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Abstract

Generalizable implicit neural representation (INR) enables a single continuous func-
tion, i.e., a coordinate-based neural network, to represent multiple data instances
by modulating its weights or intermediate features using latent codes. However,
the expressive power of the state-of-the-art modulation is limited due to its inability
to localize and capture fine-grained details of data entities such as specific pixels
and rays. To address this issue, we propose a novel framework for generalizable
INR that combines a transformer encoder with a locality-aware INR decoder. The
transformer encoder predicts a set of latent tokens from a data instance to encode
local information into each latent token. The locality-aware INR decoder extracts a
modulation vector by selectively aggregating the latent tokens via cross-attention
for a coordinate input and then predicts the output by progressively decoding with
coarse-to-fine modulation through multiple frequency bandwidths. The selective
token aggregation and the multi-band feature modulation enable us to learn locality-
aware representation in spatial and spectral aspects, respectively. Our framework
significantly outperforms previous generalizable INRs and validates the usefulness
of the locality-aware latents for downstream tasks such as image generation.

1 Introduction
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Figure 1: Learning curves of PSNRs dur-
ing training on ImageNette 178×178.

Recent advances in generalizable implicit neural represen-
tation (INR) enable a single coordinate-based multi-layer
perceptron (MLP) to represent multiple data instances as a
continuous function. Instead of per-sample training of indi-
vidual coordinate-based MLPs, generalizable INR extracts
latent codes of data instances [13, 14, 40] to modulate
the weights or intermediate features of the shared MLP
model [8, 11, 19, 35]. However, despite the advances in
previous approaches, their performance is still insufficient
compared with individual training of INRs per sample.

We postulate that the expressive power of generalizable
INRs is limited by the ability of locality-awareness to
localize relevant entities from a data instance and control
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their structure in a fine-grained manner. Primitive entities of a data instance, such as pixels in an
image, tend to have a higher correlation with each other if they are closer in space and time. Thus, this
locality of data entities has been used as an important inductive bias for learning the representations
of complex data [3]. However, previous approaches to generalizable INRs are not properly designed
to leverage the locality of data entities. For example, when latent codes modulate intermediate
features [11, 12] or weight matrices [8, 19, 35] of an INR decoder, the modulation methods do not
exploit a specified coordinates for decoding, which restricts the latent codes to encoding global
information over all pixels without capturing local relationships between specific pixels.

To address this issue, we propose a novel encoder-decoder framework for locality-aware generalizable
INR to effectively localize and control the fine-grained details of data. In our framework, a Trans-
former encoder [37] first extracts locally relevant information from a data instance and predicts a set of
latent tokens to encode different local information. Then, our locality-aware INR decoder effectively
leverages the latent tokens to predict fine-grained details. Specifically, given an input coordinate, our
INR decoder uses a cross-attention to selectively aggregate the local information in the latent tokens
and extract a modulation vector for the coordinate. In addition, our INR decoder effectively captures
the high-frequency details in the modulation vector by decomposing it into multiple bandwidths of
frequency features and then progressively composing the intermediate features. We conduct extensive
experiments to demonstrate the high performance and efficacy of our locality-aware generalizable
INR on benchmarks as shown in Figure 1. In addition, we show the potential of our locality-aware
INR latents to be utilized for downstream tasks such as image synthesis.

Our main contributions can be summarized as follows: 1) We propose an effective framework for
generalizable INR with a Transformer encoder and locality-aware INR decoder. 2) The proposed INR
decoder with selective token aggregation and multi-band feature modulation can effectively capture
the local information to predict the fine-grained data details. 3) The extensive experiments validate
the efficacy of our framework and show its applications to a downstream image generation task.

2 Related Work

Implicit neural representations (INRs). INRs use neural networks to represent complex data
such as audio, images, and 3D scenes, as continuous functions. Especially, incorporating Fourier
features [24, 36], periodic activations [31], or multi-grid features [25] significantly improves the
performance of INRs. Despite its broad applications [1, 6, 10, 32, 34], INRs commonly require
separate training of MLPs to represent each data instance. Thus, individual training of INRs per
sample does not learn common representations in multiple data instances.

Generalizable INRs. Previous approaches focus on two major components for generalizable INRs;
latent feature extraction and modulation methods. Auto-decoding [23, 26] computes a latent vector
per data instance and concatenates it with the input of a coordinate-based MLP. Given input data,
gradient-based meta-learning [4, 11, 12] adapts a shared latent vector using a few update steps to
scale and shift the intermediate activations of the MLP. Learned Init [35] also uses gradient-based
meta-learning but adapts whole weights of the shared MLP. Although auto-decoding and gradient-
based meta-learning are agnostic to the types of data, their training is unstable on complex and
large-scale datasets. TransINR [8] employs the Transformer [37] as a hypernetwork to predict latent
vectors to modulate the weights of the shared MLP. In addition, Instance Pattern Composers [19]
have demonstrated that modulating the weights of the second MLP layer is enough to achieve high
performance of generalizable INRs. Our framework also employs the Transformer encoder, but
focuses on extracting locality-aware latent features for the high performance of generalizable INR.

Leveraging Locality of Data for INRs Local information in data has been utilized for efficient
modeling of INRs, since local relationships between data entities are widely used for effective
process of complex data [3]. Given an input coordinate, the coordinate-based MLP only uses latent
vectors nearby the coordinate, after a CNN encoder extracts a 2D grid feature map of an image for
super-resolution [7] and reconstruction [22]. Spatial Functa [4] demonstrates that leveraging the
locality of data enables INRs to be utilized for downstream tasks such as image recognition and
generation. Local information in 3D coordinates has also been effective for scene modeling as a
hybrid approach using 3D feature grids [18] or the part segmentation [17] of a 3D object. However,
previous approaches assume explicit grid structures of latents tailored to a specific data type. Since
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Figure 2: Overview of our framework for locality-aware generalizable INR. Given a data instance,
Transformer encoder extracts its localized latents. Then, the locality-aware INR decoder uses selective
token aggregation and multi-band feature modulation to predict the output for the input coordinate.

we do not predefine a relationship between latents, our framework is flexible to learn and encode the
local information of both grid coordinates in images and non-grid coordinates in light fields.

3 Methods

We propose a novel framework for locality-aware generalizable INR which consists of a Transformer
encoder to localize the information in data into latent tokens and a locality-aware INR decoder to
exploit the localized latents and predict outputs. First, we formulate how generalizable INR enables a
single coordinate-based neural network to represent multiple data instances as a continuous function
by modulating its weights or features. Then, after we introduce the Transformer encoder to extract a
set of latent tokens from input data instances, we explain the details of the locality-aware INR decoder,
where selective token selection aggregates the spatially local information for an input coordinate via
cross-attention; multi-band feature modulation leverages a different range of frequency bandwidths
to progressively decode the local information using coarse-to-fine modulation in the spectral domain.

3.1 Generalizable Implicit Neural Representation

Given a set of data instances X = {x(n)}Nn=1, each data instance x(n) = {(v(n)
i ,y

(n)
i )}Mn

i=1 comprises
Mn pairs of an input coordinate v

(n)
i ∈ Rdin and the corresponding output feature y

(n)
i ∈ Rdout .

Conventional approaches [24, 31, 36] adopt individual coordinate-based MLPs to train and memorize
each data instance x(n). Thus, the coordinate-based MLP cannot be reused and generalized to
represent other data instances, requiring per-sample optimization of MLPs for unseen data instances.

A generalizable INR uses a single coordinate-based MLP as a shared INR decoder Fθ : Rdin → Rdout

to represent multiple data instances as a continuous function. Generalizable INR [8, 11, 12, 19, 26]
extracts the R number of latent codes Z(n) = {z(n)k ∈ Rd}Rk=1 from a data instance x(n). Then,
the latents are used for the INR decoder to represent a data instance x(n) as y(n)

i = Fθ(v
(n)
i ;Z(n)),

while updating the parameters θ and latents Z(n) to minimize the errors over X :

min
θ,Z(n)

1

NMn

N∑
n=1

Mn∑
i=1

∥∥∥y(n)
i − Fθ(v

(n)
i ;Z(n))

∥∥∥2
2
. (1)

We remark that each previous approach employs a different number of latent codes to modulate
a coordinate-based MLP. For example, a single latent vector (R = 1) is commonly extracted to
modulate intermediate features of the MLP [11, 12, 26], while a multitude of latents (R > 1) are
used to modulate its weights [8, 19, 35]. While we modulate the features of MLP, we extract a set of
latent codes to localize the information of data to leverage the locality-awareness for latent features.

3



3.2 Transformer Encoder

Our framework employs a Transformer encoder [37] to extract a set of latents Z(n) for each data
instance x(n) as shown in Figure 2. After a data instance, such as an image or multi-view images,
is patchified into a sequence of data tokens, we concatenate the patchified tokens into a sequence
of R learnable tokens as the encoder input. Then, the Transformer encoder extracts a set of latent
tokens, where each latent token corresponds to an input learnable token. Note that the permutation-
equivariance of self-attention in the Transformer encoder enables us not to predefine the local structure
of data and the ordering of latent tokens. During training, each latent token learns to capture the local
information of data, while covering whole regions to represent a data instance. Thus, whether a data
instance is represented on a grid or non-grid coordinate, our framework is flexible to encode various
types of data into latent tokens, while learning the local relationships of latent tokens during training.

3.3 Locality-Aware Decoder for Implicit Neural Representations

We propose the locality-aware INR decoder in Figure 2 to leverage the local information of data for
effective generalizable INR. Our INR decoder comprises two primary components: i) Selective token
aggregation via cross attention extracts a modulation vector for an input coordinate to aggregate
spatially local information from latent tokens. ii) Multi-band feature modulation decomposes the
modulation vector into multiple bandwidths of frequency features to amplify the high-frequency
features and effectively predict the details of outputs.

3.3.1 Selective Token Aggregation via Cross-Attention

We remark that encoding locality-aware latent tokens is not straightforward since the self-attentions in
Transformer do not guarantee a specific relationship between tokens. Thus, the properties of the latent
tokens are determined by a modulation method for generalizable INR to exploit the extracted latents.
For example, given an input coordinate v and latent tokens {z1, ..., zR}, a straightforward method can
use Instance Pattern Composers [19] to construct a modulation weight Wm = [z1, ..., zR]

⊤ ∈ RR×din

and extract a modulation vector mv = Wmv = [z⊤1 v, ..., z
⊤
Rv]

⊤ ∈ RR. However, the latent tokens
cannot encode the local information of data, since each latent token equally influences each channel
of the modulation vector regardless of the coordinate locations (see Section 4.3).

Our selective token aggregation employs cross-attention to aggregate the spatially local latents
nearby the input coordinate, while guiding the latents to be locality-aware. Given a set of latent
tokens Z(n) = {z(n)k }Rk=1 and a coordinate v

(n)
i , a modulation feature vector m(n)

vi ∈ Rd shifts the
intermediate features of an INR decoder to predict the output, where d is the dimensionality of hidden
layers in the INR decoder. For the brevity of notation, we omit the superscript n and subscript i.

Frequency features We first transform an input coordinate v = (v1, · · · , vdin) ∈ Rdin into fre-
quency features using sinusoidal positional encoding [31, 36]. We define the Fourier features
γσ(v) ∈ RdF with bandwidth σ > 1 and feature dimensionality dF as

γσ(v) = [cos(πωjvi), sin(πωjvi) : i = 1, · · · , din, j = 0, · · · , n− 1] (2)

where n = dF
2din

. A frequency ωj = σj/(n−1) is evenly distributed between 1 and σ on a log-scale.
Based on the Fourier features, we define the frequency feature extraction hF(·) as

hF(v;σ,W,b) = ReLU (Wγσ(v) + b) , (3)

where W ∈ Rd×dF and b ∈ Rd are trainable parameters for frequency features, d denotes the
dimensionality of hidden layers in the INR decoder.

Selective token selection via cross-attention To predict corresponding output y to the coordinate
v, we adopt a cross-attention to extract a modulation feature vector mv ∈ Rd based on the latent
tokens Z = {zk}Rk=1. We first extract the frequency features of the coordinate v in Eq (3) as the
query of the cross-attention as

qv := hF(v;σq,Wq,bq), (4)

where Wq ∈ Rd×dF and bq ∈ Rd are trainable parameters, and σq is the bandwidth for query
frequency features. The cross-attention in Figure 2 enables the query to select latent tokens, aggregate
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its local information, and extract the modulation feature vector mv for the input coordinate:

mv := MultiHeadAttention(Query = qv,Key = Z,Value = Z). (5)

An intuitive implementation for selective token aggregation can employ hard attention to select only
one latent token for each coordinate. However, in our primitive experiment, using hard attention leads
to unstable training and a latent collapse problem that selects only few latent tokens. Meanwhile,
multi-head attentions encourage each latent token to easily learn the locality in data instances.

3.3.2 Multi-Band Feature Modulation in the Spectral Domain

After the selective token aggregation extracts a modulation vector mv, we use multi-band feature
modulation to effectively predict the details of outputs. Although Fourier features [24, 36] reduce
the spectral bias [2, 28] of neural networks, adopting a simple stack of MLPs to INRs still suffers
from capturing the high-frequency data details. To address this issue, we use a different range of
frequency bandwidths to decompose the modulation vector into multiple frequency features in the
spectral domain. Then, our multi-band feature modulation uses the multiple frequency features to
progressively decode the intermediate features, while encouraging a deeper MLP path to learn higher
frequency features. Note that the coarse-to-fine approach in the spectral domain is analogous to the
locally hierarchical approach in the spatial domain [21, 29, 39] to capture the data details.

Extracting multiple modulation features with different frequency bandwidths We extract L
level of modulation features m

(1)
v , · · · ,m(L)

v from mv using different bandwidths of frequency
features. Given L frequency bandwidths as σ1 ≥ σ2 ≥ · · · ≥ σL ≥ σq, we use Eq (3) to extract the
ℓ-th level of frequency features of an input coordinate v as

(hF)
(ℓ)
v := hF(v;σℓ,W

(ℓ)
F ,b

(ℓ)
F ) = ReLU

(
W

(ℓ)
F γσℓ

(v) + b
(ℓ)
F

)
, (6)

where W
(ℓ)
F and b

(ℓ)
F are trainable parameters and shared across data instances. Then, the ℓ-th

modulation vector m(ℓ)
v is extracted from the modulation vector mv as

m(ℓ)
v := ReLU

(
(hF)

(ℓ)
v +W(ℓ)

m mv + b(ℓ)
m

)
, (7)

with a trainable weight W(ℓ)
m and bias b(ℓ)

m . Considering that ReLU cutoffs the values below zero, we
assume that m(ℓ)

v filters out the information of mv based on the ℓ-th frequency patterns of (hF)
(ℓ)
v .

Multi-band feature modulation After decomposing a modulation vector into multiple features with
different frequency bandwidths, we progressively compose the L modulation features by applying a
stack of nonlinear operations with a linear layer and ReLU activation. Starting with h

(1)
v = m

(1)
v , we

compute the ℓ-th hidden features h(ℓ)
v for ℓ = 2, · · · , L as

h̃(ℓ)
v := m(ℓ)

v + h(ℓ−1)
v and h(ℓ)

v := ReLU(W(ℓ)h̃(ℓ)
v + b(ℓ)), (8)

where W(ℓ) ∈ Rd×d and b(ℓ) ∈ Rd are trainable weights and biases of the INR decoder. h̃
(ℓ)
v

denotes the ℓ-th pre-activation of INR decoder for coordinate v. Note that the modulation features
with high-frequency bandwidth can be processed by more nonlinear operations than the features with
lower frequency bandwidths, considering that high-frequency features contain more complex signals.

Finally, the output ŷ is predicted using all intermediate hidden features of the INR decoder as

ŷ :=

L∑
ℓ=1

f
(ℓ)
out (h

(ℓ)
v ), (9)

where f (ℓ)
out : Rd → Rdout are a linear projection into the output space. Although utilizing only h

(L)
v is

also an option to predict outputs, skip connections of all intermediate features into the output layer
enhances the robustness of training to the hyperparameter choices.
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Figure 3: Reconstructed images of FFHQ with 512×512 resolution by TransINR [8] (left), IPC [19]
(middle), and our locality-aware generalizable INR (right).

4 Experiments

We conduct extensive experiments to demonstrate the effectiveness of our locality-aware generalizable
INR on image reconstruction and novel view synthesis. In addition, we conduct in-depth analysis
to validate the efficacy of our selective token aggregation and multi-band feature modulation to
localize the information of data to capture fined-grained details. We also show that our locality-aware
latents can be utilized for image generation by training a generative model on the extracted latents.
Our implementation and experimental settings are based on the official codes of Instance Pattern
Composers [19] for a fair comparison. We attach the implementation details to Appendix A.

4.1 Image Reconstruction

We follow the protocols in previous studies [8, 19, 35] to evaluate our framework on image reconstruc-
tion of CelebA, FFHQ, and ImageNette with 178×178 resolution. Our framework also outperforms
previous approaches on high-resolution images with 256×256, 512×512, and 1024×1024 resolutions
of FFHQ. We compare our framework with Learned Init [35], TransINR [8], and IPC [19]. The
Transformer encoder predicts R = 256 latent tokens, while the INR decoder uses din = 2, dout = 3,
d = 256 dimensionality of hidden features, L = 2, σq = 16 and (σ1, σ2) = (128, 32) bandwidths.

Table 1: PSNRs of reconstructed images of
178×178 CelebA, FFHQ, and ImageNette.

CelebA FFHQ ImageNette
Learned Init [35] 30.37 - 27.07
TransINR 33.33 33.66 29.77
IPC 35.93 37.18 38.46
Ours 50.74 43.32 46.10

178×178 Image Reconstruction Table 1
shows that our generalizable INR significantly
outperforms previous methods by a large mar-
gin. We remark that TransINR, IPC, and our
framework use the same capacity of the Trans-
former encoder, latent tokens, and INR de-
coder except for the modulation methods. Thus,
the results imply that our locality-aware INR
decoder with selective token aggregation and
multi-band feature modulation is effective to
capture local information of data and fine-grained details for high-quality image reconstruction.

Table 2: PSNRs on the reconstructed FFHQ with
256×256, 512×512, and 1024×1024 resolutions.

256×256 512×512 1024×1024
TransINR 30.96 29.35 -
IPC [19] 34.68 31.58 28.68
Ours 39.88 35.43 31.94

High-Resolution Image Reconstruction We
further evaluate our framework on the re-
construction of FFHQ images with 256×256,
512×512, 1024×1024 resolutions to demon-
strate our effectiveness to capture fine-grained
data details in Table 2. Although the perfor-
mance increases as the MLP dimensionality d
and the number of latents R increases, we use
the same experimental setting with 178×178 im-
age reconstruction to validate the efficacy of our framework. Our framework consistently achieves
higher PSNRs than TransINR and IPC for all resolutions. Figure 3 also shows that TransINR and
IPC cannot reconstruct the fine-grained details of a 512×512 image, but our framework provides a
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Figure 4: (a) PSNRs on novel view synthesis of ShapeNet Chairs, Cars, and Lamps according to the
number of support views (1-5 views). (b) Examples of novel view synthesis with 4 support views.

high-quality result of reconstructed images. The results demonstrate that leveraging the locality of
data is crucial for generalizable INR to model complex and high-resolution data.

4.2 Few-Shot Novel View Synthesis

We evaluate our framework on novel view synthesis with the ShapeNet Chairs, Cars, and Lamps
datasets to predict a rendered image of a 3D object under an unseen view. Given few views of an
object with known camera poses, we employ a light field [32] for novel view synthesis. A light field
does not use computationally intensive volume rendering [24] but directly predicts RGB colors for
the input coordinate for rays with din = 6 using the Plücker coordinate system. Our INR decoder
uses d = 256 and two levels of feature modulations with σq = 2 and (σ1, σ2) = (8, 4).

Figure 4(a) shows that our framework outperforms IPC for novel view synthesis. Our framework
shows competitive performance with IPC when only one support view is provided. However, the
performance of our framework is consistently improved as the number of support views increases,
while outperforming the results of IPC. Note that defining a local relationship between rays is not
straightforward due to its non-grid property of the Plücker coordinate. Our Transformer encoder can
learn the local relationship between rays to extract locality-aware latent tokens during training and
achieve high performance. We analyze the learned locality of rays encoded in the extracted latents
in Section 4.3. Figure 4(b) shows that our framework correctly predicts the colors and shapes of a
novel view corresponding to the support views, although the predicted views are blurry due to the
lack of training objectives with generative modeling. We expect that combining our framework with
generative models [5, 38] to synthesize a photorealistic novel view is an interesting future work.

4.3 In-Depth Analysis

Learning Curves on ImageNette 178×178 Figure 1 juxtaposes the learning curves of our frame-
work and previous approaches on ImageNette 178×178. Note that TransINR, IPC, and our framework
use the same Transformer encoder to extract data latents, while adopting different modulation meth-
ods. While the training speed of our framework is about 80% of the speed of IPC, we remark our
framework achieves the test PSNR of 38.72 after 400 epochs of training, outperforming the PSNR
of 38.46 achieved by IPC trained for 4000 epochs, hence resulting in 8× speed-up of training time.
That is, our locality-aware latents enables generalizable INR to be both efficient and effective.

Table 3: Ablation study on ImageNette
178×178, FFHQ 256×256, and Lamp-3 views.

ImageNette FFHQ Lamp
Ours 37.46 38.01 26.00
w/o STA 34.54 34.52 25.31
w/o multiFM 33.90 33.65 25.78
IPC [19] 34.11 34.68 25.09

Selective token aggregation and multi-band
feature modulations We conduct an ablation
study on image reconstruction of with ImageNette
178×178 and FFHQ 256×256, novel view synthe-
sis with Lamp-3 views to validate the effectiveness
of the selective token aggregation and the multi-
band feature modulation. We replace the multi-
band feature modulations with a simple stack of
MLPs (ours w/o multiFM), and the selective to-
ken aggregation with the weight modulation of IPC
(ours w/o STA). If both two modules are replaced together, the INR decoder becomes the same

7



IPC

Ours

IPC

Ours

The difference between model predictions 
after replacing a latent token with the zero vector

Reconstructed/ 
rendered image

Figure 5: Visualization of differences between model predictions after replacing a latent token with
the zero vector, for IPC [19] and our framework.

architectrure as IPC. We use single-head cross-attention for the selective token aggregation to focus
on the effect of two modules. Table 3 demonstrates that both the selective token aggregation and
the multi-band feature modulation are required for the performance improvement, as there is no
significant improvement when only one of the modules is used.

Table 4: PSNRs of reconstructed Im-
ageNette 178×178 with various fre-
quency bandwidths.

(σ1, σ2) σq ImageNette
(128, 32) 16 37.46
(32, 128) 16 35.00

(128, 128) 16 35.30
(128, 32) 128 35.58
IPC (σ = 128) 34.11

Choices of frequency bandwidths Table 4 shows that the
ordering of frequency bandwidths in Eq. (4) and Eq. (6) can
affect the performance. We train our framework with two-
level feature modulations on ImageNette 178×178 during 400
epochs with different settings of the bandwidths σ1, σ2, σq.
Although our framework outperforms IPC regardless of the
bandwidth settings, the best PSNR is achieved with σ1 ≥ σ2 ≥
σq. The results imply that selective token aggregation does
not require high-frequency features, but the high-frequency
features need to be processed by more nonlinear operations
than lower-frequency features as discussed in Section 3.3.2.

The role of extracted latent tokens Figure 5 shows that our framework encodes the local infor-
mation of data into each latent token, while IPC cannot learn the locality in data coordinates. To
visualize the information in each latent token, we randomly select a latent token to be replaced with
the zero vector. Then, we visualize the difference between the model predictions with or without
the replacement. Each latent token of our framework encapsulates the local information in different
regions of images and light fields. However, the latent tokens of IPC cannot exploit the local informa-
tion of data, while encoding the global information over whole coordinates. Note that our framework
learns the structure of locality in light fields during training, although the structure of the Plücker
coordinate system is not regular as the grid coordinates of images. Thus, our framework can learn the
locality-aware latents of data for generalizable INR regardless of the types of coordinate systems.

4.4 Generating INRs for Conditional Image Synthesis

We examine the potentials of the extracted latent tokens to be utilized for a downstream task
such as class-conditional image generation of ImageNet [9]. Note that we cannot use the
architecture of U-Net in conventional image diffusion models [4, 30], since our framework
is not tailored to the 2D grid coordinate. Thus, we adopt a Transformer-based diffusion
model [15, 27] to predict a set of latent tokens after corrupting the latents by Gaussian noises.
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Figure 6: The examples of generated 256×256 images by generating latents of IPC (left) and ours
(right), trained on ImageNet.

Table 5: Reconstructed PSNRs and FID of
generated images on ImageNet 256×256.

Latent Shape rPSNR FID
Ours 256×256 37.7 9.3
Spatial 16×16×256 37.2 11.7
Functa [4] 32×32×64 37.7 8.8
LDM [30] 64×64×3 27.4 3.6

We train 458M parameters of Transformers during
400 epochs to generate our locality-aware latent to-
kens. We attach the detailed setting in Appendix A.3.
When we train a diffusion model to generate latent
tokens of IPC in Figure 6, the generated images suffer
from severe artifacts, because the prediction error of
each latent token for IPC leads to the artifacts over all
coordinates. Contrastively, the diffusion model for
our locality-aware latents generates realistic images.
In addition, although we do not conduct exhaustive hyperparamter search, the FID score of generated
images achieves 9.3 with classifier-free guidance scale [16] in Table 5. Thus, the results validate the
potential applications of the local latents for INRs. Meanwhile, a few generated images may exhibit
checkerboard artifacts, particularly in simple backgrounds, but we leave the elaboration of a diffusion
process and sampling techniques for generating INR latents as future work.

4.5 Comparison with Overfitted INRs
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Figure 7: Comparison with individually
trained FFNets [36] per sample.

Figure 7 shows that our generalizable INR efficiently pro-
vides meaningful INRs compared with individual training
of INRs per sample. To evaluate the efficiency of our
framework, we select ten images of FFHQ 256×256 and
train randomly initialized FFNet [36] per sample using one
NVIDIA V100 GPU. The individual training of FFNets
requires over 10 seconds of optimization to achieve the
same PSNRs of our framework, where our inference time
is negligible. Moreover, when we apply the test-time
optimization (TTO) only for the extracted latents, it con-
sistently outperforms per-sample FFNets for 30 seconds
while maintaining the structure of latents. When we con-
sider the predicted INR as initialization and finetune all
parameters of the INR decoder per each sample, our frame-
work consistently outperforms the per-sampling training
of INRs from random initialization. Thus, the results imply that leveraging generalizable INR is
computationally efficient to model unseen data as INRs regardless of a TTO.

5 Conclusion

We have proposed an effective framework for generalizable INR with the Transformer encoder and
locality-aware INR decoder. The Transformer encoder capture the locality of data entities and learn
to encode the local information into different latent tokens. Our INR decoder selectively aggregates
the locality-aware latent tokens to extract a modulation vector for a coordinate input and exploits
the multiple bandwidths of frequency features to effectively predict the fine-grained data details.
Experimental results demonstrate that our framework significantly outperforms previous generalizable
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INRs on image reconstruction and few-shot novel view synthesis. In addition, we have conducted the
in-depth analysis to validate the effectiveness of our framework and shown that our locality-aware
latent tokens for INRs can be utilized for downstream tasks such as image generation to provide
realistic images. Considering that our framework can learn the locality in non-grid coordinates, such
as the Plücker coordinate for rays, leveraging our generalizable INR to generate 3D objects or scenes
is a worth exploration. In addition, extending our framework to support arbitrary resolution will
be an interesting future work. Furthermore, since our framework has still room for performance
improvement of high-resolution image reconstruction, such as 1024×1024, we expect that elaborating
on the architecture and techniques for diffusion models to effectively generate INRs is an interesting
future work.
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A Implementation Details

We describe the implementation details of our locality-aware generalizable INR with the Transformer
encoder and locality-aware INR decoder. We implement our framework based on the official open-
sourced implementation of IPC3 for a fair comparison. Our Transformer encoder comprises six
blocks of self-attentions with 12 attention heads, where each head uses 64 dimensions of hidden
features, and R = 256 latent tokens for all experiments. We use the Adam [20] optimizer with
(β1, β2) = (0.9, 0.999) and constant learning rate of 0.0001. The batch size is 16 and 32 for image
reconstruction and novel view synthesis, respectively.

A.1 Image Reconstruction

178×178 image reconstruction For the image reconstruction of CelebA, FFHQ, and ImageNette
with 178×178 resolution, we use L = 2 level of modulation features for multi-band feature modu-
lation of locality-aware INR decoder. The dimensionality of frequency features and hidden layers
in the INR decoder is 256, where (σ1, σ2, σq) = (128, 32, 16). We represent a 178×178 resolution
of the image as 400 tokens, where each token corresponds to a 9×9 size of the image patch with
zero padding. We use a multi-head attention block with two attention heads for our selective token
selection via cross-attention. Following the experimental setting of previous studies [8, 19], we train
our framework on CelebA, FFHQ, and ImageNette during 300, 1000, and 4000 epochs, respectively.
When we use four NVIDIA V100 GPUs, the training takes 5.5, 6.7, and 4.3 days, respectively.

ImageNet 256×256 We use L = 2 level of feature modulation for the image reconstruction
of ImageNet with 256×256 resolution. We use eight heads of selective token aggregation, 256
dimensionality of frequency features and hidden layers of the INR decoder, and (σ1, σ2, σq) =
(128, 32, 16). An image is represented as 256 tokens, where each token corresponds to a 16×16
patch in the image. We use eight NVIDIA A100 GPUs to train our framework on ImageNet during
20 epochs, where the training takes about 2.5 days.

FFHQ 256×256, 512×512, and 1024×1024 Our framework for FFHQ 256×256 and 512×512
uses L = 2 level of feature modulation with (σ1, σ2, σq) = (128, 32, 16). The size of each patch is 16
and 32 for 256×256 and 512×512 resolutions, respectively, the number of latent tokens is R = 256,
and the dimensionality of the INR decoder is dF = d = 256. Our selective token aggregation uses
two and four heads of cross-attention for FFHQ 256×256 and 512×512, respectively. We randomly
sample the 10% of coordinates to be decoded at each training step to increase the efficiency of
training. We train our framework during 400 epochs, while the training takes about 1.5 days using
four NVIDIA V100 GPUs for FFHQ with 256×256 and about 1.4 days using eight V100 GPUs for
FFHQ with 512×512. For FFHQ 1024×1024, we use 48 patch size to represent an image as 484
data tokens and L = 2 level of feature modulation with (σ1, σ2, σq) = (256, 64, 32). The training of
400 epochs takes about 3.4 days using eight NVIDIA V100 GPUs.

A.2 Novel View Synthesis

We train our framework for the task of novel view synthesis on ShapeNet Cars, Chairs, and Lamps.
Given a few known camera views as support views of a 3D object, our framework predicts a light
field of the 3D object to predict unseen camera views. For a fair comparison, we use the same splits
of train-valid samples with previous studies of generalizable INR [8, 19, 35]. Given rendering images
of support views with 128×128 resolution, we first patchify each rendered image into 256 tokens
with 8×8 size of patches. Then, we concatenate the patches of all support views with learnable
tokens for the input of our Transformer. We use the Plücker coordinate to represent a ray for a pixel
as an embedding with six dimensions and concatenate the ray embedding into each pixel along the
channel dimension. Since our INR decoder estimates a light field of a 3D object, the INR decoder
has six input channels din = 6 for a ray coordinate and three output channels dout = 3 for a RGB
pixel. Our INR decoder uses L = 2 level of feature modulation with (σ1, σ2, σq) = (8, 4, 2). We
use dF = d = 256 dimensionality of the frequency features and hidden features of the INR decoder.
We use 1000 training epochs for ShapeNet Cars and Chairs, while using 500 epochs for ShapeNet
Lamps.

3https://github.com/kakaobrain/ginr-ipc
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A.3 Diffusion Model for INR generation

We implement a diffusion model to generate the latent tokens for INRs of ImageNet 256×256.
Different from the conventional approaches, which use a U-Net architecture to generate an image,
we use a vanilla Transformer with a simple stack of self-attentions, since the latent tokens do not
predefine 2D grid structure but are permutation-equivariant. The Transformer for the diffusion
model has 458M parameters having 24 self-attention blocks with 1024 dimensions of embeddings
and 16 heads. We remark that the locality-aware generalizable INR is not updated during the
training of diffusion models. For the training of the diffusion model, we follow the formulation of
DDPM [15]. The linear schedule with T = 1000 is used to randomly corrupt the latent tokens for
INRs using isotropic Gaussian noises, and then we train our Transformer to denoise the latent tokens.
Instead of the ϵ-parameterization that predicts the noises used for the corruption, our Transformer
x0-parameterization to predict the original latent tokens. We drop 10% of class conditions for our
model to support classifier-free guidance following the conventional setting [16]. For the stability
of training, we standardize the features of latent tokens, after computing the mean and standard
deviation of feature channels of each latent token based on the training data. We use eight NVIDIA
A100 GPUs to train the model with 256 batch size during 400 epochs, where the training takes about
7 days. The Adam [20] optimizer with constant learning rate 0.0001 and (β1, β2) = (0.9, 0.999) is
used without learning rate warm-up and any weight decaying. During training, we further compute
the exponential moving average (EMA) of model parameters with a decaying rate of 0.9999. During
the evaluation, we use the EMA model with 250 DDIM steps [33] and 2.5 scales of classifier-free
guidance [16].

B Additional Experiments

B.1 Ablation Study on the Number of Levels

Table 6: PSNRs on the reconstructed FFHQ with
256×256, 512×512, and 1024×1024 resolutions
for different number of levels.

256×256 512×512 1024×1024
TransINR 30.96 29.35 -
IPC [19] 34.68 31.58 28.68
Ours (L = 1) 37.09 34.84 31.56
Ours (L = 2) 39.88 35.43 31.94
Ours (L = 3) 40.13 35.58 32.40
Ours (L = 4) 39.79 35.40 32.32

Table 6 demonstrates the effect of the number
of levels L on image reconstruction benchmarks
of FFHQ images with 256×256, 512×512,
and 1024×1024 resolutions. Our INR de-
coder uses bandwidths σq = 16 and (σℓ)

L
ℓ=1

equal to (128), (128, 32), (128, 64, 32) and
(128, 90, 64, 32) for L = 1, 2, 3, 4 respectively
in case of 256×256 and 512×512 resolution,
and all bandwidths are doubled for 1024×1024
to leverage high-frequency details.

Note that our framework outperforms previous
studies [8, 19] even with L = 1. Moreover, the
results demonstrate that increasing L improves
the performance, while the performance saturates beyond L ≥ 3. We postulate that higher resolution
requires a larger number of levels, as the performance gap between L = 3 and L = 4 decreases as
the resolution increases.

B.2 Additional Examples of Novel View Synthesis

In Figure 8, we show additional examples of novel view synthesis of ShapeNet Chairs, Cars, and
Lamps with one to five support views.

B.3 Additional Examples of High-resolution Image Reconstruction

Figure 9 and 10 shows image reconstruction examples of FFHQ with 256×256, 512×512, and
1024×1024 resolution by previous studies [8, 19] and our locality-aware generalizable INR. Unlike
previous studies, our framework can successfully reconstruct fine-grained details in high resolutions.
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Figure 8: Examples of novel view synthesis of ShapeNet Chairs, Cars and Lamps with one, two,
three, and five support views.
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Figure 9: Examples of reconstructed images of FFHQ with 256×256 resolution (top row) and
512×512 resolution (bottom row) by TransINR [8] (left), IPC [19] (middle), and our locality-aware
generalizable INR (right).

Figure 10: Examples of reconstructed images of FFHQ with 1024×1024 resolution by IPC (left) and
our locality-aware generalizable INR (right).
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Figure 11: Additional examples of class-conditional image synthesis by generating the locality-aware
latents of our framework via a transformer-based diffusion model with 458M parameters. All images
are generated with classifier-free guidance at scale 2.5.
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Figure 12: Additional visualization of differences between model predictions after replacing a latent
token with the zero vector for IPC [19] and our framework.
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B.4 Additional Examples of Conditional Image Synthesis

Figure 11 shows additional examples of generated images with 256×256 resolution by generating
locality-aware latents of our framework.

B.5 Additional Visualization for Locality Analysis

Figure 12 visualizes which local information of data is encoded in each latent token of IPC [19]
and our locality-aware generalizable INR in addition to Figure 5. We randomly select a latent token
and replace it with the zero vector, then visualize the difference between the model predictions with
or without the replacement as described in Section 4.3. The differences are rescaled to have the
maximum value of 1 for clear visualization. Furthermore, we fix the set of replaced latent tokens for
different samples in Figure 12 to emphasize the role of each latent token. Note that each latent token
of our framework encodes the local information in a particular region of images or light fields, while
latent tokens of IPC encode global information over whole coordinates.

B.6 Ablation Study on Linear Layers in Selective Token Aggregation

Table 7: PSNRs on the reconstructed
ImageNette with 178×178 resolution.

PSNR
Ours 37.46
w/o Linear in Eq (6) 31.95
w/o Linear in Eq (7) 32.07
w/o Linear in Eq (6) and Eq (7) 31.57

Our framework adds a linear layer in Eq (6) and Eq (7)
to exploit complex frequency patterns, improving the per-
formance. While the Fourier features consist of periodic
patterns along an axis, the frequency patterns in Eq (6) can
also include non-periodic patterns. Note that IPC [19] also
uses a similar design, while modulating the second MLP
layer to exploit complex frequency patterns. The linear
layer in Eq (7) is used to process the modulation vector
according to each frequency bandwidth, motivated by the
design of separate projections for (query, key, value) in
self-attention. The results below also show that removing the linear layers in Eq (6) and Eq (7)
significantly deteriorates the image reconstruction performance on ImageNette 178×178.
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