
A Omitted details from Section 3.1

A.1 Implementation of Figure 1

Figure 1 is generated from a simple three-task linear MTL problem that we constructed, using Equa-
tion (4). Specifically, we set ŷ1 ≈ (0.98, 0, 0.2), ŷ2 ≈ (−0.49,−0.85, 0.2), ŷ3 ≈ (−0.49, 0.85, 0.2)
(the number of data points is n = 3; this is a rotated version of the equiangular tight frame), set
q = 1 (the width of the network is one, i.e., under-parameterized), and plotted the achievable points
of Equation (4) by sweeping PZ (the set of rank-1 projection matrices). The software we used is
Mathematica.

A.2 Over-parametrization reduces the Pareto front to a singleton

For general non-linear multi-task neural networks, we will show that increasing the width reduces
the Pareto front to a singleton, where all tasks simultaneously achieve zero training loss. As a
consequence, linear scalarization with any convex coefficients will be able to achieve this point.

To illustrate this point, we follow the same setting as in Section 2, except changing the model to be a
two-layer ReLU multi-task network with bias terms. Concretely, for task i, the prediction on input x
is given by fi(x,W, b, ai) = a⊤i max(Wx+ b, 0). We have the following result.
Theorem A.1. There exists a two-layer ReLU multi-task network with hidden width q = nk and
parameters (W, b, a1, · · · , ak), such that

fi(x
j
i ,W, b, ai) = yji , ∀j ∈ [n], ∀i ∈ [k]. (14)

This implies that the network achieves zero training loss on each task.

Proof. For every i ∈ [k], we can apply Theorem 1 in (Zhang et al., 2021) and find (Wi, bi, ãi) such
that

ã⊤i max(Wix
j
i + bi, 0) = yji , ∀j ∈ [n]. (15)

Here, Wi ∈ Rn×p and bi, ãi ∈ Rn. Now consider

W =


W1

W2

...
Wn

 ∈ Rnk×p, b =


b1
b2
...
bn

 ∈ Rnk, ai = ei ⊗ ãi ∈ Rnk ∀i ∈ [n], (16)

where ei denotes the i-th unit vector in Rn and ⊗ stands for the Kronecker product. It is straightfor-
ward to see that

a⊤i max(Wix
j
i + bi, 0) = yji , ∀j ∈ [n], ∀i ∈ [k]. (17)

This finishes the proof as desired.

A.3 Proof of Theorem 3.1

Proof of Theorem 3.1. Define vi = ⟨ŷi, s⟩ and v = (v1, · · · , vk)⊤. We are interested in the set

S :=
{
v | ∥s∥ = 1, s ∈ span({ŷi}i∈[k])

}
. (18)

We will show S is equivalent to the following set

B :=
{
v | v⊤Qv = 1

}
, Q = (Ŷ ⊤Ŷ )−1, (19)

which is essentially the boundary of an ellipsoid.

Step 1: S ⊂ B. Note v = Ŷ ⊤s, so it suffices to show

s⊤Ŷ (Ŷ ⊤Ŷ )−1Ŷ ⊤s = 1. (20)

Denote PŶ = Ŷ (Ŷ ⊤Ŷ )−1Ŷ ⊤, which is a projection matrix that maps to the column space of Ŷ .
Since s ∈ span({ŷi}i∈[k]), we have

s⊤PŶ s = s⊤s = ∥s∥2 = 1. (21)
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Step 2: B ⊂ S. Since Ŷ ⊤ has full row rank, for every v ∈ Rk, we can always find s ∈ Rn such
that Ŷ ⊤s = v. We can further assume s ∈ span({ŷi}i∈[k]) by removing the component in the null
space of Ŷ ⊤. Assuming v ∈ B, we have

s⊤PŶ s = 1, s ∈ span({ŷi}i∈[k]). (22)

Since PŶ is a projection matrix that maps to the column space of Ŷ , we have s⊤s = 1, which implies
∥s∥ = 1.

Now we have S = B. The set

S′ :=
{
|v| | ∥s∥ = 1, s ∈ span({ŷi}i∈[k])

}
(23)

can be obtained by reflecting E to the non-negative orthant. Formally, a reflection is determined by a
collection of axes {i1, · · · , il} (0 ≤ l ≤ k). The image of such reflection in the non-negative orthant
is given by

Bi1···il = {v | v⊤Qi1···ilv = 1, v ≥ 0}, (24)
where Qi1,···il = Di1···ilQDi1···il . As a consequence, we have

S′ =
⋃

0≤l≤k

⋃
1≤i1<···<il≤k

Bi1···il . (25)

Finally, the feasible region can be equivalently characterized as

F1 =
{
v2 | ∥s∥ = 1, s ∈ span({ŷi}i∈[k])

}
, (26)

which can be obtained by squaring the coordinates of S′. Therefore, if we denote

Ei1···il = {v |
√
v
⊤
Qi1···il

√
v = 1}, (27)

then (note the square root naturally implies v ≥ 0)

F1 =
⋃

0≤l≤k

⋃
1≤i1<···<il≤k

Ei1···il . (28)

This finishes the proof as desired.

A.4 Proof of Theorem 3.2

Proof of Theorem 3.2. Note the orthogonal complement of a 1-dimensional subspace of
span({ŷi}i∈[k]) is a (k−1)-dimensional subspace, and that the objective function for each task is the
square of the projection of ŷi. Denote t := (∥ŷ1∥2, · · · , ∥ŷk∥2)⊤. By the Pythagorean theorem (Bha-
tia, 2013, Section I.6), if v ∈ F1, then we must have t− v ∈ Fq−1, and vice versa. As a consequence,
denote

Ii1···il = {v |
√
t− v⊤Qi1···il

√
t− v = 1}, (29)

and we have
Fq−1 =

⋃
0≤l≤k

⋃
1≤i1<···<il≤k

Ii1···il (30)

by Theorem 3.1.

A.5 Why scalarization fails in the presence of gradient disagreement

We explain why linear scalarization is incapable of exploring an intersection point with gradient
disagreement.

We first recall the geometric interpretation (see Figure 4.9 in (Boyd et al., 2004)) of linear scalarization:
a point P lying at the boundary of the feasible region can be achieved by scalarization, if and only if
there exists a hyperplane at P and the feasible region lies above the hyperplane. The normal vector
of the hyperplane is proportional to the scalarization coefficients. By definition, if a hyperplane at
P lies below the feasible region, its normal vector must be a subgradient of the surface. When the
boundary of the feasible region is differentiable and the subdifferential set is non-empty, the normal
vector must be the gradient of the surface, and the hyperplane becomes the tangent plane at P .
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Now suppose P lies at the intersection of two differentiable surfaces S1 and S2, and that P can be
achieved by scalarization. Applying the above argument to S1 and P , we know that the scalarization
coefficients are proportional to the gradient w.r.t. S1. Similarly, applying the above argument to
S2 and P yields that the scalarization coefficients are proportional to the gradient w.r.t. S2. This
will result in a contradiction if the two gradients w.r.t. S1 and S2 at P lie in different directions, a
phenomenon we refer to as gradient disagreement. In this case, scalarization cannot reach P .

B Omitted details from Section 3.2

B.1 Proof of Lemma 3.4

We begin by reviewing some basics of convex analysis. We refer the readers to Rockafellar (1997)
for more background knowledge.
Definition B.1 (Convex hull). Let X = {xi}i∈[m] be a collection of points in Rn. The convex hull
of X , denoted as conv(X), is the set of all convex combinations of points in X , i.e.,

conv(X) :=

 ∑
i∈[m]

αixi | αi ≥ 0,
∑
i∈[m]

αi = 1

 . (31)

Definition B.2 (Cone and convex cone). A set K ⊂ Rn is called a cone if x ∈ K implies αx ∈ K
for all α > 0. A convex cone is a cone that is closed under addition. The convex cone generated by
X = {xi}i∈[m] ⊂ Rn, denoted as cone(X), is given by

cone(X) := conv(ray(X)), (32)

where ray(X) = {λxi | λ ≥ 0, i ∈ [m]}.
Definition B.3 (Dual cone). The dual cone of C ⊂ Rn, denoted as C∗, is given by

C∗ := {y | ⟨y, x⟩ ≥ 0, ∀x ∈ C} (33)

Definition B.4 (Projection onto a convex set). Let C be a closed convex set in Rn. The orthogonal
projection of y ∈ Rn onto the set C, denoted as PCy, is the solution to the optimization problem

PCy := inf
x∈C
{∥x− y∥}. (34)

Theorem B.5 (Bourbaki-Cheney-Goldstein inequality (Ciarlet, 2013)). Let C be a closed convex set
in Rn. For any x ∈ Rn, we have

⟨x− PCx, y − PCx⟩ ≤ 0, ∀y ∈ C. (35)

Theorem Theorem B.5 is also known as the variational characterization of convex projection. We will
use it to prove the following lemma, which serves as a crucial ingredient in the proof of Lemma 3.4.
Lemma B.6. Let C be a closed convex set in Rn. For any z ∈ Rn, we have

⟨z′, x⟩ ≥ ⟨z, x⟩, ∀x ∈ C, (36)

where z′ = 2PCz − z is the reflection of z w.r.t. C.

Proof. Plugging in z′ = 2PCz − z, it suffices to show

⟨PCz − z, x⟩ ≥ 0, ∀x ∈ C. (37)

This is true because
⟨PCz − z, x− PCz⟩ ≥ 0, ∀x ∈ C (38)

by Theorem B.5, and that
⟨z − PCz, PCz⟩ = 0. (39)

We are now ready to prove Lemma 3.4.
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Proof of Lemma 3.4. For the if part, we assume w.l.o.g. that G = Ŷ ⊤Ŷ is doubly non-negative.
This implies that the angle between each pair of optimal predictors is non-obtuse. Denote A =
cone({ŷi}i∈[k]) and A∗ as its dual cone. We have A ⊂ A∗.

Our goal is to show that, for every ∥s∥ = 1, we can always find s′ ∈ A∗, such that 1) ∥s′∥ = 1; 2)
⟨s′, ŷi⟩ ≥ |⟨s, ŷi⟩|, ∀i ∈ [k]. This implies that when restricting our discussion to the Pareto front, we
can safely ignore the absolute value which appears in the proof of Theorem 3.1. As a consequence,
the Pareto front belongs to the surface determined by Q = G−1.

Consider s′ = 2PA∗s− s. It is straightforward to see that ∥s′∥ = 1 since it is the reflection of s w.r.t.
A∗. To show 2), we will prove:

⟨s′, x⟩ ≥ |⟨s, x⟩|, ∀x ∈ A. (40)

We break the discussion into two cases.

Case 1: ⟨s, x⟩ ≥ 0. Since x ∈ A ⊂ A∗, we have

⟨s′, x⟩ ≥ ⟨s, x⟩ = |⟨s, x⟩| (41)

by Lemma B.6.

Case 2: ⟨s, x⟩ < 0. Consider u = −s and denote C := {a | ⟨a, PA∗s⟩ ≥ 0}. It is straightforward to
see that A ⊂ C.

We will show PCu = PA∗s− s. In fact, for any z ∈ C, we have

∥z − u∥2 = ∥z − (PA∗s− s) + PA∗s∥2

= ∥z − (PA∗s− s)∥2 + ∥PA∗s∥2 + 2⟨z − (PA∗s− s), PA∗s⟩
≥ ∥PA∗s∥2 + 2⟨z, PA∗s⟩
≥ ∥PA∗s∥2

= ∥PA∗s− s− u∥2.
Therefore, we have

s′ = 2PA∗s− s = 2PCu− u. (42)
With another application of Lemma B.6, we have

⟨s′, x⟩ ≥ ⟨u, x⟩ = ⟨−s, x⟩ = |⟨s, x⟩|. (43)

This finishes the proof of the if part.

For the only if part, we consider the point pi which achieves maximum value along the i-axis. For a
given i, it is straightforward to see that such pi is unique, and therefore is a PO of the feasible region.

Now, pi belongs to a surface determined by Q′, if and only if there exists a non-negative vector vi,
such that Q′vi = ei (the normal vector at pi aligns with the i-th axis). In other words, G′ei ≥ 0
where G′ = (Q′)−1. When C1 does not hold, there does not exist a G∗ ∈ G, such that G∗ei ≥ 0 for
all i ∈ [k]. This implies that these pi must belong to different surfaces.

B.2 Proof of Lemma 3.5

Proof of Lemma 3.5. For the if part, we assume w.l.o.g. that Q∅ = G−1
∅ is doubly non-negative.

This essentially implies that E∅ is dominated by all other surfaces in E , which further implies that
I∅ dominates all other surfaces in I. Therefore, the Pareto front must belong to I∅.

For the only if part, we study the Pareto front of Fq−1 through the lens of F1. Specifically, a point z
is a PO of Fq−1 if and only if Fq−1 and the non-negative orthant of z intersects only at z. Denote
the corresponding point of z on F1 as z′ = t− z. An equivalent characterization is that F1 and the
non-positive orthant of z′ intersects only at z′. We can therefore consider a special type of z′ whose
coordinates are zero except for i, j-th entry. If z′ further lies on a surface Q with qij > 0, then the
corresponding z will be a PO of Fq−1.

When C2 does not hold, there exists a row of Q∅ which contains both positive and negative entries.
We assume w.l.o.g. the first row of Q∅ satisfies this condition. By the above observation, we can find
two PO of Fq−1 that correspond to Q∅ and Q1, respectively. This finishes the proof as desired.
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B.3 Proof of Theorem 3.8

Proof of Theorem 3.8. We only prove for the case of q = 1, and the proof for q = k − 1 can be done
similarly. Suppose P (whose coordinate is v) lies at the intersection of two surfaces defined by Q
and Q′. We denote the intersection of Q and Q′ as S , which is a non-linear manifold with dimension
(k − 2). Since P is a relative interior point of the PF, there exists some ε > 0, such that any point in
S ∩Bε(P ) is a PO. We will show there exists some P ′ ∈ S ∩Bε(P ) (whose coordinate is v′), such
that the gradients at P ′ w.r.t. the two surfaces disagree, i.e.,

Q
√
v′ ̸= Q′

√
v′. (44)

To see why this is true, note that Q′ can be expressed as Q′ = DQD, where D is a diagonal matrix
whose diagonal entries are either 1 or −1. As a consequence, the set

{v | Qv = Q′v} (45)

is a subspace of Rk whose dimension is at most (k − 2), so it cannot fully contain a non-linear
manifold whose dimension is (k − 2). This finishes the proof as desired.

B.4 Proof of Theorem 3.8 without assumptions (k = 3)

Here we provide a proof for Theorem 3.8 under k = 3, without relying on Assumptions 3.6 and 3.7.

Proof. We prove the necessity of C1 and C2 separately.

C1 is necessary. Suppose C1 is not true. We assume w.l.o.g. that ⟨ŷ1, ŷ2⟩ < 0, ⟨ŷ1, ŷ3⟩ >
0, ⟨ŷ2, ŷ3⟩ > 0. Now we can write

Q =

[
q11 q12 −q13
q21 q22 −q23
−q31 −q32 q33

]
, (46)

where qij > 0 for all pairs of (i, j). We also have

q11q23 > q12q13, q22q13 > q12q23, q33q12 > q13q23. (47)

The boundary of the feasible region is formed byE∅, E1, E2. Our goal is to find a point I ∈ E∅∩E1,
such that 1) I is a PO of the feasible region; 2) the gradients at I w.r.t. E∅ and E1 disagree. We write
the coordinate of I as (x, y = q213/s, z = q212/s)

⊤, where

q11x+
q22q

2
13 + q33q

2
12 − 2q12q23q31
s

= 1, (48)

and s < q11q
2
23 + q22q

2
13 + q33q

2
12 − 2q12q23q31.

It is straightforward to see that 2) can be satisfied as long as x ̸= 0. Therefore, we will focus on the
realization of 1). This further requires two conditions: i) I is a PO w.r.t. E∅ and E1, meaning that
the normal vectors are non-negative; ii) I is a PO w.r.t. E2, meaning that the non-negative orthant at
I does not intersect with E2.

Some simple calculations yield that i) is equivalent to

q22
√
y ≥ q23

√
z + q12

√
x and q33

√
z ≥ q23

√
y + q13

√
x. (49)

Setting x = 0, we have

q22
√
y > q23

√
z and q33

√
z > q23

√
y (50)

by Equation (47). Therefore, it suffices to show the non-negative orthant at (0, q213/s, q
2
12/s)

⊤

(s = q22q
2
13 + q33q

2
12 − 2q12q23q31) does not intersect with E2, and by continuity we can find some

x0 > 0 such that i) and ii) hold simultaneously.

To prove the above claim, suppose a ≥ 0, b ≥ q213/s, c ≥ q122/s. We will show (a, b, c)⊤ must lie
above the surface defined by E2, i.e.,

f(a, b, c) = q11a+ q22b+ q33c− 2q12
√
ab− 2q13

√
ac+ 2q23

√
bc > 1. (51)
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Let a∗ = q12
√
b+q13

√
c

q11
. We have

f(a, b, c) ≥ f(a∗, b, c)

=

(
q22 −

q212
q11

)
b+

(
q33 −

q213
q11

)
c+ 2

(
q11q23 − q12q13

q11

)√
bc

≥ q11(q22q
2
13 + q33q

2
12 + 2q12q23q31)− 4q212q

2
13

sq11

>
q11(q22q

2
13 + q33q

2
12 − 2q12q23q31)

sq11
= 1.

As a consequence, by choosing a small x0, we can guarantee both 1) and 2). I is therefore a PO that
cannot be achieved via scalarization.

C2 is necessary. Suppose C2 is not true. We can write

Q =

[
q11 −q12 −q13
−q21 q22 −q23
−q31 −q32 q33

]
, (52)

where qij > 0 for all pairs of (i, j). The inner boundary of F1 is formed by E1, E2, E3, and the
coordinates of their intersection I is given by v = (q223/r, q132/r, q

2
12/r)

⊤, where r = q11q
2
23 +

q22q
2
13 + q33q

2
12 + 2q12q23q31. Our goal is to show the corresponding I ′ on F2 (i.e., t− v) is a PO

which cannot be achieved by scalarization.

To see why this is true, first note that the gradients at I w.r.t. the three surfaces disagree, since qij > 0
for all pairs of (i, j). Now, to demonstrate I ′ is a PO of F2, it suffices to show the non-positive
orthant of I intersects with F1 only at I . By symmetry, it suffices to show that I does not dominate
any point on E1.

To prove the above claim, suppose a ≤ q223/r, b ≤ q213/r, c ≤ q212/r. We will show, J = (a, b, c)⊤

must lie below the surface defined by E1 unless J equals I . In fact, let

g(a, b, c) = q11a+ q22b+ q33c+ 2q12
√
ab+ 2q13

√
ac− 2q23

√
bc. (53)

We have

g(a, b, c) ≤ g(q223/r, b, c)
≤ g(q223/r, q213/r, c)
≤ g(q223/r, q213/r, q212/r)
= 1,

where the equalities hold iff I = J . This finishes the proof as desired.

B.5 Proof of Theorem 3.10

We first present several useful lemmas regarding non-negative matrices.
Lemma B.7. Let A be a non-negative, irreducible and real symmetric matrix, then there only exists
one eigenvector v of A (up to scaling), such that v > 0.

Proof. Since A is non-negative and irreducible, by Perron-Frobenius theorem (Shaked-Monderer
and Berman, 2021), the eigenvector associated with the largest eigenvalue ρ(A) (a.k.a. Perron root)
can be made positive, and is unique up to scaling. We denote it as v.

We will show the eigenvectors associated with other eigenvalues cannot be positive. In fact, assume
u > 0 is an eigenvector associated with λ < ρ(A). Since A is symmetric, we have

ρ(A)v⊤u = v⊤A⊤u = v⊤Au = λv⊤u. (54)

This is a contradiction since v⊤u > 0 and ρ(A) > λ.
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Lemma B.8. Let A be a non-negative and real symmetric matrix. Suppose v is an eigenvector of A
such that v > 0, then v corresponds to the largest eigenvalue of A.

Proof. Consider the normal form (Varga, 1999) of A:

PAP⊤ =


B11 B12 · · · B1h

0 B22 · · · B2h

...
...

. . .
...

0 0 · · · Bhh

 ≜ B, (55)

where P is a permutation matrix and Bii (i ∈ [h]) are irreducible. It is straightforward to see that B is
non-negative. Furthermore, since a permutation matrix is an orthogonal matrix, B is also symmetric
(implying that Bij = 0 for i ̸= j) and has the same spectrum as A.

Now suppose Av = λv for some v > 0. Since B = PAP⊤, we have Bψ = λψ with ψ = Pv > 0.
Denote

ψ =


ψ1

ψ2

...
ψn

 , (56)

where each ψi has the same dimension as Bii. Now we have

Biiψi = λψi, ∀i ∈ [h]. (57)

Since Bii is non-negative, irreducible and real symmetric, by Lemma B.7, ψi corresponds to the
largest eigenvalue of Bii. Note B is a block diagonal matrix, so the spectrum of B is essentially the
union of the spectrum of Bii. As a consequence,

λmax(A) = λmax(B) = max
i∈[h]

λmax(Bii) = λ. (58)

Proof of Theorem 3.10. We prove the sufficiency of C1 and C2 separately.

C1 is sufficient. We have demonstrated in Lemma 3.4 that the Pareto front belongs to a single
surface E, whose gram matrix is doubly non-negative. Let p = (a1, · · · , ak)⊤ be a PO of E, and
denote t =

√
p. We will show that the tangent plane at this point lies above the feasible region,

implying that it can be achieved by scalarization.

Concretely, the tangent plane is given by∑
i∈[k]

∑
j∈[k] qij

√
aj

√
ai

vi = 1. (59)

To show it lies above the feasible region, it suffices to prove that it lies above every surface in E , i.e.,∑
i∈[k]

∑
j∈[k] qij

√
aj

√
ai

vi ≤
∑
i∈[k]

qi1···ilii vi + 2
∑

1≤i<j≤k

qi1···ilij

√
vivj , (60)

where qi1···ilij represents the (i, j)-th entry of Qi1···il . Note Equation (60) can be treated as a quadratic
form w.r.t.

√
v, so it suffices to prove the corresponding matrix is PSD. Writing compactly, it suffices

to show
Qi1···il − diag{Qt⊘ t} = Di1···il(Q− diag{Qt⊘ t})Di1···il (61)

is PSD. As a consequence, we only need to show the positive semi-definiteness of the following
matrix

T := Q− diag{Qt⊘ t}. (62)
Since p is a PO of E, we have Qt ≥ 0. Let w = Qt, we have

T = G−1 − diag{w ⊘Gw}. (63)

20



Assume w.l.o.g. that w > 0 (otherwise we simply remove the corresponding rows and columns in
G−1). Denote

R =
√
diag{w ⊘Gw} and ϕ =

√
w ⊙Gw > 0. (64)

We have
RGRϕ = RG

√
diag{w ⊘Gw}

√
w ⊙Gw

= RGw

=
√

diag{w ⊘Gw}Gw
=
√
w ⊙Gw

= ϕ.

By Lemma B.8, we have ρ(RGR) = 1. Since RGR is positive definite, we have
I ⪰ RGR ≻ 0. (65)

This further implies that R−2 ⪰ G, and
T = G−1 −R2 ⪰ 0. (66)

C2 is sufficient. We have demonstrated in Lemma 3.5 that the Pareto front belongs to a sin-
gle surface I∅. Here we will further show I∅ is concave, and apply the supporting hyperplane
theorem (Boyd et al., 2004, Section 2.5.2) to conclude the proof. In fact, E∅ is parametrized by∑

i∈[k]

qiivi + 2
∑

1≤i<j≤k

qij
√
vivj = 1. (67)

Since the first term is a summation of linear functions, f(x, y) =
√
xy is a concave function and that

qij ≥ 0, we conclude that E∅ is convex, and I∅ is concave. This finishes the proof as desired.

C A polynomial algorithm for checking C1

We explain how Algorithm 1 works.

Essentially, the goal is to find a set of flipping signs {si}i∈[k] ∈ {+,−} that ensure positive
correlation between all pairs in {siŷi}i∈[k] (except for those pairs that are not correlated). We state
an observation which is critical for our algorithm—given a pair ŷi and ŷj , whether their signs are the
same or opposite can be determined by whether ŷi and ŷj is positively or negatively correlated. Thus,
given a determined si, the signs of its subsequent predictors sj , j > i can be uniquely determined by
evaluating ⟨ŷi, ŷj⟩. This allows us to determine the signs for the predictors si in ascending order, and
check for potential conflicts in the mean time.

We state one loop invariant in our algorithm—when entering iteration i in the outer loop, si has been
determined by its preceding predictors and no conflict has occurred, or it has remained undetermined
(i.e., None) all the way because it is not correlated with any preceding predictors. At this point,
what is left to be done is to examine the subsequent predictors. If si is undetermined (lines 2-7), we
attempt to use its subsequent predictors to determine it (line 5), and break out of the loop once it gets
determined. Now that we make sure that si is determined after line 9, we can proceed to check the
remaining subsequent predictors, to either determine their signs (lines 12-13) or check for potential
conflicts (lines 14-15).

We comment that caution needs to be taken for the pairs that are not correlated (i.e., ⟨ŷi, ŷj⟩ = 0).
In this case, one cannot determine the sign of sj by the relationship between these two predictors;
basically, the sign has no influence on their correlation. Thus, the predictor ŷj retains the flexibility
to be determined by other predictors other than ŷi. Additionally, it is possible that at the end of line 9
sj is still undetermined; this only occurs when ŷi is not correlated with any other optimal predictor.
In this case, t will take the value of k + 1 and the following loop (lines 10-15) will not be executed.

D Additional experimental details and results

D.1 Additional experimental details

Dataset. The SARCOS dataset (Vijayakumar and Schaal, 2000) consists of the configurations
(position, velocity, acceleration) of the robotic arms, and the problem is to predict the torque of the
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Algorithm 1: An O(k2) algorithm of checking C1
Input: Optimal predictors ŷ1, ŷ2, . . . , ŷk
Output: True if C1 is met, and False otherwise
Initialize: s1 = 1, s2 = · · · = sk = None

Define: sgn(x) =


1, if x > 0

−1, if x < 0

None, if x = 0

1 for i = 1 to k − 1 do
▷ Check whether si has been determined by its preceding optimal predictors
{ŷ1, . . . , ŷi−1}; if not, determine it using the subsequent ones.

2 if si = None then
3 for j = i+ 1 to k do
4 if sj ̸= None and sgn(⟨ŷi, ŷj⟩) ̸= None then
5 si ← sj · sgn(⟨ŷi, ŷj⟩)
6 break

7 t← j + 1

8 else
9 t← i+ 1

▷ Now that si has been determined, we proceed to check the remaining optimal
predictors to either determine the sign for them or check for conflicts.

10 for j = t to k do
11 if sgn(⟨ŷi, ŷj⟩) ̸= None then
12 if sj = None then
13 sj ← si · sgn(⟨ŷi, ŷj⟩)
14 else if si · sj · sgn(⟨ŷi, ŷj⟩) = −1 then
15 return False

16 return True

respective arm given its triplet configuration. Since our study concentrates on the training procedure
and does not concern generalization, we conduct the experiments on the training set alone, where the
size of the training set of the SARCOS dataset (Vijayakumar and Schaal, 2000) is 40, 000. Regression
tasks normally benefit from standardization as a pro-processing step (Hastie et al., 2009), so we
standardize the dataset to zero mean and unit variance.

Tasks. Following our theoretical analysis in Section 3, we study the scenario where q = 1. In this
case, it is straightforward to see that the minimal k that may lead to a violation of C1 is 3. To show
the violation of C1 leading to the failure of scalarization exploring the Pareto Front, we constrain our
study to k ≥ 3; furthermore, for ease of visualization, we focus on k = 3. In our experiments, we
take the arms 3, 4, and 5 for which do not satisfy C1.

Network. We use a two-layer linear network for the reason explained in Section 2. We merge the
bias term b into the weight matrix W by adding an additional all-one column to the input X . The
input dimension of the network is 22 (seven (position, velocity, acceleration) triplets plus the dummy
feature induced by b), the hidden size is q = 1, and the output size is 1 (i.e., the predicted torque).
The same network architecture is used for both experiments in scalarization and that in SMTOs.

Implementation of linear scalarization. For linear scalarization, we uniformly sample 100, 000
sets of convex coefficients from a three-dimensional simplex (i.e., a tetrahedron). Concretely, we first
sample m1,m2

i.i.d.∼ U(0, 1), and then craft λ = (λ1, λ2, λ3) = (min(m1,m2),max(m1,m2) −
min(m1,m2), 1 − max(m1,m2) + min(m1,m2)) as the weights. For a given set of convex co-
efficients, we calculate the optimal value directly based on the analysis in Section 2 instead of
performing actual training. More specifically, the optimum of the scalarization objective is given by
Ŷq,ΛΛ :=

∑q
i=1 σiuiv

⊤
i , from which we can compute the corresponding MSE for each task.
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SMTOs. We consider two state-of-the-art SMTOs, MGDA (Désidéri, 2012) and MGDA-UB (Sener
and Koltun, 2018). MGDA is an optimization algorithm specifically devised for handling multiple
objectives concurrently. It utilizes a composite gradient direction to facilitate simultaneous progress
across all objectives. MGDA-UB is an efficient variant of MGDA that focuses on maximizing the
minimum improvement among all objectives. It is a gradient-based multi-objective optimization
algorithm aimed at achieving balanced optimization outcomes across all objectives.

Implementation of SMTOs. Our code is based on the released implementation5 of MGDA-UB,
which also includes the code for MGDA. We apply their code on the SARCOS dataset. For both
methods, we use vanilla gradient descent with a learning rate of 0.5 for 100 epochs, following the
default choice in the released implementation. We comment that early stopping can also be adopted,
i.e., terminate once the minimum norm of the convex hull of gradients is smaller than a threshold, for
which we set to be 10−3.

D.2 Additional experiments on random initialization

To eliminate the influence of random initialization, we perform 300 trials for each algorithm using
different random seeds. We filter out solutions whose maximum MSE is larger than 1 for clearer
presentation, which leads to 198 solutions for MGDA and 240 solutions for MGDA-UB. We plot all
these solutions in Figure 4. We see that MGDA and MGDA-UB are consistently capable of finding
balanced solutions regardless of the random seed.
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Figure 4: More solutions of MGDA and MGDA-UB obtained by varying the initializations. Both
algorithms tend to find solutions located at the interior of the Pareto front.

D.3 Additional experiments on randomization

To verify the effectiveness of randomization as discussed in Section 4.2, we plot the region achievable
by randomized linear scalarization. Specifically, according to Equation (13), the region can be
expressed as the collection of the convex combination of two points from the feasible region. To this
end, we randomly sample 100,000 weight pairs (the same number as in Figure 3). For each weight
pair (w1, w2), we uniformly draw t ∼ U(0, 1) and get two corresponding optimal networks f1 and
f2 by SVD. For each sample, with probability t, the model uses f1, otherwise f2, to calculate the
MSE. The final result is demonstrated in Figure 5. It is straightforward to see that randomization
allows scalarization to trace out the PF since there is no hole within the blue region, thus validating
our theoretical analysis. We additionally comment that randomization convexifies the feasible region,
as such, the solutions found by MGDA and MGDA-UB are dominated.

5https://github.com/isl-org/MultiObjectiveOptimization
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Figure 5: The region achievable by randomized linear scalarization
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