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Abstract

Permutation matrices play a key role in matching and assignment problems across
the fields, especially in computer vision and robotics. However, memory for
explicitly representing permutation matrices grows quadratically with the size of
the problem, prohibiting large problem instances. In this work, we propose to tackle
the curse of dimensionality of large permutation matrices by approximating them
using low-rank matrix factorization, followed by a nonlinearity. To this end, we rely
on the Kissing number theory to infer the minimal rank required for representing a
permutation matrix of a given size, which is significantly smaller than the problem
size. This leads to a drastic reduction in computation and memory costs, e.g., up to
3 orders of magnitude less memory for a problem of size n = 20000, represented
using 8.4 × 105 elements in two small matrices instead of using a single huge
matrix with 4 × 108 elements. The proposed representation allows for accurate
representations of large permutation matrices, which in turn enables handling
large problems that would have been infeasible otherwise. We demonstrate the
applicability and merits of the proposed approach through a series of experiments
on a range of problems that involve predicting permutation matrices, from linear
and quadratic assignment to shape matching problems.

1 Introduction

Permutation matrices, which encode the reordering of elements, arise naturally in any problem that
can be phrased as a bijection between two equally sized sets. As such, they are fundamental to many
important computer vision applications, including matching semantically identical key points in
images [50, 47, 48, 49], matching 3D shapes or point clouds [18, 46, 27], estimating scene flow on
point clouds [35] and solving jigsaw puzzles [28], as well as to various sorting tasks [1, 16].
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Figure 1: Geometric intuition behind our approach on a 2D unit sphere. For well-distributed vectors
V ∈ RKiss(2)×2, where the number of vectors is determined by the Kissing number (Kiss(2) = 6),
the cosine angle between different vectors Vi,: and Vj,:, i ̸= j, is ⟨Vi,:, Vj,:⟩ = cos(α) ≤ 0.5, while
⟨Vi,:, Vi,:⟩ = 1 for the same vector. Thus, for any permutation P , the matrix-matrix product of
V and (PV )T merely has to be thresholded suitably to represent the permutation P , i.e. P =
2max(V (PV )T − 0.5, 0).

A permutation p, corresponding to the bijection from the set {1, . . . , n} onto itself, can be represented
efficiently without a permutation matrix by merely enumerating the n elements

(p(1), p(2), . . . , p(n)) ∈ Nn. (1)

However, this representation is unsuitable for most computer vision problems that involve estimating
p through optimization since this representation (i) is inherently discrete, yielding combinatorial
problems for which no natural relaxation exists, and (ii) induces a solution space with a meaningless
distance metric, as element i in the set generally is not ’closer’ to element i+ 1 than it is to any other
element j.

As a result, almost all methods for predicting permutations, including learning-based methods, favor
a permutation matrix representation instead, i.e., formulating a permutation as an element in the set

Pn = {P ∈ {0, 1}n×n |
∑
i

Pij = 1,
∑
j

Pij = 1 ∀i, j}, (2)

with p(i) = j in representation (1) corresponding to Pij = 1 in the matrix representation form
(2), which allows predicting p via optimization methods. Yet, the advantages of the matrix form
representation (2) come at the cost of a prohibitive increase in memory, as it requires storing n2

binary numbers Pij ∈ {0, 1}, or – after commonly used relaxations – even n2-many floating point
numbers instead of the n integers in (1). This renders matching problems with n > ∼ 104 largely
infeasible as their corresponding permutation matrix P constitutes over one hundred million entries.

To handle large matrices whose size prohibits explicit processing and storage, existing approaches
typically either turn to sparse representations, i.e., storing only a small portion of matrix values in
the form of (i, j, Pi,j) triplets, where Pi,j ̸= 0, or employ low rank representations, i.e., forming a
large matrix P as a product of matrices

P = VWT , (3)

with V,W ∈ Rn×m and m << n. Unfortunately, neither of these approaches is applicable to
permutation matrices: sparse representation cannot be used as the sparsity pattern is not only
unknown a-priori but actually the sought-after solution to the problem. On top of that, since
permutation matrices are by definition full rank, a low-rank representation (3) can yield only a crude
approximation at best.

Contributions. In this work, we alleviate the limitation on problem size by harnessing the well-
studied problem of (bounds for) the so-called Kissing number, which, in practice, translates to
introducing a simple adaptation to the matrix factorization approach (3). In particular, we exploit
the fact that for row-normalized matrices V and W , the entries of VWT correspond to the cosines
of the angles between the matrix rows. We then apply a pointwise non-linearity on the product of
the matrices in (3), which allows representing any permutation while using m << n. We use the
Kissing number theory to provide an estimate for how small an m we can use. We elaborate on these
theoretical considerations in Section 3 and provide an illustration of the geometric intuition for our
approach in Fig. 1.
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We then demonstrate the applicability of the proposed approach through several numerical experi-
ments tackling various problems that involve estimating permutations, including a study on point
alignment, linear assignment problems (LAPs), quadratic assignment problems (QAPs), and a real-
world shape matching application. We find that the proposed approach trades off only little accuracy
to offer significant memory saving, thus enabling handling bijection mapping problems that are larger
than was previously possible, when full permutation matrices had to be stored.

2 Related Work

2.1 Permutation Learning and Representation

Permutation learning aims to develop a model capable of predicting the optimal permutation matrix
that matches a given input data or label. Previous studies have suggested relaxing permutation
matrices to continuous domains, such as the Birkhoff polytope [2], to approximate solutions for these
optimization problems but still faced the problem of enforcing the sum-to-one constraints, which
are commonly approximated using Sinkhorn layers [34]. In 2011, Adams et al. [34] proposed the
Sinkhorn propagation method, with the goal of iteratively learning doubly-stochastic matrices that
allow the prediction of permutation matrices. Following the same research line, Cruz et al. [38]
proposed Sinkhorn networks, followed by Mena et al. [28] proposing Gumble-Sinkhorn networks,
adding Gumbel noise to the Sinkhorn operator to learn latent permutations. Grover et al. [16] made
further efforts in the relaxation of a learned permutation matrix and propose to relax the matrix to
become unimodal row-stochastic, meaning that the rows must maintain a total sum of one while
having a distinct argmax. More recent studies suggest to circumvent the constraint of row and
column sums being one by predicting permutations in Lehmer code, whose matrix form results to
be row-stochastic [9]. Other works propose alternative representations of permutations in different
domains, as to work in the Fourier domain to give a compact representations of distribution over
permutations [17, 20], or embed them to the surface of a hypersphere [33].

2.2 Nonlinear Matrix Decomposition

In previous work on nonlinear matrix decomposition, Saul [40] aims to find a low-rank matrix L that
approximates a sparse nonnegative matrix P by applying an elementwise nonlinearity σ to L, i.e.
P ≈ σ(L), and proposed an alternating minimization method to solve for L directly. In further work,
[39], Saul analyzed the geometric relationship between the sparse and low-rank matrices, specifically
for σ as a rectified linear unit (ReLU). For ReLU as nonlinearity, Seraghiti et al. [42] subsequently
proposed an accelerated method of [40] to solve this problem, and a method, working with a version
on L = VW , derived from the product of two matrices. In our work, we exploit this problem of
low-rank approximation for permutation matrices and show its relationship to the Kissing number.

2.3 Assignment Problems

The goal of assignment problems is to find a permutation between two ordered sets while minimizing
the assignment costs. The two most common versions are the linear and quadratic assignment
problem (LAP and QAP) which are based on element-wise and pair-wise costs, respectively. An
LAP can be solved in cubic time using the Hungarian algorithm [22]. The QAP was first introduced
by Koopmans and Beckmann [21] and can be written as minP∈Pn

tr(APBP⊤) + tr(C⊤P ), for
A,B ∈ Rn×n and C ∈ Rn×n being a problem where A ∈ Rn×n is the cost function between
elements of the first object to match, B ∈ Rn×n is the distance function between elements in the
second object and C ∈ Rn×n is a point-wise energy. The QAP has been proved to be NP-hard
so no polynomial time solution can be expected for general cases. As a result, many relaxations
of the problem exist, for example by relaxing the permutation constraint [14, 36], or by lifting the
problem to higher dimensions [18, 51]. A survey on various relaxation approaches can be found in
[24]. While the relaxations do ease some aspects of the problems, they normally do not decrease the
dimensionality of the problem which remains demanding for large n.

2.4 3D Shape Correspondence

3D shape correspondence is also often posed as an assignment problem between the sets of vertices
of a pair of shapes, for example through point descriptors matched by an LAP or in an QAP aiming to
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preserve distances between all point pairs. However, 3D shapes are often discretized with thousands
of vertices which makes optimization for a permutation computationally challenging. Hence, the
permutation constraint is often relaxed [36] and, even though the tightness of relaxation might be
known [1, 10], the optimization variables still scale quadratically with the problem size. In [13] and
[46] the QAP is deconstructed into smaller problems and then each of them is optimized with a series
of LAPs, while [41] solve for permutations as a series of cycles that gradually improve the solution.

Because permutation constraints for large resolution become infeasible, and, hence, the restriction
to cases with the same number of vertices, recent methods often do not impose these constraints at
all. The functional maps framework [30] converts the output to a mapping between functions on
the shapes instead of vertices and can reduce the dimensionality drastically by using the isometry
invariance property of the eigenfunctions of the Laplace-Beltrami operator [32]. Other lines of work
rely on a given template to constrain the solution [15, 44], impose physical models that regularizes
the deformation between inputs [11, 12, 31], or learn a solution space through training [8, 23, 26].
However, with the exception of template-based models, these cannot guarantee permutations.

3 Low-Rank Permutation Matrix Representation

A common approach to solve optimization problems with costs E over the set of permutation matrices
Pn (including those arising from training neural networks for predicting assignments) is to relax the
problem by replacing Pn by its convex hull conv(Pn), i.e., the set of doubly-stochastic matrices:

min
P∈conv(Pn)

E(P ). (4)

Since P grows quadratically in n, has an unknown sparsity pattern, and the true solution is always
full rank, such problems pose significant challenges for large n. In this work, we make the interesting
observation that a non-linearity as simple as a rectified linear unit (ReLU, denoted by σ) is sufficient
not only to restore a full rank, but to represent any permutation matrix exactly. More precisely, we
propose to replace the set conv(Pn) in (4) with the setKm(Pn) = {σ(2VWT − 1) | V,W ∈ Rn×m}
and use the so-called Kissing number [4, 29, 52] to show that Pn ⊂ Km(Pn) for a surprisingly small
m. Let us first formalize our approach by defining the Kissing number:
Definition 1. For a given m ∈ N, we define the Kissing number Kiss(m) as

Kiss(m) :=max
n
{n ∈ N | ∃A ∈ Rn×m, ∥Ai,:∥2 = 1, 2⟨Ai:, Aj,:⟩ ≤ 1, i ̸= j}. (5)

Note that the Kissing number can be interpreted geometrically as the maximum number of points that
can be distributed on an m-dimensional unit sphere such that the angle formed between each pair of
different points is at least arccos(0.5). This property quickly establishes Pn ⊂ Km(Pn) :
Proposition 1. Let P ∈ Pn be an arbitrary permutation matrix, and let σ, σ(x) = max(x, 0) denote
a rectified linear unit (ReLU). Then for every m such that n ≤ Kiss(m) there exist V,W ∈ Rn×m

such that
P = σ(2VWT − 1). (6)

Proof. Let V ∈ Rn×m be a matrix that satisfies the equalities and inequalities of (5), and let
W = PV . Then it holds that

2⟨Vi,:,Wj,:⟩
{
≤ 1 if Pi,j ̸= 1

= 2 otherwise
. (7)

Consequently

σ(2⟨Vi,:,Wj,:⟩ − 1) =

{
0 if Pi,j ̸= 1

1 otherwise
, (8)

which proves the assertion.

To determine the minimal rank m that is required for representing a permutation of n elements, we
rely on extensive studies in the past few decades which computed either exact values or lower and
upper bounds for different values of m [7].
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Using P = σ(2VWT − 1) for relaxing (4) yields a relaxation that requires only 2mn instead
of n2 parameters, with m << n = Kiss(m). For instance, Kiss(24) = 196560 implies that
matrices of rank m = 24 are sufficient for representing any arbitrary permutation matrix of up to
n = 196560 elements, thus requiring ∼ 4000 times less storage memory: 2 · 24 · 196560 instead of
1965602 parameters. Furthermore, Pn ⊂ Km(Pn) ensures that – in stark contrast to direct low-rank
factorization – any permutation matrix can still be represented exactly. Empirically, the optimization
over parametrizations σ(2VWT − 1) turned out to cause significant challenges, likely due to the
non-convexity and non-smoothness of the problem. To alleviate this problem, we resort to a smoother
version of (6) which can still approximate permutations to an arbitrary desired accuracy:

Proposition 2. Let P ∈ Pn and g denote an arbitrary permutation matrix and an arbitrary entry-
wise strictly monotonically increasing function, respectively, and let s denote the row-wise Softmax
function s(A)i,j =

expAi,j∑
k expAi,k

. Then ∀n ≤ Kiss(m) and ∀ϵ > 0 there exist V,W ∈ Rn×m and
α > 0, such that

∥P − s
(
αg(VWT )

)
∥ ≤ ϵ.

Proof. Similar to the proof in Proposition 1, we start by choosing V satisfying (5) and setting
W = PV to obtain

(VWT )ij = ⟨Vi,:,Wj,:⟩
{
= 1 if Pi,j = 1

≤ 0.5 otherwise
.

Then ∀i, j, k s.t. Pij = 1 and k ̸= j (i.e., Pik = 0) it holds that g(VWT )ij > g(VWT )ik. Finally,
to yield the assertion we use the Softmax property of converging to the unit vector in the limit
s(αAi,:)

α→∞→ ej (with j = argmaxAi,:), by taking α > 0 to be large enough.

In practice, we use g(x) = 2x, in accordance with the representation in (6). We use this smoother
version to validate the proposed low-rank representation for handling large matching problems in the
experiments we report next. Please notice that this is only a proof of existence of a decomposition
into V,W , not every V,W lead to a permutation and an optimisation is not guaranteed to find a
correct decomposition.

4 Experiments

The following experiments validate our efficient permutation estimation method for different applica-
tions, and they confirm the ability to scale to very large problem sizes. First, as a proof of concept,
we demonstrate our approach on the application of point cloud alignment for the two non-linearities
proposed in Section 3 and introduce our sparse training technique. We then validate the effectiveness
of our approach in the context of linear assignment problems and show how to handle sparse cost
matrices. We perform further experiments in the context of generic NP-hard quadratic assignment
problems, and integrate our approach into a state-of-the-art shape matching pipeline, thus providing
the same level of accuracy while enabling a higher spatial resolution.

4.1 Implementation Details

We use the PyTorch Adam optimizer [19] with its default hyperparameters in all our experiments.
The estimation of V and W is performed in parallel.

Stochastic Optimization. Fully benefiting from our proposed compact representation requires the
costs E (or an approximation thereof) to be evaluated without ever forming the full (approximate)
permutation matrix, as this step would inherently return to necessitate n2 many entries. To this end,
we introduce the concept of stochastic optimization, which – for our softmax-based representation
s(2αVWT ) arising from Proposition 2 – is not a stochastic training in a classical sense: we propose
to fix all but two entries in each row of our approximate permutation. Specifically, in any supervised
(learning-based) scenario where it is known that the yi-entry of the i-the row of the final permutation
P ought to be equal to one, each step of our optimizers merely computes the yi-th and one randomly
chosen (ri-th entry) of each row, and computes the softmax s on these two entries only while
implicitly assuming Pi,j = 0 for j /∈ {yi, ri}, i.e.,

Pi,[yi,ri] = s(2αVi,:(W[yi,ri],:)
T ). (9)
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In the above, we used W[yi,ri],: to denote the 2×m matrix consisting of the yi-th and the ri-th row
of W . Our stochastic approach requires the computation of 2n entries per gradient descent iteration
only and – by randomly choosing the ri – manages to still approximate the desired objective well.

Normalization of V and W . Since propositions 1 and 2 rely on row-normalized matrices, we explic-
itly enforce this constraint whenever we compute P , by using Vi,: ← 1

∥Vi,:∥Vi,:, Wi,: ← 1
∥Wi,:∥Wi,:.

We omit this step from the presentations below for the sake of readability.

Softmax Temperature. Since the values of ⟨Vi,:,Wj,:⟩ are bounded by one following the aforemen-
tioned normalization, the temperature parameter α determines the trade-off between approximating a
hard maximum (as required for accurately representing permutations, see Prop.2) and favorable opti-
mization properties (i.e., meaningful gradients). We specify the schedule (constant or monotonically
increasing) in each of the experiments below.

4.2 Point Cloud Alignment

As a proof of concept, we demonstrate that our proposition is correct and the optimization process
converges. We explore the different choices of non-linearity, starting with ReLU and continuing with
Softmax, using the task of predicting a linear transformation over point clouds. In this task we aim to
match a point cloud X1 ∈ Rn×m consisting of n m-dimensional points, uniformly distributed on the
unit hyper-sphere, to its linearly transformed and randomly permuted version X2 ∈ Rn×m. To obtain
X2 we multiply X1 by a randomly drawn matrix ΘGT ∈ Rm×m and apply a random permutation.
Then, we optimize over the estimated transformation matrix Θ which in this experiment defines our
permutation matrix P (Θ):

P (Θ) = σ
(
2VW (Θ)T − 1

)
. (10)

Note that our representation in (6) is fully parameterized by Θ, with V = X1 and W (Θ) = X2Θ, and
V and W are row-wise normalized in each iteration. Here P (Θ) is equal to the correct permutation
if Θ correctly aligns the point clouds, i.e. minimizes the angle between corresponding points in V
and W (Θ) while maximizing the angles between non-corresponding points.

We solve for the permutation by performing 20000 minimizing steps with a learning rate set to 0.01
over the negative log-likelihood loss

Θ̂ = argmin
Θ

− 1

n

n∑
i=1

log
(
P (Θ)i,yi

)
, (11)

where yi is the index of the point in X2 which corresponds to the ith point in X1. We experiment with
different numbers of points n, each time choosing the dimension m to be just big enough to satisfy
the Kissing number constraint from Proposition 1, i.e., Kiss(m) ≥ n > Kiss(m− 1). To check that
we were able to find the correct transformation matrix Θ – and therefore the correct permutation
matrix P – through optimization, we verify that the nearest neighbor (closest point) for each row i in
V is located in row j of matrix W that satisfies Pi,j = 1. We find that this is indeed the case in all
experiments with different numbers of points n ∈ {10, 100, 1000, 10000}, thus establishing that we
could reach the correct permutation through optimization. We achieve equally good results when
replacing the point-wise non-linearity ReLU with Softmax P (Θ) = s

(
2αVW (Θ)T

)
.

Due to the quadratically growing size of the permutation matrix with an increasing number of points,
we further propose to optimize for the permutation matrix stochastically, as described in Section
4.1. We ran experiments with similar settings as above, wherein we gradually increased the value
of the temperature parameter α linearly during optimization from α = 5 · 10−5 to α = 1000. In
these experiments, we again found that each point was paired with its corresponding nearest neighbor.
Also, we could reduce the memory consumption, as shown in Fig. 2.

4.3 Point Cloud Alignment on Spectral Point Representation

We conduct an additional experiment on point cloud alignment in the context of the functional
maps framework [30]. Here, the goal is to extract a point-to-point correspondence between two
shapes X,Y from a m × m-dimensional functional map C [30] where m is much smaller than
the number of vertices in X and Y . A possible interpretation of C is that it aligns the spectral
point representations ΦX ,ΦY ∈ Rn×m in which each point x is represented by the vector of values
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of the first m Laplace-Beltrami eigenfunctions at x such that P · ΦX ≈ ΦY · C where P is the
unknown permutation between X and Y . Given C, P can be retrieved by a nearest-neighbor query
between ΦX ,ΦY C, as proposed in the original paper (see [30], Section 6.1), or by solving a Linear
Assignment Problem (LAP) if a bijection is desired. This is exactly the same setting as in in Section
4.2 with a small amount of noise in the point clouds. We use the FAUST registrations [3] with the
original 6890 vertices, a downsampled version to 502 vertices for those experiments and C generated
by the ground-truth correspondence. Then, ΦX ,ΦY C can be directly used for V and W in our
method.

We compare our method, which calculates correspondences the same way as described
in Section 4.2, to a general LAP solver (specifically the Jonker-Volgenant algorithm from
sklearn.linear_sum_assignment), nearest neighbor computation, optimal transport (as implemented in
the python POT package), and stochastic matrices generated by Sinkhorn iterations. In Table 1 we
show that our method outperforms all baselines in terms of geodesic error of the final matching and
shows positive trends in terms of runtime and memory consumption.

502 vertices, m = 20 6890 vertices, m = 50
Method Error Time Memory Error Time Memory
LAP 1.3× 10−1 0.023s 8.02 MB 3.1× 10−1 79.2s 565.31 MB
Nearest-Neighbors 8.2× 10−1 0.008s 5.22 MB 4.0× 10−1 2.6s 34.00 MB
Optimal Transport 3.8× 10−1 0.524s 12.58 MB 2.0× 10−1 182.7s 1862.27 MB
Sinkhorn iterations 1.4× 10−1 0.030s 9.4 MB 3.0× 10−1 12.0s 750.55 MB
Ours 2.2× 10−3 0.801s 18.18 MB 2.5× 10−2 77.6s 42.35 MB

Table 1: Comparisons of point-wise correspondence extraction from ground-truth functional map
[30] for FAUST. The error is the mean geodesic matching error of all points. Please note that all
code except ours and Sinkhorn iterations are from libraries that are likely more optimized in terms of
runtime and memory consumption. The memory consumption is evaluated on CPU only.

4.4 Linear Assignment Problems

We next validate our method on balanced Linear Assignment Problems (LAPs), which typically
involve assigning a set of agents to an equally sized set of tasks, e.g., when optimizing the allocation
of resources. We show results on a collection of regularized LAPs in the form

argmin
V,W

tr(A · P (V,W ))︸ ︷︷ ︸
LAP term

+µ(P (V,W ))︸ ︷︷ ︸
regularizer

, (12)

where P (V,W ) = s
(
2αVWT

)
is a permutation and A ∈ Rn×n is some given similarity matrix.

While the Softmax non-linearity ensures all rows sum to one, µ(P (V,W )) is a regularization term
enforcing columns summing to one as well, to satisfy the permutation constraints:

µ(P ) =
∑

j (
∑

i Pij − 1)
2
. (13)

Due to the row-wise Softmax all rows already sum to one but we incentive the columns to sum to one
as well, as is necessary for permutations.

Dense Matrices. We evaluate on a set of LAPs based on descriptor similarities of 3D shapes from
the FAUST dataset [3], with n randomly chosen vertices per object [13]. Let DX , DY ∈ Rn×k be
two k-dimensional point-wise descriptors of the shapes X,Y corresponding to n points. We use the
SHOT [37] (Rn×352) and the heat kernel signature [43] (Rn×101) with their default parameters as
descriptors and stack them together to comprise D· ∈ Rn×453 in total, then A = DX ·D⊤

Y . Solving
an LAP with this type of similarity matrix A is used e.g. in [46] as the initialization strategy.

We generate 100 problem instances by pairing each of the 100 shapes in FAUST with a random second
shape to get the pair X,Y . Then we evaluate the relative error of the energy compared to the energy
of the optimal solution (restricted to valid permutation solutions), and the average Hamming distance
to the next valid permutation (namely, the number of elements that violate the permutation constraint).
We ran experiments with n = 100,m = 30, α = 20 and used a greedy heuristic to generate valid
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permutations from the results violating the permutation constraint (iteratively projecting the maximum
value of the permutation to one, and the rest of the corresponding row and column to zero). Out of
the 100 instances, 53 lead to valid permutations without the heuristic. The average relative error of
immediately valid permutation is 1.8% and after pseudo-projection of all instances it is 2.0%. Due to
the Softmax, every matrix has 100 non-zero entries that are all nearly equal to one. On average, the
Hamming distance of invalid permutations to the next valid one is 1.38 (1.4% of the problem size)
which means in most cases one would have a valid permutation after adjusting one entry.

Sparse Matrices. Given a matrix A , that is sparsely populated and only contains non-zero entries
in a subset S = {(i, j)|Ai,j ̸= 0}, we compute and optimize the permutation matrix sparsely in
(i, j) ∈ S by calculating the matrix factorization only at the required entries, similar to Section
4.1, but without restricting the number of entries per row of P to two. Also we take into account
random entries (q, r) /∈ S. We ran experiments for A with a matrix density of |S| = 0.01n2 for
n = 1000, 5000 and 10000 and m = 20 with increasing α from 1 to 20 iteratively and measure a
Hamming distance of at most 0.28% of the problem size. To get a valid permutation matrix, we used
the same heuristic as in the dense case and measured a relative error below 7.8%, compared to the
Hungarian algorithm. Also, we could measure a memory reduction by over 65%.

4.5 Quadratic Assignment Problems

Quadratic Assignment Problems (QAPs) is a broadly employed mathematical tool for many real-life
problems in operations research such as circuit design and shape matching. We demonstrate the
application of our approach to non-convex QAPs of the form

argmin
V,W

p(V,W )TA p(V,W ) (14)

where p(V,W ) = vec(s
(
2αVWT

)
) is the vectorized version of the permutation and A ∈ Rn2×n2

is
a cost matrix. V and W are normalized. The permutation matrix was optimized in a convex-concave
manner, by optimizing the objective function

argmin
V,W

p(V,W )T (A− βI) p(V,W ) + µ(P (V,W )) (15)

with β being iteratively increased from −∥A∥2 to ∥A∥2 and with µ(P (V,W )) being the same
permutation constraint regularizer as in (13).

We show results on the QAPLIB [6] library of quadratic assignment problems of real-world appli-
cations which range between n = 12 and n = 256 and we choose m = ceil(n3 ). The problems in
QAPLIB are meant to be challenging and optimal solutions for some of the larger problems are not
provided because they are unknown. Thus, we report the gap to optimality (when known) of our
solution and consider a solution good if it falls within 10% of the optimum. We report the relative
error and runtime in Fig. 3. In 75 out of 87 instances the result was a valid permutation matrix.

4.6 Shape Matching

Finally, we further assess the effectiveness of our approach for the the application of non-rigid shape
matching, a common task in computer graphics and computer vision. To this end, we incorporate
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Table 2: Geodesic errors and standard deviation (std) for noise-free and noisy data by Marin et
al. [26] and our approach.

eprob std (eprob) eemb std (eemb)

[26] 0.051 17.4× 10−4 0.029 3.5× 10−4

ours 0.047 26.9× 10−4 0.026 29.2× 10−4 noisy

[26] 0.043 16.3× 10−4 0.022 3.5× 10−4

ours 0.041 8.1× 10−4 0.019 3.7× 10−4 noise-free

our permutation matrix representation approach into the state-of-the-art shape-matching approach by
Marin et al. [26], which learns the point correspondences using two consecutive networks Nθ and Gθ,
predicting shape embeddings and probe functions, respectively. We propose to replace the calculation
of the permutation matrix based on the output of the first network Nθ by s

(
αVWT

)
, with α = 40.

The network transforms the vertices of 3D objects Xx and Xy into embeddings ϕx = Nθ(Xx) and
ϕy = Nθ(Xy), which are used to compute V = ϕx(ϕ

†
xPgtϕy) and W = ϕy. V here replaces a

transformed embedding. The network is trained on the modified loss function

min
θ

∑
l

∥s
(
2αVWT

)l
X l

y − P l
gtX

l
y∥22 (16)

for a given ground truth permutation Pgt, and V and W being normalized row-wise. Similar to Marin
et al. , we train the networks over 1600 epochs on 10000 shapes of the SURREAL dataset [45] and
evaluate our experiments on 100 noisy and noise-free objects of different shapes and poses of the
FAUST dataset [3], that are provided by [26] in [25].

We follow the evaluation of Marin et al. [26] and calculate the geodesic distance between
the ground truth matching and the predicted matching match1 = N (ϕxC

T
1 , ϕy) for C1 =

((ϕ†
yGθ(Xy))

T )†(ϕ†
xGθ(Xx))

T whereby N is the nearest neighbor. In the following, we refer
to the measured geodesic distance as eprob. A second error (eemb) which only concerns the first
network’s predictions, is measured by the geodesic distance towards match2 = N (ϕx, ϕyC) for
C = ϕ†

yPgtϕx, which is, again, calculated following Marin et al. [26]. The results of our experiments
are reported in Table 2, showing the average geodesic errors (over 10 runs for each experiment) for
the approach presented in [26] and our method. The table reveals improved results compared to [26].

Stochastic Training. Given that the explicit calculation of the permutation matrix in (16) is
memory-intensive for a large number of vertices, we employ stochastic training to avoid the need
for computing the full permutation matrix. As we describe in Sec. 4.1 we only calculate the loss
over a few entries where the final permutation ought to be equal to one and on k (here k can be ≥ 1)
randomly chosen entries of each row of P in each iteration. This approach reduces the memory
requirement and gives us the possibility to train with larger shapes consisting of more vertices.
In our experiments, we applied the stochastic training technique on the SURREAL dataset, and
then evaluated the performance on FAUST by measuring the error rates for varying values of k, as
depicted in Fig. 4b. We observed a small relative increase of less than 17% in eemb, and also a small
effect on eprob, but with a less clear tendency as one could see for eemb. For eprob we measured an
average standard deviation of 2.25 × 10−3 and for eemb of 3.3 × 10−4. Two noise-free examples
of correspondences, visualized for full training and for stochastic training with k = 1, are shown in
Fig. 4a, with the reference image on the left and the corresponding shapes on the right.

To evaluate the impact on the error and memory consumption when dealing with high-resolution
objects (with more vertices), we ran experiments using data from the TOSCA dataset [5]. We train
400 epochs on the objects of the classes victoria and michael (32 objects in total) with up to 20000
sampled vertices. These experiments reveal a significant reduction of memory consumption, see
Fig. 5a. Additionally, we evaluate the training on the class david and report a relative memory-error
trade-off for up to 20k samples of each object, see Fig. 5b. The graph indicates a correlation between
higher memory usage and lower error values for eemb. The trends observed in the memory-error
trade-off for eemb are generally applicable to eprob as well, although with some outliers.
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Figure 4: Visualized matching results (a) and error values (b) for the FAUST dataset for different
levels of sparseness k during stochastic training
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Figure 5: (a) shows the memory consumption during training for shape matching for objects with a
varying number of vertices (n) and varying sparseness (k). (b) shows the relative memory-error trade-
off for varying sparseness (which causes the memory reduction), whereby the memory consumption
is relative to k = 100 and the errors are relative to full training by [26] for n = 1000.

5 Conclusion

In this work, we proposed a strategy to represent permutation matrices by a low-rank matrix fac-
torization followed by a nonlinearity and showed that by using the Kissing number theory, we can
determine the minimum rank necessary for representing a permutation matrix of a given size, allowing
for a more memory-efficient representation. We validated this method with experiments on LAPs
and QAPs as well as a real-world shape matching application and showed improvements in the latter.
Additionally, we explored the potential of optimizing permutations stochastically to decrease memory
usage, which opens the possibility of handling high-resolution data.

Limitations and Broader Impact Our method offers a promising solution to contribute positively
to the environment by reducing the computational cost of a variety of problems involving permutation
matrices. We do not see any ethical concerns associated with our approach itself. However, it is
important to acknowledge a limitation of our method. For certain problem formulations, such as the
Koopmans and Beckmann form QAPs, stochastic learning may not be feasible because the double
occurrences of the permutation matrix make the stochastic computation not applicable. Moreover,
our method requires devising a non-trivial, problem-specific adaptation.
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