positive and false negative issues. AVID [36] detects false negatives by defining
sets of positive and negative samples via cross-modal agreement. Source separation [37, 38] and
generative models [39] also achieve good results. However, most AVSL methods exhibit subpar
performance in the absence of annotation.

Semi-Supervised Learning in Localization. Semi-Supervised Object Detection (SSOD) is one
of the few applications of SSL in the localization field. The majority of SSOD methods, such as
[40, 41, 42], utilize pseudo-labeling to enhance the localization performance. Moreover, some works
like [43, 44] focus on the confirmation bias in SSOD. Similar to object detection, AVSL is a pixel-
wise dense prediction task, heavily reliant on high-quality pseudo-labels. Attention10k [14, 15] is the
first SS-AVSL work. It extends a self-supervised model to a semi-supervised framework by simply
adding a supervised loss, aiming at fixing the false conclusions generated by weakly-supervised
methods. However, this naive method may lead to overfitting and neglects the full utilization of
unlabeled data. In contrast, we introduce a novel SS-AVSL framework based on pseudo-label
mechanism, which can address confirmation bias and maximize the utilization of both labeled and
unlabeled data, to achieve stronger localization performance.

3 Background
Problem Definition. Audio-Visual Source Localization (AVSL) aims to accurately locate the sound
source within a given visual scene. We denote audio-visual pairs as (ai, vi), where ai and vi represent
the audio and visual modality, respectively. The objective is to generate a pixel-wise confidence map
P indicating the location of the sound source.
Contrastive Learning in AVSL. Self-supervised AVSL methods commonly leverage audio-visual
correspondence to maximize the similarity between frames and their corresponding audio clips
(positive pairs) while minimizing the similarity among unpaired ones (negative pairs):

Lunsup = −E(ai,vi)∼Du

[
log

exp(s(g(ai), f(vi))/τt)∑n
j=1 exp (s (g(ai), f(vj)) /τt)

+ log
exp(s(f(vi), g(ai))/τt)∑n

j=1 exp (s (f(vi), g(aj)) /τt)

]
.

(1)

where Du are unlabeled datasets, g(·) and f(·) are audio and visual feature extractors. τt is the
temperature coefficient. s(·) is consistency matching criterion. The predicted map Pi is typically
calculated with cosine similarity sim(·) to represent the confidence of the presence of sounding
objects:

Pi = sim(g(ai), f(vi)) =
⟨g(ai), f(vi)⟩
∥g(ai)∥ · ∥f(vi)∥

. (2)

Learning with (Pseudo) Labels in AVSL. When labeled data are available, one could apply
supervised loss directly to learn to localize:

Lsup = Ei∼DH(Gi,Pi). (3)

where Gi could be the ground truth or generated pseudo-labels, both Gi and Pi are in the form of
binary confidence map. H(·, ·) is cross-entropy function across the two-dimensional spatial axes.
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Figure 2: Overview of the proposed Dual Mean-Teacher framework. Left: Overall learning process
of dual teacher-student pairs, two students are guided by both ground-truth labeled data and filtered
unlabeled data with the Intersection of Pseudo-Labels (IPL). Upper-right: Details of Noise Filtering
and IPL. Dual teachers reject noise samples based on their consensus and generate pseudo-labels
on filtered data. Lower-right: Details of AVSL pipeline. Students are learned through contrastive
learning and predict confidence maps for supervised learning with (pseudo) labels.

4 Dual Mean-Teacher
Overview. In this section, we mainly describe Dual Mean-Teacher (DMT) in the order of the
learning process. Specifically, in the Warm-Up Stage (Section 4.1), two teachers are pre-trained on
bounding-box annotated data to obtain a stable initialization. In the subsequent Unbiased-Learning
Stage (Section 4.2), the Noise Filtering module and Intersection of Pseudo-Label (IPL) module
collectively filter out noisy samples and generate high-quality pseudo-labels by two teachers to guide
students’ training, teachers are in turn updated by exponential moving average (EMA) of students.

From a unified perspective, existing AVSL methods can be viewed as a single student, which is later
expanded into the semi-supervised classical framework Mean-Teacher [18], in order to fully utilize
limited labeled data. To effectively address the confirmation bias issue, we further extend it to a
double teacher-student framework, as shown in Figure 2. DMT adopts a teacher-student architecture,
where each teacher and student contains two independent AVSL pipelines for audio-visual contrastive
learning and generating localization results. Teachers provide students with stable unlabeled samples
after Noise Filtering and their generated IPL. Students pass back the parameters to the teachers.
General Notations. Cross-entropy function H(·, ·) and two feature extractors f(·) and g(·) are
already discussed in Section 3. By default, subscript i indicates the i-th sample, while superscript A,
B denote two teacher-student pairs with t and s indicating teacher and student, respectively. Dl and
Du are labeled and unlabeled datasets. Gi and Pi are ground-truth and predicted confidence maps,
both with size of H ×W . We apply strong A(·) or weak α(·) augmentation on visual inputs.

4.1 Warm-Up Stage
The quality of pseudo-labels is crucial to SSL, especially for localization tasks. Before generating
pseudo-labels, we first pre-train dual teachers with bounding-box annotated data to achieve prelim-
inary localization performance. In order to avoid overfitting, we apply strong augmentation and
get augmented labeled dataset Dl = {(ai,A(vi)),Gi}. After extracting visual features f t(A(vi))
and auditory features gt(ai), the predicted map Pt

i can be obtained by Eq. (2). Then we utilize
bounding-box annotations Gi as supervision:

LWarm-Up = E(ai,vi)∼Dl
H(Gi,Pt

i ). (4)

4.2 Unbiased-Learning Stage
Noise Filtering. To mitigate confirmation bias, it is crucial to filter out noisy samples that are more
likely to be false positives. As depicted in Figure 2, two predicted maps of the same sample are
generated by dual teachers. It is clear that samples with higher reliability can be identified when the
two predicted maps exhibit higher similarity, i.e., there is more agreement and consensus between
dual teachers, then the sample is reserved for pseudo-labelling. Conversely, when there is a significant
discrepancy between the two maps, the sample will be considered as a false positive, such as frames
without distinguishable sound objects or sounds that cannot be accurately represented by a bounding
box (e.g., wind sounds), such samples are rejected and discarded.
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Intersection of Pseudo-Labels (IPL). By intersecting the foreground regions of two predicted
maps on the filtered samples, one can generate positional pseudo-labels, named Intersection of
Pseudo-Labels (IPL), to guide students’ learning. With the pre-defined foreground threshold δ, two
predicted maps Pt,A

i ,Pt,B
i could be transferred to binary mapsMt,A

i andMt,B
i . Weak augmentation

α(·) is employed for teachers to generate high-quality pseudo-labels:

Pt
i = sim(gt(ai), f

t(α(vi))), (5)

Mt
i = 1(Pt

i ≥ δ). (6)

We adopt the Intersection over Union (IoU) metric to quantify the similarity between the two maps
Mt,A

i , Mt,B
i . If the IoU score exceeds the threshold τ , the sample will be accepted, and the

intersection of those two maps will be generated as its pseudo-label (IPL). Otherwise, it will be
filtered out as a noise sample.

D′
u =

{
(ai, vi)

∣∣ IoU(Mt,A
i ,Mt,B

i ) ≥ τ, ∀(ai, vi) ∈ Du

}
. (7)

IPL(ai, vi) =Mt,A
i · Mt,B

i . (8)

The newly selected unlabeled dataset is applied to the student model along with the corresponding
high-quality IPL.

Students Learning without bias. To suppress confirmation bias more effectively, we mix labeled
and new unlabeled datasets. Both ground-truth annotations and high-quality IPL are employed to
train the student models:

Dmix = Dl ∪ D′
u = {(ai, vi), Ĝi} , where Ĝi =

{
Gi if (ai, vi) ∈ Dl

IPL(ai, vi) if (ai, vi) ∈ D′
u

(9)

In addition, we incorporate consistency regularization [45] in the semi-supervised learning process.
Specifically, for a given sample, we obtain IPL from the teachers on weakly augmented images while
strong augmentations are applied for samples of students. By enforcing consistency between IPL and
students’ predictions, DMT could be more stable with better generalization ability.

Ps
i = sim(gs(ai), f

s(A(vi))), (10)

Lsup = Ei∼DmixH(Ĝi,Ps
i ). (11)

Similar to the AVSL method mentioned in Section 3, students are also trained by audio-visual
correspondence of contrastive learning loss. Here, we introduce an attention module to add attention
to the sounding region in the frame:

fatt(vi) =
exp (Pi(x, y))∑
x,y exp (Pi(x, y))

· f(vi). (12)

Then, the full semi-supervised loss could be derived with Lsup (see Eq. (11)) on Dmix and Lunsup (see
Eq. (1)) on Du:

Lfull =
(
LA

sup + LB
sup

)
+ λu

(
LA

unsup + LB
unsup

)
. (13)

Update of Students and Teachers. Students are updated via gradient descent of Lfull, while dual
teachers are updated through the exponential moving average (EMA) of corresponding students:

θsm ← θsm−1 − γ
∂Lfull

∂θsm−1

, θtm ← βθtm−1 + (1− β)θsm. (14)

The slowly progressing teachers can be regarded as the ensemble of students in recent training
iterations, which enables stable progress in training.

4.3 Unbiased Superiority of Dual Mean-Teacher
For dense prediction tasks such as AVSL, employing pseudo-labels for model training can easily ac-
cumulate errors and lead to sub-optimal results. In our DMT framework, The unbiased characteristics
could be attributed to the following three factors: (i). Noise Filtering ensures that only stable samples
are utilized to train. (ii). IPL generates high-quality pseudo-labels. (iii). Pre-train dual teachers on
bounding-box annotated data with strong augmentation in Warm-Up Stage. The above conclusion
will be validated in subsequent ablation studies in Section 5.4.
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Table 1: Comparison results on Flickr-SoundNet. Models are trained on Flickr 10k and 144k. † indi-
cates our reproduced results, others are borrowed from original papers. Attention10k-SSL is of 2k la-
beled data supervision. We report the proposed DMT results from both stages as stage-2(stage-1).
|Dl| denotes the number of labeled data.

Methods Flickr 10k Flickr 144k

CIoU AUC CIoU AUC

Attention10k [14, 15] 43.60 44.90 66.00 55.80
CoarsetoFine [32] 52.20 49.60 – –

DMC [2] – – 67.10 56.80
LVS [28] 58.20 52.50 69.90 57.30

EZVSL [9] 62.65 54.89 72.69 58.70
SLAVC† [10] 66.80 56.30 73.84 58.98

SSPL [29] 74.30 58.70 75.90 61.00
SSL-TIE† [30] 75.50 58.80 81.50 61.10

Attention10k-SSL [14, 15] 82.40 61.40 83.80 61.72

Ours (|Dl| = 256) 87.20 (84.40) 65.77 (59.60) 87.60 (84.40) 66.28 (59.60)
Ours (|Dl| = 2k ) 87.80 (85.60) 66.20 (63.18) 88.20 (85.60) 66.63 (63.18)
Ours (|Dl| = 4k ) 88.80 (86.20) 67.81 (65.56) 90.40 (86.20) 69.36 (65.56)

5 Experiments

With limited annotated data, DMT could significantly raise the performance of AVSL and address the
severe issues, e.g., false positives and poor localization ability on small objects. Then, we direct our
focus towards answering the following questions with ablation experiments 5.4:

• What is the individual contribution of each module to the performance gains?

• How does annotation enhance localization performance?

• Why can DMT outperform the existing semi-supervised AVSL method?

• Is it necessary to warm up dual teachers?

• How to effectively mitigate confirmation bias in AVSL?

5.1 Experimental Settings

Datasets. We conduct experiments on two large-scale audio-visual datasets: Flickr-SoundNet [14,
15] and VGG Sound Source [46], where there are 5,000 and 5,158 bounding-box annotated samples,
respectively. For labeled data, we randomly select 4,250 for training, 500 for validating, and keep the
same test sets with 250 samples as previous works [9, 10, 28, 30]. Moreover, we select a subset of
10k and 144k unlabeled samples to train as before. Details can be found in Appendix B.1.

Audio and Visual Backbones. For visual backbones, we followed prior work and used ResNet-
18 [47] pre-trained on ImageNet [48]. For audio backbones, we select the pre-trained VGGish [49]
and SoundNet [50] with semantic audio information. Further details can be found in Appendix B.2.

Metrics. We report the Consensus Intersection over Union (CIoU) and Area Under Curve (AUC),
following previous settings [14, 15]. CIoU represents the localization accuracy, samples with IoU
above the threshold δ = 0.5 are considered to be accurately located. Considering small objects, we
introduce Mean Square Error (MSE), which measures the average pixel-wise difference between two
maps without binarization, making it more suitable for evaluating dense prediction tasks on small
objects. More details are shown in Appendix B.3.

Implementation details. For audio clips, we pass 96 × 64 log-mel spectrograms to VGGish, and
the output is a 512D vector, while the raw waveform of the original 3s audio clip is sent to SoundNet.
For frames, we used an input image of size 256×256×3, with 224×224×512 as output. We choose
RandAug [51] as strong augmentation, while random cropping, resizing, and random horizontal flip
as weak augmentation. We set δ as 0.6 and τ as 0.7. More experiments of hyperparameters are shown
in Appendix C.5.

6



Table 2: Comparison results on VGG-ss. Models are trained on VGG-Sound 10k and 144k.

Methods VGG-Sound 10k VGG-Sound 144k

CIoU AUC CIoU AUC

Attention10k [14, 15] 16.00 28.30 18.50 30.20
LVS [28] 27.70 34.90 34.40 38.20

EZVSL [9] 32.30 33.68 34.38 37.70
SLAVC† [10] 37.80 39.48 39.20 39.46

SSPL [29] 31.40 36.90 33.90 38.00
SSL-TIE† [30] 36.80 37.21 38.60 39.60

Attention10k-SSL† [14, 15] 38.60 38.26 39.20 38.52

Ours (|Dl| = 256) 41.20 (39.40) 40.68 (38.70) 43.60 (39.40) 41.88 (38.70)
Ours (|Dl| = 2k ) 43.20 (42.60) 40.82 (40.75) 45.60 (42.60) 43.24 (40.75)
Ours (|Dl| = 4k ) 46.80 (43.80) 43.18 (41.63) 48.80 (43.80) 45.76 (41.63)

5.2 Comparison with the State-of-the-art Methods

Comprehensive experiments show that DMT achieves the state-of-the-art performance among all
existing methods on both datasets, and showcases several advantages.

Effective Utilization of Finite Annotations and Remarkable Performance. We tested DMT’s
localization performance with varying amounts of labeled data and found that it consistently outper-
forms state-of-the-art methods when with 256, 2k, and 4k labeled data. Notably, even with just 256
labeled data, DMT achieved an accuracy of 87.2% to 87.6%, showing a significant improvement in
CIoU by around 10 absolute points compared to preceding models. Additionally, our model shows
a 3% absolute improvement in CIoU compared to a supervised-only model. Furthermore, DMT
maintains superior performance in complex and open environments, as demonstrated in Table 2
and Table 3c, indicating strong generalization capabilities. These results highlight DMT’s ability to
improve localization performance by utilizing more unlabeled data.

Table 3: Performance comparisons in existing issues (small objects localization and false positives)
and complex scenarios (open set). The results of small objects and open set are tested on the VGG-ss
dataset, while false positives are reported on the Flickr dataset.

Methods Small Testset Medium Testset
MSE↓ IoU↑ MSE↓ IoU↑

LVS [28] 0.515 0.021 0.441 0.265
EZVSL [9] 0.566 0.023 0.467 0.268

SLAVC [10] 0.705 0.021 0.568 0.220
Ours 0.160 0.025 0.174 0.335

(a) Small objects.

Methods AP↑ max-F1↑ Acc↑
LVS [28] 9.80 17.90 19.60
DMC [2] 25.56 41.80 52.80

EZVSL [9] 46.30 54.60 66.40
SLAVC [10] 51.63 59.10 83.60

Ours 53.56 62.80 91.60

(b) False positives.

Methods CIoU↑ AUC↑
LVS [28] 26.30 34.70

EZVSL [9] 39.57 39.60
SLAVC [10] 38.92 41.17

Ours 43.12 42.81

(c) Open set.

Significant Advancement in Small Subset Localization. We categorize objects based on their
bounding box pixel area into small (1 ∼ 322), medium (322 ∼ 962), large (962 ∼ 1442) and huge
(1442 ∼ 2242). We tested different methods on small and medium objects in the VGG-Sound dataset,
focusing on the challenges of detecting small objects and reducing false positives mentioned earlier.
The results in Table 3a show that DMT significantly improves performance, especially in terms
of MSE metric. Despite some errors in the IoU metric, DMT still outperforms previous methods.
The results in Figure 1 show that DMT accurately locates sounding objects with clear boundaries
and precisely convergence to object contours, unlike previous methods that often have excessive or
insufficient foreground regions, especially for small objects. These results demonstrate the effective
and precise localization of small objects achieved by DMT. More experiments of different object
sizes are in Appendix C.7.

Capability of Learning Rich Semantic Information. We present visualized predictions for testsets
of varying sizes in Figure 1 (Left). It is evident that our approach achieves remarkable precision
in localizing sounding sources. It accurately locates the position of sounding objects and precisely
converges to their boundaries, while prior methods usually have excessive or insufficient foreground
regions, particularly in the case of small objects.
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Table 5: Main ablation study results. Models are trained on Flickr 144k and tested on Flickr-SoundNet
testset, where ‘S’ and ‘V’ denote SoundNet and VGGish respectively.

Modules Performance

# Teachers Backbone Filter IPL EMA CIoU↑ AUC↑ MSE↓

One teacher (a). S ✗ ✗ ✗ 80.20 53.57 0.458
(b). V ✗ ✗ ✗ 81.80 55.92 0.379

Dual teachers

(c). S+V ✗ ✗ ✗ 82.20 55.16 0.382
(d). S+V ✗ ✗ ✓ 82.80 59.38 0.375
(e). S+V ✗ ✓ ✗ 83.60 62.83 0.359
(f). S+V ✓ ✗ ✗ 84.80 65.58 0.259
(g). S+V ✓ ✗ ✓ 86.20 66.56 0.260
(h). S+V ✗ ✓ ✓ 86.60 66.35 0.274
(i). S+V ✓ ✓ ✗ 88.60 66.68 0.260
(j). S+V ✓ ✓ ✓ 90.40 69.36 0.237

It is worth noting that our method can even find out sounding objects overlooked in the manual
annotations. For instance, in Figure 1 (Left, 4-th row), the heatmap reveals the presence of a piano,
which is omitted in the manual annotation process. Furthermore, we assessed the model’s capability
to identify false positives, signifying instances where sounding objects are occasionally not visually
observable within the image (off-screen), as shown in 3b. This reflects the ability of Dual Mean-
Teacher to extract audio semantic information and effectively localize multiple sounding objects
within a scene, a feat that eludes other methods. We attribute this capability to the semantic alignment
of audio-visual features achieved through the pre-trained VGGish and SoundNet backbone.

bbx SLAVC DMT bbx SLAVC DMT

Figure 3: Performance on music-domain.

Capacity for Cross-Domain Generalization and Multi-
Source Localization. We tested DMT’s generalization
across different domains and its ability to localize multiple
objects. Models trained using VGG-ss 144k were directly
evaluated on MUSIC-solo [37], MUSIC-duet [37], and
MUSIC-synthetic datasets [31, 52]. Figure 3 demonstrates
DMT’s strong generalization performance in the music do-
main, outperforming other method. As shown in Figure 3,
the previous method struggles to accurately localize multi-
ple sounding objects, either missing them or including all sounding objects within a large foreground
area. In contrast, DMT localizes each instrument accurately and separately. However, without
category information for fine-grained training, it leads to sub-optimal performance in differentiating
between multiple active and silent instruments. There is still significant room for improvement with
multiple sounding objects and we plan to address this issue in future work.

5.3 Extensions of Dual Mean-Teacher
Table 4: Extension results of DMT with various
audio backbones, with ‘R’, ‘V’ and ‘S’ denoting
ResNet, VGGish and SoundNet.

Methods Backbones CIoU↑ AUC↑ MSE↓
EZVSL w/o DMT R 62.65 54.89 0.428
EZVSL w/ DMT R+V 85.30 65.80 0.312
EZVSL w/ DMT R+S 85.95 66.12 0.298
EZVSL w/ DMT V+S 87.20 67.74 0.256

SLAVC w/o DMT R 66.80 56.30 0.386
SLAVC w/ DMT R+V 86.10 66.24 0.288
SLAVC w/ DMT R+S 86.30 66.58 0.283
SLAVC w/ DMT V+S 88.80 68.69 0.247

We replicated several existing methods and integrated
them into our framework. Notably, the integration of
the Dual Mean-Teacher showcases its ability to sig-
nificantly enhance the performance of other existing
methods. In Table 4, one can observe a noteworthy
improvement in the CIoU of EZVSL from 62.65% to
87.20%, and SLAVC rising from 66.80% to 88.80%,
which further reinforces the efficacy of our frame-
work and highlight its flexible extensibility.

5.4 Ablation Studies

What is the individual contribution of each module to the performance gains? In this section,
we progressively analyze the performance gain from each module in detail. We choose a self-
supervised approach as our baseline. Table 5 presents the results on the Flickr 144k training set with
10% annotated samples.
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(i). Initially, we apply it under the semi-supervised pseudo-labeling mechanism, using only one
backbone, as shown in Table 5(a) and Table 5(b). The localization performance improves with
annotated data supervision, but the gain is limited due to poor-quality pseudo-labels.

(ii) Next, we extend it to a two-backbone architecture and sequentially introduce the filter, IPL, and
EMA modules. The results demonstrate that all three modules contribute to performance improvement
(3%, 1.8%, 1%). Notably, Filter shows the most significant impact on the model’s improvement, for
it effectively rejects noisy samples, ensuring the stability of the model.

(iii) Finally, we can observe that optimal performance is achieved through the joint integration of the
three modules by effectively suppressing confirmation bias.

Table 6: Performance on various
labeled ratios % and multiple ×
on Flickr 144k.

Labeled ratio % CIoU AUC

0.5% (200/40k) 84.80 63.58
1% (400/40k) 86.20 65.16
2% (800/40k) 87.20 65.94
5% (2k/40k) 87.60 67.44
10% (4k/40k) 88.40 68.12

Multiple × CIoU AUC

2.5× (4k/10k) 88.00 67.80
5× (4k/20k) 88.20 67.91
10× (4k/40k) 88.40 68.12
20× (4k/80k) 89.20 68.44
40× (4k/200k) 91.20 71.36

How does annotation help localization? We aim to demonstrate
that even with extremely limited labeled data, significant perfor-
mance can still be achieved. To this end, we investigated the per-
formance of our model from 0.5% to 10%, and report the results
in Table 6. Our model consistently outperforms state-of-the-art ap-
proaches across all ratios. Furthermore, with a constant amount
of unlabeled data, as the proportion of labeled data increases, our
model’s performance continues to improve, highlighting the signif-
icant impact of labeled data.

We investigated the impact of varying amounts of unlabeled data
while keeping labeled data constant. Experimental results in Ta-
ble 6 show that increasing the amount of unlabeled data improves
localization performance, which seems contradictory to the previ-
ous conclusion about the proportion of labeled data, but actually,
it demonstrates that labeled data can effectively leverage the unla-
beled data. Based on our analysis, labeled data not only provides
annotation information but also effectively enhances the power of
unlabeled data, resulting in significant performance improvements.

Why can DMT outperform the existing semi-supervised AVSL method? Both naive SSL and
DMT have utilized labeled and unlabeled data. However, a key distinction is that naive SSL employs
unlabeled data only for contrastive loss, whereas DMT leverages pseudo-labels to incorporate
unlabeled data into both contrastive loss and supervised loss, which amplifies the utilization of
unlabeled data, thus enhancing generalization capability.

Data Utilization. We supplement the comparison experiments with fixed labeled data and an increase
in unlabeled data from 10k to 200k, as shown in left part of 7. As the amount of unlabeled data
increases, naive SSL exhibits only marginal improvement, whereas DMT shows more performance
gains, indicating DMT can better use unlabeled data.

Generalization Ability. The right part of 7 highlights the limitations of naive SSL in the open set and
in-the-wild datasets, suggesting that adding a supervised loss alone may lead to overfitting and weaken
generalization. In contrast, DMT effectively leverages pseudo-label for improved generalization
capability.

Table 7: Comparison of two SS-AVSL methods. * denotes the results from the original paper.
‘sim-avsl’ denotes the simple self-supervised AVSL model we use. We report the CIoU below.

2.5k/10k 2.5k/144k 2.5k/200k open set cross-datasets

attention10k + naive SSL 84.00*/83.68 84.40*/84.08 84.24 19.60 62.20
attention10k + DMT (ours) 88.00 89.52 90.40 42.64 87.26

sim-avsl + naive SSL 83.84 84.24 84.40 20.80 60.60
sim-avsl + DMT (ours) 88.24 89.76 91.12 43.10 89.80

Is it necessary to warm up dual teachers? We believe that the initialization of teachers and
students is crucial, for the quality of pseudo-labels has a significant impact on model performance.
To validate the effectiveness of this idea, we experimented to study the warm-up stage’s impact on
the model. We find that without the Warm-Up Stage, the model’s improvement is very slow, and the
performance eventually deteriorates. This indicates that without a good initialization, the model can
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Figure 5: The effect of each component (Noise Filtering, IPL and EMA) in DMT to suppress
confirmation bias, together with the number of filtered samples for pseudo labeling depicted in (d).

accumulate errors, leading to confirmation bias issues. Therefore, we can conclude that Warm-Up is
essential as it effectively suppresses confirmation bias in the early stages of training.
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Figure 4: Effect of Warm-Up Stage.

How to effectively mitigate confirmation bias in AVSL? In
Section 4.3, we present the origins and mitigation strategies for
confirmation bias in the localization task. In this section, we
will demonstrate this. Figure 5a depicts the quality of pseudo
labels before and after applying the filter module. It is evident
that the quality of pseudo labels can be significantly improved
after filtering. This observation highlights the effectiveness
of the filter in eliminating noisy samples, which tend to be
false-positive instances. Figure 5b depicts the comparison be-
tween using the direct outputs of each teacher as pseudo labels
and utilizing their intersection, known as IPL. Where the pur-
ple dashed line represents the initialization value. The results
clearly indicate that employing the direct outputs alone leads to the accumulation of bias, causing
a deterioration in the quality of pseudo labels throughout the training process. Conversely, IPL
consistently ensures the preservation of high-quality pseudo labels, thus mitigating the impact of bias.

Furthermore, Figure 5c visually presents the trend of model performance, revealing that the absence
of any of these three modules results in a decline in model performance. However, we can see
that EMA only affects the final performance of the model, and without the Filter module, the
model’s performance will be significantly affected by noise. Without the IPL module, the model
will experience a continuous decline in performance due to erroneous estimation of pseudo-labels.
Therefore, we find that the Noise Filtering module and IPL modules play a significant role in
addressing the confirmation bias problem. Moreover, Figure 5d reflects that under the joint action of
the three modules, DMT generates more accurate pseudo-labels and its performance continues to
improve steadily.

6 Conclusion
In this paper, we advance the naive SS-AVSL work and propose a novel Semi-Supervised Audio-
Visual Source Localization (SS-AVSL) framework, namely Dual Mean-Teacher (DMT), considering
the importance of both limited annotated and abundant unlabeled data. From a unified perspective,
existing self-supervised (weakly-supervised) AVSL methods could be referred to as a single student
structure, while DMT employs dual teacher-student pairs to filter out noisy samples via the agreement
of two teachers and generate high-quality pseudo labels to avoid confirmation bias. DMT has greatly
enhanced AVSL performance and addressed intractable issues like false positives and inaccurate
localization of tiny objects. Moreover, DMT is a learning paradigm and could be seamlessly
incorporated into existing AVSL methods and consistently boost their performance.

We hope this work will bring more attention to SS-AVSL, provoke a reconsideration of pseudo-
labeling, bias avoidance, and better utilization of the underlying unlabeled data, and thus stimulate
more semi-supervised learning research in this dense prediction task.

10



Acknowledgements

We would like to thank the National Natural Science Foundation of China under Grant 61773374 and
the Major Basic Research Projects of Natural Science Foundation of Shandong Province under Grant
ZR2019ZD07. We also appreciate Shuailei Ma, Kecheng Zheng, and Ziyi Wang for their valuable
and insightful discussions.

References
[1] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Oct 2017.

[2] Hao Zhu, Man-Di Luo, Rui Wang, Ai-Hua Zheng, and Ran He. Deep audio-visual learning: A
survey. International Journal of Automation and Computing, 18:351–376, 2021.

[3] Janani Ramaswamy. What makes the sound?: A dual-modality interacting network for audio-
visual event localization. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4372–4376, 2020.

[4] Changan Chen, Sagnik Majumder, Ziad Al-Halah, Ruohan Gao, Santhosh Kumar Ramakrishnan,
and Kristen Grauman. Learning to set waypoints for audio-visual navigation. arXiv preprint
arXiv:2008.09622, 2020.

[5] Changan Chen, Ziad Al-Halah, and Kristen Grauman. Semantic audio-visual navigation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15516–15525, June 2021.

[6] Efthymios Tzinis, Scott Wisdom, Aren Jansen, Shawn Hershey, Tal Remez, Daniel PW Ellis,
and John R Hershey. Into the wild with audioscope: Unsupervised audio-visual separation of
on-screen sounds. arXiv preprint arXiv:2011.01143, 2020.

[7] Efthymios Tzinis, Scott Wisdom, Tal Remez, and John R Hershey. Audioscopev2: Audio-visual
attention architectures for calibrated open-domain on-screen sound separation. In European
Conference on Computer Vision, pages 368–385. Springer, 2022.

[8] Hanyu Xuan, Lei Luo, Zhenyu Zhang, Jian Yang, and Yan Yan. Discriminative cross-modality
attention network for temporal inconsistent audio-visual event localization. IEEE Transactions
on Image Processing, 30:7878–7888, 2021.

[9] Shentong Mo and Pedro Morgado. Localizing visual sounds the easy way. arXiv preprint
arXiv:2203.09324, 2022.

[10] Shentong Mo and Pedro Morgado. A closer look at weakly-supervised audio-visual source
localization. In Advances in Neural Information Processing Systems, 2022.

[11] Shentong Mo and Yapeng Tian. Audio-visual grouping network for sound localization from
mixtures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

[12] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin
Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE
transactions on pattern analysis and machine intelligence, 44(7):3614–3633, 2021.

[13] Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised
learning. IEEE Transactions on Knowledge and Data Engineering, pages 1–20, 2022.

[14] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning to
localize sound source in visual scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4358–4366, 2018.

[15] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning to
localize sound sources in visual scenes: Analysis and applications. TPAMI, 43(5):1605–1619,
2019.

11



[16] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In Workshop on challenges in representation learning, ICML,
volume 3, page 896. Atlanta, 2013.

[17] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness. Pseudo-
labeling and confirmation bias in deep semi-supervised learning. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[18] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30, 2017.

[19] Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. Machine
learning, 109(2):373–440, 2020.

[20] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[21] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Interna-
tional Conference on Learning Representations, 2017.

[22] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V. Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

[23] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and
Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[24] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-
fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, vol-
ume 33, pages 596–608. Curran Associates, Inc., 2020.

[25] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and
Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo
labeling. 2021.

[26] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[27] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big
self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029,
2020.

[28] Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and Andrew
Zisserman. Localizing visual sounds the hard way. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16867–16876, 2021.

[29] Zengjie Song, Yuxi Wang, Junsong Fan, Tieniu Tan, and Zhaoxiang Zhang. Self-supervised
predictive learning: A negative-free method for sound source localization in visual scenes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3222–3231, 2022.

[30] Jinxiang Liu, Chen Ju, Weidi Xie, and Ya Zhang. Exploiting transformation invariance and
equivariance for self-supervised sound localisation. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 3742–3753, 2022.

12



[31] Di Hu, Rui Qian, Minyue Jiang, Xiao Tan, Shilei Wen, Errui Ding, Weiyao Lin, and Dejing
Dou. Discriminative sounding objects localization via self-supervised audiovisual matching.
Advances in Neural Information Processing Systems, 33:10077–10087, 2020.

[32] Rui Qian, Di Hu, Heinrich Dinkel, Mengyue Wu, Ning Xu, and Weiyao Lin. Multiple sound
sources localization from coarse to fine. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16, pages 292–308.
Springer, 2020.

[33] Xixi Hu, Ziyang Chen, and Andrew Owens. Mix and localize: Localizing sound sources
in mixtures. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10483–10492, 2022.

[34] Xian Liu, Rui Qian, Hang Zhou, Di Hu, Weiyao Lin, Ziwei Liu, Bolei Zhou, and Xiaowei Zhou.
Visual sound localization in the wild by cross-modal interference erasing. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 1801–1809, 2022.

[35] Pedro Morgado, Ishan Misra, and Nuno Vasconcelos. Robust audio-visual instance discrimina-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12934–12945, 2021.

[36] Pedro Morgado, Nuno Vasconcelos, and Ishan Misra. Audio-visual instance discrimination
with cross-modal agreement. 2020.

[37] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and Antonio
Torralba. The sound of pixels. In Proceedings of the European conference on computer vision
(ECCV), pages 570–586, 2018.

[38] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Torralba. The sound of motions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1735–1744,
2019.

[39] Valentina Sanguineti, Pietro Morerio, Alessio Del Bue, and Vittorio Murino. Audio-visual
localization by synthetic acoustic image generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 2523–2531, 2021.

[40] Kihyuk Sohn, Zizhao Zhang, Chun-Liang Li, Han Zhang, Chen-Yu Lee, and Tomas Pfis-
ter. A simple semi-supervised learning framework for object detection. arXiv preprint
arXiv:2005.04757, 2020.

[41] Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,
and Zicheng Liu. End-to-end semi-supervised object detection with soft teacher. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 3060–3069, 2021.

[42] Gang Li, Xiang Li, Yujie Wang, Wu Yichao, Ding Liang, and Shanshan Zhang. Dtg-ssod:
Dense teacher guidance for semi-supervised object detection. Advances in Neural Information
Processing Systems, 35:8840–8852, 2022.

[43] Qiang Zhou, Chaohui Yu, Zhibin Wang, Qi Qian, and Hao Li. Instant-teaching: An end-to-end
semi-supervised object detection framework. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4081–4090, 2021.

[44] Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen
Wu, Zsolt Kira, and Peter Vajda. Unbiased teacher for semi-supervised object detection. arXiv
preprint arXiv:2102.09480, 2021.

[45] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[46] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale
audio-visual dataset. In International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2020.

13



[47] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[48] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[49] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Chan-
ning Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architectures
for large-scale audio classification. In 2017 ieee international conference on acoustics, speech
and signal processing (icassp), pages 131–135. IEEE, 2017.

[50] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations
from unlabeled video. In Advances in Neural Information Processing Systems, 2016.

[51] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[52] Di Hu, Yake Wei, Rui Qian, Weiyao Lin, Ruihua Song, and Ji-Rong Wen. Class-aware sounding
objects localization via audiovisual correspondence. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(12):9844–9859, 2021.

14



Appendix

Brief Introduction. The appendix is structured into four main sections: Algorithm, Experimental
Settings, Supplementary Experiments, and Further Analysis. The main contents are as follows:

• A. Algorithm: Pseudo-codes and algorithm details.

• B. Experimental Settings: More detailed description of the datasets, backbones, metrics formula,
implementation details and baselines.

• C. Supplementary Experiments: Results of cross-dataset evaluation, comparison of different
predicted map, exploration of Warm-Up speed and its influence on the final results, false-positive
rejection capability of Noise Filtering, investigation of hyperparameters for Filter, IPL, and EMA,
effect of data augmentation and quality analysis (visualization).

• D. Further Analysis: Theoretical elaboration on the challenges faced by existing contrastive
learning methods, and explanation of why contrastive learning alone cannot achieve precise
localization.

A Algorithm

To make it more clear, Dual Mean-Teacher is specifically depicted in Algorithm 1.

Algorithm 1 Dual Mean-Teacher algorithm.

1: Input: Du = {(ai, vi)}, Dl = {(vi, ai),Gi} {labeled data and unlabeled data.}
2: while not reach the maximum iteration do
3: for (ai, vi) in Du do
4: while not reach the convergency of Warm-Up do
5: LWarm-Up = E(ai,vi)∼Dl

H(Gi,Pt
i ) {Supervised learning on labeled data.}

6: end while
7: Get the pseudo-labelsMt,A

i ,Mt,B
i from dual teachers

8: if IoU(Mt,A
i ,Mt,B

i ) ≥ τ then
9: IPL(ai, vi) =Mt,A

i · Mt,B
i {Compute Intersection of Pseudo-Labels (IPL).}

10: Ĝi = IPL(ai, vi) {Update the pseudo-label Ĝi of unlabeled data.}
11: Add (ai, vi) to new dataset D′

u
12: end if
13: end for
14: Dmix = Dl ∪ D′

u {Mix the filtered unlabeled data and labeled data.}
15: Lfull =

(
LA

sup + LB
sup

)
+ λu

(
LA

unsup + LB
unsup

)
. {Students learning.}

16: θtm ← βθtm−1 + (1− β)θsm {Students update teachers via EMA.}
17: end while
18: Return: Dual teachers and students model parameters.

NOTING TIPS:

Train. Warm-Up Stage is essentially a supervised learning. The performance gains of subsequent
Unbiased-Learning Stage over Warm-Up Stage is actually the performance gains of our semi-
supervised framework over vanilla supervised training on the same labelled dataset Dl, which proves
the validity of the proposed Dual Mean-Teacher, as shown in the main results in Table 1 and Table 2.

Inference. For the localization result of ith audio-visual pair, we merge the outputs of the dual
teachers to create a predicted map as below. Comparison of different predicted maps are described
in C.2.

Pi =
1

2
(Pt,A

i + Pt,B
i ). (15)
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B Experimental Settings

B.1 Datasets

We have conducted our training and evaluation of the Progressing Teacher on two large-scale audio-
visual datasets: Flickr-SoundNet and VGG-Sound, which consist of millions of unconstrained videos
and 5, 000 and 5, 158 annotated samples, respectively. Each audio-visual pair is comprised of a single
image frame from each video clip and an audio segment centered around it. The annotations are
provided in the form of bounding boxes. The relevant information is presented in the Table 8.

Table 8: Datasets overview.
All Labeled Data Test Set Labeled Split

small medium large huge total small medium large huge total train val test total

Flickr-SoundNet 3 254 687 4056 5000 0 9 83 158 250 4250 500 250 5000

VGG-SoundSource 134 1796 1726 1502 5158 8 86 83 73 250 4250 500 250 5000

Furthermore, for the purpose of assessing the generalizability of our model, we have extended DMT
to music domain (distribution), including: MUSIC-solo, MUSIC-duet, and MUSIC-Synthetic. The
MUSIC dataset [37] comprises 685 untrimmed videos, encompassing 536 solo performances and
149 duet renditions, spanning across 11 distinct categories of musical instruments. The MUSIC-
Synthetic [31, 52] is a multifaceted assemblage wherein four disparate solo audio-visual pairs of
divergent classifications are randomly mixed, retaining solely two out of the four audio segments.
This deliberate curation aligns aptly with the evaluation of discerningly sounding object localization.

B.2 Backbones: VGGish and SoundNet

For audio backbones, we employ pre-trained VGGish and SoundNet. VGGish is pre-trained on
AudioSet as audio feature extractors. The raw 3s audio signal is resampled at 16kHz and further
transformed into 96 × 64 log-mel spectrograms as the audio input. The output is 128D vector.
SoundNet takes the raw waveform of the 3s audio clip as input and produces a 1401D vector as
output, which concatenates the 1000D object-level feature and the 401D scene-level feature, which
are both obtained from different conv8 layer. Our main focus is to train the nonlinear audio feature
transformation function, g(·), which is instantiated with two fully connected networks and a ReLU
layer, to transform the network output feature into a 512D representation.

B.3 Metrics: CIoU, MSE, F1 Score, Precision

We consider a set of audio-visual pairs as D = {(vi, ai),Gi}, where Gi is the ground-truth. We
set Pi(δ) = {(x, y)|Pi(x, y) > δ} is the foreground region of predicted map, and Gi(x, y) =
{(x, y)|Gi(x, y) > 0} is the foreground region of ground truth.

CIoU. The IoU of predicted map and ground truth can be calculated by:

IoU i(δ) =

∑
x,y∈Pi(δ)

Gi(x, y)∑
x,y∈Pi(δ)

Gi(x, y) +
∑

x,y∈{Pi(δ)−Gi} 1
. (16)

In previous works, CIoU quantifies the proportion of samples with IoU value exceeding a predeter-
mined threshold, typically set at 0.5.

MSE. MSE measures the difference between two maps on a pixel-wise basis, making it more suit-
able for evaluating dense prediction tasks than IoU. Other two metrics for small objects localization.

MSEi =
1

HW

W∑
x=1

H∑
y=1

(Pi(x, y)− Gi(x, y))2 . (17)
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Max-F1 and AP. To compute true positives, false positives and false negatives, we closely follow
SLAVC [10]. Then we can compute the precision and recall:

Precision =
|T P|

|T P|+ |FP|
, Recall =

|T P|
|T P|+ |FN |

. (18)

Then we compute F1 for all values of δ and report the Max-F1 score:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
, max-F1 = max(F1). (19)

Average Precision (AP) is the area under the precision-recall curve above. For a detailed calculation
of max-F1 and AP, please refer to the SLAVC [10].

B.4 Implementation details

In addition to the experimental settings mentioned in the main text, we used a batch size of 128.
Warm-Up stage is trained for 6 epochs to achieve convergence, while the Unbiased-Learning stage is
trained for 20 epochs. The learning rate for the image is set to 1e-4, and the weight for the contrastive
loss λu is set to 1. An Exponential Moving Average (EMA) decay of 0.999 is applied. The Adam
optimizer is used for training, and the training is conducted on two GPUs. Our supplementary
experiments were conducted on the Flickr-10k or Flickr-144k dataset, which contains 4k annotations.
The trained models were evaluated on the Flickr-SoundNet testset.

B.5 Baselines

• Attention 10k [14, 15] (CVPR2018): introduce a dual-stream network and leverage an attention
mechanism to capture the salient regions in semi-supervised or self-supervised environments.

• DMC [2] (CVPR2019) : establish audio-visual clustering to associate sound centers with their
corresponding visual sources.

• CoarsetoFine [32] (ECCV2020) : leveraged a two-stage framework to capture cross-modal feature
alignment between sound and vision.

• LVS [28] (CVPR2021) : propose to mine hard negatives within an image-audio pair.

Table 9: Cross dataset performance. We train our model using the VGG-Sound 10k and 144k datasets
and evaluate its performance on the Flickr-SoundNet dataset.

Trainset Methods Flickr testset

CIoU AUC

VGG-Sound 10k

attention10k 52.20 50.20
LVS 61.80 53.60

EZVSL 65.46 54.57
SLAVC 74.00 57.74
SSPL 76.30 59.10

SSL-TIE 77.04 60.36
Ours(|Dl| = 256) 85.04 (80.08) 65.06 (60.14)
Ours(|Dl| = 2k) 87.36 (81.60) 67.38 (61.26)
Ours(|Dl| = 4k) 88.20 (82.88) 67.56 (62.06)

VGG-Sound 144k

attention10k 66.00 55.80
LVS 71.90 58.20

EZVSL 79.51 61.17
SLAVC 80.00 61.68
SSPL 76.70 60.50

SSL-TIE 79.50 61.20
Ours(|Dl| = 256) 87.04 (80.08) 64.72 (60.14)
Ours(|Dl| = 2k) 88.32 (81.60) 67.78 (61.26)
Ours(|Dl| = 4k) 89.84 (82.88) 68.64 (62.06)
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• EZVSL [9] (ECCV2022) : introduce a multi-instance contrastive learning framework that utilizes
Global Max Pooling (GMP) to focus only on the most aligned regions when matching audio and
visual inputs.

• SLAVC [10] (NeurIPS2022) : adopts momentum encoders and dropout to address overfitting and
silence issues in single-source sound localization.

• SSPL [29] (CVPR2022) : propose a negative-free method to extend a self-supervised learning
framework to the audio-visual data domain for sound localization

• SSL-TIE [30] (ACM-MM2022): introduce a self-supervised framework with a Siamese network
with contrastive learning and geometrical consistency.

C Comprehensive Experimental Results

C.1 Cross-dataset Evaluation

To further validate the generalization ability of DMT, we conducted cross-dataset validation experi-
ments. The results in Table 9 show that DMT still stays ahead, confirming the high generalization
ability of our model.

C.2 Different Predicted Map

Table 10: Results of different
inference strategies.

CIoU AUC

Student A 86.20 66.16
Student B 86.80 66.84

Fused Students 88.60 68.56

Teacher A 87.20 67.57
Teacher B 87.60 67.98

Fused Teachers 90.40 69.36

In this section, we compare the accuracy of different predicted maps
for sound localization. We evaluate individual predicted maps and
a fused map as the final localization map, as defined by Eq. 15.
Training is performed on the Flickr144k dataset using dual teacher
results, as shown in Table 10. We find that fused predicted map from
dual teachers with different backbones achieves better localization
performance than from individual maps, which can be attributed
to the fact that considering both localization results helps mitigate
biases inherent in a single model.

Additionally, we assess the performance of teachers and students by
comparing their fused predicted maps obtained during the same training session. The results, as
shown in Table 10, indicate that teachers outperform students, which aligns with our expectations
and further validates the effectiveness of our model.

C.3 Effect of Warm-Up Stage
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Figure 6: Warm-Up.

This section focuses on the analysis of convergence speed and the
influence of the Warm-Up performance on the final results.

Convergence Speed Initially, we investigate the convergence speed
of the Warm-Up stage with varying amounts of labeled data, as depicted
in Figure 6. Notably, all supervised models exhibit rapid convergence
within a specific number of epochs. Furthermore, as the quantity of
data increased, the convergence speed decreases while simultaneously
achieving higher levels of performance.

Table 11: Effect of Warm-
Up Performance.

Warm-Up Final

CIoU AUC CIoU AUC

0 0 84.32 64.52
51.20 48.62 87.28 67.18
71.60 56.08 89.04 68.26
86.20 65.56 90.40 69.36

Effect of Warm-Up Performance. Subsequently, we investigate how
the Warm-Up performance affects final results by experimenting with
models that achieved different levels of convergence using the same
amount of data. Training is performed on the Flickr144k dataset using
dual teacher results, as presented in Table 11. The results indicate
that better performance of Warm-Up stage leads to better final model
performance, which can be attributed to higher-quality pseudo-labels
and improved noise filtering, reducing confirmation bias. Conversely,
the model exhibits the poorest performance in the absence of Warm-Up
stage.
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Figure 7: False-Positive Rejection Capability of Noise Filtering.
Overall, supervised audio-visual source localization demonstrates ease of convergence without
requiring excessive training resources. Moreover, our proposed semi-supervised model consistently
outperforms the supervised model by approximately 3% in terms of absolute performance, validating
its effectiveness.

C.4 False-Positive Rejection Capability of Noise Filtering

After analyzing the filtered-out samples, we observed that the two independent teachers exhibit
disagreement in localizing non-sounding objects. In such cases, the IoU falls significantly below
the threshold, enabling the Dual Teachers to identify and reject non-sounding samples, which can
be considered as false positives, as illustrated in Figure 7. Additionally, different filter thresholds
represents different levels of filtering strictness, as detailed in Section C.6.

Furthermore, we analyzed the visual results of some noisy samples, as depicted in Figure 10. One
can observe that frames without distinguishable sound objects or sounds that cannot be accurately
represented by a bounding box (e.g., wind sounds) can be easily identified through the inconsistency
between the predictions of the two teachers.

C.5 Hyper-parameters for Filter, IPL, and EMA
Effect of Pseudo-Labeling Threshold. The threshold δ is used to convert the predicted map into
a binary map, as described in Eq.(6). In this section, we analyze the impact of different thresholds
on pseudo-labels and the model. Training is conducted on the Flickr10k dataset. Figure 8 shows
the results. A small delta value (e.g. δ = 0.5) creates a large foreground area, introducing excessive
noise and causing performance degradation as training progresses. On the other hand, A large value
of δ (e.g. δ = 0.9) indicates a small foreground area, causing the intersection between Dual Teachers
to be minimal and resulting in samples being falsely rejected as noise, thus disturbing the model.
Therefore, we choose δ = 0.6 as the optimal threshold for our final selection.
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Figure 8: Results of various δ.

Effect of Filtering Threshold. In Section 4.2, we employ a confidence threshold, denoted as τ , to
filter out noisy samples, which are more likely to be false-positive instances. We evaluate the effect
of different threshold values τ . As shown in Figure 9, As the threshold value τ increases from 0 to
0.9, the number of accepted samples decreases. However, setting a very high threshold (e.g., τ = 0.9)
leads to unsatisfactory results due to the limited number of accepted samples, reducing the available
information from unlabeled data. Conversely, using a low threshold (e.g., τ = 0.6) introduces a
confirmation bias from noisy samples, hindering favorable outcomes. Upon analysis, we discover that
the performance shows little variation between threshold values of τ = 0.7 and τ = 0.8, indicating
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a balance between unlabeled information and bias within the 0.7-0.8 range. As a result, we opt for
τ = 0.7 as the preferred threshold for our final selection.
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Figure 9: Results of various τ .

Table 12: Results on various
EMA β.

β CIoU AUC

Flickr
10k

0.9 86.48 65.16
0.99 88.64 66.94
0.999 88.80 67.81

Flickr
144k

0.9 87.84 85.82
0.99 89.92 68.86
0.999 90.40 69.36

Effect of EMA Rates We also examine the model performance
with various exponential moving average (EMA) decay values, de-
noted as β, ranging from 0.9 to 0.999, and present the results of the
teachers in Table 12. We observe that a smaller EMA decay leads
to a faster update rate, lower CIoU, and higher variance. Conversely,
a larger EMA decay value results in slower learning for the teachers.
Therefore, we select an appropriate EMA decay value of β = 0.999
to strike a balance between the update rate and the stability of the
learning process.

C.6 Effect of Data Augmentation

We evaluate the effect of RandAug [51] on a supervised model on
4k labeled data, as shown in Table 13. Without data augmentation, the model exhibits significant
over-fitting. With RandAug, this issue is mitigated, which indicates that RandAug serves not only as
a means of consistency regularization but also as a method to enhance the model’s generalization
performance.

Table 13: Results of data augmentation (i.e., RandAug.).
Trainset Testset

CIoU AUC CIoU AUC

w/o RandAugment 88.20 67.82 84.80 60.44
w/ RandAugment 87.68 67.54 86.20 65.56

C.7 IPL on Different Object Size

We assess the adaptability of IPL to various object sizes, and compare with existing methods, two
teachers with DMT. Table 14 results highlight prior methods’ diminishing performance with smaller
objects, while DMT consistently excels across all size subsets. This enhancement is attributed to
Filtering and IPL synergy. Under the filtering mechanism, only highly similar pseudo-labels can
contribute to model training. This keeps the intersection of pseudo-labels consistently aligned with
object sizes. If pseudo-labels decrease significantly, IoU declines, excluding noisy samples from
training. Moreover, in the second-stage training, we use labeled data to prevent size bias and ensure
unbiased treatment of objects of all sizes.

Table 14: Performance across various sizes of sounding objects.

Size SLAVC teacher1 teacher2 DMT
MSE ↓ IoU ↑ MSE ↓ IoU ↑ MSE ↓ IoU ↑ MSE ↓ IoU ↑

small 0.705 2.10 0.213 2.58 0.183 2.26 0.205 2.65
medium 0.235 22.00 0.156 12.47 0.176 12.28 0.164 33.50

large 0.427 48.11 0.202 55.32 0.221 54.68 0.212 55.50
huge 0.358 61.64 0.212 66.84 0.217 66.26 0.215 67.70
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C.8 How to avoid model collapse?

There are diversity and individuality between two teachers, as in Q2, which helps to prevent two
teachers convergence to one model. The noisy filter module of DMT selects ‘stable samples’ via
consensus and assigns high-quality pseudo-labels with IPL, such spirit has been validated by prior
work that ‘stable samples’ could help avoid model collapse. Two teachers are first trained in Warm-Up
stage for better initialization. Moreover, in stage-2, we also include supervised training on labeled
data and contrastive learning on unlabeled data, the two objectives would ensure the model possesses
robust localization capabilities over the course of stage-2. The results in Table 15 validate each
component to avoid model collapse.

Table 15: Model collapse results. A, B denotes augmentation and backbone.
method DMT same A same B w/o annotation in stage-2 same A & B w/o annotation
CIoU 90.4 87.2 85.4 81.6 7.2

C.9 Quality Analysis

We present the visual localization results of DMT in Figure 10. It effectively locates objects of
different sizes, distinguishes them from the background by clear boundaries, and demonstrates some
multi-object localization capability. Notably, DMT learns semantic information and can precisely
localize specific sound-producing regions instead of the entire object. For example, in the third row
of the Figure 10 on the right, it accurately locates the mouth of a person rather than the entire person.

Ground Truth LVS EZVSL SLAVC Ours Ground Truth LVS EZVSL SLAVC Ours

Figure 10: Visualizations of various methods.

D Further Analysis: Limitations in Existing AVSL and DMT

Based on the formula of contrastive loss, we can observe that the core idea of existing contrastive
learning methods is to match the visual frames and corresponding audio clips within the same video
as a whole. The audio-visual pairs from the same video are considered positive pairs, while the
frames and audio clips from different videos are considered negative pairs. The contrastive loss aims
to maximize the similarity between positive samples and minimize the similarity between negative
samples. The differences among existing self-supervised methods lie in the selection of the similarity
function s(·) and the positive-negative sample pairs.

Lunsup = −E(ai,vi)∼Du

[
log

exp(s(g(ai), f(vi))/τt)∑n
j=1 exp (s (g(ai), f(vj)) /τt)

+ log
exp(s(f(vi), g(ai))/τt)∑n

j=1 exp (s (f(vi), g(aj)) /τt)

]
.
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D.1 Global and Local Information

In the given formula, different methods employ different match functions s(·) to compute the distance
or similarity between positive samples. For instance, Attention10k [14, 15] uses the Euclidean
distance, LVS [28] utilizes the Frobenius inner product, and EZVSL [9] applies Global Max Pooling:

Attention10k: s(·) = ∥fatt(vi)− g(ai)∥2 ,

LVS: s(·) =
1

|m̂ip|
⟨m̂ip, sim (f(vi), g(ai))⟩ ,

EZVSL: s(·) = max sim (f(vi), g(ai)) ,

SLAVC: s(·) =
∑
x,y

ρ

(
1

τ
sim

(
gloc (ai) , f

loc (vi)
))
· ρ

(
1

τ
sim (gavc (ai) , f

avc (vi))

)
.

All of these functions capture the overall matching degree between audio and global visual repre-
sentations. However, after the computation of s(·), the model loses the positional information of
the two-dimensional visual representation. This positional information is crucial for fine-grained
localization tasks.

D.2 Position-Aware Contrastive Loss

We refer to the methods that incorporate position information as ‘position-aware’. In the above
formulas, we can observe that the distances or similarities between samples are calculated in a
position-aware manner. For example, in the Attention10k [14, 15] method, the attention mechanism
fatt takes into account the positional information. Similarly, in LVS [28], the foreground mask m̂ip

distinguishes the background as hard negatives, incorporating the positional context. EZVSL [9]
uses the maximum value to capture the positional information, while SLAVC [10] incorporates
localization information. Taking LVS [28] as an example, it specifically treats the background of the
image as hard negatives, effectively leveraging the positional cues for discrimination and learning.

Pi =
1

|m̂ip|
⟨m̂ip, sim(g(ai), f(vi))⟩ ,

Ni =
1

|1− m̂in|
⟨1− m̂in, sim(g(ai), f(vi))⟩+

1

hw

∑
j ̸=i

⟨1, sim(g(ai), f(vj))⟩ ,

Lunsup = −1

k

k∑
i=1

[
log

exp (Pi)

exp (Pi) + exp (Ni)

]
.

where, m̂ip is the mask of foreground, which strongly relies on the initialization of the model.
According to the formula, both the positive (Pi) and negative (Ni) samples in the training process are
influenced by the initial values of the foreground mask m̂ip. This implies that the model’s localization
results are heavily dependent on the initialization.

D.3 Initialization

The different matching mechanisms, represented by the function s(·), rely on the initialization of
the entire visual model, specifically the pre-trained ResNet-18 [47, 48], where the average of the
pixel-wise features is taken as the initial result at epoch 0. This initialization result serves as the
basis for the computation of position-aware components, such as the attention mechanism or Global
Max Pooling (GMP). Subsequently, during the model’s training, these initial localization results
are reinforced and refined. However, if the initial localization results are inaccurate (which is often
the case), subsequent training may have difficulty detecting and correcting these inaccuracies. As a
result, the errors may accumulate over time without being effectively addressed, leading to degraded
performance.

D.4 False Positives, False Negetives and Multi-Source

From the contrastive learning formula, it is apparent that contrastive learning assumes the presence
of sound-producing objects in the visual input and enforces alignment between highly confident
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visual regions and their corresponding audio features. However, pure contrastive learning, without
the incorporation of additional modules, cannot directly reject non-sounding samples. Recently, some
works have recognized this limitation and started to investigate the presence of sound-producing
objects in images and tackle the task of multi-source sound localization. Examples of such works
include DSOL [31], IER [34], and AVGN [11].

Furthermore, due to the absence of class labels during the selection of positive and negative samples,
visual-audio pairs belonging to the same sound-producing object class but originating from different
videos are still treated as negative samples, resulting in a false negatives issue. Several methods have
emerged to address this problem, as highlighted in [35, 36].

In addition, the commonly used matching mechanism, Global Max Pooling, is suitable only for
single-source localization since it focuses solely on the region with the highest confidence, neglecting
other potential sound-producing objects.

These three aforementioned challenges cannot be effectively resolved solely through simple models
or algorithms without positional annotations. Therefore, they have become prominent research areas
that are currently receiving considerable attention.

D.5 Limitations of DMT

DMT does not involve class information, so it struggles to localize among fine-grained objects due
to poor discriminative ability. By incorporating category signals, models could better implement
fine localization. Besides, DMT could not handle multi-object localization well. We will devise
specialized components to address this issue.
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