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Abstract

We propose a theoretical framework for studying behavior cloning of complex ex-
pert demonstrations using generative modeling. Our framework invokes low-level
controllers - either learned or implicit in position-command control - to stabilize
imitation around expert demonstrations. We show that with (a) a suitable low-level
stability guarantee and (b) a powerful enough generative model as our imitation
learner, pure supervised behavior cloning can generate trajectories matching the
per-time step distribution of essentially arbitrary expert trajectories in an opti-
mal transport cost. Our analysis relies on a stochastic continuity property of the
learned policy we call “total variation continuity" (TVC). We then show that TVC
can be ensured with minimal degradation of accuracy by combining a popular
data-augmentation regimen with a novel algorithmic trick: adding augmentation
noise at execution time. We instantiate our guarantees for policies parameterized
by diffusion models and prove that if the learner accurately estimates the score of
the (noise-augmented) expert policy, then the distribution of imitator trajectories
is close to the demonstrator distribution in a natural optimal transport distance.
Our analysis constructs intricate couplings between noise-augmented trajectories,
a technique that may be of independent interest. We conclude by empirically val-
idating our algorithmic recommendations, and discussing implications for future
research directions for better behavior cloning with generative modeling.

1 Introduction

Training dynamic agents from datasets of expert examples, known as imitation learning, promises
to take advantage of the plentiful demonstrations available in the modern data environment, in an
analogous manner to the recent successes of language models conducting unsupervised learning on
enormous corpora of text [67, 70]. Imitation learning is especially exciting in robotics, where mass
stores of pre-recorded demonstrations on Youtube [1] or cheaply collected simulated trajectories
[42, 20] can be converted into learned robotic policies.

For imitation learning to be a viable path toward generalist robotic behavior, it needs to be able to
both represent and execute the complex behaviors exhibited in the demonstrated data. An approach
that has shown tremendous promise is generative behavior cloning: fitting generative models, such
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Figure 1: Consider demonstration trajectories exhibiting two modes: a “go left” and “go right” mode
around an obstacle depicted in red and purple, respectively. To avoid compounding error, we imi-
tate sequences of simple low-level feedback controllers we call “primitive controllers”, not simply
raw actions. Intuitively, primitive controllers provide “tubes" around each demonstration trajectory
where the system can be stabilized. Depicted in yellow, our data-noising procedure described below
“fills in the gaps” in the demonstration, switching between modes in a well-behaved manner, and
whilst allowing the primitive controllers to manage the stabilization.

as diffusion models [2, 19, 33], to expert demonstrations with pure supervised learning. In this paper,
we ask: When can generative behavior cloning imitate arbitrarily complex expert behavior?

In this paper, we are interested in how algorithmic choices interface with the dynamics of the agent’s
environment to render imitation possible. The key challenge separating imitation learning from
vanilla supervised learning is one of compounding error: when the learner executes the trained be-
havior in its environment, small mistakes can accumulate into larger ones; this in turn may bring
the agent to regions of state space not seen during training, leading to larger-still deviations from
intended trajectories. Without the strong requirement that the learner can interactively query the
expert at new states [40, 57], it is well understood that ensuring some form of stability in the imita-
tion learning procedure is indispensable [68, 27, 50]. While many natural notions of stability exist
for simple behaviors, how to enforce stability when imitating more complex behaviors remains an
open question. Multi-modal trajectories present a key example of this challenge: consider a robot
navigating around an obstacle; because there is no difference between navigating around the object
to the right and around to the left, the dataset of expert trajectories may include examples of both
options. This bifurcation of good trajectories can make it difficult for the agent to effectively choose
which direction to go, possibly even causing the robot to oscillate between directions and run into
the object. [19]. Moreover, human demonstrators correlate current actions with the past in order to
commit to either a right or left path, which makes even formulating the idea of an “expert policy”
a conceptually challenging one. Lastly, bifurcations are necessarily incompatible with previous no-
tions of stability derived from classical control theory [68, 27, 50]. In this work, we investigate
how these strong and often unrealistic assumptions on the expert policy can be replaced by
practical (and often realistic) assumptions on available algorithms.

1.1 Contributions.

As in previous work, we formalize behavior cloning in two stages: at train-time, we learn a map from
observations to distributions over actions, supervised by (state, action)-pairs from expert demonstra-
tions coming from Nexp independent expert trajectories, while at test-time, the learned map, or
policy, is executed on random initial states (distributed identically to initial training states). Follow-
ing the schematic of existing theoretical analyses of behavior cloning [68, 50, 27], we demonstrate
that a policy trained by minimizing a certain supervised learning objective on expert demonstrations
induces trajectories that approximate those of expert demonstrations. Our work considers a signif-
icantly more general setting than past theoretical literature, and one which reflects the strength of
generative models for imitation. One corollary of our key contributions is summarized in the follow-
ing informal statement. The main technical insights leading to the proof of the theorem are detailed
in the bullet points below it, and depicted in Figure 1.
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Theorem (informal). Consider a generative behavior cloner π̂ that learns to predict sequences of
expert actions on horizon H , along with low-level controllers that locally stabilize the trajectories.
Then, with a suitable data noising strategy, for all times h ≤ H ,

P[expert & imitator trajectories disagree at some time h by ≥ ε]
≤ OISS

(
Hε+ 1

ε2

∑
h Eexpert,h [W1(Pexpert actions,Pimitator actions)]

)
where Eexpert,h[W1(Pexpert actions,Pimitator actions)] denotes a 1-Wasserstein distance in an ap-
propriate metric between the conditional distribution over expert and imitator actions given the
observation at time step h, and where OISS hides constants depending polynomially on the stability
properties of the low-level controllers, defined formally in Section 3.1.

We now detail the key ingredients of our results.

1. We imitate stochastic demonstrators that may exhibit both complex correlations between actions
in their trajectories (e.g. be non-Markovian) and multi-modal behavior. The natural object to
imitate in this setting is the conditional probability distribution of expert actions given recent
states, but marginalized over past states. We require said conditional action distribution to be
learnable by a generative model, but otherwise arbitrarily complex: in particular, the conditional
distribution of an expert actions given the state can be discontinuous (in any natural distance
metric) as a function of state, as in the bifurcation depicted in Figure 1(right).

2. We obtain rigorous, theoretical guarantees and without requiring either interactive data col-
lection (e.g. DAGGER [57, 40]), or access to gradients of the expert policy (as in TASIL[50]).
Instead, we replace these assumption with an oracle, described below, which synthesizes sta-
bilizing, low-level policies along training demonstrations—the green arrows in Figure 1(left).
This mirrors recent work on generative behavior cloning that find that providing state-commands
through inverse dynamics controllers [33, 2] or position-command controllers of end effectors
[19] leads to substantially improved performance.

3. We also apply a subtle-yet-significant modification to a popular data noising strategy, which we
show yields both theoretical and empirical beneifts. Data noising ensures a helpful property we
denote total variation continuity that interpolates between modes in probability space (without
naively averaging their trajectories in world space). This effectively “fills in the missing gaps” in
bifurcations, as indicated by yellow arrows in Figure 1.

Our main results, Theorems 1 and 2, are reductions from imitation of complex expert trajectories to
supervised generative learning of a specific conditional distribution. For concreteness, Theorem 3
instantiates the generative modeling with Denoising Diffusion Probabilistic Models (DDPMs) of
sufficient regularity and expressivity (as investigated empirically in [19, 48, 26]), and establishes
end-to-end guarantees for imitation of complex trajectories with sample complexity polynomial in
relevant problem parameters. Our analysis framework exposes that any sufficient powerful genera-
tive learner obtains similar guarantees. Finally, we empirically validate the benefits of our proposed
smoothing strategy in simulated robotic manipulation tasks. We now summarize the algorithmic
choices and analytic ideas that facilitate our reduction.

Abridged Related Work. Due to space, we defer a full comparison to past work to Appendix B.
DDPMs, proposed in [29, 60], along with their relatives have seen success in image generation
[62, 55], along with imitation learning (without data augmentation) [33, 19, 48], which is the starting
point of our work. Smoothing data augmentation is ubiquitous in modern imitation learning [40] and
our approach corresponds to that of [36] but with noise added at inference time. Despite the benefits
of adaptive data collection [58, 40], adaptive demonstrations are more expensive to collect. Previous
analyses of imitation learning without adaptive data collection have focused on classical control-
theoretic notions of stability, notably incremental stability, [68, 27, 50], which require continuity,
Markovianity, and often determinism, and preclude the bifurcations permitted in our setting.

2 Setting

Notation and Preliminaries. Appendix A gives a full review of notation. Bold lower-case (resp.
upper-case) denote vectors (resp. matrices). We abbreviate the concatenation of sequences via
z1:n = (z1, . . . , zn). Norms ∥ · ∥ are Euclidean for vectors and operator norms for matrices unless
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otherwise noted. Rigorous probability-theoretic preliminaries are provided in Appendix F. In short,
all random variables take values in Polish spaces X (which include real vector spaces), the space
of Borel distributions on X is denoted ∆(X ). We rely heavily on couplings from optimal transport
theory: given measures X ∼ P and X ′ ∼ P′ on X and X ′ respectively, C (P,P′) denotes the space
of joint distributions µ ∈ ∆(X × X ′) called “couplings” such that (X,X ′) ∼ µ has marginals
X ∼ P and X ′ ∼ P. ∆(X | Y) denotes the space of conditional probability distributions Q : Y →
∆(X ), formally called probability kernels ; Appendix F rigorously justifies that, in our setting, all
conditional distributions can be expressed as kernels (which we do throughout the paper without
comment). Finally I∞(E) denotes the indicator taking value 1 if E is true and∞ otherwise.

Dynamics and Demonstrations. We consider a discrete-time, control system with states xt ∈ X :=
Rdx , and inputs ut ∈ U := Rdu , obeying the following nonlinear dynamics

xt+1 = f(xt,ut), t ≥ 1. (2.1)

Given length T ∈ N, we call sequences ρT = (x1:T+1,u1:T ) ∈ PT := X T+1 × UT trajectories.
For simplicity, we assume that (2.1) is deterministic and address stochastic dynamics in Appendix
N. Though the dynamics are Markov and deterministic, we consider a stochastic and possibly non-
Markovian demonstrator, which allows for the multi-modality described in the Section 1.

Definition 2.1 (Expert Distribution). Let Dexp ∈ ∆(PT ) denote an expert distribution over trajec-
tories to be imitated. Dx1

denotes the distribution of x1 under ρT = (x1:T+1,u1:T ) ∼ Dexp.

Primitive Controllers. Our approach is to imitate not just actions, but simple local control poli-
cies. In the body of this paper, we consider affine mappings X → U (redundantly) parameterized
as x 7→ ū + K̄(x − x̄); we call these primitive controllers, denoted with κ = (ū, x̄, K̄) ∈ K. We
describe the synthesis of these controllers in Appendix D , and extend our results to general families
of parameterized controllers in Appendix E. We argue in Appendix E that primitive controllers are
in fact standard practice, and implicit via robotic position control in many applications of diffusion
to robotic behavior cloning.

Chunking Policies and Indices. The expert distribution Dexp may involve non-Markovian se-
quences of actions. We imititate these sequences via chunking policies. Fix a chunk length
τchunk ∈ N and observation length τobs ≤ τchunk, and define time indices th = (h− 1)τchunk + 1.
For simplicity, we assume τchunk divides T , and set H = T/τchunk. Given a ρT ∈ PT , define the
trajectory-chunks and observation chunks

sh := (xth−1:th ,uth−1:th−1) ∈ S := Pτchunk (trajectory-chunks)
oh := (xth−τobs+1:th ,uth−τobs+1:th−1) ∈ O := Pτobs−1 (observation-chunks)

for h > 1, and s1 = o1 = x1 (for simplicity, we embed o1 into Pτobs−1 via zero-padding). We call
τchunk-length sequences of primitive controllers composite actions

ah = κth:th−1
∈ A := Kτchunk . (composite actions)

A chunking policy π = (πh) consists of functions πh mapping observation-chunks oh to distribu-
tions ∆(A) over composite actions and interacting with the dynamics (2.1) by ah = κth:th−1

∼
πh(oh), and executing ut = κt(xt). We let dA = τchunk(dx + du + dxdu) denote the dimension of
the space A of composite actions. The chunking scheme is represented in Figure 2, demonstrating
the rationale for using primitive controllers over open-loop actions. Remark C.1 describes our
rationale for studying states over generic observations, and considering time-dependent policies.

Desideratum. The quality of imitation of a deterministic policy is naturally measured in terms of
step-wise closeness of state and action [68, 50]. With stochastic policies, however, two rollouts of
even the same policy can visit different states. We propose measuring distributional closeness via
couplings introduced in the preliminaries above. We define the following losses, focusing on the
marginal distributions between trajectories.

Definition 2.2. Given ε > 0 and a (chunking) policy π, the (marginal distribution) imitation loss is

Lmarg,ε(π) := maxt∈[T ] infµ Pµ

[
max

{
∥xexp

t+1 − xπ
t+1∥, ∥u

exp
t − uπ

t ∥
}
> ε
]
, where the infimum

is over all couplings µ between the distribution of ρT under Dexp and that induced by the policy π
as described above, such that Pµ[x

exp
1 = xπ

1 ] = 1.
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Figure 2: Graphical comparison of an action-chunk based policy (left) as described in [19], versus the
primitive-controller chunking policy (right) proposed in this paper. The primitive controller paradigm allows
for stabilizing back to the original expert trajectory, whereas using generated actions in an open-loop fashion
may cause divergence from the expert in the presence of unstable system dynamics. We refer to composite
actions as the sequence of primitve controllers given on the right.

Under stronger conditions (whose necessity we establish), we can also imitate joint distributions
over actions (Appendix J). Observe that Lfin,ε ≤ Lmarg,ε, and that both losses are equivalent to
Wasserstein-type metrics on bounded domains. These losses are also equivalent to Lévy-Prokhorov
metrics [64] under re-scaling of the Euclidean metric (even for unbounded domains), and also corre-
spond to total variation analogues of shifted Renyi divergences [5, 6]. While empirically evaluating
these infima over couplings is challenging, Lmarg,ε upper bounds the difference in expectation be-
tween any bounded and Lipschitz control cost decomposing across time steps, states and inputs, and
Lfin,ε upper bounds differences in final-state costs; see Appendix J for discussion.

Diffusion Models. Our analysis provides imitiation guarantees when chunking policies πh select ah
via a sufficiently accurate generative model. Given their recent success, instantiate our analysis for
the popular Denoising Diffusion Probabilistic Models (DDPM) framework [18, 41] that allows the
learner to sample from a density q ∈ ∆(Rd) assuming that the score∇ log q is known to the learner.
More precisely, suppose the learner is given an observation oh and wishes to sample ah ∼ q(·|oh)
for some family of probability kernels q(·|·). A DDPM starts with some a0h sampled from a standard
Gaussian noise and iteratively “denoises” for each DDPM-time step 0 ≤ j < J :

ajh = aj−1h − α · sθ,h(aj−1h , oh, j) + 2 · N (0, α2I), (2.2)

where sθ,h(a
j
h, oh, j) estimates the true score s⋆,h(ah, oh, αj), formally defined for any continuous

argument t ≤ Jα to be s⋆,h(a, oh, t) := ∇a log q
⋆
h,[t](a | oh), where q⋆h,[t](·|oh) is the distribution

of e−ta(0)h +
√
1− e−2tγ with a

(0)
h is sampled from the target distribution we which to sample

from, and γ ∼ N (0, I) is a standard Gaussian. We denote by DDPM(sθ, oh) the law of aJh sampled
according to the DDPM using sθ(·, oh, ·) as a score estimator. Preliminaries on DPPMs are detailed
in Appendix L.

3 Conditional sampling with stabilization suffices for behavior cloning

We show that trajectories of the form given in Definition 2.1 can be efficiently imitated if (a) we
are given a synthesis oracle, described below, that produces low-level control policies that locally
stabilize chunks of the trajectory with primitive controllers and (b) we can learn to generate certain
appropriate distributions over composite actions, i.e. sequences of primitive controllers. All the
following results apply to affine primitive controllers introduced in Section 2 and assume that the
system dynamics are second-order smooth and locally stabilizable. In Appendix E, we show that
our results still hold with general families of parametric primitive controllers, provided that these
controllers induce the same local stability guarantee.

The synthesis oracle. We say primitive controller (cf. Section 2) κ1:T ∈ KT is consistent with
a trajectory ρ = (x1:T+1,u1:T ) ∈ PT if x̄t = xt and ūt = ut for all t ∈ [T ]; note that this
implies that κt(xt) = ut for all t. A synthesis oracle synth maps PT → KT such that, for
all ρT ∈ PT , κ1:T = synth(ρT ) is consistent with ρT . For our theory, we assume access to a
synthesis oracle at training time, and assume the ability to estimate conditional distributions over
joint sequences of primitive controllers; Appendix K explains how this can be implemented by
solving Ricatti equations if dynamics are known (e.g. in a simulator), smooth, and stabilizable. In
our experimental environment, control inputs are desired robot configurations, which the simulated

5



robot executes by applying feedback gains. As discussed in Appendix E, learned or hand-coded
low-level controllers are popular in practical implementations of generative behavior cloning. We
discuss the merits of studying imitation learning with a synthesis oracle in depth in Appendix C.3.

Notions of distance. While restricting ourselves to affine primitive controllers, our approximation
error of generative behavior cloner is measured in terms of optimal transport distances that use the
following “maximum distance.” Given two composite actions a = (ū1:τchunk , x̄1:τchunk , K̄1:τchunk)
and a′ = (ū′1:τchunk

, x̄′1:τchunk
, K̄′1:τchunk), we define

dmax(a, a
′) := max

1≤k≤τchunk
(∥ūk − ū′k∥+ ∥x̄k − x̄′k∥+ ∥K̄k − K̄′k∥). (3.1)

Distances between policies are defined via natural optimal transport costs. Given two policies π =
(πh), π

′ = (π′h) and observation chunk oh, we define an induced optimal transport cost

∆ε(πh(oh), π
′
h(oh)) := inf

µ
P(ah,a′h)∼µ [dmax(ah, a

′
h) > ε] ,

where the infµ denotes the infinum over all couplings between ah ∼ πh(oh) and a′h ∼ π′h(oh). ∆ε

corresponds to a relaxed Lévy-Prokhorov metric [64], and can always be bounded, via Markov’s
inequality, by ∆ε(πh, π

′
h | oh) ≤ 1

εW1,dmax(πh(oh), π
′
h(oh)), where W1,dmax(πh(oh), π

′
h(oh))

denotes the 1-Wasserstein distance between ah ∼ πh(oh) and a′h ∼ π′h(oh).

3.1 Incremental Stability and the Synthesis Oracle.

We assume that synthesis oracle above produces incrementally stabilizing control gains, in the sense
first proposed by [9]. Incremental stability has emerged as a natural desirable property for imitation
limitation [50, 68, 27], because it forces the expert to be robust to small perturbations of their policy.
We now supply a formal definition. Given a primitive controller κ : Rdx → Rdu , define the closed
loop dynamic map fcl,κ(x, δu) := f(x, κ(x) + δu). Thus, composite action a is consistent with a
trajectory chunk s = (x1:τchunk+1,u1:τ ) if xt+1 = fcl,κt(x,0) for 1 ≤ t ≤ τchunk.1

Definition 3.1 (Time-Varying Incremental Stability). Let γ(·) be a class K function, β(·, ·) be
class KL function, and let a = (κ1, κ2, . . . , κτ ) denote a sequence of primitive controllers (i.e.
a composite action when τ = τchunk). Given a sequence of input perturbations δu1:τ ∈ (Rdu)τ

and initial condition ξ ∈ Rdx , let xai+1(δu1:τ , ξ) = fcl,κi(x
a
i (δu1:τ , ξ), δui), with xa1 = ξ. We

say that composite action a is time-varying incrementally input-to-state stable (t-ISS) with moduli
γ(·),β(·, ·) if for all ξ, ξ′ ∈ Rdx , 0 ≤ i ≤ τ , ∥xai (01:τ , ξ) − xai (δu1:τ , ξ

′)∥ ≤ β(∥ξ − ξ′∥, τ) +
γ (max1≤s≤i−1 ∥δus∥). Given parameters cγ, cξ > 0 we say that a is local-t-ISS at ξ0 if the above
holds only for all ξ, ξ′, δu1:τ such that ∥ξ − ξ0∥, ∥ξ

′ − ξ0∥ ≤ cξ and maxt ∥δut∥ ≤ cγ.

Incremental stability implies that as the inital conditions ∥ξ−ξ′∥ → 0 and max0≤s≤i−1 ∥δut∥ → 0,
the trajectories induced by taking rolling out a from ξ, and rolling out a from ξ′ with additive in-
put perturbations δu1:τ tend to zero in norm. This behavior needs only hold for initial conditions
in a small neighborhood of a nominal state ξ0. Importantly, the perturbations δu1:τ are fixed per-
tubrations of inputs, applied to the closed loop behavior under the controllers. Our notion of in-
cremental stability are similar too, but sublty different similar notions of past work. We provide an
extended comparisons in Appendix E.2. Our main assumption is that the synthesis oracle described
above produced primitive controllers which are consistent with, and incrementally stabilizing for,
the demonstrated trajectories. Figure 1 demonstrates the effect of stabilizing primitive controllers.
Assumption 3.1. We assume that our synthesis oracle enjoys the following property. Let ρT =
(x1:T+1,u1:T ) ∼ Dexp, and let κ1:T = synth(ρT ), partitioned into composite actions a1:H , with
κt(x) = K̄t(x − x̄t) + ūt. We assume that, with probability one, κ1:T is consistent with ρT

2,
and that, for each 1 ≤ h ≤ H , ah = (κth:th+τchunk−1) is local t-ISS at xth with moduli γ,β and
parameters cβ, cξ > 0. We further assume that γ and β take the form

γ(u) = c̄γ · u, β(u, k) = c̄βe
−(k−1)Lβ · u, c̄γ, c̄β > 0, Lβ ∈ (0, 1].

1Below, we recall definitions of classes of comparison functions in nonlinear control [38] as follows: we
say a univariate function γ : R≥0 → R≥0 is class K if it is strictly increasing and satisfies γ(0) = 0. We
say a bivariate function β : R≥0 × Z≥0 → R≥0 is class KL if x 7→ β(x, t) is class K for each t ≥ 0, and
t 7→ β(x, t) is nonincreasing in t.

2Note that this implies x̄t = xt and ūt = ut.
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Figure 3: Graphical representation of total variation continuity (TVC) using the running “left mode/right
mode” example. Panel (a) depicts a policy π which is TVC, and thus interpolates between left and right
modes probabilistically. Importantly, the TVC property applies to the distribution over composite actions, i.e.
sequences of primitive controllers, as, in Definition 3.3; this ensures, for example, that following the left mode
from slightly to the right of the obstacle (purple dotted line) still stabilizes to the idealized left mode trajectory
(red). In panel (b), we consider a policy which for TVC applies to the sequences of raw control inputs (which
is not what occurs in Definition 3.3). This can lead to naive mode-switching that collides with the gray obstacle.

Lastly, we assume that for the expert trajectories and the primitive controllers drawn as above, it
holds that satisfy max{∥xt∥, ∥ut∥} ≤ Rdyn and ∥K̄t∥ ≤ RK with probability one.

In Appendix K, we show that Assumption 3.1 holds whenever (a) the dynamics of our system are
smooth (but not necessarily linear!) (b) the affine gains are chosen to stabilize the Jacobian lin-
earizations of the system around the nominal trajectory.
Definition 3.2 (Problem constants). Throughout, we refer to constants c1, c2, c3, c4, c5 > 0, which
are polynomial in the terms in Assumption 3.1, and which are defined formally in Appendix K.

3.2 Simplified guarantees under total variation continuity

This section presents our main theoretical result: if one learns a chunking policy π̂ that can compute
the conditional distribution of composite actions at time steps given observation-chunks, then a
stochastically smoothed version of this policy, π̂σ , has low imitation error. Define, for any length
τ ∈ N, the trajectory distance between trajectories ρ = (x1:τ+1,u1:τ ),ρ

′ = (x′1:τ+1,u
′
1:τ ) ∈Pτ

dtraj(ρ,ρ
′) := max

1≤k≤τ+1
∥xk − x′k∥ ∨ max

1≤k≤τ
∥uk − u′k∥. (3.2)

In particular, we define dtraj(oh, o
′
h) and dtraj(sh, s

′
h) by viewing these as trajectories of length

τobs − 1 and τchunk, respectively. Lastly, we define a per-timestep restriction of the expert dis-
tribution. In this section, we consider the case where the learner policy satisfies a total variation
continuity (TVC) condition, defined below.
Definition 3.3 (TVC of Chunking Policies). We say that a chunking policy π = (πh) is total vari-
ation continuous with modulus γTVC : R≥0 → R≥0, written γTVC-TVC, if, for all h ∈ [H] and any
observation-chunks oh, o′h ∈Pτobs−1, TV(πh(oh), πh(o′h)) ≤ γTVC(dtraj(oh, o

′
h)).

We depict the TVC property using our running left-right obstacle example in Figure 3. We stress that,
in Definition 3.3, the TV bound on TV(πh(oh), πh(o

′
h)) applies to the composite actions consisting

of primitive controllers ah = κth:th+τchunk−1 ∼ πh(oh); it does not upper bound the TV distance
between raw control inputs. Indeed, ensuring TVC of the latter can lead to the failure modes depicted
in Figure 3(b). Next, we extract an expert “policy” from the expert demonstrations.
Definition 3.4 (Expert “policy” with synthesized controllers). For h ∈ [H], we let Dexp,h denote
the joint distribution of (ah, oh), induced by drawing a trajectory ρT = (x1:T+1,u1:T ) ∼ Dexp

from the expert distribution, κ1:T = synth(ρT ) be the associated primitive controllers, let-
ting oh = (xth−τobs+1:th ,uth−τobs+1:th−1) be the associated observation-chunk at time h, and
ah = κth:th+1−1 the associated composite action. We let π⋆

h(·) : O → ∆(A) denote the condition
distribution of ah | oh under Dexp,h.

The conditional distributions π⋆
h(·) are estimated when training a generative model to predict ah

from observations oh. Note that π⋆
h(·) (and Dexp,h) is defined in terms of both expert demonstration
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from Dexp and the associated synthesized primitive controllers. In Lemma J.6, we show that when
the synthesis oracle κ1:T = synth(ρT ) produces primitive controllers consistent with the trajecto-
ries, than π⋆ = (π⋆

h) produces the same marginals over states as Dexp; that is, Lmarg,ε(π
⋆) = 0.

Theorem 1. Suppose Assumption 3.1 holds, and suppose that 0 ≤ ε < c2, and τchunk ≥ c3.
Then, for any non-decreasing non-negative γTVC(·) and γTVC-TVC chunking policy π̂, it holds
that Lmarg,ε(π̂) ≤ HγTVC(ε) +

∑H
h=1 Eoh∼Dexp,h

∆(ε/c1) (π
⋆
h(oh), π̂h(oh)), which is at most

HγTVC(ε) +
c1
ε

∑H
h=1 Eoh∼Dexp,h

[W1,dmax
(π⋆

h(oh), π̂h(oh))].

The above result reduces the marginal imitation error of π̂ to the sum over optimal transport errors
between π̂ and a | oh chosen by the expert demonstrators. Thus, if these are small, the local
stabilization properties of the primitive controllers guaranteed by Assumption 3.1 ensure that errors
compound at most linearly in problem horizon. The key ideas of the proof are given Appendix D, via
a general template for imitation learning of general stochastic policies. This template is instantiated
with a details in Appendix J.

3.3 A general guarantee via data noising.

To circumvent assuming that the learner’s policy is TVC, we study estimating the conditionals un-
der a popular data augmentation technique [36], where the learner is trained to imitate the condi-
tional sequence of a | õh, where õh ∼ N (oh, σ

2I) adds σ2-variance Gaussian noise to the true
observation-chunk. To understand this better, consider the following smoothed policy:

Definition 3.5 (The smoothed policy). Let π̂ = (π̂h) be a chunking policy. We define the smoothed
policy π̂σ = (π̂σ,h) by letting π̂σ,h(· | oh) be distributed as π̂h(· | õh), where õh ∼ N (oh, σ

2I).

Appendix J.7.2 show’s that Pinsker’s inequality implies noising automatically enforces TVC This
suggests that we can use some form of data noising to enforce the TVC property in Definition 3.3.
Let’s now consider a related problem: trying to estimate the optimal distribution over composite
actions conditioned on a noised observation. This gives rise to a deconvolution of the expert policy,
which can be thought as an inverse operation of data noising.

Definition 3.6 (Noised Data Distribution and Deconvolution Policy). Let Dexp,h be as in Defini-
tion 3.4. Define Dexp,σ,h as the distribution over (õh, ah) generated by (oh, ah) ∼ Dexp,h and
õh ∼ N (oh, σ

2I). We define the deconvolution policy π⋆
dec,σ,h(õh) as the conditional distribution

of ah | õh under Dexp,σ,h.

Analogously to π⋆, the policy π⋆
dec,σ,h is what a generative model trained to generate ah from noised

observations õh of oh ∼ Dexp learns to generate. Our next theorem states that, if our π̂ approximates
the idealized conditional distributation of composite actions given noised observations, then π̂σ , the
smoothed policy, imitates the expert distribution with provable bounds on its imitation error:

Theorem 2 (Reduction to conditional sampling under nosing). Suppose Assumption 3.1 holds. Let
c1, . . . , c5 > 0, defined in Definition 3.2, and let ΘIss(x) denote a term which is upper and lower
bounded by a x times a polynomial in those constants and their inverses. Then, for ε ≤ ΘIss(1), if
we choose σ = ε/ΘIss(

√
dx + log(1/ε)) and let τchunk ≤ c3 and τchunk − τobs ≥ 1

Lβ
log(c1/ε),

Lmarg,ε(π̂σ) ≤ ΘIss

(
εH
√
τobs · (

√
dx + log( 1ε )

)
+
∑H

h=1 Eõh∼Dexp,σ,h

[
∆(ε2)

(
π⋆
dec,σ,h (õh) , π̂h (õh)

)]
,

which is upper bounded by at most ΘIss

(
εH
√
τobs · (

√
dx + log(1/ε)

)
+

1
ε2

∑H
h=1 Eoh∼Dexp,σ,h

[
W1,dmax

(
π⋆
dec,σ,h(õh), π̂h(õh)

)]
.

To reiterate, Theorem 2 guarantees imitation of the distribution of marginals and final states ofDexp

by replacing the explicit TVC assumption with noising, and the resulting guarantee applies to the
smoothed policy π̂σ which adds smoothing noise back in. Appendix J gives a number of additional
results. In Appendix I, we show that the proof framework, outlined in Appendix D, which under lies
the proofs of Theorems 1 and 2, is essentially sharp in the worst case. Moreover, in Appendix C.3,
we discuss the merits and drawbacks of our use of the synthesis oracle, and how it circumvents some
of the challenges encountered in behavior cloning in past work. The key intuition behind the proof
of Theorem 2 is depicted in Figure 4, and full proof sketch is deferred to Appendix C.2
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Trajectory

Noised State

(a) (b)

Figure 4: Multi-modal demonstrations traverse an ob-
stacle left or right, exhibiting a pure bifurcation. We
consider perturbing expert data on the right mode (blue
circle) to a noised datum (gray circle). We show that
generative behavior cloners learn to deconvolve this
noise, creating a virtual “replica” sample (red circle)
following the left mode, such that the replica and orig-
inal are i.i.d. given the noised one. When the red cir-
cle’s primitive controllers are rolled from from the blue
circle, this leads to a trajectory (yellow circle) which
interpolates across the bifurcations. Marginalizing over
this process, the yellow trajectories probabilistically in-
terpolate between red and blue modes, and (approxi-
mately) match the per-time-step marginal over expert
distributions.

4 HINT: Instantiating Data Noising with DDPMs

We now instantiate Theorem 2 by showing that one can learn a policy π̂ for which the error terms
in Theorems 1 and 2 are small by fitting a DDPM to noise-smoothed data. Our proposed algo-

Algorithm 1 Hierarchical Imitation via Noising at Inference Time (HINT)
[h]

1: Initialize Synthesis oracle synth, sample sizesNexp, Naug ∈ N, σ ≥ 0, DDPM step size α > 0,
DDPM horizon J , function class {sθ}θ∈Θ, gain magnitude R > 0, empty data buffer D← ∅.
% For no smoothing, set σ = 0 and Naug = 1

2: for n = 1, 2, . . . Nexp do
3: Sample ρT = (x1:T+1, u1:T ) ∼ Dexp and set κ1:T = synth(ρ)

% Segment o1:H from ρT and a1:H from κ1:T

4: for i = 1, 2, . . . , Naug and h = 1, 2, . . . ,H do
5: Sample õh ∼ N (oh, σ

2I), jh ∼ Unif([J ]) and γh ∼ N (0, (jhα)
2I).

6: D← D.append ({(ah, õh, jh,γh, h)})
7: Fit θ ∈ argminθ∈Θ LDDPM(θ,D), and let π̂ = (π̂h) be given by π̂(· | oh) = DDPM(sθ,h, oh).
8: return π̂σ = (π̂σ,h), by smoothing π̂ as per Definition 3.5.

rithm, HINT (Algorithm 1) combines DDPM-learning of chunked policies as in [19] with a popular
form of data-augmentation [36]. We collect Nexp expert trajectories, synthesize gains, and segment
trajectories into observation-chunks oh and composite actions ah as described in Section 2. We
perturb each oh to form Naug chunks õh, as well as horizon indices j ∈ [J ] and inference noises
γ ∼ N (0, (αjh)

2I), and add these tuples (ah, õh, jh,γh, h) to our data D. We end the training
phase by minimizing the standard DDPM loss [62]:

LDDPM(θ,D) =
∑

(ah ,̃sh,jh,γh,h)∈D

∣∣∣∣∣∣γh − sθ,h

(
e−αjah +

√
1− e−2αjγh, õh, jh

)∣∣∣∣∣∣2 . (4.1)

Our algorithm differs subtly from past work in Line 8: motivated by Theorem 2, we add smoothing
noise back in at test time. Here, the notation DDPM(sθ,h, ·)◦N (oh, σ

2I) means, given oh, we perturb
it to õh ∼ N (oh, σ

2I), and sample ah ∼ DDPM(sθ,h, õh). We now state an informal guarantee for
HINT, deferring a formal statement to Appendix C.5.
Theorem (Informal Theorem). Suppose that the system dynamics are smooth and that Assump-
tion 3.1 holds for the linearized system. Then there is a choice of the parameters in HINT that is
polynomial in all problem parameters such that forNexp, polynomially large in problem parameters,
Lmarg,ε(π̂σ) ≤ Θ

(
εH
√
τobs(

√
dx + log(1/ε))

)
with high probability.

4.1 Experimental Results

In this section, we demonstrate the benefits of diffusing low level controllers, and of our approach
to data noising. We explain the environments in greater detail, along with all training and compu-
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Figure 5: Performance of diffusing chunks of actions ūth−1:th−1 ("No Gains") versus jointly dif-
fusing actions uth−1:th−1, reference states x̄th−1:th−1 and gains Kth−1:th−1 for a 2-D quadrotor
system with thrust-and-torque-based control. Different noise levels σ and number of trajectories N
are shown. Mean and standard deviation are shown across 5 training seeds.
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Figure 6: Performance of baseline π̂ and noise-injected π̂◦Wσ HINT policy for different σ. We use 4
training seeds with 50 and 22 test trajectories per seed for PushT and Can and Square Environments
respectively. Mean and standard deviation of the test performance on the 3 best checkpoints across
the 4 seeds are plotted. The σ values correspond to noise in the normalized [−1, 1] range.

tational details in Appendix O. 3 Figure 5 compares the performance of diffusing (chunks of) raw
control inputs to diffusing (chunks of) gain matrices for a canonical model of a 2-d quadrotor. We
find that diffusing gain matrices yields dramatic improvements in performance, in particular allow-
ing a single imitated trajectory to outperform learning raw control inputs from 10 demonstrations.

Next, empirically evaluate the effect on policy performance of our proposal to inject noise back into
the dynamics at inference time. We consider three challenging robotic manipulation tasks studied
in prior work: PushT block-pushing [19]; Robomimic Can Pick-and-Place and Square Nut Assem-
bly [42] (we direct the reader to Chi et al. [19] for an extensive empirical investigation into the
performance of diffusion policies in the un-noised σ = 0 regime). We display the results of our
experiments in Figure 6. Observe that the performance degredation of the replica policy from the
unnoised σ = 0 variant is minimal across all environments and even leads to a slight but noticeable
improvement in the small-noise regime for PushT (and low-data Can Pick and Place). In the pres-
ence of non-negligible noise HINT significantly outperforms the conventional policy π̂ (obtained by
noising observations at training but not test time), as predicted by our theory.

5 Discussion
This work considerably loosened assumptions placed on the expert distribution by introducing a
synthesis oracle responsible for stabilization. How best to achieve low-level stabilization remains
an open question. We hope that this work encourages further empirical research into improving the
stability of imitation learning, either via the hierarchical route proposed in this paper or via new
innovations.

3Code for PushT, Robomimic experiments can be found at https://github.com/pfrommerd/
diffusion_policy_pt. Quadrotor experiments are in https://github.com/pfrommerd/stanza/
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