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Abstract

Background. Distributed training is essential for large scale training of deep
neural networks (DNNs). The dominant methods for large scale DNN training are
synchronous (e.g. All-Reduce), but these require waiting for all workers in each
step. Thus, these methods are limited by the delays caused by straggling workers.
Results. We study a typical scenario in which workers are straggling due to
variability in compute time. We find an analytical relation between compute time
properties and scalability limitations, caused by such straggling workers. With
these findings, we propose a simple yet effective decentralized method to reduce the
variation among workers and thus improve the robustness of synchronous training.
This method can be integrated with the widely used All-Reduce. Our findings are
validated on large-scale training tasks using 200 Gaudi Accelerators. A reference
implementation2 is provided.

1 Introduction

Deep Neural Networks (DNNs) training continues to scale over size and computational footprint, as
a result of a higher number of trainable parameters, wider and deeper models, and growing amounts
of training data. As improvements in model quality (measured by test loss, for example) (Kaplan
et al., 2020) lead over hardware capabilities (Hooker, 2020), this scale-up translates into a need for a
growing number of training devices working in tandem (Chowdhery et al., 2022), turning distributed
training to the standard approach for training DNNs on a large scale.
Distributed training typically refers to three parallelism paradigms — data parallel, model parallel and
layer pipelining (Ben-Nun & Hoefler, 2019). Several variants and hybrid solutions exist in modern
implementations such as tensor parallel (Narayanan et al., 2021) and parameter sharding (Rajbhandari
et al., 2020; Rasley et al., 2020). These can be used separately or combined as they are orthogonal to
each other. Mainly, data parallelism is straightforward, where the data is sharded among workers,
and all workers share the same global model state. At each step, workers compute gradients locally
and then aggregate them before taking an optimization step. When training synchronously, workers
update their parameters in lockstep. This ensures that all workers hold a consensus on the same model
and that gradients are averaged over all workers before being applied to the model. This approach is
easy to implement and allows for good convergence properties, and correspondingly is the prevalent
optimization method.

∗Equal contribution
2https://github.com/paper-submissions/dropcompute
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Figure 1: DropCompute improves robustness and scalability of synchronous training. A scale graph,
showcasing the proposed method runtime performance of synchronous training of a 1.5 billion parameter model
with additive noise, simulating compute variance. The baseline represents existing synchronous training and the
dashed black line is linear scaling. (left) Real measurements of up to 200 workers. (right) An extrapolation to
2048 workers using a theoretical estimation, also proposed in the paper. More details are provided in section 5.2.

Although state-of-the-art models use synchronous optimization for training, synchronous methods
scale poorly, as stragglers and communication overhead might severely deteriorate system utilization.
Many resources are invested in alleviating these issues in large-scale training systems since even
minor improvements can be worth hundreds of thousands of dollars. These issues are exacerbated as
the required scale grows, even in homogeneous high-performance computing clusters (Petrini et al.,
2003; Hoefler et al., 2010). In this paper, we are interested in cases where significant computing
variance between the workers exists. This includes (but is not limited to) straggling workers.

For instance, certain learning tasks entail heterogeneity in the required computation of data, such
as varying sentence lengths in language processing, or different image sizes and frame numbers
in computer vision. In addition, recent state-of-the-art models use all three parallelism paradigms
(data (DP), tensor (TP), and pipeline (PP) parallelism), thus each data parallel node is a set of
processing units (accelerators) communicating between them (via TP and PP) to calculate the model
gradients collectively. This could potentially intensify compute variance between data parallel
workers. Moreover, sub-optimal hardware systems can also lead to straggling workers. Although
some sources of heterogeneity can be mitigated by non-trivial engineering work, they still persist as
challenges that can introduce compute variance and substantial performance drops. This is further
discussed in appendix A.

In this paper, we suggest a simple, yet effective method called DropCompute to improve the robustness
and scalability of synchronous optimization in the face of compute variance. We model the compute
time as a random variable and show that under reasonable assumptions, a tail of straggling workers
slows down the system at a rate that is not proportional to the contributed compute by these straggling
workers. We harness the gradient accumulation method widely used in Large Language Models
(LLMs) (Ott et al., 2018; Liu et al., 2019) to implement the method in a few lines of code on a relevant
large-scale learning task.

The contributions of our work include:

• DropCompute: a novel, decentralized method to better handle heterogeneity or stragglers
without additional hyper-parameters. DropCompute is hardware and framework agnostic,
runs on top of existing optimizers, and can also be combined with other methods that
improve other aspects of robustness such as communication overhead.

• A theoretical convergence proof of SGD with stochastic batch size, as in DropCompute.

• A theoretical runtime analysis on standard synchronous training and the proposed method.
We find an approximation of the expected speedup using DropCompute, and show this
speedup goes to infinity as the number of workers grows.

• An empirical evaluation of the proposed method on a relevant large scale task, using up to
200 accelerators connected with high bandwidth communication. For example, when using
DropCompute before and after system optimizations (for both software and hardware) we
show accelerations of 18% and 5%, respectively.
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2 Related Work

The challenge of training deep neural networks on a large scale has been extensively explored. With
rapidly growing models and data sizes, numerous works tackled the weaknesses in synchronous DNN
training on a large scale and suggested methods to alleviate these weaknesses.

Redundancy methods. This line of work addresses the straggling worker problem using a redundancy
mechanism. Redundant workers or redundant data are used such that straggling workers will not
slow down the entire system (Chen et al., 2016; Bitar et al., 2020). These methods provide better
robustness to synchronous training, even in the event of a complete failure of a subset of the workers or
considerable communication slowdown. However, the robustness is limited by the redundancy factor,
and more generally, more compute resources are required and full utilization cannot be achieved.
In addition, some coordination method is required to keep the training synchronous, i.e., keeping
consensus between the model replicas of the workers. In particular, Chen et al. (2016); Bitar et al.
(2020) use a centralized approach of a parameter server to determine which workers are left out at each
iteration. Modern large-scale systems use decentralized variants of All-Reduce (von Luxburg et al.;
Patarasuk & Yuan, 2009), so it is not trivial to determine which workers should be considered at each
step, given that each worker can see a different subset of straggling workers. Moreover, combining
redundancy with communication primitive collectives (e.g., All-Reduce) requires adaptation to
existing underlying frameworks (Sanders et al., 2019).

Asynchronous optimization. Another approach is introducing asynchrony to the optimization.
Asynchronous training is inherently more scalable than synchronous training by being robust to all
kinds of workers and communication faults. This includes periodic synchronization by exchanging
parameters every τ optimization steps (Stich, 2019; Lin et al., 2020; Wang & Joshi, 2021; Zhang
et al., 2015; Wang et al., 2020; Li et al., 2020b,a), approximate distributed averaging where each
worker communicates with a subset of workers each step (Jiang et al., 2017; Lian et al., 2017; Assran
et al., 2019; Yang et al., 2020), and many more. These works provide better scale-up properties and
improve time performance. The main drawback is asynchronous optimization itself. In practice,
the convergence is less stable, and more optimization steps are needed to generalize as well as
synchronous training. In addition, hyperparameters should be chosen more precisely to guarantee
convergence and generalization properties (Giladi et al., 2019; Mitliagkas et al., 2016). Due to these
issues, asynchronous methods are less commonly used on a large scale.

Sparse and compressed communication. Alternatively, several works addressed only the communi-
cation overhead. A common technique is to reduce the amount of data exchanged by the workers
at each step. This can be done by gradient pruning (Xu et al., 2021), gradient compression (Seide
et al., 2014; Chen et al., 2020; Tang et al., 2021) or low-rank approximation (Vogels et al., 2019).
These works reduce the communication overhead in a deterministic form while ignoring any compute
variance across processing workers. This makes these works orthogonal to ours and potentially can
be combined with our method.

3 Reducing Compute Variance

This paper proposes a method called DropCompute that improves the robustness of synchronous
training by reducing compute variance. First, we describe the vanilla synchronous training framework.
Then, we introduce the proposed approach.

3.1 Problem setup

We start with a model formulation for data-parallel synchronous SGD training with N workers, where
each worker holds a replica of the model parameters θ. In parallelism paradigms that combine TP or
PP with DP, N represents the count of data-parallel workers, not the total number of workers involved
in training. Given a dataset D, we are interested in minimizing the empirical loss

L(D, θ) = 1

|D|
∑
z∈D

ℓ(z, θ),

where ℓ(z, θ) is the loss with respect to data-point z and the model parameters θ. At each step, the
workers calculate gradients based on a local batch and then aggregate the gradients before taking an
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optimization step. An equivalent strategy would be that the workers aggregate the parameters after
taking an optimization step based on the local gradients. The aggregation is done in a decentralized
fashion, such as AllReduce.

We also consider the use of gradient accumulation to increase the size of the local batch. Gradient
accumulation breaks down each worker’s local batch into M micro-batches for computation, which
enables reaching a large global batch size beyond hardware capacity. This is common practice in
training of LLM on large scale where a substantial number of accumulations are being utilized (Smith
et al., 2022; Nvidia, 2023). In each iteration i and accumulation m, the gradients of the loss function
with respect to the model parameters are computed, denoted by

g(m)
n (θi) = ∇L(D(m)

i,n , θi) ,

where D(m)
i,n ⊆ D is the micro-batch m of worker n, sampled without replacement from D, and we

assume a constant micro-batch size |Dm
i,n|. The gradients accumulated by worker n at step i are

gn(θi) =
1

M

M∑
m=1

g(m)
n (θi) .

Finally, the workers aggregate and average the computed gradients to update the model parameters

θi+1 = θi − ηg(θi); g(θi) =
1

N

N∑
n=1

gn(θi) , (1)

where η is the learning rate. Equation 1 requires all workers to receive all gradients before updating
the parameters. This communication restriction is what makes the training synchronous and ensures
the model parameters are the same for all workers. However, due to this restriction, the slowest worker
at each step dictates the iteration time. More generally, any variation in computation time among
workers will lead to workers with idle time. Therefore, to improve the efficiency and robustness of
the synchronous training process, we need to reduce the computation time variance among workers
(namely, the compute variance).

3.2 Our method: DropCompute

To mitigate the effect of compute variance and to improve the robustness of synchronous training,
we propose a simple yet effective method called DropCompute. DropCompute reduces the compute
variance by introducing a compute threshold after which workers have to stop calculating local
gradients and move directly to the communication phase, i.e., Equation 1.

In each iteration i, each worker n measures the time while calculating its local batch, and compares it
against a given threshold τ , which is set as described in section 4.4. If that time exceeds the compute
threshold, the worker stops and sends the gradients it has calculated so far. The rest of the training
remains unchanged, thus synchronous training is intact. The pseudo-code of DropCompute is shown
in Algorithm 1. This method maintains a decentralized approach while improving its robustness
to compute variance and stragglers in particular. Since our method drops samples, the batch size
is no longer deterministic. Specifically, the total batch size (the total number of samples used in
one iteration by all workers) can be smaller than the maximal total batch size bmax = NM |D(m)

i,n |.
Nevertheless, we show both theoretically and empirically that this makes no difference to convergence
or generalization when the number of computed samples remains the same. Next, we analyze this
method in section 4 and evaluate it in section 5.

4 Method Analysis

After establishing the notion of compute variance and the formulation of the proposed method, we
analyze synchronous training and the potential value of the proposed method on the training time
performance. To do so, we start with convergence guarantees when using DropCompute. Then, we
theoretically analyze the computation time with synchronous training and when using DropCompute.
Through this analysis, we estimate the potential speedup over vanilla synchronous training.
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Algorithm 1 DropCompute on worker n at iteration i

1: Input: model parameters θi; total number of micro-batches M ; compute threshold τ

2: local batch data Di,n = {D(1)
i,n ,D

(2)
i,n , · · · ,D

(M)
i,n }; step time Tn to compute local batch Di,n

3: Initialize step time Tn = 0 and accumulated gradients gn(θi) = 0
4: do (1) and (2) in parallel:
5: (1) for m = 1, . . . ,M do
6: g

(m)
n (θi) = ∇L(D(m)

i,n , θi) ▷ Compute gradient

7: gn(θi)← gn(θi) + g
(m)
n (θi)/M ▷ Accumulate gradients (atomic)

8: (2) wait for Tn > τ and break for loop (1)
9: Output: gn(θi) ▷ AllReduce

4.1 Convergence analysis of DropCompute

Using DropCompute, the batch size is no longer fixed, but a random variable, which can also
potentially depends on the data samples. To the best of our knowledge, this setting is somewhat
different from existing convergence guarantees. Therefore, in this section, we provide convergence
guarantees for DropCompute by analyzing the convergence of SGD with stochastic batch size.

Assumption 4.1. Following the notations in section 3.1, consider a possibly non-convex smooth loss
function L(D, θ), with a global minimum θ∗ ∈ Rd, and the following (commonly used) assumptions

1. L-smooth: All functions L(·, θ) are with L-Lipschitzian gradients.

2. Unbiased estimation: Each∇ℓ(z, θi), z ∈ D is an unbiased estimate of ∇L(D, θi) which
is the true (full batch) gradient at θi2. Namely, ∀i : E[∇ℓ(z, θi)|θi] = ∇L(D, θi) .

3. Bounded variance: The variance of the stochastic gradient is bounded by a constant σ,

∀i : E[∥∇ℓ(z, θi)−∇L(D, θi)∥2|θi] ≤ σ2 .

Theorem 4.1. Under the above assumption, applying SGD with DropCompute (Algorithm 1), ensures

E∥∇L(D, θ̄)∥2 ≤ 2Lbmax(L(D, θ1)− L(D, θ∗))
K

+
2σ
√

L(L(D, θ1)− L(D, θ∗))√
K

, (2)

where bmax is the maximal total batch size, K is the total number of samples that are used throughout
the training, θ1 is the initial model, and θ̄ is a random sample of θi from the trajectory obtained by
Algorithm 1, where i is selected with probability proportional to the total batch size at iteration i.
The expectation is with respect to the randomization introduced due to sampling from D throughout
the optimization process and with respect to choosing θ̄.

The bound in Theorem 4.1 is similar to existing fixed batch-size guarantees (Dekel et al., 2012). The
second term in the bound does not degrade with the batch sizes, and behaves like O(1/

√
K), while

the first term behaves like O(bmax/K). This implies that as long as bmax ≤ O(
√
K), the second

term is dominant and we are in the regime of linear speedup. This shows we can attain a linear
speedup despite using changing batch sizes, as long as the maximal batch size is bounded.

Similarly, in Theorem D.1 in appendix D.1 we show that the loss itself converges, in the convex case
along with a proof. The proof of Theorem 4.1 is provided in appendix D.2. Lastly, we discuss the
impact of the stochastic batch size on generalization in appendix D.4.

4.2 Iteration time in standard synchronous distributed training

We start with finding a closed-form expression for the cumulative distribution function (CDF) of the
iteration time, denoted as T , defined as

T = max(T1, T2, ..., TN ) ,

2This is easily satisfied when all workers can access all data.
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where Tn represents the time taken by worker n to compute its local batch, which follows some
cumulative probability function FTn(x) = P(Tn < x), which we assume is independent for each
worker. Let FT (x) represent the cumulative distribution function and fT (x) represent the probability
density function of the maximum iteration time T . The relation between FT (x) and FTn

(x) is

FT (x) = P (max (T1, . . . , TN ) ≤ x) =

N∏
n=1

FTn
(x) .

Differentiating with respect to x and applying the chain rule gives:

fT (x) =
dFT

dx
(x) =

N∑
n=1

fTn
(x)

N∏
n′ ̸=n

FTn′ (x) .

In the special case where all of the workers’ iteration time distributions are identically and indepen-
dently distributed (i.i.d.), this reduces to the well-known formula:

fT (x) = N · fTn
(x) · FTn

(x)N−1 (3)

If the iteration time of each worker is distributed normally (∼ N (µ, σ2)), the expected value of T
can be approximated as shown by Bailey et al. (2014):

E(T ) ≈ σ ·
(
(1− γ) · Φ−1

(
1− 1

N

)
+ γ · Φ−1

(
1− 1

e ·N

))
+ µ (4)

where Φ is the CDF of the standard normal distribution, and γ is the euler-mascheroni constant.
Asymptotically the total iteration time is E[T ] = Θ(

√
logN). When the number of micro-batches

M ≫ 1, we can make a similar approximation under Central Limit Theorem (CLT) conditions. More
details are in appendix C.2.

4.3 Iteration time and number of micro-batches with DropCompute

When using DropCompute with a constant threshold τ , each worker is preempted at T̃n =
min {τ, Tn} and joins the AllReduce. Therefore, the total iteration time with DropCompute is

T̃ + T c = min {τ, T}+ T c ,

where T c is a serial latency present in each iteration, which includes the AllReduce step. This upper
limit serves to clip extreme values of Tn, effectively constraining the range of potential outcomes
for T̃ . As a result, the compute time variability decreases, leading to a narrower distribution and
enhanced compute efficiency. These effects are illustrated in Figure 2.

As a consequence of preempting each worker at T̃n, the number of micro-batches computed in
each step varies. Denote as t(m)

n the compute latency of a single micro-batch m for worker n, and
T

(m)
n =

∑m
j=1 t

(j)
n . We can define the average number of micro-batches computed by each worker

before reaching threshold τ as

M̃ =
1

N

N∑
n=1

M∑
m=1

{
1, if T (m)

n < τ
0, otherwise

}
.

Under CLT conditions, the expected value for M̃ can be approximated in a closed form:

E[M̃ ] ≈
M∑

m=1

Φ

(
τ −m · µ√

m · σ2

)
(5)

where µ, σ2 are the mean and variance for a single micro-batch t
(m)
n compute latency, and Φ is the

CDF of the standard normal distribution. This approximation closely fits the real value of M̃ and can
be used to analyze the expected gain from DropCompute. More details in appendix C.2.
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Figure 2: Reduction in variance and mean iteration time using DropCompute. Iteration time distribution
of 200 workers using DropCompute on BERT 1.5B. (left) Step time Tn distribution of all workers, without
DropCompute. (right) Maximum iteration time T , across all workers, using DropCompute, with different drop
rates. The dashed ‘simulation’ distribution is generated by drawing Tn randomly from an independent normal
distribution separately for each worker, using the empiric mean and variance of that worker.

4.4 Choosing the threshold

The throughput of the system can be seen as the number of micro-batches computed per second. For
N workers, this can be written as NM/(T + T c). To evaluate the effectivness of DropCompute, we
consider the difference in throughput between the baseline and when using DropCompute. Doing so,
we can define the effective speedup for τ as:

Seff(τ) =
DropCompute Throughput

Baseline Throughput
=

NM̃/(min {τ, T}+ T c)

NM/(T + T c)
=

M̃(T + T c)

M(min {τ, T}+ T c)
(6)

Given the statistical characteristics of the training setting, it is possible to estimate analytically the
expected value of the effective speedup E[Seff(τ)] by using Equations 5 and 4. Moreover, when
plugging in the asymptotic form of E[T ], we find the expected speedup increases to infinity with N

E[T ] = Θ(
√

logN) ⇒ E[Seff(τ)](N) −→
N→∞

∞

As shown in figure 3b, Equation 4 is less accurate when samples deviate from a normal distribution.
To find the optimal compute threshold, we synchronize the empirical distribution of micro-batch
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Figure 3: Statistical characteristics of the micro-batch computation latency t
(m)
n can provide a reliable

estimate of the effective speedup Seff . The graphs depict Seff(τ) based on Equation 6. Calculations rely on
samples of t(m)

n to calculate M̃ and T , before plugging them into Equation 6. In the ‘simulation’ curves, we
directly use the samples to calculate M̃ and T . For the ‘analytical’ curves, only the mean and variance of t(m)

n

are used to approximate M̃ and T using Equations 5 and 4, respectively. For ‘analytical given E[T ]’, M̃ is
approximated using Equations 5, but E[T ] is calculated directly from the samples. More details in appendix
C.2. Panels: (a) The t

(m)
n samples follow a normal distribution. (b) samples are taken from BERT1.5B pre-

training with simulated delay as described in Section 5.2. (c) The optimal compute threshold can be found
automatically. The effective speedup, micro-batch completion rate, and step speedup as a function of τ in a
simulated delay environment.

compute latency between all workers after a few iterations. Given this distribution, we find T and M̃ ,
and search in a decentralized way for the threshold τ∗ that maximizes the effective speedup Seff(τ)
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defined in Equation 6. Overall, the cost of synchronizing the empirical distribution and finding τ∗ is
negligible, compared to a full training session, because it happens only once in a training session.
Lowering the threshold leads to reduced compute time but higher compute drop rates. Figure 3c
highlights this trade-off and the optimal τ∗ is marked.

4.5 Compensating for dropped samples

The effective speedup metric Seff , accounts for dropped samples by treating them as a source of
slowdown in direct proportion to the drop rate. This consideration enables us to execute additional
computations to achieve the theoretical speedup. The extent of extra time spent on redundant
calculations can be as much as R = (M/M̃ − 1) times the computational effort required when not
applying DropCompute.

For instance, when 10% of the samples are dropped, we can expect to perform approximately
11% more calculations. Achieving this can be approached in several ways. One straightforward
compensation method for LLM training involves adding an extra R · Ibase steps to the training
process, where Ibase represents the number of training steps conducted without using DropCompute.
In practice, achieving the original accuracy often requires even fewer additional steps, as illustrated
in Figure 5, resulting in an even higher effective speedup.

Another method of compensating for the dropped samples is to increase the maximal batch size.
When increasing the batch by R and dropping in average 1− M̃/M , we keep the average batch size
the same as without using DropCompute, hence compensating for the lost samples. A third method,
orthogonal to the first two, is resampling dropped samples before starting a new epoch to diversify the
overall samples seen by the model. These approaches are rigorously tested and compared in Table 1b

5 Experiments

To be useful, DropCompute must possess two properties. First, it should not compromise the accuracy
of the trained model. This property is put to test in section 5.1 where we fully train BERT-Large and
ResNet-50 (Devlin et al., 2018; He et al., 2015), each on a different task, with different drop rates
to compare accuracy. Second, DropCompute should maintain a high level of runtime performance,
especially when compute variance or straggling workers exist and vanilla synchronous training
time deteriorates. Section 5.2 tests runtime performance of DropCompute by training a 1.5 billion
parameter language model, BERT1.5B (Devlin et al., 2018) with additive noise to the compute time
of each worker.

Experimental setup. The analysis of all BERT models is performed on the same dataset as Devlin
et al. (2018), which is a concatenation of Wikipedia and BooksCorpus with 2.5B and 800M words
respectively. The finetuning of the pretrained models is performed on SQuAD-v1 (Rajpurkar et al.,
2016). We verify the generality of DropCompute by additional evaluation of a ResNet-50 model
for image classification on ImageNet (Deng et al., 2009). The experiments depicted in section 5.2
and section 5.1 are executed on Habana Gaudi-1 and Gaudi-2 accelerators, respectively, with high
performance network (Habana, 2020).

5.1 Generalization performance

The sole difference in the optimization when DropCompute is applied is that the batch size is not
deterministic, but stochastic, as explained in section 3.2. To complement theorem 4.1, we examine
the generalization performance achieved with a stochastic batch size on two popular tasks.

Image classification. To evaluate the generality of stochastic batch size and DropCompute in
particular, we evaluate the Top-1 accuracy of a ResNet-50 model on the Imagenet dataset using our
method. Since it is not common to use gradient accumulation in large scale training of this task, we
simulate the drops such that each worker randomly drops its local batch, so the total batch size is
stochastic. This simulated environment enables us to examine the extent of drop rate we can use
without compromising accuracy. Figure 10 in appendix B.2.2 shows that up to 10% drop rate, which
is more than what DropCompute operates on, there is a negligible deterioration in accuracy.

Large language model. Training LLMs is resource intensive, typically using large batch sizes, which
makes DropCompute appealing. We evaluate DropCompute method on this task by fully pretraining
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(a) Varying drop rate, no compensation

% Drop rate F1 score on dev set

0% 91.32 ± 0.15
2.5-3% 91.34 ± 0.04
5.5-6% 91.44 ± 0.02
10-11% 91.19 ± 0.02

(b) 10% drop rate, with compensation

Compensation method F1 score on dev set

None 91.19 ± 0.02
11% extra steps 91.40 ± 0.08

11% increased batch size 91.38 ± 0.08
re-computation 91.19 ± 0.11

Table 1: Maintaining the accuracy of BERT-Large pretraining. Fine-tuning results on SqUAD v1.1, where
the F1 score is obtained by the pretrained model. (a) The effect of different drop rates during pretraining on
the final accuracy, without compensating for the dropped samples. (b) When 10% drop rate is used during
pretraining, with different methods of compensating for the dropped samples.

BERT-Large model several times, each with a different drop rate. We follow the optimization regime
described in You et al. (2019) with a batch size of 64K for phase-1 and 32K for phase-2 (more details
are provided in appendix B.2). Each of the pretrained models is fine-tuned on the SQuAD task 3
times with different initializations. Fine-tuning is performed without drops, as it is not a large scale
resource consuming task. Table 1a shows the average accuracy (± standard deviation) obtained
for each drop rate. As shown, DropCompute at drop rates of up to 10% have negligible accuracy
difference. Higher values measured up to 20% of dropped gradients provide acceleration with a small
yet discernible hit on accuracy. We note that these results are for a fixed budget of steps. In the
presence of compute variance, the effective speedup indicates that additional steps can be executed
while still maintaining competitive runtime performance. This notion is demonstrated in section 5.2.

5.2 Runtime performance

The main purpose of our proposed method is to maintain runtime performance when compute variance
is present. We examine this by measuring the speedup of DropCompute over standard synchronous
training in several settings. First, we measure the potential speedup for different drop rates and
training settings by post analysis of synchronous training without drops. In addition, we introduce
compute variance by training with additive noise, and measure actual speedups using DropCompute.
The experiments in this section are performed on BERT1.5B. Details are provided in appendix B.1.

Training with different number of workers and micro-batches. We evaluate the potential speedup
of DropCompute on several training settings with natural heterogeneity and no drops. For each
setting, we post analyze what would have been the speedup for different drop rates. As can be seen in
Figure 4, DropCompute exhibits increasing benefits with a growing number of workers and compute
requirements. However, there are diminishing returns in terms of speedup with more accumulations.
This could possibly be explained by the amortization time of a large number of micro-batches.
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Figure 4: DropCompute exhibits increasing benefit on a large scale. Effective speedup versus drop rate with
(left) 32 accumulations and varying workers, and (right) 112 workers and varying number of accumulations.

Simulated delay environment. Although DropCompute may have value when the workers’ compute
latency variance is low, its significance becomes crucial when the workers’ compute latency exhibits
high variability. To evaluate our method, we introduce a delay environment where random latency
is added to each micro-batch computation. This additive noise follows a bounded log-normal
distribution. Detailed information and motivation regarding the additive noise are in appendix B.1.
The experiments are executed with 12 gradient accumulations and a local batch size of 192. In
Figure 1, the negative impact of compute variance on scalability is demonstrated and mitigated
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using DropCompute. The results in Figure 1 also correspond to section 4 and Equation 11, where
a theoretical extrapolation follows the same trend line. When utilizing DropCompute in this setup,
achieving the same training loss as the baseline might requires additional training steps, however, it
leads to a notable reduction in overall training time. Figure 5 demonstrates it in a training session
with 64 workers, where approximately 3% more steps is needed to reach the same loss, in 13% less
time.
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Figure 5: DropCompute improves training time for workers with compute variance. Train loss curve of
BERT1.5B pretraining, in a simulated delay environment. (left) Horizontal axis in training steps, and (right)
horizontal axis in training time.

6 Discussion

Summary. Efficient scalable systems are a key component to enable the continued development
of deep learning models. To this day, state-of-the-art models rely on synchronous distributed
optimization. The challenge to maintain synchronous training as an efficient solution grows larger
with the quickly growing model sizes and data. Therefore, improving the robustness and scalability
of distributed synchronous training is an important endeavor. This paper tackles the challenge of
maintaining synchronous training scalable in the face of compute variance. We propose DropCompute
to improve the robustness of synchronous training. Workers drop their remaining compute when
they reach a compute threshold, determined by exchanging and analyzing the compute latency
distribution. We find that for a small percentage of dropped data, a much larger percentage of time
can be saved, depending on the compute latency distribution of the workers. In addition, we provide
theoretical convergence guarantees and runtime predictions. We further discuss the motivation behind
DropCompute and how it effectively solves the problem in appendix A.

Limitations. While DropCompute is simple and straightforward, it deals with system efficiency, and
as such, the user-level implementation provided is not optimal. Mainly, the provided implementation
is limited by using many gradient accumulations and integrating compute timeout in between them.
However, we believe that this is not a major concern since having multiple gradient accumulations
is a common practice in training LLM on a large scale and is used in state-of-the-art training
configurations (Smith et al., 2022; Nvidia, 2023). In addition, DropCompute addresses variance that
originates from the compute stage of the training iteration and does not solve the potential issue of
network variance during the all-reduce stage.

Future directions. DropCompute is described and analyzed in this paper as a method built on top
of synchronous training. However, this method can be integrated with other possibly asynchronous
methods such as periodic synchronization. In appendix B.3, we implement DropCompute on top of
Local-SGD (Lin et al., 2020) and show that DropCompute can also improve the robustness of Local-
SGD to stragglers. A different extension for DropCompute is to apply it during the model backward
calculation and save the partial gradients that were already calculated. This would generalize
DropCompute for workloads that do not utilize gradient accumulations. However, it will require
further study as it differs from the stochastic batch-size setting where the entire data sample is either
saved or dropped.
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Appendix
A Further discussion

In this section, we will further elaborate on the motivation for using DropCompute and how it
mitigates existing problems in large-scale training.

A.1 Motivation

The primary objective of DropCompute lies in the mitigation of compute latency variance among
workers. This raises the question of the significance of compute variance in the context of our research.
Compute variance can arise from various sources, including but not limited to faulty hardware, clock
throttling, host preemption/overhead, inefficient load balancing, connectivity issues (particularly in
model parallel settings), and more. Inefficient load balancing is especially in particular, when dealing
with with dynamic sentence/image sizes (Tan & Le, 2021; Dehghani et al., 2023; Raffel et al., 2020b)
because it requires special treatment for each model and data set, often at the expense of performing
redundant work. Addressing these issues typically requires intricate engineering efforts:

• Regular testing and replacement of faulty hardware.
• Mitigation of host overhead through the implementation of latency-hiding techniques and

script optimization.
• Management of inefficient load balancing on a per-workload basis, employing strategies

such as sample padding and packing.

However, it is essential to recognize that each of these issues represents a potential single point of
failure. The triggering of any one of them can result in a substantial performance degradation within
large-scale systems. Some of our early experiments exhibited naturally such sub-optimal behavior
where we clearly see a large variance in compute latency between iterations and workers (as shown
in figure 6). As our goal is to improve robustness (i.e. performance for outlier cases), these cases
are important. Moreover, after the compute variance was reduced by HW and SW optimizations, we
were still left with some compute variance (as shown in figure 2).
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Figure 6: Single iteration latency histogram in a sub-optimal system. These histogram were recorded in
BERT1.5B training, before optimizing our system. (left) Training with 162 workers and 64 gradient accumula-
tions. When applying DropCompute in this setting, we achieved ∼ 18% performance boost. (right) Training
with 190 workers and 16 gradient accumulations.

These examples lead us to the conclusion that, in practice, workers do not finish computation at
the same time, and this can have a significant impact on the training speed. Moreover, the effect
of stragglers and compute variance on the training speed is expected to get worse as the distributed
scale increases. This is due to the maximal worker distribution relation stated in equation 3. When
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modeling the additive latency as normally distributed, the average maximal worker latency, E[T ],
increases with the number of workers N as E[T ] = Θ(

√
logN) as shown in appendix C.2.

A.2 Effectiveness

Mitigating slowdowns resulting from compute variance can be achieved easily buy using DropCom-
pute. For instance, in a sub-optimal system with stragglers, as illustrated in Figure 6 (left), we were
able to recover approximately 18% of the runtime performance. The contribution of DropCompute
can be even more significant in different systems with varying noise distributions, as demonstrated in
Appendix C.3.

Furthermore, even when assuming a normal distribution of noise, theoretical analysis indicates a
substantial speedup as the number of workers N increases: Seff(N) −→

N→∞
∞. On the tested system,

after reducing compute variance through hardware and software optimizations, we achieved a 5%
performance boost with 196 workers (see Figure 2). Notably, this speedup continues to increase as the
scale of the system grows. These examples underscore how DropCompute enhances the robustness
of large-scale training, effectively recovering lost performance attributed to stochastic performance
outliers.

Lastly, it’s important to emphasize that even a modest improvement in large-scale training perfor-
mance can yield significant cost savings. For example, assuming a cost of $10–32/hour/8xA100
(according to AWS pricing), saving 5% of the training time for a 176B model, such as (Scao et al.,
2022), would result in savings ranging from $67,686 to $216,598. For longer-trained models, like
(Touvron et al., 2023), the savings could reach $107.50 to $344,064."

B Experiments

B.1 Runtime performance experiments

In this section, we provide details for the experiments of section 5.2.

Experiment details. As mentioned in the paper in section 5.2, we pre-train BERT1.5B following
Habana (2023). The experiments in this section use up to 200 Gaudi accelerators with high bandwidth
inter-connectivity. The training is done with a maximum input sequence length of 128 and 80
maximum predictions per sequence. The training regime consists of a local batch size of 196, 12
gradient accumulations, LANS optimizer (Zheng et al., 2020), and a learning rate of 0.0015. Due
to the large capacity of the model, we used ZeRO optimizer stage 1 to fit the model in memory
(Rajbhandari et al., 2020).

Simulated delay. Many frameworks use padding to allow for constant input length which improves
hardware efficiency (Kosec et al., 2021). However, some learning tasks inherently involve dynamic
shapes, such as translation (Ott et al., 2018) and multi-task sequences (Raffel et al., 2020a). These
use cases motivate us to explore scenarios of dynamic length via simulation. To demonstrate the
value of DropCompute in dealing with compute variance we added to each micro-batch compute time
an additional random waiting time. The additive noise is based on a Log-normal distribution since it
is typical for user post lengths in internet discussions (Sobkowicz et al., 2013), which are used as
training data in recent language models (Radford et al., 2019). To make this setting more realistic,
we scale down and bound the noise so that each accumulation takes ×1.5 longer on average, and, in
extreme cases, can take up to 6 times longer. This allows us to simulate stragglers and high compute
variance while keeping a conservative limit on iteration time. Thus, the additive noise takes the form
of

ϵ = min

(
1

α
Z, β

)
, Z ∼ LogNormal(4, 1) .

This noise was added to each accumulation

t(m)
n ← t(m)

n + µ · ϵ ,

where µ is the mean value for t(m)
n , α = 2 exp(4.5) and β = 5.5 are the scaling and bounding

constants, and the log-normal parameters (4,1) fit user post lengths, as seen in Sobkowicz et al. (2013).
As illustrated in Figure 7, the noise distribution leads to each micro-batch latency increased by up
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to 6µ, while the majority of accumulations have low latency. Further analysis on the effect of noise
properties is discussed in C.3.
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Figure 7: The latency distribution in a simulated delay environment. (left) The distribution of the additive
noise ϵ, added to each accumulation. (right) The distribution for iteration time Tn, with 12 accumulations, each
with added noise, in BERT1.5B training.

B.2 Generalization experiments

In this section, we provide details for the experiments of section 5.1.

B.2.1 Large language models

Here we provide more details about how the LLM experiment was executed as well as additional
graphs related to the LLM experiment described in section 5.1.

Experiment details. As mentioned in the paper, in section5.1 we follow You et al. (2019) optimization
regime with LAMB optimizer. Specifically, for phase-1 where the sequence length is 128 tokens per
sample, we use a batch size of 64K, the learning rate is 0.006, the warmup ratio is 0.2843, and the
steps number is 7038. For phase-2 where the sequence length is 512, we use a batch size of 32K, the
learning rate is 0.004, the warmup ratio is 0.128 and the steps number is 1563. The experiments were
executed on 64 workers.

Batch size distribution. As explained in section 5.1 we fully pretrain a BERT-Large model with
DropCompute several times, each with a different drop rate. Figure 8 shows the empirical batch
distribution of each of the drop rates in phase-1.
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Figure 8: Batch size distribution. BERT-Large phase-1 pretraining batch size distribution when using Drop-
Compute and drop rate of (a) 2.5% , (b) 5.5%, and (c) 11.5%

Convergence loss. In addition to the results depicted in Table 1a, we show the convergence of the
training loss with the different drop rates in Figure 9.
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Figure 9: Train loss convergence. BERT-Large phase-1 (left) and phase-2 (right) pretraining train loss for
different drop rates.

B.2.2 Image classification

This section provides the details of the image classification experiment described in section 5.1 as
well as Figure 10 which is referenced from the paper.

Experiment details. To simulate DropCompute, at each training step, the gradients of each worker
are set to zero with a probability of Pdrop . We repeat each training process 3 times with different
initializations. To examine the generalization of DropCompute over different optimizers, we imple-
ment our method on two popular training regimes of ResNet50. First, we follow the optimization
regime described in Goyal et al. (2017) that uses SGD with 32 workers and a global batch size of
4096. Second, we follow Mattson et al. (2019) that uses LARS (You et al., 2017) with 8 workers and
a global batch size of 2048.
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Figure 10: Generalization over varying drop rates. Top-1 validation accuracy of ResNet50 trained on
ImageNet with varying simulated drop rates. The dashed line is the baseline accuracy without drops. The solid
line is the average over 3 runs, and the blue area is the standard deviation. (left) Training regime with SGD
(Goyal et al., 2017). (right) Training regime with LARS (Mattson et al., 2019). Up to a 10% drop rate, there is a
negligible accuracy deterioration.

Learning rate correction. Previous works showed that the learning rate should be scaled with respect
to the batch size (Hoffer et al., 2017; Goyal et al., 2017). With a stochastic batch size and specifically
DropCompute, it is possible that a learning rate correction should be considered to maintain accuracy
with the same number of steps. We examine such corrections when training with stochastic batch size.
First, we decrease the learning rate by a constant factor, equal to the average drop rate. Specifically,
for an average drop rate Pdrop ∈ [0, 1] we multiply the learning rate by (1 − Pdrop). A different
correction we consider is a stochastic correction, such that in each step we divide the gradients by the
computed batch size, instead of the original batch size. This result in a different normalization in
each step depending on the actual dropped samples. We note that for the latter, the workers have to
synchronize the computed batch of each worker at each step. This is generally can be done during the
AllReduce, with negligible overhead. We repeat the training of ResNet50 on ImageNet as described
in Goyal et al. (2017) to evaluate the generalization without correction and with the two suggested
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corrections. We use 128 workers, batch size 8192, and use ghost batch norm (GBN) (Hoffer et al.,
2017) to match batch normalization of 32 samples and restore the results in Goyal et al. (2017). As
can be seen in Figure 11, for low drop rates, there is no superior correction method, and no correction
generally achieves the same generalization. Yet, it is possible that a learning rate correction could
potentially improve generalization on a different task or with a different optimizer.
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Figure 11: Learning rate correction is not necessary for low drop rates. Top-1 validation accuracy of
ResNet50 trained on ImageNet with varying simulated drop rates, using the learning-rate correction methods
described in B.2.2. The dashed line is the baseline accuracy without drops. Each solid line is the average over
3 runs, and the area around it is the standard deviation. Up to a 10% drop rate, there is a negligible accuracy
deterioration regardless of the correction applied.

B.3 Local-SGD

Periodic synchronization methods, such as Local-SGD, provide better scalability properties than
synchronous methods. By exchanging parameters less frequently, communication overhead is
mitigated. For compute variance and straggling workers in particular, the robustness of these
methods greatly depends on the distribution of the compute time between workers. For example,
when straggling workers appear randomly with homogeneous distribution, Local-SGD can mitigate
the straggling workers slowdowns to some extent; this is because of the amortization effect in
synchronizing periodically once every several steps. On the other hand, if straggling workers appear
from a small set of workers such as a single server, a realistic scenario, Local-SGD acts more closely
to synchronous training as the worst-case scenario is when a single worker always straggling behind.
DropCompute can be easily integrated with Local-SGD by leveraging periodic synchronization
instead of gradient accumulations. We implement DropCompute on top of Local-SGD by comparing
the compute time with a threshold at each local step. We show that when stragglers are apparent,
DropCompute can improve the robustness of Local-SGD. We randomly slow down workers to
simulate stragglers in two scenarios as described in Figure 12. The experiment setting is 32 workers
training on ResNet50 and ImageNet. At each local step, each worker is selected to be straggler with
a 4% chance. This way, there is at least 1 straggler for each local step on average. We measure
relative speedup compared to synchronous training in terms of step time, both for Local-SGD and
with DropCompute on top of Local-SGD. As can be seen, with DropCompute (set to 6.2% drop rate
in this experiment) we improve the robustness of Local-SGD.

C Analyzing the effective speedup using DropCompute

In this section, we provide more details on the process of choosing the threshold τ∗ that will maximize
the effective speedup. We begin by giving technical details on the process used during training, given
samples drawn from the empirical distribution of the compute latency. Next, we continue to explore
and establish the analytic connection between the latency statistics and the effective speedup.

C.1 Automatic selection of the drop threshold

In Algorithm 2 below we present the algorithm used for automatic selection of the drop threshold
τ . In this algorithm, t(m)

i,n is the time it takes worker n to process micro-batch m at step i and T c
i

is the time spent on communication for at step i. This data is measured by each worker, and then
synchronized between all workers after I iterations. After the synchronization step each worker will
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Figure 12: DropCompute can be integrated with Local-SGD to improve robustness. Speedup of each
method compared to synchronous training in a straggling workers environment. In each local step workers are
randomly drawn to be stragglers. If selected as a straggler, the worker waits 1 second before continuing. The
synchronization period of Local-SGD is denoted in the x-axis. (left) Uniform stragglers. (right) Single server
stragglers.

have the same drop threshold τ , which depends on both his own speed and the compute latency of the
other workers. Since T c

i is used in the normalization of the effective speedup, the chosen threshold
takes into account both compute and communication time.

Algorithm 2 Automatic choice for the optimal threshold τ

Input:
number of workers N
number of iterations I
number of micro-batches per step M

micro-batch time samples {{t}(m)
i,n }i∈[1:I],n∈[1:N ],m∈[1:M ]

communication time for each iteration T c
i

potential thresholds [τ0, τ1, ...]
for τ ∈ [τ0, τ1, ...] do

for i = 1 to I do
Initialize completed micro-batch count: M̃i(τ) = 0
Initialize compute step latency for all workers: Ti = 0
for n = 1 to N do

Initialize single worker step compute latency: Ti,n = 0
for m = 1 to M do

Ti,n ← Ti,n + t
(m)
i,n

M̃i(τ)← M̃i(τ) +
1
N ·
{

1, if Ti,n < τ
0, otherwise

}
Ti ← max(Ti, Ti,n) ▷ compute time of the slowest worker at step (i)

Si(τ) =
Ti+T c

i

min(τ,Ti)+T c
i
· M̃i(τ)

M ▷ Effective speedup for step (i)

Seff(τ) =
1
I

∑I
i=1 Si(τ) ▷ Mean speedup for threshold (τ )

τ∗ ← argmaxτ (Seff(τ))

C.2 DropCompute speedup analytic analysis

In this section we further explore the relation between the compute latency distribution and the
effective speedup. We will derive a closed-form representation of the effective speedup by making
certain assumptions. First we assume that
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Assumption C.1. t
(m)
n is i.i.d with finite mean µ and finite variance σ2.

Note that in the assumption above, for simplicity of presentation we assumed all workers as identical
and so µ and σ2 are identical. However, it is possible to derive similar properties with nonidentical
workers, each with their own µn, σn. Next, denote the time for completion of micro-batch m as
T

(m)
n =

∑m
j=1 t

(j)
n . Then, we assume

Assumption C.2. T
(m)
n is Gaussian ∼ N (mµ,mσ2) for m >

√
M .

This assumption holds in the limit M →∞ given Assumption C.1, from the Central Limit Theorem
(CLT). Lastly, denoting τ as the threshold used, we assume

Assumption C.3. τ > Mµ
2 .

This bound can be considered as the minimum threshold allowed, in order for DropCompute to be
effective. Taking a lower threshold will result in unacceptable high drop rate.

Using these assumptions we first derive analytical expression for the iteration time E[T ] and the mean
completed number of gradient accumulations E[M̃ ] with DropCompute. Then, we combine these
expressions to obtain an expression for the mean effective speed E[Seff ].

Figure 3b shows an example of how close is the derived expression of E[Seff ] to the value calculated
by using the algorithm described in section C.1. The ‘analytical’ curve is slightly off due to the
inaccuracy of the Gaussian Assumption C.2 in calculating E[T ], as we discuss below. We therefore
added another curve ‘analytical given E(T )’, which uses same the derived expression for E[Seff ] but
replacing value of E[T ], with the empiric mean: T = 1

I

∑I
i=1 maxn

{
T

(M)
n,i

}
where: i ∈ [1 : I] are

the iterations measured.

Iteration time. as written in section 4.2, the iteration time for all workers is

T = max
n

(
T (M)
n

)
= T c +max

n

(
M∑

m=1

t(m)
n

)
.

When T
(M)
n ∼ N (Mµ,Mσ2) . the expected value of T can be approximated as (Bailey et al., 2014):

E[T ] ≈
√
Mσ2 ·

(
(1− γ) · Φ−1

(
1− 1

N

)
+ γ · Φ−1

(
1− 1

e ·N

))
+Mµ+ T c . (7)

We can derive the asymptotic behavior of Eq. 7 by:

Φ(x) =
1

2
+

1

2
erf

x√
2
∼ 1− 1

x
√
2π

e−x2/2

⇓

log(1− Φ(x)) ∼ −x2

2
− log(x

√
2π) ∼ −x2

2
, x→∞

⇓
Φ−1(1− y) ∼

√
−2 log y, y → 0+

When plugging Equation 7 into this asymptotic approximation we are left with E[T ] = Θ(
√

logN).

It is worth noting that the distribution of T is mostly affected by the tail of distribution of Tn = T
(M)
n

(as a consequence of Equation 3). Therefore, in practice the Gaussian Assumption C.2, and therefore
Equation 7, can be inaccurate, especially for small M and large N . It is therefore more accurate
to use the real value of E[T ], measured without DropCompute, to estimate the potential effective
speedup. An example for the inaccuracy of this approximation can be seen in Figure 3b, when T

(M)
n

does not follow a normal distribution.

Completed micro-batches. The average number of micro-batch computed by a single worker n
when using DropCompute with threshold τ , is:

M̃(τ) =
1

N

N∑
n=1

M∑
m=1

{
1, if T (m)

n < τ
0, otherwise

}
.
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Its expected value can be written as:

E[M̃(τ)] =

M∑
m=1

P
(
T (m)
n < τ

)
.

In order to use assumption C.2, we can split M̃ into 2 sums and derive a closed-form formula for the
expected value:

M̃(τ) =

⌊
√
M⌋∑

m=1

P
(
T (m)
n < τ

)
+

M∑
m=⌈

√
M⌉

P
(
T (m)
n < τ

)
. (8)

For the right term we can use assumption C.2 so that P (T
(m)
n < τ) = Φ

(
τ−m·µ√
m·σ2

)
. For the left term,

when m <
√
M we use Markov inequality and assumption C.3 to show that

0 ≤ P (T (m)
n > τ) ≤ E[T (m)

n ]

τ
=

mµ

τ
≤ 2m

M
.

In other words, when using DropCompute with low drop rates, P (T
(m)
n < τ) is very high for

m <
√
M . The Gaussian approximation for m <

√
M diminishes exponentially when increasing

M , as seen by applying Chernoff bound:

0 ≤ P (Z(m) > τ) ≤ e−
(τ−mµ)2

2mσ2 ≤ e−
(M/2−m)2µ2

2mσ2

where Z(m) ∼ N (mµ,mσ2). Therefore, the error resulting in replacing T
(m)
n with a Gaussian

approximation, is bounded:

P (T (m)
n < τ)− P (Z(m) < τ) = P (Z(m) > τ)− P (T (m)

n > τ)

⇓

−2m

M
≤ −P (T (m)

n > τ) ≤ P (T (m)
n < τ)− P (Z(m) < τ) ≤ P (Z(m) > τ) ≤ e−

(M/2−m)2µ2

2mσ2

⇓

−2m

M
+ P (Z(m) < τ) ≤ P (T (m)

n < τ) ≤ P (Z(m) < τ) + e−
(M/2−m)2µ2

2mσ2

Plugging these inequalities into the left term in equation 8 gives us:

⌊
√
M⌋∑

m=1

P
(
T (m)
n < τ

)
≤

⌊
√
M⌋∑

m=1

(
P
(
Z(m) < τ

)
+ e−

(M/2−m)2µ2

2mσ2

)

⌊
√
M⌋∑

m=1

P
(
T (m)
n < τ

)
≥

⌊
√
M⌋∑

m=1

(
P
(
Z(m) < τ

)
− 2m

M

)
= O(1) +

⌊
√
M⌋∑

m=1

P
(
Z(m) < τ

) (9)

Combining equations 8,9 we can write the expected value as

E[M̃(τ)] =

M∑
m=1

P
(
T (m)
n < τ

)
= O(1) +

M∑
m=1

Φ

(
τ −m · µ√

m · σ2

)
. (10)

Effective speedup. As seen in section 4.4, we define the effective speedup as

Seff(τ) =
M̃(τ)(T + T c)

M · (min {τ, T}+ T c)
.
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We are interested in calculating the expected value for the effective speedup, and in order to use
the formulations in equations 7,10 we first need to show that E[M̃(τ) · T ] ≈ E[M̃(τ)] · E[T ]. We
examine

E[M̃T ] = E[T (E[M̃ ] + M̃ − E[M̃ ])] = E[M̃ ]E[T ] + E[T (M̃ − E[M̃ ])]

Applying Cauchy–Schwarz inequality we get

|E[T (M̃ − E[M̃ ])]| ≤
√
E[T 2]E[(M̃ − E[M̃ ])2] =

√
E[T 2]

σ2
M̃n

N
= O(N− 1

2 ) ,

where σ2
M̃n

denotes the variance of M̃n(τ) =
∑M

m=1

{
1, if T (m)

n < τ
0, otherwise

}
. Hence:

E[M̃T ] = E[M̃ ]E[T ] +O(N− 1
2 )

We can now write the expected value for the effective speedup as:

E[Seff ] =

∑M
m=1 Φ

(
τ−m·µ√

mσ2

)
M

· E[T ]
min(τ,E[T ]) + T c

+O(M−1 +M−1N− 1
2 ) (11)

E[T ] ≈
√
Mσ2

(
(1− γ) · Φ−1

(
1− 1

N

)
+ γ · Φ−1

(
1− 1

eN

))
+Mµ+ T c (12)

As mentioned above, when the Gaussian Assumption C.2 is inaccurate it may be useful to plug
instead in the empirical value for E[T ] in equation 11 in order to get a more accurate estimation of
E[Seff ].

Finding τ∗. The optimal threshold τ∗ can be chosen as:

τ∗ = argmaxτE[Seff(τ)] = argmaxτ

(
1

τ + T c
·

M∑
m=1

Φ

(
τ −m · µ√

m · σ2

))

By using the above derivations, we can utilize µ, σ, T c to understand the potential value of Drop-
Compute. This can be done without actually training and measuring the empiric distribution of t(m)

n

as done in appendix section C.1. We note that finding τ∗ does not require any estimation of T and
can be done without any statistics that originate from a large scale training session.

C.3 Additive noise analysis

As a conclusion of the previous sections, we understand that the effectiveness of DropCompute is
mostly due to the behavior of the stochastic latency of each worker. To analyze this phenomenon we
simulate a training of multiple workers using the scheme presented in section B.1 with various additive
noise types. As shown in figures 13, 14, the ratio E[T ]/E[Ti] is good indicator for determining the
potential of DropCompute on a given training setting. High ratios indicate a gap between the step
time for a single worker and the step time for multiple workers, that can be compensated by using
DropCompute.

23



0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

baseline
DropCompute
linear speedup
analytic given [T]

(a)

0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

(b)

0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

(c)

0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

(d)

0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

(e)

0 200 400 600 800
number of workers

0

200

400

600

800

sp
ee

du
p

(f)

Figure 13: The noise distribution type impacts the effectiveness of DropCompute. Simulated scale graphs for
a run with 12 accumulations. The duration of each accumulation is set to 0.45 + ϵ seconds Different sub-graphs
exhibit different distributions for ϵ. The bottom-right graph was drawn using the approximation from equation 6.

figure Mean(ϵ) Var(ϵ) ϵ distribution E[T ]/E[Ti]
a 0.225 0.05 lognormal LN(µ = −1.84, σ = 0.83) 1.496
b 0.225 0.05 normal N (µ = 0.23, σ = 0.22) 1.302
c 0.225 0.05 bernoulli 0.45Br(p = 0.5) 1.283
d 0.225 0.05 exponential exp(λ = 4.47) 1.386
e 0.225 0.05 gamma γ(α = 1, β = 4.5) 1.39
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Figure 14: DropCompute increases robustness to the noise variance. Simulated scale graphs for a run with
12 accumulations. The duration of each accumulation is set to 0.45 + ϵ seconds. ϵ is a stochastic lognormal
random variable with a mean of 0.225 and changing variance, according to the table below

figure Mean(ϵ) Var(ϵ) ϵ distribution E[T ]/E[Ti]
a 0.225 0.05 lognormal LN(µ = −1.84, σ = 0.83) 1.496
b 0.225 0.1 lognormal LN(µ = −2.04, σ = 1.04) 1.933
c 0.225 0.15 lognormal LN(µ = −2.18, σ = 1.17) 2.394
d 0.225 0.2 lognormal LN(µ = −2.29, σ = 1.26) 2.773
e 0.225 0.25 lognormal LN(µ = −2.38, σ = 1.33) 3.043
f 0.225 0.3 lognormal LN(µ = −2.46, σ = 1.39) 3.4
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D Convergence with stochastic batch size

In this section, we provide proof of theorem 4.1 (D.2), as well as convergence proof for the loss itself
in the convex case (D.1). We also discuss the generalization properties with a stochastic batch in
section D.4.

D.1 Proof for convex case

Theorem D.1. Under assumption 4.1 and the specific case where f is a convex function, for SGD
with DropCompute (Algorithm 1), given N workers and a local batch size blocal, we have that

E[L(D, θ̄)− L(D, θ∗)] ≤ 8Lbmax∥θ1 − θ∗∥2

K
+

6σ∥θ1 − θ∗∥√
K

. (13)

where K is the total number of samples used throughout the algorithm 3, and the expectation is with
respect to the randomization introduced due to sampling from D throughout the optimization process.

Proof of theorem D.1

Notation: During the proof we denote by bi the total batch size (summed over all workers) that we
employ at iteration i. K =

∑S
i=1 bi is the total number of samples along all S iterations. At iteration

i we maintain a weight vector θi ∈ Rd and query a gradient estimate gi based on a batch size of bi
samples. Thus, we set

gi =
1

bi

bi∑
s=1

gsi

where gsi = ∇ℓ(zsi , θi), and zsi is randomly sampled from D. We also maintain importance weights,
αi = bi.

Note that there exists bmax such that αi ≤ bmax ;∀i
Now, the update rule:

θi+1 = θi − ηαigi (14)

Eventually, we output

θ̄ =
1

α1:S

S∑
i=1

αiθi

where α1:S :=
∑S

i=1 αi.

We assume that the batch sizes bi are stopping times w.r.t. the natural filtration induced by the samples
we draw during the optimization process. Informally, this means that the value of bi depends only on
the history of the samples that we have seen prior to setting bi.

We can therefore prove the following lemma,
Lemma D.1. Upon choosing αi = bi the following holds,

E[αi(gi −∇L(D, θi)|θi] = E[
bi∑

s=1

(gsi −∇L(D, θi))|θi] = 0 .

Now, using standard analysis for Online Gradient Descent (Hazan et al., 2016) with the update rule
of (14) gives,

S∑
i=1

αigi · (θi − θ∗) ≤ ∥θ1 − θ∗∥2

η
+ η

S∑
i=1

α2
i ∥gi∥2

Taking expectation and using Lemma D.1 gives,

E
S∑

i=1

αi∇L(D, θi) · (θi − θ∗) ≤ ∥θ1 − θ∗∥2

η
+ ηE

S∑
i=1

α2
i ∥gi∥2

3We assume that the batch sizes may be stochastic but K is predefined and deterministic
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From convexity we know that 0 ≤ L(D, θi)−L(D, θ∗) ≤ ∇L(D, θi) · (θi− θ∗), therefore the above
implies,

E
S∑

i=1

αi(L(D, θi)− L(D, θ∗)) ≤
∥θ1 − θ∗∥2

η
+ ηE

S∑
i=1

α2
i ∥gi∥2 (15)

Now, we write gi = ∇L(D, θi) + ξi where ξi = gi −∇L(D, θi) and note that

αiξi =

bi∑
s=1

(gsi −∇L(D, θi)) =
bi∑

s=1

ξii

where we denote ξsi := gsi −∇L(D, θi). Next, we shall use the following lemma,
Lemma D.2. The following holds,

Eα2
i ∥gi∥2 ≤ 2bmaxEαi∥∇L(D, θi)∥2 + 2σ2Ebi . (16)

Moreover, due to the L-smoothness of f(·), and global optimality of θ∗, the following holds,

Eα2
i ∥gi∥2 ≤ 4bmaxLEαi(L(D, θi)− L(D, θ∗)) + 2σ2Ebi . (17)

Final Bound: Plugging the above lemma back into Eq. (15) gives,

E
S∑

i=1

αi(L(D, θi)− L(D, θ∗)) ≤
∥θ1 − θ∗∥2

η
+ 4ηbmaxE

S∑
i=1

αiL(L(D, θi)− L(D, θ∗)) + 8ησ2E
S∑

i=1

bi

≤ ∥θ1 − θ∗∥2

η
+ 4ηbmaxLE

S∑
i=1

αi(L(D, θi)− L(D, θ∗)) + 8ησ2K ,

(18)

where we used K =
∑S

i=1 bi.

Now if we pick η such that 4ηbmaxL ≤ 1/2 then we can move the second term in the RHS to the
LHS and obtain,

1

2
E

S∑
i=1

αi(L(D, θi)− L(D, θ∗)) ≤
∥θ1 − θ∗∥2

η
+ 8ησ2K , (19)

Thus, choosing η = min
{

∥θ1−θ∗∥
σ
√
8K

, 1
8Lbmax

}
gives the following bound,

E
S∑

i=1

αi(L(D, θi)− L(D, θ∗)) ≤ 8Lbmax∥θ1 − θ∗∥2 + 6σ∥θ1 − θ∗∥
√
K (20)

Now, recalling that K :=
∑S

i=1 bi =
∑S

i=1 αi and using Jensen’s inequality together with θ̄ =
1

α1:S

∑S
i=1 αiθi yields,

E[L(D, θ̄)− L(D, θ∗)] ≤ E
S∑

i=1

αi

α1:S
(L(D, θi)− L(D, θ∗)) ≤

8Lbmax∥θ1 − θ∗∥2 + 6σ∥θ1 − θ∗∥
√
K

α1:S

≤ 8Lbmax∥θ1 − θ∗∥2

K
+

6σ∥θ1 − θ∗∥√
K

(21)

where we used α1:S = K.

D.2 Proof for non-convex case

Proof of theorem 4.1

We use the same notation for bi and gi as before. And again used weights,

αi = bi
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We also assume that bi ≤ bmax ,∀i.
The update rule is the following,

θi+1 = θi − ηαigi

And the output is θ̄, where we define,

θ̄ = θi ; w.p.
αi

α1:S

Thus,

E∥∇L(D, θ̄)∥2 =
1

α1:S

S∑
i=1

αiE∥∇L(D, θi)∥2

Using smoothness,

L(D, θi+1) ≤ L(D, θi)−∇L(D, θi) · (θi+1 − θi) +
L

2
∥θi+1 − θi∥2

≤ L(D, θi)− ηαi∇L(D, θi) · gi +
Lη2

2
∥αigi∥2

≤ L(D, θi)− ηαi∥∇L(D, θi)∥2 − ηαi∇L(D, θi) · (gi −∇L(D, θi)) +
Lη2

2
∥αigi∥2

Re-arranging the above yields,

ηαi∥∇L(D, θi)∥2 ≤ L(D, θi)− L(D, θi+1)− ηαi∇L(D, θi) · (gi −∇L(D, θi)) +
Lη2

2
∥αigi∥2

Summing the above, and dividing by η, we obtain,

S∑
i=1

αi∥∇L(D, θi)∥2 ≤
1

η
(L(D, θ1)− L(D, θS+1))−

S∑
i=1

αi∇L(D, θi) · (gi −∇L(D, θi)) +
Lη

2

S∑
i=1

∥αigi∥2

≤ 1

η
(L(D, θ1)− L(D, θ∗))−

S∑
i=1

αi∇L(D, θi) · (gi −∇L(D, θi)) +
Lη

2

S∑
i=1

∥αigi∥2

(22)

where we uses L(D, θ∗) ≤ L(D, θS+1) since θ∗ is the global minimum of L(D, ·).
Now recall that from Lemma D.1 we have,

E[αi(gi −∇L(D, θi))|θi] = 0 . (23)

And from Lemma D.2 we have,

Eα2
i ∥gi∥2 ≤ 2bmaxEαi∥∇L(D, θi)∥2 + 2σ2Ebi . (24)

Thus, taking expectation in Eq. (22), and plugging Eq. (23) and (24), yields,

E
S∑

i=1

αi∥∇L(D, θi)∥2 ≤
1

η
(L(D, θ1)− L(D, θ∗))−

S∑
i=1

Eαi∇L(D, θi) · (gi −∇L(D, θi)) +
Lη

2

S∑
i=1

E∥αigi∥2

≤ 1

η
(L(D, θ1)− L(D, θ∗)) + Lηbmax

S∑
i=1

Eαi∥∇L(D, θi)∥2 + Lησ2E
S∑

i=1

bi

≤ 1

η
(L(D, θ1)− L(D, θ∗)) + Lηbmax

S∑
i=1

Eαi∥∇L(D, θi)∥2 + Lησ2 ·K

(25)

where the last line uses K :=
∑S

i=1 bi.
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Now if we pick η such that ηbmaxL ≤ 1/2 then we can move the second term in the RHS to the LHS
and obtain,

1

2
E

S∑
i=1

αi∥∇L(D, θi)∥2 ≤
1

η
(L(D, θ1)− L(D, θ∗)) + Lησ2 ·K (26)

Thus, choosing η = min

{√
L(D,θ1)−L(D,θ∗)

σ
√
LK

, 1
2Lbmax

}
gives the following bound,

E
S∑

i=1

αi∥∇L(D, θi)∥2 ≤ 2Lbmax(L(D, θ1)− L(D, θ∗)) + 2σ
√
L(L(D, θ1)− L(D, θ∗)) ·

√
K

(27)

Dividing by K := α1:S and using the definition of θ̄ yields,

E∥∇L(D, θ̄)∥2 = E
1

α1:S

S∑
i=1

αi∥∇L(D, θi)∥2 ≤
2Lbmax(L(D, θ1)− L(D, θ∗))

K
+

2σ
√

L(L(D, θ1)− L(D, θ∗))√
K

(28)

D.3 Remaining Proofs

D.3.1 Proof of Lemma D.2

Proof of Lemma D.2. We can write,

α2
i ∥gi∥2 = ∥bi∇L(D, θi) +

bi∑
s=1

ξsi ∥2

≤ 2∥bi∇L(D, θi)∥2 + 2∥
bi∑

s=1

ξsi ∥2

= 2b2i ∥∇L(D, θi)∥2 + 2∥
bi∑

s=1

ξsi ∥2

≤ 2bmaxαi∥∇L(D, θi)∥2 + 2∥
bi∑

s=1

ξsi ∥2

(29)

where the second line uses ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2; the fourth line uses bi ≤ bmax as well as
αi = bi implying that b2i ≤ bmaxαi.

Bounding E∥
∑bi

s=1 ξ
s
i ∥2: Given i and θi, Let us define the following sequence, Q0 = 0, Q1 =

∥ξ1i ∥2 − σ, and for any k > 1

Qk =

k∑
s=1

∥ξki ∥2 − σ2 · k + 2

j∑
s=1

j∑
n=s+1

ξsi · ξni

It can be directly shown that {Qk}k is a Supermartingale sequence, and that

∥
bi∑

s=1

ξsi ∥2 = Qbi + σ2 · bi

Thus, since bi is a bounded stopping time, we can use Doob’s optional stopping theorem which
implies that,

E∥
bi∑

s=1

ξsi ∥2 = EQbi + σ2E · bi ≤ EQ0 + σ2E · bi = 0 + σ2Ebi
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Plugging the above back into Eq. (29) yields,

Eα2
i ∥gi∥2 ≤ 2bmaxEαi∥∇L(D, θi)∥2 + 2σ2Ebi . (30)

Now, since L(D, ·) is L-smooth and θ∗ is its global minima, then the following holds:
∥∇L(D, θi)∥2 ≤ 2L(L(D, θi) − L(D, θ∗)); See e.g. Levy (2017) for the proof. Plugging this
into the above equation we obtain,

Eα2
i ∥gi∥2 ≤ 4bmaxEαiL(L(D, θi)− L(D, θ∗)) + 2σ2Ebi . (31)

D.3.2 Proof of Lemma D.1

Proof of Lemma D.1. We can define the following Martingale sequence for each step s: M0 = 0,
and Mj =

∑j
s=1(g

s
i −∇L(D, θi)) for any j = 1, 2, . . ..

Thus, since the mixing time bi is bounded by bmax, then according to Doob’s optional stopping
theorem (Levin & Peres, 2017) we have that,

E[Mbi |θi] = E[
bi∑

s=1

(gsi −∇L(D, θi))|θi] = E[M0|θi] = 0 . (32)

Now, notice that for any i, we have αi(gi −∇L(D, θi)) = Mbi , and therefore,

E[αi(gi −∇L(D, θi))|θi] = E[Mbi |θi] = 0 . (33)

D.4 Generalization discussion

An interesting observation arising from our results is the small impact of gradient dropping as
measured in final test accuracy. One explanation for this can be based on viewing DropCompute
as noise induced over gradients. Optimization using variants of SGD is inherently noisy due to
the use of data samples used to evaluate the intermediate error. The stochastic nature of computed
weight gradients was previously found to provide generalization benefits for the final trained model,
although this is still part of ongoing debate (Geiping et al., 2022). Nevertheless, several works found
generalization benefits with the injection of noise into the weights’ gradients (Neelakantan et al.,
2015) or their use in computed update rule (Lin et al., 2022).
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