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A Implementation details

A.1 Dataset

SynLiDAR [25] is a large-scale synthetic dataset that is captured with the Unreal Engine [6]. It has
13 LiDAR point cloud sequences with 198,396 scans in total, where each scan has around 98,000
points on average. Precise point-wise annotations of 32 semantic classes are provided for fine-grained
3D scene understanding. It includes 12 LiDAR point cloud sequences (sequence 00 to 11) and has
19,840 point clouds for training following the authors’ instructions [25].

SemanticKITTI [2] is a comprehensive autonomous driving dataset consisting of LiDAR acquisitions
of famous KITTI Vision Odometry Benchmark [7, 8]. The LiDAR point clouds are captured in
Karlsruhe (Germany) by a 64-beam LiDAR sensor, with point-level annotations over 19 semantic
classes. It includes 22 LiDAR point cloud sequences that are split into a train set (sequence 00 to
10, where 08 is used for validation) and a test set (sequence 11 to 21). Following [17, 18, 24, 25],
we do not use the test set, and only use the train set for training and validation in all experiments.

SemanticPOSS [15] consists of 2,988 real-world scans with point-level annotations over 14 semantic
classes. The data is collected in Peking University and uses the same data format as SemanticKITTI.
It includes 6 LiDAR point cloud sequences (sequence 00 to 05) and we use the sequence 03 for
validation and the remaining sequences for training based on the official benchmark guidelines [15].

nuScenes [3] is another large-scale LiDAR segmentation dataset widely adopted in academia. It
provides 1,000 driving scenes, where each scene is collected by a 32-beam LiDAR sensor from
Boston and Singapore. We follow the official train and val sample splittings. The total number of
LiDAR scans is 40000. The training and validation sets contain 28130 and 6019 scans, respectively

Class mapping. To ensure all tasks are well-defined, we formalize consistent and compatible
semantic class vocabulary across the above datasets, ensuring there is a one-to-one mapping be-
tween all semantic classes. Table A1 summarizes the unified label space for SynLiDAR [25],
SemanticKITTI [2], SemanticPOSS [15], and nuScenes [3].

A.2 Training details

Model configuration. For our main experiments, we employ two common network architectures:
MinkNet [4] and SPVCNN [20]. The voxel size △1 = 0.05 for training and we adopt coordinates
and intensity of point clouds as input features. For non-voxelization backbones, we set the range
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SynLiDAR SemanticKITTI SemanticPOSS nuScenes 19−→ 13−→ 7−→

car car car vehicle.car 1 1 1moving-car
bicycle bicycle bike vehicle.bicycle 2 2

truck truck 4moving-truck
motorcycle motorcycle 3

bus bus 5moving-bus
sidewalk sidewalk flat.sidewalk 11 4
female human.pedestrian.adult

6 3 2male person 1 person human.pedestrian.police_officer
kid moving-person 2+ person human.pedestrian.child

human.pedestrian.construction_worker
vegetation vegetation plants 15 8

road road ground flat.driveable_surface 9 5 3lane-marking
terrain terrain flat.terrain 17 5
other-ground other-ground flat.other 12
pole pole pole 18 10 6

other-vehicle

other-vehicle

5on-rails
moving-on-rails
moving-other

building building building 13 6 6

bicyclist bicyclist 7 4 4moving-bicyclist
trunk trunk trunk 16 9 7

traffic-sign traffic-sign
traffic sign 1

19 11 6traffic sign 2
traffic sign 3

parking parking 10 3

motorcyclist motorcyclist 8 4moving-motorcyclist
fence fence fence 14 7 6
garbage-can garbage-can 12
traffic-cone cone/stone movable.trafficcone 13

rider 4
static.manmade 6

Table A1: Unified label space for SynLiDAR, SemanticKITTI, SemanticPOSS, nuScenes: there are
over 50 object categories and we list them for individual datasets. In details, we also list training IDs
for SynLiDAR 19−→ KITTI, SynLiDAR 13−→ POSS, KITTI 7−→ nuScenes, and nuScenes 7−→ KITTI.

image size to 1024×64 for SalsaNext [5] (range-view). We extract point features and set the grid size
to (480, 360, 32) for PolarNet [26] (bev-view). All these networks start from randomly initialized
weights. As for ASFDA and ADA settings, we have an additional warm-up stage, i.e., the network is
pre-trained on the corresponding source domain for 10 epochs with the standard cross-entropy loss.

Training configuration. All methods are implemented using PyTorch [16] on a single NVIDIA
Tesla A100 GPU. We utilize the SGD optimizer with an initial learning rate of 0.01. The training
process spans 50 epochs and a cosine learning rate decay schedule is also applied for stable training.
Both source and target data have a batch size of 16. For our voxel-centric active learning baseline, we
maintain △2 = 0.25 for the selection process, unless otherwise specified.

B Additional experimental results

B.1 Computation cost and annotation cost

As previously discussed in the method section, striking a balance between computation cost and
annotation cost is a crucial challenge in active learning. In Table A2, we provide a comprehensive
breakdown of the computation cost for the SynLiDAR → KITTI task. This highlights the ability of
Annotator to achieve an optimal equilibrium between high performance and low cost, encompassing
both computation and annotation expenses. In the future, we are committed to exploring even more
efficient strategies to further reduce the costs associated with both computation and annotation.
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phase total epoch running time (hour) mIoU

pre-train on SynLiDAR 10 2.34 22.0
active learning 50 18.04 53.7
active source-free domain adaptation 50 18.39 54.1
active domain adaptation 50 28.48 57.7

Table A2: Computation cost analysis for the SynLiDAR → KITTI task.
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Figure A1: Training and validation loss curves on the task of SynLiDAR → POSS under AL and
ASFDA settings (MinkNet [4]).

B.2 Training curves

In Figure A1, we present the training and validation loss curves for the SynLiDAR → POSS task
under both AL and ASFDA settings. Both training loss and validation loss consistently decrease over
time, indicating effective model training. Notably, the final validation loss is smaller than the training
loss, suggesting a lack of overfitting. Another interesting observation is that the validation loss of the
ASFDA approach is smaller than that of the AL approach, underscoring the potency of the auxiliary
model in enhancing model performance.

B.3 Comparison with existing active learning methods

We report mIoU results across existing AL approaches in Table A3. Notably, while LESS [13] obtains
the best results with the fewest point labels, it does so by incorporating a complex pre-segmentation
stage. In contrast, Annotator with a simpler baseline manages to deliver promising results.

Method Budget MinkNet SPVCNN Cylinder3D

ReDAL [23] 1% 47.5 48.5 -
LiDAL [10] 1% 37.8 42.6
LESS [13] 0.01% - - 61.0
Annotator 0.1% 53.7 52.8 -

Table A3: Performance comparison on the SemanticKITTI val under active learning setting.

Method Random Entropy Margin SSDR-AL Annotator

Total budget 40.9% 46.7% 43.0% 11.7% 9.9%

Table A4: Comparing the percentage of labeled points required to achieve 90% accuracy on S3DIS
dataset for different active learning methods.

B.4 Comparison with indoor semantic segmentation methods

Following SSDR-AL [19], we apply Annotator to indoor semantic segmentation task and conduct
experiments on the S3DIS [1] dataset. In Table A4, we compare the percentage of labeled points
required to achieve 90% accuracy across various methods based on RandLA-Net [9]. It’s noteworthy
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that Annotator is able to annotate 1.8% fewer points than SSDR-AL in achieving the 90% performance
of the fully-supervised method.

B.5 Per-class performance

Table A5 and Table A6 provide the class-wise IoU scores on two real-to-real tasks using MinkNet [4]
for different algorithms and comparison results with state-of-the-art DA methods [12, 14, 17, 18, 22].

Table A7 - A10 provide the detailed class-wise IoU scores based on SPVCNN [20].

Model vehicle person road sidewalk terrain manmade vegetation mIoU

Source-Only 47.1 1.6 52.6 14.6 2.0 33.3 47.9 28.4

D
A

Mix3D [14] 33.7 11.2 58.5 12.9 5.3 50.4 48.6 31.5
CoSMix [17] 35.9 0.0 58.1 11.6 9.0 45.2 49.1 29.8
SN [22] 21.4 0.0 60.5 15.1 6.2 31.9 45.7 25.8
RayCast [12] 28.8 0.0 59.3 16.1 12.5 49.7 49.8 30.9
LiDOG [18] 24.0 14.9 70.6 24.6 14.0 45.3 50.9 34.9

A
L

Random 83.4 15.7 90.7 48.5 65.0 81.2 77.6 66.0
Entropy [21] 86.2 0.0 88.1 38.1 64.8 72.8 67.8 59.7
Margin [11] 82.6 0.0 86.3 38.0 60.4 78.9 75.0 60.2
Annotator 88.1 44.2 91.9 56.7 67.1 75.5 69.5 70.4

A
SF

D
A Random 85.0 23.7 89.9 48.6 65.3 81.6 78.0 67.5

Entropy [21] 86.3 0.0 88.3 42.8 64.3 73.9 66.3 60.3
Margin [11] 81.7 0.0 86.1 39.0 58.1 77.0 72.4 59.2
Annotator 88.5 49.6 92.5 58.6 68.7 77.7 71.0 72.4

A
D

A

Random 83.6 51.6 91.9 56.4 64.5 80.9 75.0 71.9
Entropy [21] 86.2 59.2 90.2 53.9 66.3 80.3 75.5 73.1
Margin [11] 88.5 46.8 91.7 58.1 65.0 78.4 71.2 71.4
Annotator 88.8 58.6 93.1 62.6 68.4 82.4 77.3 75.9

Target-Only 89.2 73.2 95.6 71.4 75.2 87.9 85.1 82.5

Table A5: Per-class results on task of KITTI 7−→ nuScene (MinkNet [4]) using only 5 voxel budgets.
DA results are reported from [18].

B.6 Additional qualitative results

In order to provide more qualitative insights, we show the error maps that depict the differences
between our model’s predictions and the Ground-Truth labels. These error maps are showcased on
the KITTI val set and models are trained on the adaptation tasks of SynLiDAR → KITTI (Figure A2)
and nuScenes → KITTI (Figure A3), respectively. It is important to emphasize that Annotator (ADA)
emerges as the top-performer, capitalizing on the advantages of pre-trained models and the presence
of annotations in the source domain.
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Model vehicle person road sidewalk terrain manmade vegetation mIoU

Source-Only 44.1 4.3 67.6 39.4 34.9 41.2 10.5 34.6

D
A

Mix3D [14] 37.9 6.7 42.0 5.7 27.6 41.2 65.4 32.4
CoSMix [17] 44.6 13.9 36.1 10.2 29.3 54.4 69.1 36.8
SN [22] 25.7 5.5 19.6 2.2 23.5 27.7 61.1 23.6
RayCast [12] 28.3 16.1 45.8 9.4 20.6 38.6 61.8 31.5
LiDOG [18] 60.1 9.0 47.4 16.4 32.6 54.2 68.8 41.2

A
L

Random 95.5 0.0 86.2 70.3 74.1 83.3 86.8 70.9
Entropy [21] 96.4 0.0 84.3 68.9 75.7 82.8 87.0 70.7
Margin [11] 94.8 35.3 83.6 68.8 65.2 80.8 83.0 73.1
Annotator 96.9 33.9 86.8 73.4 73.3 86.5 87.0 76.8

A
SF

D
A Random 94.3 0.0 85.0 67.5 72.1 83.1 86.3 69.7

Entropy [21] 95.6 0.0 83.7 66.5 73.1 79.8 85.0 69.1
Margin [11] 94.1 24.6 82.1 66.4 64.2 78.8 82.1 70.3
Annotator 96.6 21.9 88.5 75.7 74.1 84.2 86.1 75.3

A
D

A

Random 95.1 42.6 88.7 70.0 69.8 75.3 81.5 74.7
Entropy [21] 96.0 32.2 86.2 69.1 70.8 79.6 84.0 74.0
Margin [11] 94.5 59.6 89.4 69.4 70.2 74.5 79.6 76.7
Annotator 95.8 66.1 88.5 74.9 75.9 84.2 86.9 81.8

Target-Only 97.6 60.6 90.7 79.3 76.5 89.1 89.2 83.3

Table A6: Per-class results on task of nuScenes 7−→ KITTI (MinkNet [4]) using only 5 voxel budgets.
DA results are reported from [18].

Model ca
r

bi
.c

le

m
t.c

le

tr
uc

k

ot
h-

v.

pe
rs

.

b.
cl

st

m
.c

ls
t

ro
ad

pa
rk

.

si
de

w
.

ot
h-

g.

bu
ild

.

fe
nc

e

ve
ge

t.

tr
un

k

te
rr

a.

po
le

tr
af

f.

mIoU

Source-Only 67.1 6.9 22.8 0.5 5.9 30.1 56.9 4.2 18.3 6.3 31.1 0.3 30.8 11.8 63.9 29.9 42.9 25.5 4.1 24.2

A
L

Random 92.2 0.0 10.4 25.8 18.5 23.6 0.0 0.8 85.2 23.2 69.4 1.2 83.2 44.5 86.2 56.8 73.1 54.8 27.8 40.9
Entropy [21] 94.4 6.1 56.2 67.9 38.6 57.2 72.4 0.0 80.3 22.2 64.1 3.2 83.6 44.5 86.4 58.7 72.7 58.7 35.0 52.7
Margin [11] 90.4 0.0 34.2 53.9 31.2 45.8 68.1 0.0 80.5 19.4 66.8 0.2 79.3 46.3 82.3 56.8 64.4 51.5 23.2 47.1
Annotator 93.9 1.6 49.9 48.9 36.4 50.2 71.8 0.1 86.2 24.6 72.3 1.4 86.6 53.1 86.4 63.1 72.5 61.7 42.8 52.8

A
SF

D
A Random 92.8 0.0 0.0 33.3 24.6 1.1 0.0 0.0 90.0 35.7 76.1 0.0 86.9 52.5 87.1 59.3 75.4 57.9 22.9 41.7

Entropy [21] 95.1 1.0 59.8 62.3 44.0 55.4 77.3 1.0 77.2 18.4 60.3 0.1 82.6 44.5 84.9 59.5 70.4 60.0 36.1 52.1
Margin [11] 90.7 1.6 45.6 63.2 31.4 48.6 63.8 0.0 85.0 27.6 70.5 0.0 81.5 48.1 84.1 57.4 69.9 54.8 23.2 49.9
Annotator 94.5 10.6 47.6 71.9 43.5 53.9 67.1 0.0 86.9 24.6 73.4 1.8 85.8 51.1 85.6 64.1 71.6 60.8 41.7 54.6

A
D

A

Random 92.3 10.9 40.7 42.3 28.8 50.8 71.9 0.0 88.1 27.5 73.8 2.5 84.3 49.6 83.6 59.6 69.9 54.2 38.6 51.0
Entropy [21] 94.2 16.1 53.3 60.1 39.2 61.4 79.8 2.2 82.4 18.6 65.4 1.4 81.7 46.1 83.8 61.0 65.2 55.1 35.3 52.8
Margin [11] 92.1 1.0 56.9 47.5 32.1 50.7 82.8 0.0 84.5 25.5 68.5 0.2 78.3 54.0 81.7 57.8 64.8 52.2 31.8 50.7
Annotator 94.7 14.8 56.7 56.8 45.3 60.4 79.0 1.3 87.3 28.6 73.0 1.8 85.4 54.3 83.9 65.2 66.5 60.0 40.9 55.6

Target-Only 96.7 25.6 73.6 81.0 61.5 73.6 90.9 0.2 93.0 46.1 79.9 0.1 89.9 58.7 86.8 67.3 71.5 65.1 48.8 63.7

Table A7: Per-class results on task of SynLiDAR 19−→ KITTI (SPVCNN [20]) with 5 voxel budgets.

Model car bike pers. rider grou. buil. fence plants trunk pole traf. garb. cone. mIoU

Source-Only 51.7 3.1 46.7 46.0 80.0 57.7 37.2 66.4 29.2 28.8 1.1 21.3 12.3 37.0

A
L

Random 35.3 43.9 37.7 9.2 77.0 67.8 42.5 70.7 27.8 28.8 21.5 0.0 0.0 35.5
Entropy [21] 24.1 35.9 35.0 22.6 78.4 61.2 42.1 71.9 14.4 22.1 15.2 16.0 18.6 35.2
Margin [11] 33.5 41.3 55.1 47.0 78.4 54.4 36.6 67.0 41.7 27.5 23.3 20.1 31.4 42.9
Annotator 31.6 44.9 56.4 46.8 78.7 65.8 50.4 73.2 32.6 26.9 36.2 16.1 23.7 44.9

A
SF

D
A Random 38.3 48.1 44.5 16.8 76.7 68.9 46.7 71.1 20.8 30.2 29.6 0.0 0.0 37.8

Entropy [21] 34.5 42.7 54.4 39.4 77.6 66.6 39.7 71.3 19.0 27.5 31.5 2.3 19.9 40.5
Margin [11] 32.7 44.1 57.6 52.2 77.9 59.3 42.8 70.3 41.6 33.4 31.4 22.9 16.4 44.8
Annotator 42.8 49.3 58.7 52.9 76.2 67.4 52.7 71.4 26.9 31.5 33.7 16.0 37.6 47.5

A
D

A

Random 51.8 44.8 55.0 47.1 75.4 69.6 51.6 71.2 32.3 27.3 20.2 2.1 1.3 42.3
Entropy [21] 54.5 42.7 65.3 57.6 79.4 60.8 55.0 70.2 29.2 28.8 18.7 5.0 40.5 46.8
Margin [11] 36.8 30.0 65.5 58.1 81.4 65.1 44.2 70.7 37.4 31.5 25.4 35.5 30.6 47.1
Annotator 64.2 40.8 62.1 55.7 77.8 67.5 57.2 70.8 31.2 35.3 28.5 24.3 46.2 50.9

Target-Only 46.5 57.3 69.6 53.9 79.8 79.6 60.5 80.9 37.9 32.3 32.4 16.1 17.6 51.9

Table A8: Per-class results on task of SynLiDAR 13−→ POSS (SPVCNN [20]) with 5 voxel budgets.
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Model vehicle person road sidewalk terrain manmade vegetation mIoU

Source-Only 34.4 0.2 29.7 8.5 6.5 25.9 44.0 21.3
A

L

Random 82.8 31.9 87.6 41.2 59.3 77.8 74.8 65.0
Entropy [21] 77.9 36.3 85.6 28.9 58.3 73.6 68.5 61.3
Margin [11] 77.9 20.4 84.3 34.6 48.8 71.7 67.3 57.8
Annotator 85.9 47.0 92.3 57.6 65.8 77.9 73.4 71.4

A
SF

D
A Random 83.8 34.9 88.9 45.4 59.5 79.3 76.5 66.9

Entropy [21] 87.6 34.4 87.4 36.6 60.1 80.3 75.7 66.0
Margin [11] 77.6 25.1 85.4 40.6 54.8 70.9 67.7 60.3
Annotator 88.4 46.8 92.8 58.7 66.4 78.1 73.8 72.1

A
D

A

Random 84.1 27.1 91.0 53.0 55.1 72.1 67.9 64.3
Entropy [21] 89.7 44.2 89.8 51.3 53.7 71.7 63.7 66.3
Margin [11] 85.4 17.1 91.8 55.0 55.3 72.1 65.8 63.2
Annotator 89.5 50.2 92.1 57.5 66.3 78.6 72.2 72.3

Target-Only 93.1 71.7 94.6 66.3 72.1 87.0 84.0 81.3

Table A9: Per-class results on task of KITTI 7−→ nuScene (SPVCNN [20]) with 5 voxel budgets.

Model vehicle person road sidewalk terrain manmade vegetation mIoU

Source-Only 65.7 44.5 56.2 32.6 30.5 53.2 47.0 47.1

A
L

Random 94.2 0.0 84.7 68.1 73.9 84.4 87.6 70.4
Entropy [21] 94.2 13.0 79.0 60.4 73.1 80.8 85.8 69.5
Margin [11] 93.6 29.4 84.0 69.9 64.4 81.4 83.5 72.3
Annotator 96.7 48.2 87.9 74.6 75.8 85.8 87.8 79.5

A
SF

D
A Random 94.3 3.5 81.6 60.8 68.8 81.9 85.7 68.1

Entropy [21] 95.1 11.0 77.2 55.6 69.5 78.8 84.5 67.4
Margin [11] 92.5 32.9 85.0 70.5 65.2 81.6 83.1 73.0
Annotator 96.7 55.4 87.7 75.3 75.6 85.5 87.5 80.5

A
D

A

Random 94.1 39.5 88.9 73.0 71.3 80.0 83.4 75.8
Entropy [21] 90.2 63.6 84.2 70.9 65.9 66.5 66.6 72.6
Margin [11] 92.7 58.6 88.2 71.0 69.3 71.4 75.3 75.3
Annotator 95.0 55.0 86.5 69.0 74.9 82.8 86.0 78.4

Target-Only 98.0 71.7 91.0 79.9 74.6 90.5 89.0 85.0

Table A10: Per-class results on task of nuScenes 7−→ KITTI (SPVCNN [20]) with 5 voxel budgets.
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Ground-Truth Target-Only Source-Only AL (Ours) ASFDA (Ours) ADA (Ours)

car bi.cle mt.cle truck oth-v. pers. b.clst m.clst road park sidew. oth-g. build. fence veget. trunk terra. pole traff.

Figure A2: Visualization of error maps for the task SynLiDAR 19−→ KITTI (MinkNet [4]). From left
to right: Ground-Truth, Target-Only, Source-Only, our Annotator under AL, ASFDA, and ADA are
shown one by one. The correct and incorrect predictions are painted in blue and red to highlight the
differences. Best viewed in color.
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Ground-Truth Target-Only Source-Only AL (Ours) ASFDA (Ours) ADA (Ours)

vehicle person road sidewalk manmade vegetation terrain

Figure A3: Visualization of error maps for the task nuScenes 7−→ KITTI (MinkNet [4]). From left
to right: Ground-Truth, Target-Only, Source-Only, our Annotator under AL, ASFDA, and ADA are
shown one by one. The correct and incorrect predictions are painted in blue and red to highlight the
differences. Best viewed in color.
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C Public Resources Used

We acknowledge the use of the following public resources, during the course of this work:

• SynLiDAR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SemanticKITTI2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI-API3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• SemanticPOSS4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• nuScenes5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• nuScenes-devkit6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Minkowski Engine7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SPVNAS8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• PCSeg9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• LaserMix10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• GIPSO11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GNU General Public License v3.0
• SalsaNet12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• PolarNet13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BSD 3-Clause License
• RIPU14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
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