
Kissing to Find a Match:
Efficient Low-Rank Permutation Representation -

Supplementary Material

Hannah Dröge
University of Siegen

57076 Siegen, Germany
hannah.droege@uni-siegen.de

Zorah Lähner
University of Siegen

57076 Siegen, Germany
zorah.laehner@uni-siegen.de

Yuval Bahat
Princeton University

Princeton, NJ 08544, United States
yuval.bahat@gmail.com

Onofre Martorell
University of the Balearic Islands

Investigador ForInDoc del Govern de les Illes Balears
07122 Palma, Illes Balears, Spain

o.martorell@uib.cat

Felix Heide
Princeton University

Princeton, NJ 08544, United States
fheide@cs.princeton.edu

Michael Möller
University of Siegen

57076 Siegen, Germany
michael.moeller@uni-siegen.de

Our supplementary material includes a figure demonstrating the ability of our method to handle large
matching problems and a graph showing the influence of the permutation matrix sparsity on the
computation speed, as well as accuracy values on the experiments on point cloud assignment. As our
method requires devising problem-specific adaptations, the supplementary material also includes a
discussion on potential adaptations to our method. Further, it gives a short note on the non-linearity
(ReLU) in our approach.

Handling Large Permutation Matrices

Following our shape-matching experiments described in Sec. 4.6, we further visualize in Fig. 6 how
the proposed approach enables handling large problems that would have been infeasible otherwise.
The dashed red curve added to this figure (on top of the curves presented in Fig. 5a of the paper)
corresponds to the estimated memory the would have been required to accommodate full permutation
matrices, as a function of problem size n. While our approach can accurately handle large problems
with as much as n = 20, 000 vertices (green curves), running the equivalent experiments without it
(red curves) would require prohibitively large amounts of memory (∼ 73.6 GB, vs. 10.7 GB using
k = 1). For estimating memory values (dashed curve) we assume memory usage follows a c · n2

curve, and estimate the value for c based on the full matrix experiments (solid red) we conducted for
n ≤ 11, 000.

Influence of k on Computation Speed

Further details regarding the influence of the variable k, that determines the sparsity of the calculated
permutation matrix, on the computation speed is shown in Fig. 7. It shows the average computational
speed per epoch (employing a batch size of 8) for the network Nθ, used for the experiments discussed
in Sec. 4.6. The recorded time values align with the accuracy measurements presented in Fig. 4b.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·104

0

20

40

60

80

n

M
em

or
y

co
ns

um
pt

io
n

(G
B

)

Full P matrix
Full P matrix - estimate
Our representation, stochastic training, k = 100
Our representation, stochastic training, k = 1

Figure 6: Memory savings. Memory usage when training the shape matching network of [26]
with different permutation matrix representations: Using full matrices (red) vs. using our stochastic
training scheme with different sparseness levels (green). See text for details.

1 100 400 full
0

100

200

300

k

sec
epoch

Figure 7: Time measurement. Average time (in seconds) needed to optimize the shape matching
network Nθ per epoch, depending on the stochastic variable k.

Accuracies for Point Cloud Assignment Experiments

Following our experiments on Point Cloud Assignment in Sec. 4.2, we add additional accuracy
values to the prediction of a linear transformation over point clouds in Table 1. Here, we measure the
distance between the true point clouds and their transformed counterparts, for each problem size (n).

nonlin.\n 10 100 1000 10000

ReLU 2.362× 10−4 1.0597× 10−4 4.115× 10−4 1.0387× 10−4

SoftMax 0.0829 0.026 0.0057 0.0012
Stoch. Softmax 0.0712 0.0164 0.00173 0.0002

Table 1: ℓ2 norm distance between true and transformed point clouds in the point cloud alignment
experiment across various non-linearities, and problem size (n).

2



Individual Adaptions

Adaptions to our method can involve the learning rate, as well as the selection of the α-parameter in
the equation of Proposition 2. If talking about Equation 6, one can consider the adaptation of the
thresholding (for the equation 2σ(2VWT − 1) the threshold is set to 1). By decreasing the threshold,
we simplify the optimization process, as fewer gradients are excluded from the experiment, while this
could result in a less precise outcome. Additional adaptions might concern optimization techniques,
such as fixing one matrix with descent characteristics (e.g. Gaussian random) in order to simplify the
optimization. Moreover, it’s possibly also necessary to adapt a network architecture that predicts the
matrices V and W , and with further research in this direction, we believe to expand the potential to
provide memory reduction benefits.

Notes on the Nonlinearity

The ReLU merely serves as a type of thresholding operation and could be replaced by any other
function that is zero for all values below a certain threshold and one for an input value of one. In fact,
an arbitrarily low rank can still allow to represent any permutation exactly by letting the threshold
approach one. Yet, since gradients of any entry below the threshold are zero, such a representation
becomes increasingly difficult to optimize.

3


