
Creating Multi-Level Skill Hierarchies in
Reinforcement Learning

SUPPLEMENTARY MATERIAL

Joshua B. Evans
Department of Computer Science

University of Bath
Bath, United Kingdom
jbe25@bath.ac.uk

Özgür Şimşek
Department of Computer Science

University of Bath
Bath, United Kingdom
o.simsek@bath.ac.uk

A Environments

Gridworlds include Rooms, Grid, Office, and Maze [1]. They had four primitive actions: north,
south, east, and west. These actions move the agent in the intended direction (unless the intended
direction faces a wall, in which case the agent remains in the same state). The reward is −0.001 for
each action and an additional +1.0 for reaching the goal state. There is a single start state and a
single goal state, selected for each run from a list of possibilities.

Multi-Floor Office is an extension of Office to multiple floors. All foors are connected by an elevator,
which occupies the same grid square on each floor, where the agent has two additional primitive
actions: up and down. These actions move the agent to the adjecent floor in the intended direction
(unless there is no other floor in that direction).

Taxi is a 5 × 5 grid with four special squares (R, G, B, and Y) that serve as possible pick-up and
drop-off locations for a passenger. An episode starts with the taxi at a random square, the passenger at
a random special square, and the destination another random special square. Six actions are available
in each state: north, south, east, west, pick-up, and put-down. The navigation actions are identical to
those in the gridworlds, as described above. Pick-up and put-down have the intended effect when
appropriate; otherwise they do not change the state. The reward is −0.001 for each action and an
additional +1.0 when the passenger is put down at the destination.

Towers of Hanoi contains four discs of different sizes, placed on three poles. An episode starts with
all discs stacked on the leftmost pole. Primitive actions move the top disc from one pole to any other
pole, with the constraint that a disc cannot be placed on top of a disc smaller than itself. The reward
is −0.001 for each action and an additional reward of +1.0 at the goal state, where when all three
discs are stacked on the rightmost pole.

B Methodology

Generating options. To generate Louvain options, the Louvain algorithm (ρ = 0.05) was applied
to the state transition graph, resulting in a set of partitions. Any partition where the mean number
of nodes per cluster was smaller than 4 was discarded. For all remaining partitions, options were
defined for efficiently taking the agent from a cluster ci to each of its neighbouring clusters cj if a
directed edge existed from a node in ci to a node in cj . The Louvain options were arranged into a
multi-level hierarchy, where options for navigating between clusters in partition i could call skills for
navigating between clusters in partition i− 1. Only options at the lowest level of the hierarchy could
call primitive actions. Options generated using alternative methods called primitive actions directly.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Eigenoptions [2] were generated by computing the normalised Laplacian of the state transition graph
and using its eigenvectors to define pseudo-reward functions for each Eigenoption to maximise.
In Office, the first 32 eigenvectors (and their negations) were used. In all other environments, the
first 16 eigenvectors (and their negations) were used. Options for navigating to local maxima of
betweenness [3] were generated by selecting all local maxima as subgoals and defining options for
navigating to each subgoal from the nearest 30 states.

Learning option policies. For all methods except Eigenoptions, option policies were learned using
macro-Q learning [4], with learning rate α = 0.6, initial action values Q0 = 0, and discount factor
γ = 1. All agents used an ϵ-greedy exploration strategy with ϵ = 0.2. For options based on clustering,
the agent started in a random state in the source cluster. It received a reward of −0.01 for each
action taken and an additional +1.0 for reaching a state in the goal cluster. For options based on
node betweenness, the agent started in a random state in the initiation set. It received a reward of
−0.01 at each decision stage, an additional +1.0 for reaching the subgoal state, and an additional
−1.0 for leaving the initiation set. For Eigenoptions, value iteration was used to produce policies that
maximised the pseudo-reward function of each Eigenoption.

Producing learning curves. All agents were trained using macro-Q [4] and intra-option learning [5]
updates, which were performed every time an option at any level of the hierarchy terminated. A
learning rate of α = 0.4, discount factor of γ = 1, and initial action values of Q0 = 0 were used in all
experiments. All agents used an ϵ-greedy exploration strategy with ϵ = 0.1. All learning curves show
evaluation performance. After training each agent for one epoch, the learned policy was evaluated
(with exploration and learning disabled) in a separate instance of the environment.

Applying the Louvain algorithm in Pinball. The state transition graph was constructed by following
the method used by Mahadevan and Maggioni [6]. Initially, 4000 states were randomly sampled and
a node representing each state was added to the graph. Edges were then added between each node
and its 10 nearest neighbours. An between two locations u and v with Euclidean distance d between
them was assigned a weight of e−4d2

. Finally, the Louvain algorithm (ρ = 0.05) was applied to the
resulting graph.

C Comparison to Skills that Navigate to Local Maxima of Betweenness

Here we explore the relationship between Louvain skills and the skill chracterisation proposed by
Şimşek and Barto [3]. The latter is a subgoal-based approach that captures various definitions of the
bottleneck concept. It defines skills that navigate to local maxima of betweenness. Both approaches
address the conceptual problem of what makes a useful skill, explicitly defining a target set of skills
for the agent to learn.

There is substantial overlap between Louvain skills and skills that navigate to local maxima of
betweenness. They both include skills that traverse bottleneck states, including those that navigate
between rooms in Rooms, picking up the passenger in Taxi, and navigating different parts of the grid
in Taxi. In Towers of Hanoi, all Louvain skills traverse states that are also identified as local maxima
of betweenness. The highest local maxima of betweenness correspond to the states that separate
Louvain clusters at level 3; the second highest local maxima of betweenness correspond to the states
that separate Louvain clusters at level 2.

On the other hand, there are many Louvain skills that do not correspond to navgating to local maxima
of betweenness. Examples include the Louvain skills that navigate within a single room in Rooms.

Most importantly, Louvain skills and skills that navigate to local maxima of betweenness differ in
how they can be arranged hierarchically. Even in Towers of Hanoi, where there is a clear hierarchical
structure between the larger and smaller local maxima of betweenness, it is not clear how to exploit the
betweenness metric to form a multi-level hierarchy. In contrast, the modularity metric approximated
by the Louvain algorithm provides a clear and principled way of building a multi-level hierarchy.

D Cluster Hierarchies

Figure 1 shows the cluster hierarchies produced by the Louvain algorithm when applied to the state
transition graphs of Grid and Maze. It also shows the first level of the cluster hierarchy in Office,
which was omitted in the main paper due to space limitations.

2

G
ri
d

Level 4 Level 3 Level 2 Level 1

M
az
e

Level 5 Level 4 Level 3 Level 2 Level 1

O
ff
ic
e

Level 1

Figure 1: Top two rows: Cluster hierarchies produced by the Louvain algorithm in Grid and Maze.
Bottom row: The lowest level of the cluster hierarchy in Office.

E Sensitivity to the Resolution Parameter

Figure 2 shows the performance of agents in Rooms and Towers of Hanoi using Louvain skills
generated using different values of ρ. Louvain skills created using lower values of ρ consistently
outperformed those created by using higher values, and very high values (ρ ≥ 10) generally led to
performance similar to that obtained by using primitive actions only. Lower ρ values lead to deeper
hierarchies that contain skills for navigating the environment over varying timescales. In contrast,
higher ρ values result in shallower skill hierarchies that contain few—or, in the extreme, no—levels
of skills above primitive actions. While there are better and worse values of ρ, it may be argued
that there is no “bad” choice; lowering ρ will result in deeper hierarchies, but existing levels of the
hierarchy will remain intact.

0 10 20 30 40 50

0
1

2
3

4
5

6

Rooms

Epoch

R
ew

ar
d

0 10 20 30 40 50

0
1

2
3

4
5

6

Towers of Hanoi

Epoch

R
ew

ar
d

ρ=0.001
ρ=0.01
ρ=0.1
ρ=1
ρ=10
ρ=100

Figure 2: Agent performance with Louvain skills generated using different settings of the resolution
parameter ρ.

3

F Compute Resource Usage

The experiments were run using a shared internal CPU cluster with the specifications shown below.
Approximately 40 CPU cores were utilised for approximately 336 hours when producing the final
set of results presented in the paper. Prior to this, approximately 20 CPU cores were utilised for
approximately 168 hours during preliminary testing. GPU acceleration was not used because the
experiments involved tabular reinforcement learning methods.

Processor 2× AMD EPYC 7443
Cores per Processor 24 Cores
Clock Speed 2.85GHz–4GHz
RAM 512 GB
RAM Speed 3200MHz DDR4

G Source Code

An implementation of the proposed approach, implementations of the test environments,
and the code used to generate all results presented in the paper can be found in the
following GitHub repository: https://github.com/bath-reinforcement-learning-lab/
Louvain-Skills-NeurIPS-2023

4

https://github.com/bath-reinforcement-learning-lab/Louvain-Skills-NeurIPS-2023
https://github.com/bath-reinforcement-learning-lab/Louvain-Skills-NeurIPS-2023

H Louvain Algorithm

Algorithm 1 shows pseudocode for the Louvain algorithm [7]. It takes a graph G0 = (V0, E0) as
input and outputs a set of partitions of that graph into clusters. Each iteration of the algorithm (lines
4–25) produces one partition of the graph.

Algorithm 1: Louvain Algorithm
1 parameters: resolution parameter ρ ∈ R+

2 input: G0 = (V0, E0) // e.g., the state transition graph of an MDP

3 i← 0
4 repeat
5 Ci ← {{u} | u ∈ Vi} // define singleton partition
6 Qold ← modularity from dividing Gi into partition Ci

7 repeat
8 Cbefore ← Ci

9 foreach u ∈ Vi do
10 find clusters neighbouring u, Nu ← {c | c ∈ Ci, v ∈ Vi, v ∈ c, (u, v) ∈ Ei}
11 compute the modularity gain from moving u into each cluster c ∈ Nu

12 update Ci by inserting u into cluster c ∈ Nu that maximises modularity gain
13 end foreach
14 Cafter ← Ci

15 until Cbefore = Cafter // no nodes changed clusters during an iteration

16 Qnew ← modularity from dividing Gi into revised partition Ci

17 if Qnew > Qold then
18 Vi+1 ← {c | c ∈ Ci}
19 Ei+1 ← {(cj , ck) | cj ∈ Ci, ck ∈ Ci, (u, v) ∈ Ei, u ∈ cj , v ∈ ck}
20 Gi+1 ← (Vi+1, Ei+1) // derive aggregate graph from current partition
21 i← i+ 1
22 else
23 break
24 end if
25 end
26 output: partitions C0, . . . , Ci−1

5

I Incremental Discovery of Louvain Skills

Algorithm 2 presents an approach for incrementally developing a hierarchy of Louvain skills over
time, starting with only primitive actions. To update the agent’s skill hierarchy, Algorithm 2 calls
upon either Algorithm 1 or Algorithm 3, depending on whether the agent’s existing skill hierarchy is
to be replaced or updated. Algorithm 3 presents an approach for incrementally updating Louvain
partitions. It integrates new nodes into an existing cluster hierarchy.

Algorithm 2: Incremental Discovery of Louvain Skills
1 input: variant ∈ {1, 2} // which variant of the incremental algorithm to use
2 input: N = {n1, n2, . . .} // decision stages to revise skill hierarchy after

3 V ← ∅ // initialise empty set of nodes
4 E ← ∅ // initialise empty set of edges
5 G← (V,E) // initialise empty state transition graph (STG)
6 C ← ∅ // initialise empty set of partitions of the STG
7 Vnew ← ∅ // initialise empty set for recording novel states
8 Enew ← ∅ // initialise empty set for recording novel transitions

9 initialise Q(s, a) for all s ∈ S, a ∈ A(s) arbitrarily, with Q(terminal state, ·) = 0
10 t← 0
11 repeat
12 initialise environment to state S

13 if S /∈ V then
14 Vnew ← Vnew ∪ {S}
15 end if
16 while S is not terminal do
17 choose A from S using policy derived from Q (e.g., ϵ-greedy)
18 take action A, observe next-state S′ and reward R
19 perform macro-Q and intra-option updates using (S,A, S′, R)
20 S ← S′

21 if S′ /∈ V then
22 Vnew ← Vnew ∪ {S′} // add novel state to set of new nodes
23 end if
24 if (S, S′) /∈ E then
25 Enew ← Enew ∪ {(S, S′)} // add novel transition to set of new edges
26 end if
27 if t ∈ N then
28 add each state u ∈ Vnew to V
29 add each transition (u, v) ∈ Enew to E
30 Vnew ← ∅
31 Enew ← ∅
32 if variant = 1 then
33 C ← partitions of the STG derived from (V,E) using Algorithm 1
34 replace existing skill hierarchy with skills derived from C
35 else if variant = 2 then
36 C ← partitions of the STG derived from (V,E,C) using Algorithm 3
37 revise existing skill hierarchy based on skills derived from C
38 end if
39 initialise entries in Q for all new skills arbitrarily, with Q(terminal state, ·) = 0
40 remove entries from Q for all skills that no longer exist in the revised hierarchy
41 end if
42 t← t+ 1
43 end while
44 end

6

Algorithm 3: Update Louvain Partitions
1 parameters: resolution parameter ρ ∈ R+

2 input: G0 = (V0, E0) // e.g., the state transition graph (STG) of an MDP
3 input: C = {C0, C1, . . . , Cn} // an existing set of partitions of the STG

4 i← 0
5 repeat
6 Vnew ← nodes in Vi not assigned to any cluster in Ci

7 Ci ← Ci ∪ {{u} | u ∈ Vnew} // define singleton partition over new nodes
8 Qold ← modularity from dividing Gi into partition Ci
9 repeat

10 Cbefore ← Ci

11 foreach u ∈ Vnew do
12 find clusters neighbouring u, Nu ← {c | c ∈ Ci, v ∈ Vi, v ∈ c, (u, v) ∈ Ei}
13 compute the modularity gain from moving u into each cluster c ∈ Nu

14 update Ci by inserting u into cluster c ∈ Nu that maximises modularity gain
15 end foreach
16 Cafter ← Ci

17 until Cbefore = Cafter // no nodes changed clusters during an iteration

18 Qnew ← modularity from dividing Gi into revised partition Ci

19 if Qnew > Qold or i < |C| then
20 Vi+1 ← {c | c ∈ Ci}
21 Ei+1 ← {(cj , ck) | cj ∈ Ci, ck ∈ Ci, (u, v) ∈ Ei, u ∈ cj , v ∈ ck}
22 Gi+1 ← (Vi+1, Ei+1) // derive aggregate graph from current partition
23 i← i+ 1
24 else
25 break
26 end if
27 end
28 output: partitions C0, . . . , Ci−1

References
[1] R. Ramesh, M. Tomar, and B. Ravindran. Successor options: an option discovery framework for

reinforcement learning. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI ’19, pages 3304–3310. AAAI Press, 2019.

[2] M. C. Machado, M. G. Bellemare, and M. Bowling. A Laplacian framework for option discovery
in reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning, ICML ’17, pages 2295–2304. PMLR, 2017.

[3] Ö. Şimşek and A. G. Barto. Skill characterization based on betweenness. In Advances in Neural
Information Processing Systems 21, NeurIPS ’09, pages 1497–1504. Curran Associates, Inc.,
2009.

[4] A. McGovern, R. S. Sutton, and A. H. Fagg. Roles of macro-actions in accelerating reinforcement
learning. In Grace Hopper Celebration of Women in Computing, volume 1, pages 13–18, 1997.

[5] R. S. Sutton and D. Precup. Intra-option learning about temporally abstract actions. In Pro-
ceedings of the 15th International Conference on Machine Learning, pages 556–564. Morgan
Kaufman, 1998.

[6] S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in Markov decision processes. Journal of Machine Learning Research,
8(10), 2007.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):10008,
2008.

7

	Environments
	Methodology
	Comparison to Skills that Navigate to Local Maxima of Betweenness
	Cluster Hierarchies
	Sensitivity to the Resolution Parameter
	Compute Resource Usage
	Source Code
	Louvain Algorithm
	Incremental Discovery of Louvain Skills

