
A Implementation Details1

A.1 Standard self-supervised learning2

We follow the default settings for standard self-supervised learning algorithms, and present the3

training details in Table 1 and Table 2. We use the linear lr scaling rule: lr = base_lr × bsz/256.4

For BYOL [6], we did not follow the hyperparameters (blr = 1.0e−4, wd = 0.03) in [4], as we5

found our setting here yielded better accuracy. For DINO [2], we did not use the multi-crop strategy6

and only pre-trained the model with two 224×224 crops.7

config MAE SimCLR
optimizer AdamW AdamW
base learning rate 1.5e-4 2.0e-4
weight decay 0.05 0.1
optimizer momentum β1, β2=0.9, 0.95 β1, β2=0.9, 0.98
batch size 4096 4096
learning rate schedule cosine decay cosine decay
epochs 300 (cc3m) / 80 (cc12m) 100 (cc3m) / 35 (cc12m)
warmup epochs 10 (cc3m) / 4 (cc12m) 5 (cc3m) / 1 (cc12m)
augmentation RandomResizedCrop, Flip SimCLR Aug. [3]

Table 1: Self-supervised pre-training settings. MAE and SimCLR.

config DINO BYOL/MoCo-v3
optimizer AdamW AdamW
base learning rate 5.0e-4 1.5e-4
weight decay 0.04 to 0.4, cosine schedule 0.1
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.95
batch size 4096 4096
learning rate schedule cosine decay cosine decay
epochs 100 (cc3m) / 35 (cc12m) 100 (cc3m) / 35 (cc12m)
warmup epochs 5 (cc3m) / 2 (cc12m) 5 (cc3m) / 2 (cc12m)
momentum update λ 0.996 to 1, cosine schedule 0.996 to 1, cosine schedule
augmentation BYOL Aug. [6] BYOL Aug. [6]
teacher temp. τt 0.04 to 0.07, linear schedule
student temp. τs 0.1

Table 2: Self-supervised pre-training settings. DINO, BYOL and MoCo v3.

A.2 StableRep pre-training8

config StableRep
batch size 8256 (m = 6, n = 1376)
optimizer AdamW
base learning rate 2.0e-4
peak learning rate base_lr × bsz/512
weight decay 0.1
optimizer momentum β1, β2=0.9, 0.98
learning rate schedule cosine decay
epochs 35 / 70 / 105
warmup epochs 1.2 / 2.3 / 3.5
augmentation SimCLR Aug. [3]

Table 3: StableRep pre-training settings.
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The hyperparameterss for StableRep is presented in Table 3. Indeed, they are the same as that in9

SimCLR. The difference is that the base_lr in StableRep is for 512 images while in SimCLR it is for10

256 images, because each image in StableRep only has one single crop. We ended up using a batch11

size of 8256 images, since we trained our model with 32 GPUs and 8192 is not divisible over 32×6.12

The computation for StableRep has been converted to SimCLR-equivalent epochs.13

A.3 CLIP training14

We follow the hyperparameter setting used in [7] since it is better than that from the original CLIP [8]15

paper. Table 4 summarizes the training details, and Table 5 presents the architecture of CLIP encoders.16

With this training setup, we are able to produce 40.2% ImageNet zero-shot accuracy when training17

CLIP on CC12M dataset. As a comparison, [7] reports 36.0% using the same architecutre.18

config CLIP
batch size 8192
optimizer AdamW
peak learning rate 1e-3
weight decay 0.5
optimizer momentum β1, β2=0.9, 0.98
learning rate schedule cosine decay
epochs 35
warmup epochs 1
augmentation RandomResizedCrop(scale=(0.5, 1.0))

Table 4: CLIP training settings.

Model Patch Input Embedding Vision Transformer Text Transformer Vocab Text
size resolution dimension Layers Width Heads Layers Width Heads size length

ViT-B/16 16 224 512 12 768 12 12 512 8 49,408 77

Table 5: CLIP encoder details.

A.4 ImageNet linear probing19

We follow prior work [4, 2] to train the linear classifier. It has been generally observed that regular-20

ization such as weight decay hurts the performance [11]. Following [11, 4], we set weight decay as 0,21

and only use RandomResizedCrop and RandomHorizontalFlip as data augmentation. We22

sweep the base_lr over {0.2, 0.5, 1, 1.5, 2, 3, 5, 10} × 10−2.23

config value
batch size 1024
optimizer SGD
base learning rate sweep
weight decay 0
optimizer momentum 0.9
learning rate schedule cosine decay
epochs 90
augmentation RandomResizedCrop, Flip

Table 6: ImageNet linear probing settings.

A.5 Fine-grained linear classification24

Following [3, 6, 5], we fit a regularized multinomial logistic regression model on top of the frozen25

CLS token. In training and testing, we do not perform any data augmentation; images are resized to26

224 pixels along the shorter side using bicubic resampling, followed by a center crop of 224×224.27
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We minimize the cross-entropy objective using L-BFGS with ℓ2-regularization. We select this ℓ2-28

regularization constant on the validation set over 45 logarithmically spaced values between 10−6 and29

105. The maximum number of L-BFGS iterations is set to 500.30

A.6 Few-shot image classification31

Following the settings in [5, 1], we evaluate the 5-way 5-shot performance on 10 different datasets.32

We do not use data augmentation; images are resized to 224 pixels along the shorter side using33

bicubic resampling, followed by a center crop of 224×224. We report the mean accuracy of 60034

randomly sampled tasks (also known as episodes). For each task, images are randomly sampled from35

the combination of training, validation and testing sets. We sample 15 query images for each class in36

every task for evaluation purpose.37

B Additional Results38

B.1 Fine-grained classification39

In Table 7, we further present the fine-grained linear classification results by models from RedCaps or40

models that are trained longer (2x or 3x longer). When pre-training on RedCaps, StableRep achieves41

the best average accuracy. Longer training of StableRep further improves transferability.42
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Pre-training on Redcaps

R
ea

l SimCLR 90.2 72.0 46.8 42.8 77.9 94.6 83.0 61.2 82.7 81.3 80.9 73.9
CLIP 94.2 78.9 52.9 74.9 73.9 97.8 91.6 66.2 91.6 89.2 85.4 81.5

Sy
n SimCLR 85.1 65.4 48.7 53.7 74.6 95.0 79.6 61.8 84.5 79.7 80.4 73.5

CLIP 88.7 71.4 53.7 77.3 76.0 96.9 88.2 67.3 90.3 83.7 84.5 79.8
StableRep 90.4 73.8 57.5 81.1 79.5 98.4 90.8 71.1 95.1 88.2 86.7 83.0

Longer training for StableRep

cc
12

m 35 epochs 90.7 74.4 57.6 80.3 79.0 96.7 87.1 73.2 94.0 83.5 87.2 82.2
70 epochs 91.5 74.7 59.1 82.5 79.7 97.5 88.1 74.3 94.3 85.0 87.8 83.1
105 epochs 91.5 75.9 58.8 84.2 80.1 97.6 87.9 74.7 94.5 85.4 87.8 83.5

re
dc

ap
s 35 epochs 90.4 73.8 57.5 81.1 79.5 98.4 90.8 71.1 95.1 88.2 86.7 83.0

70 epochs 91.0 75.4 58.0 83.3 79.8 98.5 90.7 72.9 95.2 89.3 87.5 83.8
105 epochs 91.3 75.0 59.6 82.8 80.7 98.6 91.0 72.8 94.7 89.2 87.6 83.9

Table 7: Linear transfer results on fine-grained datasets. Upper: different methods pre-trained on RedCaps.
Lower: StableRep with different training schedules on CC12M and RedCaps. Longer training improves
transferability.

B.2 Few-shot image classification43

We further summarizes the few-shot image classification results in Table 8. The 95% confidence44

interval is provided. StableRep stands out on the majority of the evaluated datasets.45

C Image Generation46

C.1 Implementation details47

We use Stable Diffusion [9] v1.5. During sampling, we generate images by 50 DDIM [10] steps. To48

accelerate the generation process, we leverage xFormers library for efficient attention computation,49

which brings down the sampling time to ∼0.8s per image on a single A100 GPU and ∼2.3s per image50
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R

ea
l SimCLR 64.0±0.7 70.4±0.8 40.7±0.9 50.9±0.8 82.2±0.6 92.1±0.5 74.4±0.8 94.0±0.4 90.4±0.5 70.4±0.7 73.0

CLIP 77.5±0.6 82.1±0.7 62.0±1.0 90.9±0.5 83.3±0.6 97.6±0.2 91.1±0.5 97.2±0.2 98.2±0.2 87.0±0.5 86.7

Sy
n SimCLR 50.0±0.6 58.9±0.8 45.2±1.0 54.2±0.8 79.8±0.6 92.0±0.5 74.6±0.8 92.9±0.4 89.1±0.6 71.0±0.7 70.8

CLIP 63.1±0.6 73.5±0.7 61.3±1.0 92.5±0.4 81.7±0.6 96.9±0.3 91.5±0.5 96.7±0.2 96.8±0.3 82.5±0.6 83.7
StableRep 68.2±0.6 75.9±0.8 62.5±1.0 92.0±0.5 86.3±0.5 98.2±0.2 92.4±0.5 97.3±0.2 98.7±0.2 87.6±0.5 85.9

Pre-training on redcaps

R
ea

l SimCLR 62.3±0.6 69.4±0.7 39.6±0.9 51.0±0.8 82.7±0.6 94.8±0.4 85.4±0.6 91.8±0.5 88.5±0.6 79.1±0.7 74.5
CLIP 80.6±0.5 85.3±0.6 54.5±0.9 88.5±0.6 82.6±0.6 99.0±0.1 94.5±0.4 95.9±0.3 97.8±0.2 94.4±0.3 87.3

Sy
n SimCLR 52.9±0.6 60.8±0.8 40.9±0.9 53.2±0.8 79.5±0.6 94.3±0.4 78.3±0.7 92.0±0.4 88.9±0.5 75.9±0.7 71.7

CLIP 65.7±0.6 75.7±0.7 55.2±1.0 90.1±0.5 82.6±0.6 98.2±0.2 92.0±0.5 96.3±0.3 96.9±0.3 88.1±0.5 84.1
StableRep 68.0±0.6 76.7±0.8 57.1±1.0 90.1±0.5 86.5±0.5 99.2±0.1 94.4±0.4 96.9±0.3 98.9±0.2 92.1±0.4 86.0

Table 8: Few-shot image classification. Upper: pre-training on CC12M dataset. Upper: pre-training on
RedCaps dataset.

on a V100 GPU. We use 512 V100 GPUs to synthesize images in large scale, which takes ∼13 hours51

for every ten million images.52

Image resolution. The image resolution may affect the quality of representations learned by self-53

supervised learning algorithms. We try to make a relative fair comparison by storing all synthetic and54

real images in similar resolutions. The synthetic images generated by Stable Diffusion are 512×512;55

we resized them to 256×256 before storing them on the disk. The real images have various sizes,56

ranging from less than a hundred of pixels in shorter side to thousands of pixels; we resize the shorter57

side of all real images to 256.58

C.2 Generation Examples59

Some examples of synthetic images are visualized in Figure 1.60

2 4 6 8 10 12 20 40 60 real

actor arrives at the premiere

football player and battle for the ball

illustration of a cat embracing a planet

little kid jumping from the office chair

Figure 1: Examples of synthetic images. We show examples for 4 different text prompts. For each prompt, we
provide examples synthesized with different guidance scale w, as well as the original real image.
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D Further Discussion61

Broader impacts. This paper is on the basics of visual representation learning, and we believe it62

will be beneficial to the practice of this field. An immediate application of our method is to reduce63

the reliance on collecting large scale real images for learning representations. This may have the64

beneficial effects of being more cost effective and reducing biases introduced by human collection65

and curation processes. At the same time, our method relies on pre-trained text-to-image generative66

models that are trained on large scale uncurated web-scale data, and such data may hide social biases67

and errors that would have been uncovered via the human curation process. We also note that the text68

prompts we used are not bias free: what prompts we choose determine what images are synthesized.69

The choice of prompts therefore plays a similar role to the choice of what real images to collect for70

self-supervised visual representation learning.71

Compute. Each of our StableRep models is trained on 4 nodes, each of which has 8 A100 GPUs72

and 96 CPU cores. We store all synthetic images inside two NFS folders, each with 100 TBs. It73

takes ∼20 hours to complete 35 SimCLR-equivalent epochs of training on CC12M and ∼23 hours74

on RedCaps.75
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