${ }_{427}$

A Distortion Analysis for 0-PLF-FMD

Recall the definition of Wasserstein-2 distance [26] as follows. For given distributions $P_{X_{j}}$ and $P_{\tilde{X}_{j}}$, let

$$
\begin{equation*}
W_{2}^{2}\left(P_{\tilde{X}_{j}}, P_{X_{j}}\right):=\inf \mathbb{E}\left[\left\|X_{j}-\tilde{X}_{j}\right\|^{2}\right] \tag{18}
\end{equation*}
$$

428 where the infimum is over all joint distributions of $\left(X_{j}, \tilde{X}_{j}\right)$ with marginals $P_{X_{j}}$ and $P_{\tilde{X}_{j}}$.
Theorem 1 The set $\Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{XK}}\right)$ is characterized as follows:

$$
\begin{equation*}
\Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{XK}}\right)=\left\{\mathrm{D}: D_{j} \geq \mathbb{E}_{P}\left[\left\|X_{j}-\tilde{X}_{j}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{j}}, P_{X_{j}}\right), j=1,2,3\right\} \tag{19}
\end{equation*}
$$

Furthermore, we also have that:

$$
\begin{equation*}
\Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right) \supseteq\left\{\mathrm{D}: D_{j} \geq 2 \mathbb{E}_{P}\left[\left\|X_{j}-\tilde{X}_{j}\right\|^{2}\right], \quad j=1,2,3\right\} \tag{20}
\end{equation*}
$$

i.e., minimum achievable distortion with 0-PLF-FMD is at most twice the MMSE distortion.

Proof: Define

$$
\begin{equation*}
\mathcal{D}^{0}:=\left\{\mathrm{D}: D_{j} \geq \mathbb{E}\left[\left\|X_{j}-\tilde{X}_{j}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{j}}, P_{X_{j}}\right), \quad j=1,2,3\right\} \tag{21}
\end{equation*}
$$

First, we show that $\Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right) \subseteq \mathcal{D}^{0}$. For any $\mathrm{D} \in \Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right)$, there exists $\hat{X}_{\mathrm{D}^{0}}=$ $\left(\hat{X}_{D_{1}^{0}}, \hat{X}_{D_{2}^{0}}, \hat{X}_{D_{3}^{0}}\right)$ jointly distributed with $(\mathrm{M}, \mathrm{X}, K)$ such that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{j}-\hat{X}_{D_{j}^{0}}\right\|^{2}\right] & \leq D_{j}, \quad j=1,2,3 \tag{22}\\
P_{X_{j}} & =P_{\hat{X}_{D_{j}^{0}}}
\end{align*}
$$

Then, for example, the analysis for the second frame is as follows

$$
\begin{align*}
D_{2} & \geq \mathbb{E}\left[\left\|X_{2}-\hat{X}_{D_{2}^{0}}\right\|^{2}\right] \tag{24}\\
& =\mathbb{E}\left[\left\|\left(X_{2}-\tilde{X}_{2}\right)-\left(\hat{X}_{D_{2}^{0}}-\tilde{X}_{2}\right)\right\|^{2}\right] \tag{25}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{D_{2}^{0}}\right\|^{2}\right] \tag{26}\\
& \geq \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{2}}, P_{\hat{X}_{D_{2}^{0}}}\right) \tag{27}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{2}}, P_{X_{2}}\right), \tag{28}
\end{align*}
$$

where (26) holds because both \tilde{X}_{2} and $\hat{X}_{D_{2}^{0}}$ are functions of $\left(M_{1}, M_{2}, K\right)$ and thus the MMSE $\left(X_{2}-\tilde{X}_{2}\right)$ is uncorrelated with $\left(\hat{X}_{D_{2}^{0}}-\tilde{X}_{2}\right)$; 28) follows because the 0-PLF-FMD implies that $P_{\hat{X}_{D_{2}^{0}}}=P_{X_{2}}$. Following similar steps for other frames, we get $\Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right) \subseteq \mathcal{D}^{0}$.
Next, we show that $\mathcal{D}^{0} \subseteq \Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right)$. Assume that $\mathrm{D} \in \mathcal{D}^{0}$. Let \hat{X}_{1}^{*} be an auxiliary random variable jointly distributed with $\left(M_{1}, K\right)$ such that it satisfies the following conditions

$$
\begin{equation*}
P_{\hat{X}_{1}^{*}}=P_{X_{1}}, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\tilde{X}_{1} \hat{X}_{1}^{*}}=\arg \inf _{\substack{\bar{P}_{\tilde{X}_{1} \hat{X}_{1}^{*}}: \\ \bar{P}_{\tilde{X}_{1}}=P_{\tilde{X}_{1}} \\ \bar{P}_{\hat{X}_{1}^{*}}=P_{\hat{X}_{1}^{*}}}} \mathbb{E}_{\bar{P}}\left[\left\|\tilde{X}_{1}-\hat{X}_{1}^{*}\right\|^{2}\right] . \tag{30}
\end{equation*}
$$

Moreover, let \hat{X}_{2}^{*} be an auxiliary random variable jointly distributed with $\left(M_{1}, M_{2}, K\right)$ such that the following two conditions are satisfied

$$
\begin{equation*}
P_{\hat{X}_{2}^{*}}=P_{X_{2}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\tilde{X}_{2} \hat{X}_{2}^{*}}=\arg \inf _{\substack{\bar{P}_{\tilde{X}_{2} \hat{X}_{2}^{*}}^{*} \\ \bar{P}_{\tilde{X}_{2}}=P_{\tilde{X}_{2}} \\ \bar{P}_{\hat{X}_{2}^{*}}=P_{\hat{X}_{2}^{*}}}} \mathbb{E}_{\bar{P}}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] . \tag{32}
\end{equation*}
$$

Similarly, we define \hat{X}_{3}^{*}. Now, notice that since $\mathrm{D} \in \mathcal{D}^{0}$, we have:

$$
\begin{equation*}
D_{2} \geq \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{2}}, P_{X_{2}}\right) \tag{33}
\end{equation*}
$$

It then directly follows that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] \tag{34}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{2}}, P_{\hat{X}_{2}^{*}}\right) \tag{35}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{2}}, P_{X_{2}}\right) \tag{36}\\
& \leq D_{2}, \tag{37}
\end{align*}
$$

B Distortion Analysis for 0-PLF-JD

Let \hat{X}_{1}^{*} be defined as in (29)-30). Moreover, let \hat{X}_{2}^{*} be an auxiliary random variable jointly distributed with $\left(M_{1}, M_{2}, K\right)$ such that the following conditions are satisfied

$$
\begin{equation*}
P_{\hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}=P_{X_{2} \mid X_{1}=x_{1}}, \quad \forall x_{1} \in \mathcal{X}_{1}, \tag{39}
\end{equation*}
$$

and

$$
\begin{align*}
P_{\tilde{X}_{2} \hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}= & \arg \underset{\bar{P}_{\tilde{X}_{2} \hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}:}{ } \operatorname{Enf}_{\bar{P}}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2} \mid \hat{X}_{1}^{*}=x_{1}\right], \quad \forall x_{1} \in \mathcal{X}_{1} . \tag{40}\\
& \bar{P}_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}=P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}} \\
& \bar{P}_{\hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}=P_{\hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}
\end{align*}
$$

Then, the following result holds.
Theorem 2 We have

$$
\begin{align*}
& \Phi_{\mathrm{D}^{0}}^{\text {joint }}\left(P_{\mathrm{M} \mid \mathrm{X} K}\right) \supseteq\left\{\mathrm{D}: D_{1} \geq \mathbb{E}\left[\left\|X_{1}-\tilde{X}_{1}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{1}}, P_{X_{1}}\right)\right. \\
& \quad D_{2} \geq \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right) \\
& \left.\quad D_{3} \geq \mathbb{E}\left[\left\|X_{3}-\tilde{X}_{3}\right\|^{2}\right]+\sum_{x_{1}, x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) W_{2}^{2}\left(P_{\tilde{X}_{3} \mid \hat{X}_{1}^{*}=x_{1}, \hat{X}_{2}^{*}=x_{2}}, P_{X_{3} \mid X_{1}=x_{1}, X_{2}=x_{2}}\right)\right\} \tag{41}
\end{align*}
$$

Proof: Define

$$
\begin{align*}
& \mathcal{D}_{\text {joint }}^{0}:=\left\{\mathrm{D}: D_{1} \geq \mathbb{E}\left[\left\|X_{1}-\tilde{X}_{1}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{1}}, P_{X_{1}}\right)\right. \text {, } \\
& D_{2} \geq \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right), \\
& \left.D_{3} \geq \mathbb{E}\left[\left\|X_{3}-\tilde{X}_{3}\right\|^{2}\right]+\sum_{x_{1}, x_{2}} P_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) W_{2}^{2}\left(P_{\tilde{X}_{3} \mid \hat{X}_{1}^{*}=x_{1}, \hat{X}_{2}^{*}=x_{2}}, P_{X_{3} \mid X_{1}=x_{1}, X_{2}=x_{2}}\right)\right\} . \tag{42}
\end{align*}
$$

Now, assume that $\mathrm{D} \in \mathcal{D}_{\text {joint }}^{0}$. For the first frame, recall that \hat{X}_{1}^{*} is an auxiliary random variable jointly distributed with $\left(M_{1}, K\right)$ such that it satisfies 29- 30). From similar steps to (34)- 36), it then follows that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{1}-\hat{X}_{1}^{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|X_{1}-\tilde{X}_{1}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{1}}, P_{X_{1}}\right) \tag{43}\\
& \leq D_{1} \tag{44}
\end{align*}
$$

For the second frame, since $D \in \mathcal{D}_{\text {joint }}^{0}$, we have:

$$
\begin{equation*}
D_{2} \geq \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid X_{1}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right) \tag{45}
\end{equation*}
$$

Recall that \hat{X}_{2}^{*} is an auxiliary random variable jointly distributed with $\left(M_{1}, M_{2}, K\right)$ such that (39)-(40) hold. It then directly follows that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] & =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] \tag{46}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) \mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2} \mid \hat{X}_{1}^{*}=x_{1}\right] \tag{47}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{\hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}=x_{1}}\right) \tag{48}\\
& =\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right), \tag{49}
\end{align*}
$$

- (46) follows because \tilde{X}_{2} and \hat{X}_{2}^{*} are functions of $\left(M_{1}, M_{2}, K\right)$ and thus the MMSE $\left(X_{2}-\right.$ $\left.\tilde{X}_{2}\right)$ is uncorrelated with $\left(\hat{X}_{2}^{*}-\tilde{X}_{2}\right)$,
- 48) follows from (40),
- 49) follows because $P_{\hat{X}_{1}^{*} \hat{X}_{2}^{*}}=P_{X_{1} X_{2}}$.

Following similar steps for the third frame, we get $\mathrm{D} \in \Phi_{\mathrm{D}^{0}}\left(P_{\mathrm{M} \mid \mathrm{XK}}\right)$. This concludes the proof.

B. 1 A Counterexample for Factor-Two Bound in Case of 0-PLF-JD

Assume that we have only two frames, i.e., $D_{3} \rightarrow \infty$. Let M_{1} be independent of X_{1} and $M_{2}=X_{2}$. Then, we have $\tilde{X}_{1}=\emptyset$ and $\tilde{X}_{2}=X_{2}$. Consider the achievable distortion region of Theorem 2 . The distortion of the first step is given by the following

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{1}-\tilde{X}_{1}\right\|^{2}\right]+W_{2}^{2}\left(P_{\tilde{X}_{1}}, P_{X_{1}}\right)=2 \mathbb{E}\left[X_{1}^{2}\right] \tag{50}
\end{equation*}
$$

For the second frame, we have

$$
\begin{align*}
& \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{\tilde{X}_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right) \\
& \quad=\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{X_{2} \mid \hat{X}_{1}^{*}=x_{1}}, P_{X_{2} \mid X_{1}=x_{1}}\right) \tag{51}\\
& \quad=\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) W_{2}^{2}\left(P_{X_{2}}, P_{X_{2} \mid X_{1}=x_{1}}\right) \tag{52}
\end{align*}
$$

where (51) follows because $\tilde{X}_{2}=X_{2}$ and (52) follows because X_{2} is independent of $\hat{X}_{1}^{*}\left(M_{1}\right.$ is independent of X_{1}, then \hat{X}_{1}^{*}, which is a function of $\left(M_{1}, K\right)$, would be independent of X_{1} and hence independent of X_{2}).
Now, notice that the MMSE distortion of the second step is zero since $\tilde{X}_{2}=X_{2}$. However, the achievable distortion of the second step for the reconstruction satisfying 0-PLF JD is given in 52, which clearly does not satisfy the factor-two bound.

C Fixed Encoders Operating at Low rate regime

We consider the class of noisy encoders where the encoder distribution can be written as follows

$$
\begin{equation*}
P_{X_{j} \mid M_{1} \ldots M_{j} K}^{\text {noisy }}=(1-\mu) P_{X_{j}}+\mu Q_{X_{j} \mid M_{1} \ldots M_{j} K}^{\text {noisy }}, \quad j=1,2,3 . \tag{53}
\end{equation*}
$$

where μ is a sufficiently small constant and the distribution $Q^{\text {noisy }}(\cdot)$ could be arbitrary conditional distribution with same marginal as $P_{X_{j}}$.

Theorem 3 For the class of encoders given by (53), we have

$$
\begin{equation*}
\Phi_{\mathrm{D}^{0}}^{\text {joint }}\left(P_{\mathrm{M} \mid \mathrm{X} K}^{\text {noisy }}\right) \supseteq\left\{\mathrm{D}: D_{j} \geq 2 \mathbb{E}_{P^{\text {noisy }}}\left[\left\|\overline{X_{j}}-\tilde{X}_{j}\right\|^{2}\right]+O(\mu), \quad j=2, \ldots, 3\right\} . \tag{54}
\end{equation*}
$$

Proof: We analyze the distortion for the second frame. A similar argument holds for other frames.
Denote the reconstruction of the second step by \hat{X}_{2}^{*} and consider the expected distortion. From a similar justification starting from (24) and leading to (26), we can write the distortion as follows

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}^{*}\right\|^{2}\right]=\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right] . \tag{55}
\end{equation*}
$$

Now, we study the expected term $\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right]$ as follows

$$
\begin{equation*}
\mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2}\right]=\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) \mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2} \mid \hat{X}_{1}^{*}=x_{1}\right] . \tag{56}
\end{equation*}
$$

In order to analyze the above expression, we first approximate the MMSE reconstruction \tilde{X}_{2} as follows

$$
\begin{align*}
\tilde{X}_{2} & =\mathbb{E}_{P^{\text {noisy }}}\left[X_{2} \mid M_{1}, M_{2}, K\right] \tag{57}\\
& =(1-\mu) \mathbb{E}_{P}\left[X_{2}\right]+\mu \mathbb{E}_{Q^{\text {noisy }}}\left[X_{2} \mid M_{1}, M_{2}, K\right] \tag{58}\\
& =\mathbb{E}\left[X_{2}\right]+O(\mu), \tag{59}
\end{align*}
$$

where (58) follows from (53). Moreover, notice that (59) implies that

$$
\begin{align*}
\mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right] & =\mathbb{E}\left[\left\|X_{2}-\mathbb{E}\left[X_{2}\right]+\mu\left(\mathbb{E}_{Q^{\text {noisy }}}\left[X_{2} \mid M_{1}, M_{2}, K\right]-\mathbb{E}\left[X_{2}\right]\right)\right\|^{2}\right] \tag{60}\\
& =\mathbb{E}\left[\left\|X_{2}-\mathbb{E}\left[X_{2}\right]\right\|^{2}\right]+O(\mu) \tag{61}
\end{align*}
$$

Next, consider the expected term in (56) as follows

$$
\begin{align*}
\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) \mathbb{E}\left[\left\|\tilde{X}_{2}-\hat{X}_{2}^{*}\right\|^{2} \mid \hat{X}_{1}^{*}=x_{1}\right] & =\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) \mathbb{E}\left[\left\|\mathbb{E}\left[X_{2}\right]-\hat{X}_{2}^{*}\right\|^{2} \mid \hat{X}_{1}^{*}=x_{1}\right]+O(\mu) \\
& =\sum_{x_{1}} P_{\hat{X}_{1}^{*}}\left(x_{1}\right) \mathbb{E}\left[\left\|\mathbb{E}\left[X_{2}\right]-X_{2}\right\|^{2} \mid X_{1}=x_{1}\right]+O(\mu) \tag{62}\\
& =\sum_{x_{1}} P_{X_{1}}\left(x_{1}\right) \mathbb{E}\left[\left\|\mathbb{E}\left[X_{2}\right]-X_{2}\right\|^{2} \mid X_{1}=x_{1}\right]+O(\mu) \tag{63}\\
& =\mathbb{E}\left[\left\|\mathbb{E}\left[X_{2}\right]-X_{2}\right\|^{2}\right]+O(\mu) \tag{64}\\
& =\mathbb{E}\left[\left\|\tilde{X}_{2}-X_{2}\right\|^{2}\right]+O(\mu) \tag{66}
\end{align*}
$$

where

- (62) follows from (59);
- (63) follows because the 0-PLF-JD implies that $P_{\hat{X}_{2}^{*} \mid \hat{X}_{1}^{*}}=P_{X_{2} \mid X_{1}}$ and $\mathbb{E}\left[X_{2}\right]$ is just a constant;
- (64) follows from 0-PLF-JD where $P_{\hat{X}_{1}^{*}}=P_{X_{1}}$;
- 66) follows from (61).

Considering (55) and (66), we get

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}^{*}\right\|^{2}\right]=2 \mathbb{E}\left[\left\|X_{2}-\tilde{X}_{2}\right\|^{2}\right]+O(\mu) \tag{67}
\end{equation*}
$$

The proof for the third frame follows similar steps.

Figure 4: Encoded representations and reconstructions of the iRDP region $\mathcal{C}_{\text {RDP }}$.

D Operational RDP Region

Recall the definition of iRDP region $\mathcal{C}_{\text {RDP }}$ for first-order Markov sources (Definition4) as follows. It is the set of all tuples (R, D, P) satisfying

$$
\begin{align*}
& R_{1} \geq I\left(X_{1} ; X_{r, 1}\right), \tag{68}\\
& R_{2} \geq I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right), \tag{69}\\
& R_{3} \geq I\left(X_{3} ; X_{r, 3} \mid X_{r, 1}, X_{r, 2}\right), \tag{70}\\
& D_{j} \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right], \tag{71}\\
& P_{j} \geq \phi_{j}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1} \ldots \hat{X}_{j}}\right), \quad j=1,2,3, \tag{72}\\
&
\end{align*}
$$

for auxiliary random variables $\left(X_{r, 1}, X_{r, 2}, X_{r, 3}\right)$ and $\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$ such that

$$
\begin{align*}
\hat{X}_{1} & =\eta_{1}\left(X_{r, 1}\right), \quad \hat{X}_{2}=\eta_{2}\left(X_{r, 1}, X_{r, 2}\right), \quad \hat{X}_{3}=X_{r, 3}, \tag{73}\\
X_{r, 1} & \rightarrow X_{1} \rightarrow\left(X_{2}, X_{3}\right) \tag{74}\\
X_{r, 2} & \rightarrow\left(X_{2}, X_{r, 1}\right) \rightarrow\left(X_{1}, X_{3}\right) \tag{75}\\
X_{r, 3} & \rightarrow\left(X_{3}, X_{r, 1}, X_{r, 2}\right) \rightarrow\left(X_{1}, X_{2}\right), \tag{76}
\end{align*}
$$

for some deterministic functions $\eta_{1}($.$) and \eta_{2}(.,$.$) .$
Theorem 4 For first-order Markov sources, a given (D, P) and $R \in \mathcal{R}(D, P)$, we have

$$
\begin{equation*}
\mathrm{R}+\log (\mathrm{R}+1)+5 \in \mathcal{R}^{o}(\mathrm{D}, \mathrm{P}) \tag{77}
\end{equation*}
$$

Moreover, the following holds:

$$
\begin{equation*}
\mathcal{R}^{o}(\mathrm{D}, \mathrm{P}) \subseteq \mathcal{R}(\mathrm{D}, \mathrm{P}) \tag{78}
\end{equation*}
$$

Proof: Before stating the achievable scheme, we first discuss the strong functional representation lemma [35]. It states that for jointly distributed random variables X and Y, there exists a random variable U independent of X, and function ϕ such that $Y=\phi(X, U)$. Here, U is not necessarily unique. The strong functional representation lemma states further that there exists a U which has information of Y in the sense that

$$
\begin{equation*}
H(Y \mid U) \leq I(X ; Y)+\log (I(X ; Y)+1)+4 \tag{79}
\end{equation*}
$$

Notice that the strong functional representation lemma can be applied conditionally. Given $P_{X Y \mid W}$, we can represent Y as a function of (X, W, U) such that U is independent of (X, W) and

$$
\begin{equation*}
H(Y \mid W, U) \leq I(X ; Y \mid W)+\log (I(X ; Y \mid W)+1)+4 \tag{80}
\end{equation*}
$$

Proof of (77) (Inner bound):
For a given (D, P) and $\mathrm{R} \in \mathcal{R}(\mathrm{D}, \mathrm{P})$, let $\mathrm{X}_{r}=\left(X_{r, 1}, X_{r, 2}, X_{r, 3}\right)$ be jointly distributed with $\mathrm{X}=\left(X_{1}, X_{2}, X_{3}\right)$ where the Markov chains 74 -76 hold and the rate constraints in (68)

Figure 5: Strong functional representation lemma for $T=2$ frames.
are satisfied such that there exist $\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$ for which distortion-perception constraints (71)-72) hold. Denote the joint distribution of $\left(\mathrm{X}, \mathrm{X}_{r}, \hat{\mathrm{X}}\right)$ by $P_{\mathrm{XX}_{r} \hat{\mathrm{X}}}$ and notice that according to the Markov chains in (74)-(76), it factorizes as the following

$$
\begin{align*}
P_{\mathrm{XX}_{r} \hat{\mathrm{X}}}= & P_{X_{1} X_{2} X_{3}} \cdot P_{X_{r, 1} \mid X_{1}} \cdot P_{X_{r, 2} \mid X_{r, 1} X_{2}} \cdot P_{X_{r, 3} \mid X_{r, 2} X_{r, 1} X_{3}} \\
& \cdot \mathbb{1}\left\{\hat{X}_{1}=g_{1}\left(X_{r, 1}\right)\right\} \cdot \mathbb{1}\left\{\hat{X}_{2}=g_{2}\left(X_{r, 1}, X_{r, 3}\right)\right\} \cdot \mathbb{1}\left\{\hat{X}_{3}=X_{r, 3}\right\} . \tag{81}
\end{align*}
$$

For an illustration of encoded representations X_{r} and reconstructions $\hat{\mathrm{X}}$ in $\mathcal{R}(\mathrm{D}, \mathrm{P})$ which are induced by distribution $P_{\mathrm{XX}_{r} \hat{X}}$, see Fig. 4
Now, we show that $\mathrm{R}+\log (\mathrm{R}+1)+5 \in \mathcal{R}(\mathrm{D}, \mathrm{P})$. The achievable scheme is as follows. Fix the joint distribution $P_{\mathrm{X}_{r}}$ according to (81) which constructs the codebook, given by

$$
\begin{equation*}
P_{\mathbf{X}_{r}}=P_{X_{r, 1}} P_{X_{r, 2} \mid X_{r, 1}} P_{X_{r, 3} \mid X_{r, 2} X_{r, 1}} \tag{82}
\end{equation*}
$$

From the strong functional representation lemma [35], we know that

- there exist a random variable V_{1} independent of X_{1} and a deterministic function q_{1} such that $X_{r, 1}=q_{1}\left(X_{1}, V_{1}\right)$ and

$$
\begin{equation*}
H\left(X_{r, 1} \mid V_{1}\right) \leq I\left(X_{1} ; X_{r, 1}\right)+\log \left(I\left(X_{1} ; X_{r, 1}\right)+1\right)+4 \tag{83}
\end{equation*}
$$

which means that the first encoder observes the source X_{1} and applies the function q_{1} to get $X_{r, 1}$ whose distribution needs to be preserved according to (82) (see Fig. 55;

- according to the conditional strong functional representation lemma, there exist a random variable V_{2} independent of $\left(X_{2}, X_{r, 1}\right)$ and a deterministic function q_{2} such that $X_{r, 2}=$ $q_{2}\left(X_{r, 1}, X_{2}, V_{2}\right)$ and

$$
\begin{equation*}
H\left(X_{r, 2} \mid X_{r, 1}, V_{2}\right) \leq I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right)+\log \left(I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right)+1\right)+4 \tag{84}
\end{equation*}
$$

At the second step, the representation $X_{r, 1}$ is available at the second encoder. So, upon observing the source X_{2}, it applies the function q_{2} to get $X_{r, 2}$ whose conditional distribution given $X_{r, 1}$ needs to be preserved according to (82) (see Fig. 57;

- according to the conditional strong functional representation lemma, there exist a random variable V_{3} independent of $\left(X_{3}, X_{r, 1}, X_{r, 2}\right)$ and a deterministic function q_{3} such that $X_{r, 3}=$ $q_{3}\left(X_{r, 1}, X_{r, 2}, X_{3}, V_{3}\right)$ and
$H\left(X_{r, 3} \mid X_{r, 1}, X_{r, 2}, V_{3}\right) \leq I\left(X_{3} ; X_{r, 3} \mid X_{r, 1}, X_{r, 2}\right)+\log \left(I\left(X_{3} ; X_{r, 3} \mid X_{r, 1}, X_{r, 2}\right)+1\right)+4$.

Now, the encoding and decoding are as follows

- With V_{1} available at all encoders and decoders, we can have a class of prefix-free binary codes indexed by V_{1} with the expected codeword length not larger than $I\left(X_{1} ; X_{r, 1}\right)+$ $\log \left(I\left(X_{1} ; X_{r, 1}\right)+1\right)+5$ to represent $X_{r, 1}$, losslessly (see Fig. [5).
- With V_{2} available at the encoders and decoders, we can design a set of prefix-free binary codes indexed by $\left(V_{2}, X_{r, 1}\right)$ with expected codeword length not larger than $I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right)+\log \left(I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right)+1\right)+5$ to represent $X_{r, 2}$, losslessly(see Fig. 5).
- Similarly, one can represent $X_{r, 3}$ losslessly with V_{3} available at the third encoder and decoder.
- The decoders can use functions $\hat{X}_{1}=\eta_{1}\left(X_{r, 1}\right), \hat{X}_{2}=\eta_{2}\left(X_{r, 1}, X_{r, 2}\right)$ and $\hat{X}_{3}=X_{r, 3}$ to get the reconstruction \hat{X}.

This shows that $\mathrm{R}+\log (\mathrm{R}+1)+5 \in \mathcal{R}^{o}(\mathrm{D}, \mathrm{P})$.
Proof of (78) (Outer Bound):
For any $(\mathrm{D}, \mathrm{P}), \mathrm{R} \in \mathcal{R}^{o}(\mathrm{D}, \mathrm{P})$, shared randomness K, encoding functions $f_{j}: \mathcal{X}_{1} \times \ldots \times \mathcal{X}_{j} \times \mathcal{K} \rightarrow$ \mathcal{M}_{j} and decoding functions $g_{j}: \mathcal{M}_{1} \times \mathcal{M}_{2} \times \ldots \times \mathcal{M}_{j} \times \mathcal{K} \rightarrow \hat{\mathcal{X}}_{j}$ such that

$$
\begin{equation*}
R_{j} \geq \mathbb{E}\left[\ell\left(M_{j}\right)\right], \quad j=1,2,3 \tag{86}
\end{equation*}
$$

and

$$
\begin{array}{rlr}
D_{j} & \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right], & j=1,2,3 \\
P_{j} & \geq \phi_{j}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1} \ldots \hat{X}_{j}}\right), & j=1,2,3 \tag{88}
\end{array}
$$

we lower bound the expected length of the messages. Define

$$
\begin{align*}
X_{r, 1} & :=\left(M_{1}, K\right) \tag{89}\\
X_{r, 2} & :=\left(M_{1}, M_{2}, K\right), \tag{90}
\end{align*}
$$

and recall that according to the decoding functions, we have

$$
\begin{equation*}
\hat{X}_{j}=g_{j}\left(M_{1}, \ldots, M_{j}, K\right), \quad j=1,2,3 . \tag{91}
\end{equation*}
$$

We can write

$$
\begin{align*}
R_{1} \geq \mathbb{E}\left[\ell\left(M_{1}\right)\right] & \geq H\left(M_{1} \mid K\right) \tag{92}\\
& =I\left(X_{1} ; M_{1} \mid K\right) \tag{93}\\
& =I\left(X_{1} ; M_{1}, K\right) \tag{94}\\
& =I\left(X_{1} ; X_{r, 1}\right) \tag{95}
\end{align*}
$$

Now, consider the following set of inequalities

$$
\begin{align*}
R_{2} \geq \mathbb{E}\left[\ell\left(M_{2}\right)\right] & \geq H\left(M_{2} \mid M_{1}, K\right) \tag{96}\\
& =I\left(X_{1}, X_{2} ; M_{2} \mid M_{1}, K\right) \tag{97}\\
& =I\left(X_{1}, X_{2} ; X_{2, r} \mid X_{r, 1}\right) \tag{98}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
R_{3} \geq \mathbb{E}\left[\ell\left(M_{3}\right)\right] & \geq H\left(M_{3} \mid M_{1}, M_{2}, K\right) \tag{99}\\
& =I\left(X_{1}, X_{2}, X_{3} ; M_{3} \mid M_{1}, M_{2}, K\right) \tag{100}\\
& \geq I\left(X_{1}, X_{2}, X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right) \tag{101}
\end{align*}
$$

Notice that the definitions in (99) imply the following Markov chains

$$
\begin{align*}
& X_{r, 1} \rightarrow X_{1} \rightarrow\left(X_{2}, X_{3}\right), \tag{102}\\
& X_{r, 2} \rightarrow\left(X_{1}, X_{2}, X_{r, 1}\right) \rightarrow X_{3} . \tag{103}
\end{align*}
$$

On the other hand, the decoding functions of the first and second steps imply that

$$
\begin{align*}
& \hat{X}_{1}=g_{1}\left(M_{1}, K\right) \tag{104}\\
& \hat{X}_{2}=g_{2}\left(M_{1}, M_{2}, K\right) \tag{105}
\end{align*}
$$

where together with definitions in 89, and 90, we can write

$$
\begin{align*}
& \hat{X}_{1}=g_{1}\left(M_{1}, K\right):=\eta_{1}\left(X_{r, 1}\right) \tag{106}\\
& \hat{X}_{2}=g_{2}\left(M_{1}, M_{2}, K\right):=\eta_{2}\left(X_{r, 1}, X_{r, 2}\right) \tag{107}
\end{align*}
$$

such that $\eta_{1}($.$) and \eta_{2}(.,$.$) are deterministic functions.$

Now, consider the fact that the set of constraints in (87)-(88), (95), (98), (101) with Markov chains in (102)-103) and deterministic functions in (106) 107) constitute an iRDP region, denoted by $\overline{\mathcal{C}}_{\text {RDP }}$, which is the set of all tuples (R, D, P) such that

$$
\begin{align*}
& R_{1} \geq I\left(X_{1} ; X_{r, 1}\right) \tag{108}\\
& R_{2} \geq I\left(X_{1}, X_{2} ; X_{r, 2} \mid X_{r, 1}\right), \tag{109}\\
& R_{3} \geq I\left(X_{1}, X_{2}, X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right), \tag{110}\\
& D_{j} \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right], \tag{111}\\
& P_{j} \geq \phi_{j}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1} \ldots \hat{X}_{j}}\right), \quad j=1,2,3, \tag{112}\\
&
\end{align*}
$$

for auxiliary random variables $\left(X_{r, 1}, X_{r, 2}\right)$ and $\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$ satisfying the following

$$
\begin{align*}
\hat{X}_{1} & =\eta_{1}\left(X_{r, 1}\right), \quad \hat{X}_{2}=\eta_{2}\left(X_{r, 1}, X_{r, 2}\right) \tag{113}\\
X_{r, 1} & \rightarrow X_{1} \rightarrow\left(X_{2}, X_{3}\right) \tag{114}\\
X_{r, 2} & \rightarrow\left(X_{1}, X_{2}, X_{r, 1}\right) \rightarrow X_{3} \tag{115}
\end{align*}
$$

for some deterministic functions $\eta_{1}($.$) and \eta_{2}(.,$.$) .$
Comparing the two regions $\overline{\mathcal{C}}_{\text {RDP }}$ and $\mathcal{C}_{\text {RDP }}$, we identify the following differences. The Markov chain in (74) is more restricted comparing to (115). Moreover, the Markov chain (75) does not exist in $\overline{\mathcal{C}}_{\text {RDP }}$. The following lemma states that $\overline{\mathcal{C}}_{\text {RDP }}=\mathcal{C}_{\text {RDP }}$. Now, for a given (D, P), let $\overline{\mathcal{R}}(\mathrm{D}, \mathrm{P})$ denote the set of rate tuples R such $(R, D, P) \in \mathcal{C}_{\text {RDP }}$, then this lemma implies that $\overline{\mathcal{R}}(\mathrm{D}, \mathrm{P})=\mathcal{R}(\mathrm{D}, \mathrm{P})$ which completes the proof of the outer bound. Moreover, notice that the above proof only deals with the statistics of the representations and reconstructions and does not depend on the choice of the PLF. So, it holds for both PLF-FMD and PLF-JD. This concludes the proof.

We conclude this section by the following lemma.
Lemma 1 For first-order Markov sources, we have

$$
\begin{equation*}
\mathcal{C}_{\mathrm{RDP}}=\overline{\mathcal{C}}_{\mathrm{RDP}} \tag{116}
\end{equation*}
$$

Proof: This result for the scenario without perception constraint has been similarly observed in [36] Eq. (12)]. The proof in this section is provided for completeness.

First, notice that the set of Markov chains in (74)-(76) is more restricted than the ones in (114)-(115), hence $\mathcal{C}_{\text {RDP }} \subseteq \overline{\mathcal{C}}_{\text {RDP }}$. Now, it remains to prove that $\mathcal{C}_{\text {RDP }} \subseteq \mathcal{C}_{\text {RDP }}$. Consider the following facts

1. The distortion constraints in (111) depend only on the joint distribution of $\left(X_{j}, \hat{X}_{j}\right)$, and thus on the joint distribution of $\left(X_{j}, X_{r, 1}, \ldots, X_{r, j}\right)$. So, imposing the Markov chain $X_{r, 2} \rightarrow\left(X_{2}, X_{r, 1}\right) \rightarrow X_{1}$ does not affect the expected distortion $\mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}\right\|^{2}\right]$ since it does not depend on the joint distribution of X_{1} with $\left(X_{r, 1}, X_{r, 2}, X_{2}\right)$. A similar argument holds for other frames;
2. The perception constraints in (112) depend on the joint distributions $P_{X_{1} \ldots X_{j}}$ and $P_{\hat{X}_{1}, \ldots, \hat{X}_{j}}$ (hence on $P_{X_{r, 1} \ldots X_{r, j}}$). Thus, imposing $X_{r, 2} \rightarrow\left(X_{2}, X_{r, 1}\right) \rightarrow X_{1}$ does not affect $\phi_{2}\left(P_{X_{1} X_{2}}, P_{\hat{X}_{1} \hat{X}_{2}}\right)$ since it does not depend on the joint distribution of X_{1} with $\left(X_{r, 1}, X_{r, 2}, X_{2}\right)$. A similar argument holds for other frames;
3. Moreover, the rate constraints in (109) and 110 would be further lower bounded by

$$
\begin{align*}
& R_{2} \geq I\left(X_{1}, X_{2} ; X_{r, 2} \mid X_{r, 1}\right) \geq I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right) \tag{117}\\
& R_{3} \geq I\left(X_{1}, X_{2}, X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right) \geq I\left(X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right) \tag{118}
\end{align*}
$$

Thus, the set of rate constraints is optimized by the set of Markov chains 74-76.
4. The mutual information terms $I\left(X_{1} ; X_{r, 1}\right), I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right)$ and $I\left(X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right)$ depend on distributions $P_{X_{1} X_{r, 1}}, P_{X_{r, 1} X_{r, 2} X_{2}}$ and $P_{X_{3} \hat{X}_{3} X_{r, 1} X_{r, 2}}$, respectively. So, these distributions should be preserved by the set of Markov chains. The first two distributions are preserved by the choice of (73)-74). Now, since we have first-order Markov sources (see Definition 3), preserving the joint distributions of $P_{X_{r, 1} X_{1}}$ and $P_{X_{r, 1} X_{r, 2} X_{2}}$ is sufficient to preserve the distribution $P_{X_{r, 1} X_{r, 2} X_{3}}$. So, preserving the joint distribution of $P_{\hat{X}_{3} X_{r, 1} X_{r, 2}}$ is sufficient to keep $I\left(X_{3} ; \hat{X}_{3} \mid X_{r, 1}, X_{r, 2}\right)$ unchanged.

Considering the above four facts, without loss of optimality, one can impose the following Markov chains

$$
\begin{align*}
X_{r, 1} & \rightarrow X_{1} \rightarrow\left(X_{2}, X_{3}\right) \tag{119}\\
X_{r, 2} & \rightarrow\left(X_{2}, X_{r, 1}\right) \rightarrow\left(X_{1}, X_{3}\right) \tag{120}\\
\hat{X}_{3} & \rightarrow\left(X_{3}, X_{r, 1}, X_{r, 2}\right) \rightarrow\left(X_{1}, X_{2}\right) \tag{121}
\end{align*}
$$

This concludes the proof for the PLF-JD. For the PLF-FMD, notice that the only difference is the second fact stated above. But, this also holds since the perception constraints depend only on $P_{X_{j}}$ and $P_{\hat{X}_{j}}$ (hence on $P_{X_{r, 1} \ldots, X_{r, j}}$).

E Gauss-Markov Source Model

We first remark that the Wasserstein-2 distance can also be replaced by the KL-divergence in most of the following analysis. The common properties between these two measures are convexity and the fact that they both depend on only second-order statistics when restricted to Gaussian source model.

Theorem 5 For the Gauss-Markov source model, any tuple $(\mathrm{R}, \mathrm{D}, \mathrm{P}) \in \mathcal{C}_{\mathrm{RDP}}$ can be attained by a jointly Gaussian distribution over $\left(X_{r, 1}, X_{r, 2}, X_{r, 3}\right)$ and identity mappings for $\eta_{j}(\cdot)$ in Definition 4

Proof: First, notice that a proof for the setting without perception constraint is provided in [37]. The following proof is different from [37] in some steps and also involves the perception constraint.
For a given tuple $(\mathrm{R}, \mathrm{D}, \mathrm{P}) \in \mathcal{C}_{\mathrm{RDP}}$, let $X_{r, 1}^{*}, X_{r, 2}^{*}, \hat{X}_{1}^{*}=\eta_{1}\left(X_{r, 1}^{*}\right), \hat{X}_{2}^{*}=\eta_{2}\left(X_{r, 1}^{*}, X_{r, 2}^{*}\right)$ and \hat{X}_{3}^{*} be random variables satisfying (73)-75). Let $P_{\hat{X}^{G} \mid X_{1}}, P_{\hat{X}_{2}^{G} \mid \hat{X}_{1}^{G} X_{2}}$ and $P_{\hat{X}_{3}^{G} \mid \hat{X}_{1}^{G} \hat{X}_{2}^{G} X_{3}}$ be jointly Gaussian distributions such that the following conditions are satisfied.

$$
\begin{align*}
\operatorname{cov}\left(\hat{X}_{1}^{G}, X_{1}\right) & =\operatorname{cov}\left(\hat{X}_{1}^{*}, X_{1}\right), \tag{122}\\
\operatorname{cov}\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, X_{2}\right) & =\operatorname{cov}\left(\hat{X}_{1}^{*}, \hat{X}_{2}^{*}, X_{2}\right), \tag{123}\\
\operatorname{cov}\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}, X_{3}\right) & =\operatorname{cov}\left(\hat{X}_{1}^{*}, \hat{X}_{2}^{*}, \hat{X}_{3}^{*}, X_{3}\right), \tag{124}
\end{align*}
$$

In general, the Gaussian random variables which satisfy the constraints in (122)-124) can be written in the following format

$$
\begin{align*}
X_{1} & =\nu \hat{X}_{1}^{G}+Z_{1}, \tag{125}\\
\hat{X}_{2}^{G} & =\omega_{1} \hat{X}_{1}^{G}+\omega_{2} X_{2}+Z_{2}, \tag{126}\\
\hat{X}_{3}^{G} & =\tau_{1} \hat{X}_{1}^{G}+\tau_{2} \hat{X}_{2}^{G}+\tau_{3} X_{3}+Z_{3}, \tag{127}
\end{align*}
$$

for some real $\nu, \omega_{1}, \omega_{2}, \tau_{1}, \tau_{2}, \tau_{3}$ where $\hat{X}_{1}^{G} \sim \mathcal{N}\left(0, \sigma_{\hat{X}_{1}^{G}}^{2}\right), \hat{X}_{2}^{G} \sim \mathcal{N}\left(0, \sigma_{\hat{X}_{2}^{G}}^{2}\right), Z_{1}, Z_{2}$ and Z_{3} are Gaussian random variables with zero mean and variances $\alpha_{1}^{2}, \alpha_{2}^{2}, \alpha_{3}^{2}$, independent of $\hat{X}_{1}^{G},\left(\hat{X}_{1}^{G}, X_{2}\right)$ and ($\left.\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, X_{3}\right)$, respectively.

We explicitly derive the coefficients $\nu, \omega_{1}, \omega_{2}, \tau_{1}, \tau_{2}$ and τ_{3} in the following. Multiplying both sides of (125) by \hat{X}_{1}^{G} and taking an expectation, we get

$$
\begin{equation*}
\mathbb{E}\left[X_{1} \hat{X}_{1}^{G}\right]=\nu \sigma_{\hat{X}_{1}^{G}}^{2} \tag{128}
\end{equation*}
$$

According to (122), the above equation can be written as follows

$$
\begin{equation*}
\mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right]=\nu \mathbb{E}\left[\hat{X}_{1}^{* 2}\right] . \tag{129}
\end{equation*}
$$

Multiplying both sides of (126) by the vector $\left[\begin{array}{ll}\hat{X}_{1}^{G} & X_{2}\end{array}\right]$ and taking an expectation, we have

$$
\left[\mathbb{E}\left[\hat{X}_{1}^{G} \hat{X}_{2}^{G}\right] \mathbb{E}\left[X_{2} \hat{X}_{2}^{G}\right]\right]=\left[\begin{array}{ll}
\omega_{1} & \omega_{2}
\end{array}\right]\left(\begin{array}{cc}
\sigma_{\hat{X}_{1}^{G}}^{2} & \mathbb{E}\left[X_{2} \hat{X}_{1}^{G}\right] \tag{130}\\
\mathbb{E}\left[X_{2} \hat{X}_{1}^{G}\right] & \sigma_{2}^{2}
\end{array}\right)
$$

Considering the fact that $\mathbb{E}\left[X_{2} \hat{X}_{1}^{G}\right]=\rho_{1} \mathbb{E}\left[X_{1} \hat{X}_{1}^{G}\right]$ and according to 123 , the above equation can be written as follows

$$
\left[\mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right] \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right]\right]=\left[\begin{array}{ll}
\omega_{1} & \omega_{2}
\end{array}\right]\left(\begin{array}{cc}
\mathbb{E}\left[\hat{X}_{1}^{* 2}\right] & \rho_{1} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] \tag{131}\\
\rho_{1} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] & \sigma_{2}^{2}
\end{array}\right)
$$

Similarly, multiplying both sides of (127) by the vector $\left[\begin{array}{lll}\hat{X}_{1}^{G} & \hat{X}_{2}^{G} & X_{3}\end{array}\right]$, taking an expectation and considering (124), we get

$$
\left[\mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{3}^{*}\right] \mathbb{E}\left[\hat{X}_{2}^{*} \hat{X}_{3}^{*}\right] \mathbb{E}\left[X_{3} \hat{X}_{3}^{*}\right]\right]=\left[\begin{array}{lll}
\tau_{1} & \tau_{2} & \tau_{3}
\end{array}\right]\left(\begin{array}{ccc}
\mathbb{E}\left[\hat{X}_{1}^{* 2}\right] & \mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right] & \rho_{1} \rho_{2} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] \tag{132}\\
\mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right] & \mathbb{E}\left[\hat{X}_{2}^{* 2}\right] & \rho_{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right] \\
\rho_{1} \rho_{2} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] & \rho_{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right] & \mathbb{E}\left[\hat{X}_{3}^{* 2}\right]
\end{array}\right)
$$

Solving equations (129), (131) and (132), we get

$$
\begin{align*}
\sigma_{\hat{X}_{1}^{G}}^{2} & =\mathbb{E}\left[\hat{X}_{1}^{* 2}\right] \tag{133}\\
\nu & =\frac{\mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right]}{\mathbb{E}\left[\hat{X}_{1}^{* 2}\right]} \tag{134}\\
\alpha_{1}^{2} & =\sigma_{1}^{2}-\frac{\mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right]}{\mathbb{E}\left[\hat{X}_{1}^{* 2}\right]} \tag{135}\\
\omega_{1} & =\frac{\nu \rho_{1} \mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right]-\mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right]}{\nu^{2} \rho_{1}^{2} \sigma_{\hat{X}_{1}^{G}}^{2}-\sigma_{2}^{2}}, \tag{136}\\
\omega_{2} & =\frac{\nu \rho_{1} \sigma_{\hat{X}_{1}^{G}}^{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right]-\sigma_{2}^{2} \mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right]}{\nu^{2} \rho_{1}^{2} \sigma_{\hat{X}_{1}^{G}}^{4}-\sigma_{2}^{2} \sigma_{\hat{X}_{1}^{G}}^{2}} \tag{137}\\
\alpha_{2}^{2} & =\mathbb{E}\left[\hat{X}_{2}^{* 2}\right]-\alpha_{2}^{2} \sigma_{\hat{X}_{1}^{G}}^{2}-\omega_{2}^{2} \sigma_{2}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \nu \sigma_{\hat{X}_{1}^{G}}^{2} \tag{138}
\end{align*}
$$

For the third step, the coefficients and noise variance of 127) are given as follows

$$
\begin{align*}
& {\left[\begin{array}{lll}
\tau_{1} & \tau_{2} & \tau_{3}
\end{array}\right]} \\
& \quad=\left[\begin{array}{ll}
\mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{3}^{*}\right] & \left.\mathbb{E}\left[\hat{X}_{2}^{*} \hat{X}_{3}^{*}\right] \mathbb{E}\left[X_{3} \hat{X}_{3}^{*}\right]\right]\left(\begin{array}{ccc}
\mathbb{E}\left[\hat{X}_{1}^{* 2}\right] & \mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right] & \rho_{1} \rho_{2} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] \\
\mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right] & \mathbb{E}\left[\hat{X}_{2}^{* 2}\right] & \rho_{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right] \\
\rho_{1} \rho_{2} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right] & \rho_{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right] & \mathbb{E}\left[\hat{X}_{3}^{* 2}\right]
\end{array}\right), \\
\begin{array}{l}
\alpha_{3}^{2}=\mathbb{E}\left[\hat{X}_{3}^{* 2}\right]-\tau_{1}^{2} \mathbb{E}\left[\hat{X}_{1}^{* 2}\right]-\tau_{2}^{2} \mathbb{E}\left[\hat{X}_{2}^{* 2}\right]-\tau_{3}^{2} \mathbb{E}\left[X_{3}^{2}\right] \\
\quad-2 \tau_{1} \tau_{2} \mathbb{E}\left[\hat{X}_{1}^{*} \hat{X}_{2}^{*}\right]-2 \tau_{1} \tau_{3} \rho_{1} \rho_{2} \mathbb{E}\left[X_{1} \hat{X}_{1}^{*}\right]-2 \tau_{2} \tau_{3} \rho_{2} \mathbb{E}\left[X_{2} \hat{X}_{2}^{*}\right],
\end{array}
\end{array}, l\right.
\end{align*}
$$

where (. $)^{-1}$ denotes the inverse of a matrix.
Now, we look at the rate constraints.

Rate Constraints:

Consider the rate constraint of the first step as follows

$$
\begin{align*}
R_{1} & \geq I\left(X_{1} ; X_{r, 1}^{*}\right) \tag{141}\\
& =H\left(X_{1}\right)-H\left(X_{1} \mid X_{r, 1}^{*}\right) \tag{142}\\
& \geq H\left(X_{1}\right)-H\left(X_{1} \mid \hat{X}_{1}^{*}\right) \tag{143}\\
& =H\left(X_{1}\right)-H\left(X_{1}-\mathbb{E}\left[X_{1} \mid \hat{X}_{1}^{*}\right] \mid \hat{X}_{1}^{*}\right) \tag{144}\\
& \geq H\left(X_{1}\right)-H\left(X_{1}-\mathbb{E}\left[X_{1} \mid \hat{X}_{1}^{*}\right]\right) \tag{145}\\
& \geq H\left(X_{1}\right)-H\left(X_{1}-\mathbb{E}\left[X_{1} \mid \hat{X}_{1}^{G}\right]\right) \tag{146}\\
& =H\left(X_{1}\right)-H\left(X_{1}-\mathbb{E}\left[X_{1} \mid \hat{X}_{1}^{G}\right] \mid \hat{X}_{1}^{G}\right) \tag{147}\\
& =I\left(X_{1} ; \hat{X}_{1}^{G}\right) \tag{148}
\end{align*}
$$

where

- 143 follows because \hat{X}_{1}^{*} is a function of $X_{r, 1}^{*}$;
- (146) follows because for a given covariance matrix in (122), the Gaussian distribution maximizes the differential entropy;
- 147) follows because the MMSE is uncorrelated from the data and since the random variables are Gaussian, the MMSE would be independent of the data.

Next, consider the rate constraint of the second step as the following

$$
\begin{align*}
R_{2} & \geq I\left(X_{2} ; X_{r, 2}^{*} \mid X_{r, 1}^{*}\right) \tag{149}\\
& =H\left(X_{2} \mid X_{r, 1}^{*}\right)-H\left(X_{2} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right) \tag{150}\\
& \geq H\left(X_{2} \mid X_{r, 1}^{*}\right)-H\left(X_{2} \mid \hat{X}_{1}^{*}, \hat{X}_{2}^{*}\right) \tag{151}\\
& \geq H\left(X_{2} \mid X_{r, 1}^{*}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{152}\\
& =H\left(\rho_{1} X_{1}+N_{1} \mid X_{r, 1}^{*}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{153}\\
& \geq \frac{1}{2} \log \left(\rho_{1}^{2} 2^{2 H\left(X_{1} \mid X_{r, 1}^{*}\right)}+2^{2 H\left(N_{1}\right)}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{154}\\
& \geq \frac{1}{2} \log \left(\rho_{1}^{2} 2^{-2 R_{1}} 2^{2 H\left(X_{1}\right)}+2^{2 H\left(N_{1}\right)}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right), \tag{155}
\end{align*}
$$

where

- (151) follows because \hat{X}_{1}^{*} and \hat{X}_{2}^{*} are deterministic functions of $X_{r, 1}^{*}$ and $\left(X_{r, 1}^{*}, X_{r, 2}^{*}\right)$, respectively;
- (152) follows because for a given covariance matrix in (123), the Gaussian distribution maximizes the differential entropy;
- (154] follows from entropy power inequality (EPI) [38] pp. 22];
- (155) follows from 142 .

Similarly, consider the rate constraint of the third frame as the following,

$$
\begin{align*}
R_{3} & \geq I\left(X_{3} ; \hat{X}_{3}^{*} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right) \tag{156}\\
& =H\left(X_{3} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right)-H\left(X_{3} \mid X_{r, 1}^{*}, X_{r, 2}^{*}, \hat{X}_{3}^{*}\right) \tag{157}\\
& \geq H\left(X_{3} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right)-H\left(X_{3} \mid \hat{X}_{1}^{*}, \hat{X}_{2}^{*}, \hat{X}_{3}^{*}\right) \tag{158}\\
& \geq H\left(X_{3} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right) \tag{159}\\
& =H\left(\rho_{2} X_{2}+N_{2} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right) \tag{160}\\
& \geq \frac{1}{2} \log \left(\rho_{2}^{2} 2^{2 H\left(X_{2} \mid X_{r, 1}^{*}, X_{r, 2}^{*}\right)}+2^{2 H\left(N_{2}\right)}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right) \tag{161}\\
& \geq \frac{1}{2} \log \left(\rho_{2}^{2} 2^{-2 R_{2}} 2^{2 H\left(X_{2} \mid X_{r, 1}^{*}\right)}+2^{2 H\left(N_{2}\right)}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right) \tag{162}\\
& \geq \frac{1}{2} \log \left(\rho_{1}^{2} \rho_{2}^{2} 2^{-2 R_{1}-2 R_{2}} 2^{2 H\left(X_{1}\right)}+\rho_{2}^{2} 2^{-2 R_{2}} 2^{2 H\left(N_{1}\right)}+2^{2 H\left(N_{2}\right)}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right) \tag{163}
\end{align*}
$$

Next, we look at the distortion constraint.
Distortion Constraint: The choices in (122)-124 imply that

$$
\begin{equation*}
D_{j} \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}^{*}\right\|^{2}\right]=\mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}^{G}\right\|^{2}\right], \quad j=1,2,3 \tag{164}
\end{equation*}
$$

Finally, we look at the perception constraint
Perception Constraint:
Define the following distribution

$$
\begin{equation*}
P_{U^{*} V^{*}}:=\arg \inf _{\substack{\tilde{P}_{U V}: \\ \tilde{P}_{U}=P_{X_{1}} \\ \tilde{P}_{V}=P_{\tilde{X}_{1}^{*}}}} \mathbb{E}_{\tilde{P}}\left[\|U-V\|^{2}\right] . \tag{165}
\end{equation*}
$$

Now, define $P_{U^{G} V^{G}}$ to be a Gaussian joint distribution with the following covariance matrix

$$
\begin{equation*}
\operatorname{cov}\left(U^{G}, V^{G}\right)=\operatorname{cov}\left(U^{*}, V^{*}\right) \tag{166}
\end{equation*}
$$

555 Then, we have the following set of inequalities:

$$
\begin{align*}
& P_{1} \geq W_{2}^{2}\left(P_{X_{1}}, P_{\hat{X}_{1}^{*}}\right)=\inf _{\substack{\tilde{P}_{U V}: \\
\tilde{P}_{U}=P_{X_{1}} \\
\tilde{P}_{V}=P_{\hat{X}_{1}^{*}}}} \mathbb{E}_{\tilde{P}}\left[\|U-V\|^{2}\right] \tag{167}\\
& =\mathbb{E}\left[\left\|U^{*}-V^{*}\right\|^{2}\right] \tag{168}\\
& =\mathbb{E}\left[\left\|U^{G}-V^{G}\right\|^{2}\right] \tag{169}\\
& \geq W_{2}^{2}\left(P_{U^{G}}, P_{V^{G}}\right) \tag{170}\\
& =\inf _{\substack{\hat{P}_{U V}: \\
\hat{P}_{U}=P_{U G}}} \mathbb{E}_{\hat{P}}\left[\|U-V\|^{2}\right] \tag{171}\\
& \hat{P}_{V}=P_{V G} \\
& =\inf _{\substack{\hat{P}_{U V}: \\
\hat{P}_{U}=P_{X_{1}}}} \mathbb{E}_{\hat{P}}\left[\|U-V\|^{2}\right] \tag{172}\\
& \hat{P}_{V}=P_{\hat{X}_{1}^{G}} \\
& =W_{2}^{2}\left(P_{X_{1}}, P_{\hat{X}_{1}^{G}}\right), \tag{173}
\end{align*}
$$

where

- (168) follows from the definition in (165);
- 169 follows from (166) which implies that $\left(U^{*}, V^{*}\right)$ and $\left(U^{G}, V^{G}\right)$ have the same secondorder statistics;
- (172) follows because $P_{V^{G}}=P_{\hat{X}_{1}^{G}}$ which is justified in the following. First, notice that both $P_{V^{G}}$ and $P_{\hat{X}_{1}^{G}}$ are Gaussian distributions. Denote the variance of V^{G} by $\sigma_{V^{G}}^{2}$ and recall that the variance of \hat{X}_{1}^{G} is denoted by $\sigma_{\hat{X}_{1}^{G}}^{2}$. According to (166), $\sigma_{V^{G}}^{2}$ is equal to the variance of V^{*}. Also, from (165), we know that $P_{V^{*}}=P_{\hat{X}_{1}^{*}}$, hence the variances of V^{*} and \hat{X}_{1}^{*} are the same. On the other side, according to 122 , we know that the variance of \hat{X}_{1}^{*} is equal to $\sigma_{\hat{X}_{1}^{G}}^{2}$. Thus, we conclude that $\sigma_{\hat{X}_{1}^{G}}^{2}=\sigma_{V^{G}}^{2}$, which yields $P_{V^{G}}=P_{\hat{X}_{1}^{G}}$. A similar argument shows that $P_{U^{G}}=P_{X_{1}}$.

A similar argument holds for the perception constraint of the second and third steps for both PLFs.
Thus, we have proved the set of Gaussian auxiliary random variables $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right)$ given in (125)(127) where the coefficients are chosen according to distortion-perception constraints, provides an outer bound to $\mathcal{C}_{\text {RDP }}$ which is the set of all tuples (R, D, P) such that

$$
\begin{align*}
R_{1} & \geq I\left(X_{1} ; \hat{X}_{1}^{G}\right) \tag{174}\\
R_{2} & \geq \frac{1}{2} \log \left(\rho_{1}^{2} 2^{-2 R_{1}} 2^{2 H\left(X_{1}\right)}+2^{2 H\left(N_{1}\right)}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right), \tag{175}\\
R_{3} & \geq \frac{1}{2} \log \left(\rho_{1}^{2} \rho_{2}^{2} 2^{-2 R_{1}-2 R_{2}} 2^{2 H\left(X_{1}\right)}+\rho_{2}^{2} 2^{-2 R_{2}} 2^{2 H\left(N_{1}\right)}+2^{2 H\left(N_{2}\right)}\right)-H\left(X_{3} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right), \\
D_{j} & \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}^{G}\right\|^{2}\right], \tag{176}\\
P_{j} & \geq W_{2}^{2}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1}^{G} \ldots \hat{X}_{j}^{G}}\right) . \tag{178}
\end{align*}
$$

Now, we need to show that the above RDP region is also an inner bound to $\mathcal{C}_{\text {RDP }}$. This is simply verified by the following choice. In iRDP region of (68)-(76), choose the following:

$$
\begin{equation*}
X_{r, j}=\hat{X}_{j}=\hat{X}_{j}^{G}, \quad j=1,2,3, \tag{179}
\end{equation*}
$$

where $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right)$ satisfy (125)-(127) with coefficients chosen according to distortion-perception constraints. The lower bounds on distortion and perception constraints in (177) and (178) are immediately achieved by this choice. Now, we will look at the rate constraints. The achievable rate constraint of the first step can be written as follows

$$
\begin{equation*}
R_{1} \geq I\left(X_{1} ; \hat{X}_{1}^{G}\right) \tag{180}
\end{equation*}
$$

which immediately coincides with (174). The achievable rate of the second step can be written as follows

$$
\begin{align*}
R_{2} & \geq I\left(X_{2} ; \hat{X}_{2}^{G} \mid \hat{X}_{1}^{G}\right) \tag{181}\\
& =H\left(X_{2} \mid \hat{X}_{1}^{G}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{182}\\
& =H\left(\rho_{1} X_{1}+N_{1} \mid \hat{X}_{1}^{G}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{183}\\
& =\frac{1}{2} \log \left(\rho_{1}^{2} 2^{2 H\left(X_{1} \mid \hat{X}_{1}^{G}\right)}+2^{2 H\left(N_{1}\right)}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{184}\\
& \geq \frac{1}{2} \log \left(\rho_{1}^{2} 2^{-2 R_{1}} 2^{2 H\left(X_{1}\right)}+2^{2 H\left(N_{1}\right)}\right)-H\left(X_{2} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{185}
\end{align*}
$$

where

- 184] follows because EPI holds with "equality" for jointly Gaussian distributions [38, pp. 22];
- 185) follows from 175.

Thus, the bound in (185) coincides with 155). A similar argument holds for the achievable rate of the third frame.

Notice that the above proof (both converse and achievability) can be extended to T frames using the sequential analysis that was presented. Thus, without loss of optimality, one can restrict to the jointly Gaussian distributions and identity functions $\eta_{1}($.$) and \eta_{2}(.,$.$) in iRDP region \mathcal{C}_{\text {RDP }}$.
For a given rate R , the following corollary provides the optimization programs which lead to the characterization of the DP tradeoff $\mathcal{D P}(\mathrm{R})$ for the Gauss-Markov source model.

Corollary 1 For a given rate tuple R and $T=2$ frames, the optimal reconstructions of the DPtradeoff $\mathcal{D} \mathcal{P}(\mathrm{R})$ can be written as follows

$$
\begin{align*}
& \hat{X}_{1}^{G}=\nu X_{1}+Z_{1} \tag{186}\\
& \hat{X}_{2}^{G}=\omega_{1} \hat{X}_{1}^{G}+\omega_{2} X_{2}+Z_{2} \tag{187}
\end{align*}
$$

where $Z_{1}\left(\right.$ resp $\left.Z_{2}\right)$ is a Gaussian random variable independent of $X_{1}\left(\operatorname{resp}\left(\hat{X}_{1}^{G}, X_{2}\right)\right.$) and $\hat{X}_{j}^{G} \sim$ $\mathcal{N}\left(0, \hat{\sigma}_{j}^{2}\right)$ for $j=1,2$, and $\nu, \omega_{1}, \omega_{2}, \hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}$ are the solutions of the following optimization program for the first step,

$$
\begin{array}{ll}
& \min _{\nu, \hat{\sigma}_{1}^{2}} \sigma_{1}^{2}+\hat{\sigma}_{1}^{2}-2 \nu \sigma_{1}^{2} \\
\text { s.t. } \quad & \nu^{2} \sigma_{1}^{2} \leq \hat{\sigma}_{1}^{2}\left(1-2^{-2 R_{1}}\right), \\
& \left(\sigma_{1}-\hat{\sigma}_{1}\right)^{2} \leq P_{1}, \tag{188c}
\end{array}
$$

and the following minimization problem for the second step and PLF-FMD,

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}, \hat{\sigma}_{2}^{2}} \sigma_{2}^{2}+\hat{\sigma}_{2}^{2}-2 \nu \omega_{1} \rho_{1} \sigma_{1} \sigma_{2}-2 \omega_{2} \sigma_{2}^{2} \\
\text { s.t. } \quad & \omega_{2}^{2} \sigma_{2}^{2}\left(1-2^{-2 R_{2}} \frac{\nu^{2} \rho_{1}^{2} \sigma_{1}^{2}}{\hat{\sigma}_{1}^{2}}\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \nu \rho_{1} \sigma_{1} \sigma_{2}\right)\left(1-2^{-2 R_{2}}\right), \\
& \left(\sigma_{2}-\hat{\sigma}_{2}\right)^{2} \leq P_{2} \tag{189c}
\end{array}
$$

or the following minimization problem for the second step and PLF-JD,

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}, \hat{\sigma}_{2}^{2}} \sigma_{2}^{2}+\hat{\sigma}_{2}^{2}-2 \nu \omega_{1} \rho_{1} \sigma_{1} \sigma_{2}-2 \omega_{2} \sigma_{2}^{2} \\
\text { s.t. } \quad & \omega_{2}^{2} \sigma_{2}^{2}\left(1-2^{-2 R_{2}} \frac{\nu^{2} \rho_{1}^{2} \sigma_{1}^{2}}{\hat{\sigma}_{1}^{2}}\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \nu \rho_{1} \sigma_{1} \sigma_{2}\right)\left(1-2^{-2 R_{2}}\right), \\
& \operatorname{tr}\left(\Sigma_{12}+\hat{\Sigma}_{12}-2\left(\Sigma_{12}^{1 / 2} \hat{\Sigma}_{12} \Sigma_{12}^{1 / 2}\right)^{1 / 2}\right) \leq P_{2} \tag{190c}
\end{array}
$$

where $\operatorname{tr}($.$) denotes the trace of a matrix and$

$$
\begin{align*}
\Sigma_{12} & :=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho_{1} \sigma_{1} \sigma_{2} \\
\rho_{1} \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right), \tag{191}\\
\hat{\Sigma}_{12} & :=\left(\begin{array}{cc}
\hat{\sigma}_{1}^{2} & \omega_{1} \hat{\sigma}_{1}^{2}+\nu \omega_{2} \rho_{1} \sigma_{1} \sigma_{2} \\
\omega_{1} \hat{\sigma}_{1}^{2}+\nu \omega_{2} \rho_{1} \sigma_{1} \sigma_{2} & \hat{\sigma}_{2}^{2}
\end{array}\right) . \tag{192}
\end{align*}
$$

Proof: We obtain the optimization programs for $T=2$ frames as follows.
For a given rate tuple R, the DP-tradeoff $\mathcal{D P}(R)$ is given by the set of all tuples (D, P) such that there exists \hat{X}^{G} satisfying the following Markov chains

$$
\begin{align*}
& \hat{X}_{1}^{G} \rightarrow X_{1} \rightarrow X_{2}, \tag{193}\\
& \hat{X}_{2}^{G} \rightarrow\left(\hat{X}_{1}^{G}, X_{2}\right) \rightarrow X_{1}, \tag{194}
\end{align*}
$$

and the following conditions,

$$
\begin{align*}
& R_{1} \geq I\left(X_{1} ; \hat{X}_{1}^{G}\right), \tag{195}\\
& R_{2} \geq I\left(X_{2} ; \hat{X}_{2}^{G} \mid \hat{X}_{1}^{G}\right), \tag{196}
\end{align*}
$$

and

$$
\begin{align*}
D_{j} & \geq \mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}^{G}\right\|^{2}\right], \quad j=1,2, \tag{197}\\
P_{j} & \geq W_{2}^{2}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1}^{G} \ldots \hat{X}_{j}^{G}} .\right. \tag{198}
\end{align*}
$$

In general, the set of reconstructions that satisfy (193)-(194) can be written as follows

$$
\begin{align*}
& \hat{X}_{1}^{G}=\nu X_{1}+Z_{1}, \tag{199}\\
& \hat{X}_{2}^{G}=\omega_{1} \hat{X}_{1}^{G}+\omega_{2} X_{2}+Z_{2} . \tag{200}
\end{align*}
$$

Plugging the above into (195) and 196) yields the following rate expressions

$$
\begin{align*}
\frac{1}{2} \log \frac{\hat{\sigma}_{1}^{2}}{\hat{\sigma}_{1}^{2}-\nu^{2} \sigma_{1}^{2}} & \leq R_{1}, \tag{201}\\
\frac{1}{2} \log \frac{\hat{\sigma}_{2}^{2}-\left(\omega_{1} \hat{\sigma}_{1}+\frac{\omega_{2} \nu \rho_{1} \sigma_{1} \sigma_{2}}{\hat{\sigma}_{1}}\right)^{2}}{\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-\omega_{2}^{2} \sigma_{2}^{2}-2 \omega_{1} \omega_{2} \nu \rho_{1} \sigma_{1} \sigma_{2}} & \leq R_{2} . \tag{202}
\end{align*}
$$

Re-arranging the terms in the above constraints yields the conditions in 188b and 190b. Considering (197) with 199-200) gives the following expressions for distortions

$$
\begin{align*}
& \mathbb{E}\left[\left\|X_{1}-\hat{X}_{1}^{G}\right\|^{2}\right]=\sigma_{1}^{2}+\hat{\sigma}_{1}^{2}-2 \mathbb{E}\left[X_{1} \hat{X}_{1}^{G}\right]=\sigma_{1}^{2}+\hat{\sigma}_{1}^{2}-2 \nu \sigma_{1}^{2}, \tag{203}\\
& \mathbb{E}\left[\left\|X_{2}-\hat{X}_{2}^{G}\right\|^{2}\right]=\sigma_{2}^{2}+\hat{\sigma}_{2}^{2}-2 \mathbb{E}\left[X_{2} \hat{X}_{2}^{G}\right]=\sigma_{2}^{2}+\hat{\sigma}_{2}^{2}-2 \omega_{1} \nu \rho_{1} \sigma_{1} \sigma_{2}-2 \omega_{2} \sigma_{2}^{2}, \tag{204}
\end{align*}
$$

which are the objective functions in 188a and 190a). Now, we evaluate the perception constraint. Notice that the covariance matrices of $\left(X_{1}, X_{2}\right)$ and $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right)$ are given by Σ_{12} and $\hat{\Sigma}_{12}$ defined in (191) and (192), respectively. The Wasserstein-2 distance between two Gaussian distributions with covariance matrices Σ_{12} and $\hat{\Sigma}_{12}$ is given in (190c) as discussed in [26, pp. 18].
Similarly, the expressions in 189) for the decoder based on PLF-FMD can be obtained.

F Gauss-Markov Source Model: Extremal Rates

In this section, we derive the achievable reconstructions for some special cases. We assume that we have only two frames, i.e., $D_{3}, P_{3} \rightarrow \infty$. Moreover, let $\sigma_{1}^{2}=\sigma_{2}^{2}:=\sigma^{2}$ for simplicity. In general, the reconstructions can be written as follows

$$
\begin{align*}
& \hat{X}_{1}^{G}=\nu X_{1}+Z_{1}, \tag{205}\\
& \hat{X}_{2}^{G}=\omega_{1} \hat{X}_{1}^{G}+\omega_{2} X_{2}+Z_{2}, \tag{206}
\end{align*}
$$

where $\hat{X}_{j}^{G} \sim \mathcal{N}\left(0, \hat{\sigma}_{j}^{2}\right)$ for $j=1,2$. Recall the optimization program of the first step in (188) as follows

$$
\begin{array}{ll}
& \min _{\nu, \hat{\sigma}_{1}^{2}} \sigma^{2}+\hat{\sigma}_{1}^{2}-2 \nu \sigma^{2}, \\
\text { s.t. } \quad & \nu^{2} \sigma^{2} \leq \hat{\sigma}_{1}^{2}\left(1-2^{-2 R_{1}}\right), \\
& \left(\sigma-\hat{\sigma}_{1}\right)^{2} \leq P_{1}, \tag{207c}
\end{array}
$$

For a given $\hat{\sigma}_{1}^{2}$, the objective function in 207a is a monotonically deacreasing function of ν, hence one can restrict ν to be nonnegative, without loss of optimality. So, the above optimization program can be written as

$$
\begin{array}{ll}
& \min _{\nu, \hat{\sigma}_{1}^{2}} \sigma^{2}+\hat{\sigma}_{1}^{2}-2 \nu \sigma^{2}, \\
\text { s.t. } \quad & 0 \leq \nu \leq \frac{\hat{\sigma}_{1}}{\sigma} \sqrt{1-2^{-2 R_{1}}}, \\
& \left(\sigma-\hat{\sigma}_{1}\right)^{2} \leq P_{1}, \tag{208c}
\end{array}
$$

Optimizing with respect to ν in the above program, we have

$$
\begin{equation*}
\nu=\frac{\hat{\sigma}_{1}}{\sigma} \sqrt{1-2^{-2 R_{1}}} \tag{209}
\end{equation*}
$$

where the optimization program reduces to

$$
\begin{array}{ll}
& \min _{\hat{\sigma}_{1}^{2}} \sigma^{2}+\hat{\sigma}_{1}^{2}-2 \sigma \hat{\sigma}_{1} \sqrt{1-2^{-2 R_{1}}}, \\
\text { s.t. } & \left(\sigma-\hat{\sigma}_{1}\right)^{2} \leq P_{1} . \tag{210b}
\end{array}
$$

Next, recall the optimization program of the second step for PLF-FMD in 189) as follows

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}, \hat{\sigma}_{2}^{2}} \sigma^{2}+\hat{\sigma}_{2}^{2}-2 \nu \omega_{1} \rho_{1} \sigma^{2}-2 \omega_{2} \sigma^{2} \\
\text { s.t. } \quad & \omega_{2}^{2} \sigma^{2}\left(1-2^{-2 R_{2}} \frac{\nu^{2} \rho_{1}^{2} \sigma^{2}}{\hat{\sigma}_{1}^{2}}\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \nu \rho_{1} \sigma^{2}\right)\left(1-2^{-2 R_{2}}\right), \\
& \left(\sigma-\hat{\sigma}_{2}\right)^{2} \leq P_{2} \tag{211c}
\end{array}
$$

Plugging (209) into the above program, we get

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}, \hat{\sigma}_{2}^{2}} \sigma^{2}+\hat{\sigma}_{2}^{2}-2 \omega_{1} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{1-2^{-2 R_{1}}}-2 \omega_{2} \sigma^{2} \\
\text { s.t. } & \omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2} 2^{-2 R_{2}}\left(1-2^{-2 R_{1}}\right)\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{1-2^{-2 R_{1}}}\right)\left(1-2^{-2 R_{2}}\right) \tag{212b}
\end{array}
$$

$$
\begin{equation*}
\left(\sigma-\hat{\sigma}_{2}\right)^{2} \leq P_{2} \tag{212c}
\end{equation*}
$$

The optimization program for the second step of PLF-JD is similar to the above program (212) when (212c) is replaced by (190c). In this section, we study different rate regimes and obtain the solutions of the above optimization programs. In particular, we are interested in two perception thresholds $P_{2} \rightarrow \infty$ and $P_{2}=0$ where the former corresponds to the classical rate-distortion region and the latter is the case of 0-PLF. For the 0-PLF-FMD, we have $\hat{\sigma}_{1}=\hat{\sigma}_{2}=\sigma$. For the 0-PLF-JD, in addition to preserving the marginals, the correlation $\mathbb{E}\left[\hat{X}_{1}^{G} \hat{X}_{2}^{G}\right]=\rho_{1} \sigma^{2}$ should be satisfied. For each of these cases, the optimization program in 212) is simplified in the following.
Optimization Program of the Second Step for $P \rightarrow \infty$: In this case, there is no perception constraint in the setting and the optimization program in (212) reduces to the following

$$
\begin{array}{ll}
& \min \sigma^{2}+\hat{\sigma}_{2}^{2}-2 \omega_{1} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{1-2^{-2 R_{1}}}-2 \omega_{2} \sigma^{2}, \\
& \hat{\sigma}_{2}^{2}, \omega_{1}, \omega_{2} \tag{213b}\\
\text { s.t. } & \omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2} 2^{-2 R_{2}}\left(1-2^{-2 R_{1}}\right)\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{1-2^{-2 R_{1}}}\right)\left(1-2^{-2 R_{2}}\right) .
\end{array}
$$

This case corresponds to the classical rate-distortion tradeoff where it is shown that for a given rate, the MMSE reconstructions are indeed optimal [28, 37]. The expressions for MMSE reconstructions are given in Appendix H. 1
Optimization Program of the Second Step for 0-PLF-FMD: In this case, we have $\hat{\sigma}_{1}=\hat{\sigma}_{2}=\sigma$. So, the optimization program in 212) reduces to the following

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2} \sqrt{1-2^{-2 R_{1}}}-2 \omega_{2} \sigma^{2} \\
\text { s.t. } & \omega_{2}^{2}\left(1-\rho_{1}^{2} 2^{-2 R_{2}}\left(1-2^{-2 R_{1}}\right)\right) \leq\left(1-\omega_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \sqrt{1-2^{-2 R_{1}}}\right)\left(1-2^{-2 R_{2}}\right) . \tag{214b}
\end{array}
$$

Here, ω_{1} and ω_{2} only need to satisfy the rate constraint given in 214b which represents a larger search space than that of 0-PLF-JD which will be discussed in the following.

Optimization Program of the Second Step for 0-PLF-JD: In this case, in addition to preserving marginals $\hat{\sigma}_{1}=\hat{\sigma}_{2}=\sigma$, we need to satisfy the constraint $\mathbb{E}\left[\hat{X}_{1}^{G} \hat{X}_{2}^{G}\right]=\rho_{1} \sigma^{2}$. Thus, the optimization program of this case has an extra condition $\omega_{1}+\nu \omega_{2} \rho_{1}=\rho_{1}$ comparing to 214) and it is given as follows

$$
\begin{array}{ll}
& \min _{\omega_{1}, \omega_{2}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2} \sqrt{1-2^{-2 R_{1}}}-2 \omega_{2} \sigma^{2}, \\
\text { s.t. } \quad & \omega_{2}^{2}\left(1-\rho_{1}^{2} 2^{-2 R_{2}}\left(1-2^{-2 R_{1}}\right)\right) \leq\left(1-\omega_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \sqrt{1-2^{-2 R_{1}}}\right)\left(1-2^{-2 R_{2}}\right), \\
& \omega_{1}+\nu \omega_{2} \rho_{1}=\rho_{1} . \tag{215b}
\end{array}
$$

Comparing (215) with (214), we notice that the search space of the optimization program for 0-PLFJD is smaller than that of 0-PLF-FMD. Thus, a larger distortion is expected for 0-PLF-JD.

Before studying each case of extremal rates, we introduce another constraint in the optimization program of all above three cases of perception metrics. We restrict to nonnegative $\omega_{1} \omega_{2} \rho_{1}$ and get an upper bound on the programs (213), (214) and (215). So, in further discussion on these programs, the constraint $\omega_{1} \omega_{2} \rho_{1} \geq 0$ will be also considered.

1) $R_{1}=R_{2}=\epsilon$ for small ϵ :

In the low-rate regime, notice that we can approximate the rate term as follows

$$
\begin{equation*}
1-2^{-2 \epsilon}=2 \epsilon \ln 2+O\left(\epsilon^{2}\right) \tag{216}
\end{equation*}
$$

Plugging the above into (209), we have

$$
\begin{equation*}
\nu=\frac{\hat{\sigma}_{1}}{\sigma} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)} . \tag{217}
\end{equation*}
$$

Also, inserting (216) into the rate constraint of the second step (211c) yields the following
$\omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2} 2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right) \leq\left(\hat{\sigma}_{2}^{2}-\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right){ }^{1}$

Re-arranging the terms in the above inequality yields the following

$$
\begin{align*}
\hat{\sigma}_{2}^{2} & \geq \frac{\omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2} 2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)}{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}+\omega_{1}^{2} \hat{\sigma}_{1}^{2}+2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)} \tag{219}\\
& =\omega_{2}^{2} \sigma^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2} \hat{\sigma}_{1}^{2}+2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)} \tag{220}
\end{align*}
$$

So, in all of the optimization programs of the case $R_{1}=R_{2}=\epsilon$, the above constraint (220) will replace the rate constraint of the second step.

Now, we consider different cases based on the perception measure.
a) Without a perception constraint: In this case, using (216), the optimization program of the first step in (210) simplifies to the following

$$
\begin{equation*}
D_{1}=\min _{\hat{\sigma}_{1}^{2}} \sigma^{2}+\hat{\sigma}_{1}^{2}-2 \sigma \hat{\sigma}_{1} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}, \tag{221}
\end{equation*}
$$

which gives us the following optimal solution

$$
\begin{equation*}
\hat{\sigma}_{1}=\sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)} \sigma=\sqrt{2 \epsilon \ln 2} \sigma+O(\epsilon) \tag{222}
\end{equation*}
$$

Plugging the above solution into (217) and 221, we get

$$
\begin{equation*}
\nu=2 \epsilon \ln 2+O\left(\epsilon^{2}\right) \tag{223}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
D_{1}=(1-2 \epsilon \ln 2) \sigma^{2}+O\left(\epsilon^{2}\right) \tag{224}
\end{equation*}
$$

\]

Now, we look at the optimization program of the second step (213). For a given ω_{1} and ω_{2}, the objective function is an increasing function of $\hat{\sigma}_{2}^{2}$, so optimizing over $\hat{\sigma}_{2}^{2}$ yields the following

$$
\begin{equation*}
\hat{\sigma}_{2}^{2}=\omega_{2}^{2} \sigma^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2} \hat{\sigma}_{1}^{2}+2 \omega_{1} \omega_{2} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)} \tag{225}
\end{equation*}
$$

Thus, the optimization program (213) is further upper bounded by the following

$$
\begin{equation*}
\min _{\substack{\hat{\sigma}_{2}^{2}, \omega_{1}, \omega_{2}: \\ \omega_{1} \omega_{2} \rho_{1} \geq 0}} \sigma^{2}+\omega_{2}^{2} \sigma^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2} \hat{\sigma}_{1}^{2}-2\left(1-\omega_{2}\right) \omega_{1} \rho_{1} \hat{\sigma}_{1} \sigma \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}-2 \omega_{2} \sigma^{2} . \tag{226}
\end{equation*}
$$

The optimal solution of the above minimization is given by the following

$$
\begin{align*}
& \omega_{1}=\rho_{1}+O(\epsilon), \tag{227}\\
& \omega_{2}=2 \epsilon \ln 2+O\left(\epsilon^{2}\right) . \tag{228}
\end{align*}
$$

Thus, considering the dominant terms of (223), (227) and (228), we have

$$
\begin{align*}
& \hat{X}_{1}^{G}=(2 \epsilon \ln 2) X_{1}+Z_{1}, \tag{229}\\
& \hat{X}_{2}^{G}=\rho_{1} \hat{X}_{1}^{G}+(2 \epsilon \ln 2) X_{2}+Z_{2}, \tag{230}
\end{align*}
$$

and $Z_{j} \sim \mathcal{N}\left(0,2 \epsilon \sigma^{2} \ln 2\right)$ for $j=1,2$. Notice that

$$
\begin{align*}
& D_{1}=(1-2 \epsilon \ln 2) \sigma^{2} \tag{231}\\
& D_{2}=\left(1-\left(1+\rho_{1}^{2}\right) 2 \epsilon \ln 2\right) \sigma^{2} \tag{232}
\end{align*}
$$

b) 0-PLF-FMD: In this case, we have $\hat{\sigma}_{1}=\hat{\sigma}_{2}=\sigma$. For the optimization program of the first step, (209) reduces to the following

$$
\begin{equation*}
\nu=\sqrt{2 \epsilon \ln 2}+O(\epsilon) \tag{233}
\end{equation*}
$$

and D_{1} is given in the following which is derived by 210

$$
\begin{equation*}
D_{1}=2(1-\sqrt{2 \epsilon \ln 2}) \sigma^{2}+O(\epsilon) \tag{234}
\end{equation*}
$$

Now, we study the optimization program of the second step. The optimization program of 214 is further upper bounded by the following

$$
\begin{array}{ll}
& \min _{\substack{\omega_{1}, \omega_{2}: \\
\omega_{1} \omega_{2} \rho_{1} \geq 0}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}-2 \omega_{2} \sigma^{2}, \\
\text { s.t. } & 1 \geq \sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+2 \omega_{1} \omega_{2} \rho_{1} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}} . \tag{235b}
\end{array}
$$

Now, we further simplify the inequality 235 b in the following. Considering the fact that $\omega_{1} \omega_{2} \rho_{1} \geq 0$, this inequality implies that

$$
\begin{align*}
& \omega_{1}^{2} \leq 1 \tag{236}\\
& \omega_{2}^{2} \leq 2 \epsilon \ln 2+O\left(\epsilon^{2}\right) \tag{237}
\end{align*}
$$

So, using the above inequalities, the RHS of 235b can be upper bounded as follows

$$
\begin{align*}
& \sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+2 \omega_{1} \omega_{2} \rho_{1} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}} \\
& \quad \leq \sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \rho_{1} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}} \\
& \quad \leq \sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+O\left(\epsilon^{3 / 2}\right)} \tag{238}
\end{align*}
$$

Now, according to 238, the optimization program in 235) is further upper bounded by the following

$$
\begin{array}{ll}
& \min _{\substack{\omega_{1}, \omega_{2}: \\
\omega_{1} \omega_{2} \rho_{1} \geq 0}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}-2 \omega_{2} \sigma^{2}, \\
\text { s.t. } & 1 \geq \sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+O\left(\epsilon^{3 / 2}\right)} \tag{239b}
\end{array}
$$

For a given $\omega_{1}\left(\operatorname{resp} \omega_{2}\right)$, the objective function (239a) is a monotonically decreasing function of ω_{2} (resp ω_{1}), so the optimal solution is attained on the boundary, i.e.,

$$
\begin{equation*}
1=\sqrt{\omega_{2}^{2}\left(\frac{1}{2 \epsilon \ln 2}+O(1)\right)+\omega_{1}^{2}+O\left(\epsilon^{3 / 2}\right)} \tag{240}
\end{equation*}
$$

Thus, the program 239) further simplifies to the following

$$
\begin{equation*}
\min _{\substack{\omega_{1} \\ \omega_{1} \rho_{1} \geq 0}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2} \sqrt{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}-2 \sigma^{2} \sqrt{\left(1-\omega_{1}^{2}-O\left(\epsilon^{3 / 2}\right)\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)} . \tag{241}
\end{equation*}
$$

The optimal solution of the above program is given by

$$
\begin{equation*}
\omega_{1}=\frac{\rho_{1}}{\sqrt{1+\rho_{1}^{2}}}+O(\epsilon) \tag{242}
\end{equation*}
$$

which together with (240) yields

$$
\begin{equation*}
\omega_{2}=\sqrt{\frac{2 \epsilon \ln 2}{1+\rho_{1}^{2}}}+O(\epsilon) \tag{243}
\end{equation*}
$$

Thus, considering dominant terms of (233, 242) and 243, we get

$$
\begin{align*}
\hat{X}_{1}^{G} & =\sqrt{2 \epsilon \ln 2} X_{1}+Z_{1} \tag{244}\\
\hat{X}_{2}^{G} & =\frac{\rho_{1}}{\sqrt{1+\rho_{1}^{2}}} \hat{X}_{1}^{G}+\sqrt{\frac{2 \epsilon \ln 2}{1+\rho_{1}^{2}}} X_{2}+Z_{2} \tag{245}
\end{align*}
$$

where $Z_{1} \sim \mathcal{N}\left(0,(1-2 \epsilon \ln 2) \sigma^{2}\right)$ and

$$
\begin{equation*}
Z_{2} \sim \mathcal{N}\left(0,\left(1-\frac{\rho_{1}^{2}}{1+\rho_{1}^{2}}-\frac{1+2 \rho_{1}^{2}}{1+\rho_{1}^{2}} 2 \epsilon \ln 2\right) \sigma^{2}\right) \tag{246}
\end{equation*}
$$

Notice that

$$
\begin{align*}
& D_{1}=2(1-\sqrt{2 \epsilon \ln 2}) \sigma^{2} \tag{247}\\
& D_{2}=2\left(1-\sqrt{\left(1+\rho_{1}^{2}\right) 2 \epsilon \ln 2}\right) \sigma^{2} \tag{248}
\end{align*}
$$

For the special case of $\rho_{1}=1$, the expressions in (244) and (245) simplify as follows

$$
\begin{align*}
& \hat{X}_{1}^{G}=\sqrt{2 \epsilon \ln 2} X_{1}+Z_{1} \tag{249}\\
& \hat{X}_{2}^{G}=\sqrt{2} \sqrt{2 \epsilon \ln 2} X_{1}+\frac{1}{\sqrt{2}} Z_{1}+Z_{2} \tag{250}
\end{align*}
$$

Define $Z_{\mathrm{FMD}}:=\frac{1}{\sqrt{2}} Z_{1}+Z_{2}$ and notice that $Z_{\mathrm{FMD}} \sim \mathcal{N}\left(0,(1-4 \epsilon \ln 2) \sigma^{2}\right)$. Moreover, we have

$$
\begin{align*}
& D_{1}=2(1-\sqrt{2 \epsilon \ln 2}) \sigma^{2} \tag{251}\\
& D_{2}=2(1-\sqrt{4 \epsilon \ln 2}) \sigma^{2} \tag{252}
\end{align*}
$$

c) 0-PLF-JD: In this case, the optimization program of the first step is similar to the previous case. The optimization program of the second step is given in where the condition $\omega_{1}+\nu \omega_{2} \rho_{1}=\rho_{1}$ is introduced. According to 233, $\nu=O(\sqrt{\epsilon})$ which suggests the following form for ω_{1},

$$
\begin{equation*}
\omega_{1}=\rho_{1}-\delta_{\epsilon} \tag{253}
\end{equation*}
$$

for some small δ_{ϵ} that goes to zero as $\epsilon \rightarrow 0$. The parameter δ_{ϵ} will be determined later. Plugging $\omega_{1}=\rho_{1}-\delta_{\epsilon}$ into 240, we find out that only the constant term of ω_{1} contributes to a dominant term for ω_{2} which yields the following

$$
\begin{equation*}
\omega_{2}=\sqrt{2 \epsilon \ln 2\left(1-\rho_{1}^{2}\right)}+O(\epsilon) \tag{254}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \hat{X}_{1}^{G}=\sqrt{2 \epsilon \ln 2} X_{1}+Z_{1} \tag{255}\\
& \hat{X}_{2}^{G}=\left(\rho_{1}-\delta_{\epsilon}\right) \hat{X}_{1}^{G}+\sqrt{\left(1-\rho_{1}^{2}\right) 2 \epsilon \ln 2} X_{2}+Z_{2} \tag{256}
\end{align*}
$$

Now, applying the constraint $\mathbb{E}\left[\hat{X}_{1}^{G} \hat{X}_{2}^{G}\right]=\rho_{1} \sigma^{2}$, we get

$$
\begin{equation*}
\delta_{\epsilon}=\rho_{1} \sqrt{1-\rho_{1}^{2}}(2 \epsilon \ln 2) \tag{257}
\end{equation*}
$$

However, notice that since $\delta_{\epsilon}=O(\epsilon)$, it does not contribute to dominant terms of distortion. So, we can simply represent \hat{X}_{1}^{G} and \hat{X}_{2}^{G} as follows

$$
\begin{align*}
& \hat{X}_{1}^{G}=\sqrt{2 \epsilon \ln 2} X_{1}+Z_{1} \tag{258}\\
& \hat{X}_{2}^{G}=\rho_{1} \hat{X}_{1}^{G}+\sqrt{\left(1-\rho_{1}^{2}\right) 2 \epsilon \ln 2} X_{2}+Z_{2} \tag{259}
\end{align*}
$$

where $Z_{1} \sim \mathcal{N}\left(0,(1-2 \epsilon \ln 2) \sigma^{2}\right)$ and $Z_{2} \sim \mathcal{N}\left(0,\left(1-\rho_{1}^{2}-\left(1-\rho_{1}^{2}+2 \rho_{1}^{2} \sqrt{1-\rho_{1}^{2}}\right) 2 \epsilon \ln 2\right) \sigma^{2}\right)$. The following distortions are also achievable

$$
\begin{align*}
& D_{1}=2(1-\sqrt{2 \epsilon \ln 2}) \sigma^{2} \tag{260}\\
& D_{2}=2\left(1-\left(\rho_{1}^{2}+\sqrt{1-\rho_{1}^{2}}\right) \sqrt{2 \epsilon \ln 2}\right) \sigma^{2} \tag{261}
\end{align*}
$$

608 For the special case of $\rho=1$, according to 259) and 261, we have $\hat{X}_{2}^{G}=\hat{X}_{1}^{G}$ and $D_{2}=D_{1}$.
2) $R_{1} \rightarrow \infty, R_{2}=\epsilon$ for small ϵ : In this case, since $R_{1} \rightarrow \infty$, we have $\hat{X}_{1}^{G}=X_{1}, D_{1}=0$, and we only need to solve the optimization program of the second step. Also, we have the following approximation

$$
\begin{equation*}
1-2^{-2 R_{2}}=1-2^{-2 \epsilon}=2 \epsilon \ln 2+O\left(\epsilon^{2}\right) \tag{262}
\end{equation*}
$$

609 We consider three different cases based on the perception constraint.
a) Without a perception constraint: In this case, consider the optimization program 213). For a given ω_{1} and ω_{2}, the objective function is an increasing function of $\hat{\sigma}_{2}^{2}$, hence optimizing over $\hat{\sigma}_{2}^{2}$, we get

$$
\begin{equation*}
\hat{\sigma}_{2}^{2}=\frac{\omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2}+O(\epsilon)\right)}{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}+\omega_{1}^{2} \sigma^{2}+2 \omega_{1} \omega_{2} \rho_{1} \sigma^{2} \tag{263}
\end{equation*}
$$

The program in 213) is further upper bounded by the following

$$
\begin{equation*}
\min _{\substack{\omega_{1}, \omega_{2}: \\ \omega_{1} \omega_{2} \rho_{1} \geq 0}} \sigma^{2}+\frac{\omega_{2}^{2} \sigma^{2}\left(1-\rho_{1}^{2}+O(\epsilon)\right)}{2 \epsilon \ln 2+O\left(\epsilon^{2}\right)}+\omega_{1}^{2} \sigma^{2}+2 \omega_{1} \omega_{2} \rho_{1} \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2}-2 \omega_{2} \sigma^{2} \tag{264}
\end{equation*}
$$

The solution of the above optimization program is given by the following

$$
\begin{align*}
& \omega_{1}=\rho_{1}-\rho_{1}(2 \epsilon \ln 2) \tag{265}\\
& \omega_{2}=2 \epsilon \ln 2 \tag{266}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
& \hat{X}_{1}^{G}=X_{1} \tag{267}\\
& \hat{X}_{2}^{G}=\left(\rho_{1}-\rho_{1}(2 \epsilon \ln 2)\right) X_{1}+(2 \epsilon \ln 2) X_{2}+Z_{2} \tag{268}
\end{align*}
$$

where $Z_{2} \sim \mathcal{N}\left(0,\left(1-\rho_{1}^{2}\right) \sigma^{2} 2 \epsilon \ln 2\right)$. So, the reconstruction of the second frame closely resembles the first frame. The distortions of the first and second frames are zero and $\left(1-\rho_{1}^{2}-\left(1-\rho_{1}^{2}\right) 2 \epsilon \ln 2\right) \sigma^{2}$, respectively.
b) 0-PLF-FMD: In this case, $\hat{\sigma}_{1}=\hat{\sigma}_{2}=\sigma$. Thus, the optimization program in 214 is further upper bounded by the following

$$
\begin{array}{ll}
& \min _{\substack{\omega_{1}, \omega_{2}: \\
\omega_{1} \omega_{2}, 2}} 2 \sigma^{2}-2 \omega_{1} \rho_{1} \sigma^{2}-2 \omega_{2} \sigma^{2} \\
\text { s.t. } \quad & \omega_{2}^{2}\left(1-\rho_{1}^{2}+O(\epsilon)\right) \leq\left(1-\omega_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1}\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right) \tag{269b}
\end{array}
$$

For a given ω_{1} (resp ω_{2}), the objective function 269a) is a monotonically decreasing function of ω_{2} (resp ω_{1}). So, the optimal solution is attained on the boundary, i.e., 269b is satisfied with equality given as follows

$$
\begin{equation*}
\omega_{2}^{2}\left(1-\rho_{1}^{2}+O(\epsilon)\right)=\left(1-\omega_{1}^{2}-2 \omega_{1} \omega_{2} \rho_{1}\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right) \tag{270}
\end{equation*}
$$

It can be easily verified that the first-order terms of ω_{1} and ω_{2} which optimize the program are 1 and 0 , respectively. So, we write ω_{1} and ω_{2} in the following form

$$
\begin{align*}
& \omega_{1}=1+(2 \epsilon \ln 2) \delta_{1}+O\left(\epsilon^{2}\right), \tag{271}\\
& \omega_{2}=(2 \epsilon \ln 2) \delta_{2}+O\left(\epsilon^{2}\right), \tag{272}
\end{align*}
$$

for some real δ_{1} and δ_{2}. Plugging the above (271) and 272) into 270) and considering the dominant terms, we get

$$
\begin{equation*}
\delta_{2}^{2}\left(1-\rho_{1}^{2}\right)=-2 \delta_{1}-2 \rho_{1} \delta_{2} \tag{273}
\end{equation*}
$$

On the other side, we can write the objective function in 269) as follows

$$
\begin{align*}
2 \sigma^{2} & -2 \omega_{1} \rho_{1} \sigma^{2}-2 \omega_{2} \sigma^{2} \\
& =2 \sigma^{2}-2 \rho_{1} \omega_{1} \sigma^{2}-2 \omega_{2} \sigma^{2}+O\left(\epsilon^{2}\right) \tag{274}\\
& =2 \sigma^{2}-2 \rho_{1} \sigma^{2}-2\left(\rho_{1} \delta_{1} \sigma^{2}+\delta_{2} \sigma^{2}\right)(2 \epsilon \ln 2)+O\left(\epsilon^{2}\right) \tag{275}\\
& =2 \sigma^{2}-2 \rho_{1} \sigma^{2}-\left(-2 \rho_{1}^{2} \delta_{2} \sigma^{2}-\rho_{1}\left(1-\rho_{1}^{2}\right) \delta_{2}^{2}+2 \delta_{2} \sigma^{2}\right)(2 \epsilon \ln 2)+O\left(\epsilon^{2}\right) \tag{276}
\end{align*}
$$

Differentiating the above expression with respect to δ_{2} and letting it be zero, we have:

$$
\begin{equation*}
\delta_{2}=\frac{1}{\rho_{1}}, \quad \delta_{1}=-\frac{1+\rho_{1}^{2}}{2 \rho_{1}^{2}} \tag{277}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \hat{X}_{1}^{G}=X_{1} \tag{278}\\
& \hat{X}_{2}^{G}=\left(1-\frac{\left(1+\rho_{1}^{2}\right) 2 \epsilon \ln 2}{2 \rho_{1}^{2}}\right) \hat{X}_{1}^{G}+\frac{2 \epsilon \ln 2}{\rho_{1}} X_{2}+Z_{2} \tag{279}
\end{align*}
$$

where $Z_{2} \sim \mathcal{N}\left(0,\left(\frac{1-\rho_{1}^{2}}{\rho_{1}^{2}}\right) 2 \epsilon \ln 2\right)$. Again, the reconstruction of the second frame is almost similar to the first frame and the distortion is $2\left(1-\rho_{1}-\left(\frac{1-\rho_{1}^{2}}{2 \rho_{1}}\right) 2 \epsilon \ln 2\right) \sigma^{2}$.
c) 0-PLF-JD: First consider the case where $\rho_{1} \neq 1$. The optimization program is given in (215) where the constraint $\omega_{1}+\nu \rho_{1} \omega_{2}=\rho_{1}$ is introduced. Notice that ω_{1} can be written in the following form

$$
\begin{equation*}
\omega_{1}=\rho_{1}+\delta_{\epsilon} \tag{280}
\end{equation*}
$$

for some δ_{ϵ} that goes to zero as $\epsilon \rightarrow 0$. The parameter δ_{ϵ} will be determined later. Plugging $\omega_{1}=\rho_{1}+\delta_{\epsilon}$ into (270) yields the following

$$
\begin{equation*}
\omega_{2}=\sqrt{2 \epsilon \ln 2}+O(\epsilon) \tag{281}
\end{equation*}
$$

which is derived only through the first-order term of ω_{1} which is ρ_{1}. Now, considering the fact that $\mathbb{E}\left[\hat{X}_{1}^{G} \hat{X}_{2}^{G}\right]=\rho_{1} \sigma^{2}$, we obtain

$$
\begin{equation*}
\delta_{\epsilon}=-\rho_{1} \sqrt{2 \epsilon \ln 2} . \tag{282}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \hat{X}_{1}^{G}=X_{1} \tag{283}\\
& \hat{X}_{2}^{G}=\left(\rho_{1}-\rho_{1} \sqrt{2 \epsilon \ln 2}\right) \hat{X}_{1}^{G}+\sqrt{2 \epsilon \ln 2} X_{2}+Z_{2}, \tag{284}
\end{align*}
$$

where $Z_{2} \sim \mathcal{N}\left(0,\left(1-\rho_{1}^{2}\right) \sigma^{2}\right)$. Here, the reconstruction of the second frame closely resembles the first frame. The distortion of the second frame is $2\left(1-\rho_{1}^{2}-\left(1-\rho_{1}^{2}\right) \sqrt{2 \epsilon \ln 2}\right) \sigma^{2}$.
If $\rho_{1}=1$, we simply have $\hat{X}_{2}^{G}=\hat{X}_{1}^{G}=X_{1}=X_{2}$ which can be derived from 283-284, by letting $X_{1}=X_{2}$.
The analysis for the case of $R_{1}=\epsilon$ and $R_{2} \rightarrow \infty$ is similar and is omitted for brevity. The results of this section are summarized in Table 2

Table 2: Achievable reconstructions for extremal rates and different PLFs (The first, second and third rows represent reconstructions corresponding to the MMSE, 0-PLF-FMD and 0-PLF-JD, respectively).

[^1]
G Comparison of PLFs in Low-Rate Regime

Theorem 6 For sufficiently small ϵ, let $R_{j}=\epsilon$ and suppose that $\rho_{j}=\rho$ and $\sigma_{j}=\sigma$, for $j=$ $1, \ldots, T$. The achievable distortions $D_{F M D, j}($ for $0-P L F-F M D)$, and $D_{J D, j}(f o r 0-P L F-J D)$ are:

$$
\begin{equation*}
D_{F M D, j}=2\left(1-\Delta_{F M D, j} \sqrt{2 \epsilon \ln 2}\right) \sigma^{2}, \quad D_{J D, j}=2\left(1-\Delta_{J D, j} \sqrt{2 \epsilon \ln 2}\right) \sigma^{2} \tag{285}
\end{equation*}
$$

where $\Delta_{F M D, j}:=\sqrt{1+\rho^{2} \frac{\left(2 \rho^{2}\right)^{j-1}-1}{2 \rho^{2}-1}}$ and $\Delta_{J D, j}:=\rho^{2(j-1)}+\mathbb{1}\{j \geq 2\} \cdot \sqrt{1-\rho^{2}}\left(\sum_{i=0}^{j-2} \rho^{2 i}\right)$.
Proof: We extend the proof in the previous section for the low-rate regime to T frames.
Distortion Analysis for 0-PLF-FMD:
We follow similar steps to (233)-(248) for optimization problems of the third and fourth frames and then use induction to derive expressions for T frames. For simplicity, we assume that $\rho_{j}=\rho$ for all j. Notice that in the following proof, $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right)$ are as in (205) where ν, ω_{1} and ω_{2} are already derived in (233)-248).
Now, consider the reconstruction of the third frame as follows

$$
\begin{equation*}
\hat{X}_{3}^{G}=\tau_{1} \hat{X}_{1}^{G}+\tau_{2} \hat{X}_{2}^{G}+\tau_{3} X_{3}+Z_{3}, \tag{286}
\end{equation*}
$$

for some $\tau_{1}, \tau_{2}, \tau_{3}$, where $\hat{X}_{3}^{G} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and Z_{3} is a Gaussian random variable independent of $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, X_{3}\right)$. The rate constraint of the third step is given by

$$
\begin{equation*}
R_{3} \geq I\left(X_{3} ; \hat{X}_{3}^{G} \mid \hat{X}_{1}^{G}, \hat{X}_{2}^{G}\right) \tag{287}
\end{equation*}
$$

Evaluating the above constraint with the choice of random variables $\left(\hat{X}_{1}^{G}, \hat{X}_{2}^{G}, \hat{X}_{3}^{G}\right)$ and re-arranging the terms, we get

$$
\begin{align*}
& \tau_{3}^{2} \sigma^{2}\left(1-2^{-2 R_{3}}\left(\rho^{4} 2^{-2 R_{1}-2 R_{2}}+\rho^{2}\left(1-\rho^{2}\right) 2^{-2 R_{2}}-\rho^{2}\right)\right) \leq \\
& \quad\left(1-2^{-2 R_{3}}\right)\left(1-\tau_{1}^{2}-\tau_{2}^{2}-2 \tau_{1} \tau_{2} \omega_{1} \nu-2 \tau_{1} \tau_{2} \omega_{2} \nu \rho-2 \tau_{2} \tau_{3} \omega_{1} \nu \rho^{2}-2 \tau_{2} \tau_{3} \omega_{2} \rho-2 \tau_{1} \tau_{3} \nu \rho^{2}\right) \sigma^{2} \tag{288}
\end{align*}
$$

Similar to 240, considering the dominant terms of the above rate constraint and the fact that the solution of the optimization problem is attained when the above inequality is satisfied with "equality", we get

$$
\begin{equation*}
\left(1-\tau_{1}^{2}-\tau_{2}^{2}+O\left(\epsilon^{3 / 2}\right)\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)=\tau_{3}^{2}(1+O(\epsilon)) \tag{289}
\end{equation*}
$$

The distortion can be written as follows

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{3}-\hat{X}_{3}^{G}\right\|^{2}\right]=2 \sigma^{2}-2 \tau_{3} \sigma^{2}-2 \tau_{2} \omega_{2} \rho \sigma^{2}-2 \tau_{2} \omega_{1} \nu \rho^{2} \sigma^{2}-2 \tau_{1} \nu \rho^{2} \sigma^{2} \tag{290}
\end{equation*}
$$

So, the goal is to solve the following optimization problem for the third step

$$
\begin{array}{ll}
\min _{\tau_{1}, \tau_{2}, \tau_{3}} & 2 \sigma^{2}-2 \tau_{3} \sigma^{2}-2 \tau_{2} \omega_{2} \rho \sigma^{2}-2 \tau_{2} \omega_{1} \nu \rho^{2} \sigma^{2}-2 \tau_{1} \nu \rho^{2} \sigma^{2} \\
\text { s.t. : } & \left(1-\tau_{1}^{2}-\tau_{2}^{2}+O\left(\epsilon^{3 / 2}\right)\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)=\tau_{3}^{2}(1+O(\epsilon)) . \tag{292}
\end{array}
$$

We restrict the search space to $\tau_{1}, \tau_{2}, \tau_{3} \geq 0$ and get an upper bound to the above optimization program as follows

$$
\begin{array}{lr}
\min _{\tau_{1}, \tau_{2}, \tau_{3} \geq 0} & 2 \sigma^{2}-2 \tau_{3} \sigma^{2}-2 \tau_{2} \omega_{2} \rho \sigma^{2}-2 \tau_{2} \omega_{1} \nu \rho^{2} \sigma^{2}-2 \tau_{1} \nu \rho^{2} \sigma^{2} \\
\text { s.t. : } & \left(1-\tau_{1}^{2}-\tau_{2}^{2}+O\left(\epsilon^{3 / 2}\right)\right)\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)=\tau_{3}^{2}(1+O(\epsilon)) . \tag{294}
\end{array}
$$

The above optimization problem is equivalent to the following

$$
\begin{array}{r}
\min _{\tau_{1}, \tau_{2} \geq 0}\left(2 \sigma^{2}-2 \sqrt{\frac{\left(2 \epsilon \ln 2+O\left(\epsilon^{2}\right)\right)\left(1-\tau_{1}^{2}-\tau_{2}^{2}+O\left(\epsilon^{3 / 2}\right)\right)}{1+O(\epsilon)}} \sigma^{2}\right. \\
\left.-2 \tau_{2} \omega_{2} \rho \sigma^{2}-2 \tau_{2} \omega_{1} \nu \rho^{2} \sigma^{2}-2 \tau_{1} \nu \rho^{2} \sigma^{2}\right) \tag{295}
\end{array}
$$

We proceed with solving the above optimization program. Taking the derivative of the objective function with respect to η_{1} and η_{2} yields the following:

$$
\begin{align*}
& \frac{\eta_{2}}{\sqrt{1-\eta_{1}^{2}-\eta_{2}^{2}}}=\rho \sqrt{1+\rho^{2}}+O(\epsilon) \tag{296}\\
& \frac{\eta_{1}}{\sqrt{1-\eta_{1}^{2}-\eta_{2}^{2}}}=\rho^{2}+O(\epsilon) \tag{297}
\end{align*}
$$

Solving the above set of equations, we get

$$
\begin{align*}
& \eta_{1}=\frac{\rho^{2}}{\sqrt{1+\rho^{2}+2 \rho^{4}}}+O(\epsilon) \tag{298}\\
& \eta_{2}=\frac{\rho \sqrt{1+\rho^{2}}}{\sqrt{1+\rho^{2}+2 \rho^{4}}}+O(\epsilon) \tag{299}
\end{align*}
$$

Thus, considering the dominant terms, we get the following reconstruction for the third frame

$$
\begin{equation*}
\hat{X}_{3}^{G}=\frac{\rho^{2}}{\sqrt{1+\rho^{2}+2 \rho^{4}}} \hat{X}_{1}^{G}+\frac{\rho \sqrt{1+\rho^{2}}}{\sqrt{1+\rho^{2}+2 \rho^{4}}} \hat{X}_{2}^{G}+\frac{\sqrt{2 \epsilon \ln 2}}{\sqrt{1+\rho^{2}+2 \rho^{4}}} X_{3}+Z_{3} . \tag{300}
\end{equation*}
$$

The above reconstruction yields the following distortion for the third frame

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{3}-\hat{X}_{3}^{G}\right\|^{2}\right]=2\left(1-\sqrt{2 \epsilon \ln 2\left(1+\rho^{2}+2 \rho^{4}\right)}\right) \sigma^{2} \tag{301}
\end{equation*}
$$

Finally, consider the reconstruction of the fourth frame as follows

$$
\begin{equation*}
\hat{X}_{4}^{G}=\lambda_{1} \hat{X}_{1}^{G}+\lambda_{2} \hat{X}_{2}^{G}+\lambda_{3} \hat{X}_{3}^{G}+\lambda_{4} X_{4}+Z_{4} \tag{302}
\end{equation*}
$$

where $\hat{X}_{4}^{G} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. The rate constraint of the fourth step implies that

$$
\begin{equation*}
\left(1-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}+O(\epsilon)\right)(2 \epsilon \ln 2+O(\epsilon))=\lambda_{4}^{2}(1+O(\epsilon)) \tag{303}
\end{equation*}
$$

The distortion can be written as follows

$$
\begin{gather*}
\mathbb{E}\left[\left\|X_{4}-\hat{X}_{4}^{G}\right\|^{2}\right]=2 \sigma^{2}-2 \lambda_{4} \sigma^{2}-2 \lambda_{3} \rho \tau_{3} \sigma^{2}-2 \lambda_{3} \rho^{2} \tau_{2} \omega_{2} \sigma^{2}-2 \lambda_{3} \rho^{3} \tau_{2} \omega_{1} \nu \sigma^{2} \\
\quad-2 \lambda_{3} \rho^{3} \tau_{1} \nu \sigma^{2}-2 \lambda_{2} \rho^{3} \omega_{1} \nu \sigma^{2}-2 \lambda_{2} \rho^{2} \omega_{2} \sigma^{2}-2 \lambda_{1} \rho^{3} \nu \tag{304}\\
=2 \sigma^{2}-2 \sqrt{(2 \epsilon \ln 2)\left(1-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}\right)} \sigma^{2}-2 \lambda_{3} \rho \tau_{3} \sigma^{2} \\
-2 \lambda_{3} \rho^{2} \tau_{2} \omega_{2} \sigma^{2}-2 \lambda_{3} \rho^{3} \tau_{2} \omega_{1} \nu \sigma^{2}-2 \lambda_{3} \rho^{3} \tau_{1} \nu \sigma^{2} \\
-2 \lambda_{2} \rho^{3} \omega_{1} \nu \sigma^{2}-2 \lambda_{2} \rho^{2} \omega_{2} \sigma^{2}-2 \lambda_{1} \rho^{3} \nu+O(\epsilon) . \tag{305}
\end{gather*}
$$

We take the derivative of the above expression with respect to λ_{1}, λ_{2} and λ_{3} and we get

$$
\begin{align*}
& \frac{\lambda_{1}}{\sqrt{1-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}}}=\rho^{3}+O(\epsilon) \tag{306}\\
& \frac{\lambda_{2}}{\sqrt{1-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}}}=\rho^{2} \sqrt{1+\rho^{2}}+O(\epsilon) \tag{307}\\
& \frac{\lambda_{3}}{\sqrt{1-\lambda_{1}^{2}-\lambda_{2}^{2}-\lambda_{3}^{2}}}=\rho \sqrt{1+\rho^{2}+2 \rho^{4}}+O(\epsilon) . \tag{308}
\end{align*}
$$

Solving the above set of equations yields the following

$$
\begin{align*}
& \lambda_{1}=\frac{\rho^{3}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}}+O(\epsilon), \tag{309}\\
& \lambda_{2}=\frac{\rho^{2} \sqrt{1+\rho^{2}}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}}+O(\epsilon), \tag{310}\\
& \lambda_{3}=\frac{\rho \sqrt{1+\rho^{2}+2 \rho^{4}}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}}+O(\epsilon) . \tag{311}
\end{align*}
$$

Thus, considering the dominant terms, we can write

$$
\begin{align*}
\hat{X}_{4}^{G}= & \frac{\rho^{3}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}} \hat{X}_{1}^{G}+\frac{\rho^{2} \sqrt{1+\rho^{2}}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}} \hat{X}_{2}^{G} \\
& \quad+\frac{\rho \sqrt{1+\rho^{2}+2 \rho^{4}}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}} \tag{312}
\end{align*} \hat{X}_{3}^{G}+\frac{\sqrt{2 \epsilon \ln 2}}{\sqrt{1+\rho^{2}+2 \rho^{4}+4 \rho^{6}}} X_{4}+Z_{4} .
$$

The distortion term then becomes:

$$
\begin{equation*}
\left.\mathbb{E}\left[\left\|X_{4}-\hat{X}_{4}^{G}\right\|^{2}\right]=2\left(1-\sqrt{2 \epsilon \ln 2\left(1+\rho^{2}+2 \rho^{4}+4 \rho^{6}\right.}\right)\right) \sigma^{2} . \tag{313}
\end{equation*}
$$

Now, we use induction to derive the terms for T frames. Define

$$
\begin{align*}
\Delta_{\mathrm{FMD}, j} & :=\sqrt{1+\sum_{i=1}^{j-1} 2^{j-1-i} \rho^{2(j-i)}}, \quad j=2, \ldots, T \tag{314}\\
& =\sqrt{1+\rho^{2} \frac{\left(2 \rho^{2}\right)^{j-1}-1}{2 \rho^{2}-1}} . \tag{315}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\hat{X}_{j}^{G}=\sum_{i=1}^{j-1} \frac{\Delta_{\mathrm{FMD}, i} \rho^{j-i}}{\Delta_{\mathrm{FMD}, j}} \hat{X}_{i}^{G}+\frac{\sqrt{2 \epsilon \ln 2}}{\Delta_{\mathrm{FMD}, j}} X_{j}+Z_{j}, \quad j=2, \ldots, T, \tag{316}
\end{equation*}
$$

where Z_{j} is a Gaussian random variable independent of $\left(\hat{X}_{1}^{G}, \ldots, \hat{X}_{j-1}^{G}, X_{j}\right)$ and its variance is such that $\mathbb{E}\left[\left(\hat{X}_{j}^{G}\right)^{2}\right]=\sigma^{2}$. The distortion is given by the following expression

$$
\begin{equation*}
D_{\mathrm{FMD}, j}=\mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right]=2\left(1-\Delta_{\mathrm{FMD}, j} \sqrt{2 \epsilon \ln 2}\right) \sigma^{2}, \quad j=2, \ldots, T \tag{317}
\end{equation*}
$$

For the special case where $\rho=1$, then the distortion simplifies to the following

$$
\begin{equation*}
\mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right]=2\left(1-2^{\frac{j-1}{2}} \sqrt{2 \epsilon \ln 2}\right) \sigma^{2}, \quad j=2, \ldots, T \tag{318}
\end{equation*}
$$

Distortion Analysis for 0-PLF-JD:
In this case, the proof for T frames is similar to (254)-261). Thus, we have

$$
\begin{equation*}
\hat{X}_{j}^{G}=\rho \hat{X}_{j-1}^{G}+\sqrt{\left(1-\rho^{2}\right) 2 \epsilon \ln 2} X_{j}+Z_{j}, j=2, \ldots, T \tag{319}
\end{equation*}
$$

where Z_{j} is a Gaussian random variable independent of $\left(\hat{X}_{j-1}^{G}, X_{j}\right)$ and its variance is such that $\mathbb{E}\left[\left(\hat{X}_{T}^{G}\right)^{2}\right]=\sigma^{2}$. It should be mentioned that preserving the correlation coefficients, e.g., $\mathbb{E}\left[\hat{X}_{j}^{G} \hat{X}_{j-1}^{G}\right]=\rho$, needs some correction terms of $O(\epsilon)$ as discussed in (257). However, as shown in (261), these correction terms do not contribute to dominant terms of distortion and hence, they can be ignored in the presentation of (319). Now, define

$$
\begin{equation*}
\Delta_{\mathrm{JD}, j}:=\rho^{2(j-1)}+\sqrt{1-\rho^{2}}\left(\sum_{i=0}^{j-2} \rho^{2 i}\right), \quad j=2, \ldots, T \tag{320}
\end{equation*}
$$

and notice that

$$
\begin{align*}
D_{\mathrm{JD}, j} & :=\mathbb{E}\left[\left\|X_{j}-\hat{X}_{j}\right\|^{2}\right] \tag{321}\\
& =2 \sigma^{2}-2 \mathbb{E}\left[X_{j} \hat{X}_{j}\right] \tag{322}\\
& =2 \sigma^{2}-2 \mathbb{E}\left[X_{j}\left(\rho \hat{X}_{j-1}^{G}+\sqrt{\left(1-\rho^{2}\right) 2 \epsilon \ln 2} X_{j}\right)\right] \tag{323}\\
& =2 \sigma^{2}-2 \mathbb{E}\left[X_{j}\left(\rho^{j-1} X_{1}+\sqrt{1-\rho^{2}}\left(\rho^{j-2} X_{2}+\ldots+X_{j}\right)\right)\right] \sqrt{2 \epsilon \ln 2} \sigma^{2} \tag{324}\\
& =2\left(1-\Delta_{\mathrm{JD}, j} \sqrt{2 \epsilon \ln 2}\right) \sigma^{2} . \tag{325}
\end{align*}
$$

For the special case of $\rho=1$, we get $\Delta_{\mathrm{JD}, j}=1$ which remains a constant across different steps.

H Universality Statement for Gauss-Markov Source Model

H. 1 MMSE Representations for a Given Rate

For a given rate tuple R, the minimum distortions achievable by MMSE representations are derived in [28,37] and are given by

$$
\begin{align*}
& D_{1}^{\min }=\sigma_{1}^{2} 2^{-2 R_{1}} \tag{326}\\
& D_{2}^{\min }=\left(\rho_{1}^{2} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} D_{1}^{\min }+\sigma_{N_{1}}^{2}\right) 2^{-2 R_{2}} \tag{327}\\
& D_{3}^{\min }=\left(\rho_{2}^{2} \frac{\sigma_{3}^{2}}{\sigma_{2}^{2}} D_{2}^{\min }+\sigma_{N_{2}}^{2}\right) 2^{-2 R_{3}} \tag{328}
\end{align*}
$$

where

$$
\begin{align*}
\sigma_{N_{1}}^{2} & :=\left(1-\rho_{1}^{2}\right) \sigma_{2}^{2} \tag{329}\\
\sigma_{N_{2}}^{2} & :=\left(1-\rho_{2}^{2}\right) \sigma_{3}^{2} \tag{330}
\end{align*}
$$

The above distortions are achieved by the following optimal reconstructions \hat{X}_{r} given in [28]. Notice that the MMSE representation is $\mathrm{X}_{r}^{\mathrm{RD}}=\hat{\mathrm{X}}_{r}$, i.e., the functions $\eta_{1}($.$) and \eta_{2}(.,$.$) of iRDP region \mathcal{C}_{\text {RDP }}$ (Definition 4) are identity functions (this statement follows from Theorem 55). Now, we choose the reconstruction \hat{X}_{r} in the following.
The reconstruction $\hat{X}_{r, 1}$ is chosen such that $\hat{X}_{r, 1} \rightarrow X_{1} \rightarrow\left(X_{2}, X_{3}\right)$ holds a Markov chain and

$$
\begin{equation*}
X_{1}=\hat{X}_{r, 1}+Z_{1} \tag{331}
\end{equation*}
$$

where $\hat{X}_{r, 1} \sim \mathcal{N}\left(0, \sigma_{1}^{2}-D_{1}^{\min }\right)$ and $Z_{1} \sim \mathcal{N}\left(0, D_{1}^{\min }\right)$ are independent random variables. Then, the reconstruction $\hat{X}_{r, 2}$ is chosen as follows. Let

$$
\begin{equation*}
W_{2}:=\rho_{1} \frac{\sigma_{2}}{\sigma_{1}} Z_{1}+N_{1} \tag{332}
\end{equation*}
$$

which is the innovation from $\hat{X}_{r, 1}$ to X_{2}. Now, we find the random variables \hat{W}_{2} and Z_{2} such that

$$
\begin{equation*}
W_{2}=\hat{W}_{2}+Z_{2} \tag{333}
\end{equation*}
$$

where $\hat{W}_{2} \sim \mathcal{N}\left(0, \rho_{1}^{2} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} D_{1}^{\text {min }}+\sigma_{N_{1}}^{2}-D_{2}^{\text {min }}\right)$ and $Z_{2} \sim \mathcal{N}\left(0, D_{2}^{\text {min }}\right)$ are independent from each other, and the Markov chain $\hat{W}_{2} \rightarrow\left(X_{2}, \hat{X}_{r, 1}\right) \rightarrow\left(X_{1}, X_{3}\right)$ holds. Now, define

$$
\begin{equation*}
\hat{X}_{r, 2}:=\rho_{1} \frac{\sigma_{2}}{\sigma_{1}} \hat{X}_{r, 1}+\hat{W}_{2} \tag{334}
\end{equation*}
$$

Finally, we choose the reconstruction $\hat{X}_{r, 3}$ as follows. Let

$$
\begin{equation*}
W_{3}:=\rho_{2} \frac{\sigma_{3}}{\sigma_{2}} Z_{2}+N_{2} \tag{335}
\end{equation*}
$$

which is the innovation from $\hat{X}_{r, 2}$ to X_{3}. Now, we find random variables \hat{W}_{3} and Z_{3} such that

$$
\begin{equation*}
W_{3}=\hat{W}_{3}+Z_{3} \tag{336}
\end{equation*}
$$

where $\hat{W}_{3} \sim \mathcal{N}\left(0, \rho_{2}^{2} \frac{\sigma_{3}^{2}}{\sigma_{2}^{2}} D_{2}^{\min }+\sigma_{N_{2}}^{2}-D_{3}^{\min }\right)$ and $Z_{2} \sim \mathcal{N}\left(0, D_{3}^{\text {min }}\right)$ are independent from each other, and the Markov chain $\hat{W}_{3} \rightarrow\left(X_{3}, \hat{X}_{r, 1}, \hat{X}_{r, 2}\right) \rightarrow\left(X_{1}, X_{2}\right)$ holds. Now, define

$$
\begin{equation*}
\hat{X}_{r, 3}:=\rho_{1} \frac{\sigma_{3}}{\sigma_{2}} \hat{X}_{r, 2}+\hat{W}_{3} \tag{337}
\end{equation*}
$$

Thus, the optimal reconstruction $\hat{\mathrm{X}}_{r}$ is chosen and it satisfies the rate constraint R .

H. 2 Universality Statement

Theorem 7 For a given rate tuple R with strictly positive components, let the MMSE representation be denoted as $\mathrm{X}_{r}^{R D}=\left(X_{r, 1}^{R D}, X_{r, 2}^{R D}, X_{r, 3}^{R D}\right)$. Let $(\mathrm{D}, \mathrm{P}) \in \mathcal{D P}(\mathrm{R})$ and let $\hat{\mathrm{X}}=\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$ be the corresponding reconstruction achieving it. Then there exist $\kappa_{1}, \theta_{1}, \theta_{2}, \psi_{1}, \psi_{2}$ and ψ_{3} and noise variables $\left(Z_{1}, Z_{2}, Z_{3}\right)$ independent of $\left(X_{r, 1}^{R D}, X_{r, 2}^{R D}, X_{r, 3}^{R D}\right)$, which satisfy the following

$$
\hat{X}_{1}=\kappa_{1} X_{r, 1}^{R D}+Z_{1}, \quad \hat{X}_{2}=\theta_{1} X_{r, 1}^{R D}+\theta_{2} X_{r, 2}^{R D}+Z_{2}, \quad \hat{X}_{3}=\psi_{1} X_{r, 1}^{R D}+\psi_{2} X_{r, 2}^{R D}+\psi_{3} \hat{X}_{r, 3}^{R D}+Z_{3} .
$$

For a given positive rate tuple R , let the MMSE representation $\mathrm{X}_{r}^{R D}$ be in the set $\mathcal{P}^{R D}(\mathrm{R})$. Also, let

 $(\mathrm{D}, \mathrm{P}) \in \mathcal{D} \mathcal{P}(\mathrm{R})$ and $\mathrm{X}_{r}, \hat{\mathrm{X}}$ be the corresponding representation and reconstruction achieving it.Proof: First, notice that according to the proof of Theorem[5] for the Gauss-Markov source model, one can set $\hat{X}=\mathrm{X}_{r}$ in iRDP region of $\mathcal{C}_{\text {RDP }}$, without loss of optimality. So, in the following proof, the reconstruction X_{r} and representation X are used interchangeably, in some places.
We show the following statement. If

$$
\begin{align*}
& R_{1} \geq I\left(X_{1} ; X_{r, 1}\right) \tag{338}\\
& R_{2} \geq I\left(X_{2} ; X_{r, 2} \mid X_{r, 1}\right) \tag{339}\\
& R_{3} \geq I\left(X_{3} ; X_{r, 3} \mid X_{r, 1}, X_{r, 2}\right) \tag{340}
\end{align*}
$$

then, there exist $\kappa_{1}, \theta_{1}, \theta_{2}, \psi_{1}, \psi_{2}$ and ψ_{3} and noise variables Z_{1}, Z_{2}, Z_{3} independent of $X_{r, 1}^{\mathrm{RD}}$, $\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right),\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}, X_{r, 3}^{\mathrm{RD}}\right)$, respectively, which satisfy the following

$$
\begin{align*}
\hat{X}_{1} & =\kappa_{1} X_{r, 1}^{\mathrm{RD}}+Z_{1} \tag{341}\\
\hat{X}_{2} & =\theta_{1} X_{r, 1}^{\mathrm{RD}}+\theta_{2} X_{r, 2}^{\mathrm{RD}}+Z_{2} \tag{342}\\
\hat{X}_{3} & =\psi_{1} X_{r, 1}^{\mathrm{RD}}+\psi_{2} X_{r, 2}^{\mathrm{RD}}+\psi_{3} \hat{X}_{r, 3}^{\mathrm{RD}}+Z_{3} \tag{343}
\end{align*}
$$

If (338-340) are satisfied with equality, then the noise random variables in 341-343) do not exist and a linear combination is sufficient for converting $\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}, X_{r, 3}^{\mathrm{RD}}\right)$ to $\left(\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}\right)$.
First, we prove the statement when all of inequalities in (338)-(340) hold with "equality". We provide the proof for $T=2$ frames. The extension to arbitrary number of frames is straightforward. To that end, we first prove the following two lemmas.

Lemma 2 Without loss of optimality, the reconstruction of the first step \hat{X}_{1} satisfies the following

$$
\begin{equation*}
\gamma_{1} \hat{X}_{1}=W_{1} \tag{344}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}:=\frac{\mathbb{E}\left[X_{1} \hat{X}_{1}\right]}{\sigma_{\hat{X}_{1}}^{2}} \tag{345}
\end{equation*}
$$

650
and W_{1} is a Gaussian random variable that its statistics do not depend on the pair $\left(D_{1}, P_{1}\right)$.
Proof: According to Theorem 5 , we know that $\left(X_{1}, \hat{X}_{1}\right)$ are jointly Gaussian. So, we can write X_{1} as follows

$$
\begin{equation*}
X_{1}=\gamma_{1} \hat{X}_{1}+T_{1} \tag{346}
\end{equation*}
$$

where T_{1} is a Gaussian random variable independent of \hat{X}_{1} with a constant variance $\sigma_{1}^{2} 2^{-2 R_{1}}$. Notice that (346) can be written as follows

$$
\begin{equation*}
\hat{X}_{1}=\alpha_{1}\left(X_{1}+Q\right) \tag{347}
\end{equation*}
$$

where Q is a Gaussian random variable independent of X_{1} with a zero-mean and variance $\frac{\sigma_{1}^{2} 2^{-2 R_{1}}}{1-2^{-2 R_{1}}}$ and

$$
\begin{equation*}
\alpha_{1}:=\frac{1}{\gamma_{1}}\left(1-2^{-2 R_{1}}\right) . \tag{348}
\end{equation*}
$$

From (347), we get

$$
\begin{equation*}
\gamma_{1} \hat{X}_{1}=\left(1-2^{-2 R_{1}}\right)\left(X_{1}+Q\right) \tag{349}
\end{equation*}
$$

651 Now, defining $W_{1}:=\left(1-2^{-2 R_{1}}\right)\left(X_{1}+Q\right)$ yields the desired result.
Lemma 3 Without loss of optimality, the reconstructions of the first and second steps $\left(\hat{X}_{1}, \hat{X}_{2}\right)$ satisfy the following

$$
\begin{equation*}
\lambda_{1} \hat{X}_{1}+\lambda_{2} \hat{X}_{2}=W_{2} \tag{350}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{1}:=\frac{\rho_{1} \mathbb{E}\left[X_{1} \hat{X}_{1}\right] \hat{\sigma}_{X_{2}}^{2}-\mathbb{E}\left[\hat{X}_{1} \hat{X}_{2}\right] \mathbb{E}\left[X_{2} \hat{X}_{2}\right]}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\mathbb{E}^{2}\left[\hat{X}_{1} \hat{X}_{2}\right]} \tag{351}\\
& \lambda_{2}:=\frac{\rho_{1} \mathbb{E}\left[X_{1} \hat{X}_{1}\right] \mathbb{E}\left[\hat{X}_{1} \hat{X}_{2}\right]-\hat{\sigma}_{X_{1}}^{2} \mathbb{E}\left[X_{2} \hat{X}_{2}\right]}{\hat{\sigma}_{X_{1}}^{2} \hat{\sigma}_{X_{2}}^{2}-\mathbb{E}^{2}\left[\hat{X}_{1} \hat{X}_{2}\right]} \tag{352}
\end{align*}
$$

652 and W_{2} is a Gaussian random variable that its statistics do not depend on the pairs $\left(D_{1}, P_{1}\right)$ and 653 $\left(D_{2}, P_{2}\right)$.

Proof: According to Theorem 5, we know that $\left(X_{1}, X_{2}, \hat{X}_{1}, \hat{X}_{2}\right)$ are jointly Gaussian. So, we can write X_{2} as follows

$$
\begin{equation*}
X_{2}=\lambda_{1} \hat{X}_{1}+\lambda_{2} \hat{X}_{2}+T_{2} \tag{353}
\end{equation*}
$$

where T_{2} is a Gaussian random variable independent of (\hat{X}_{1}, \hat{X}_{2}) with a constant variance of $\sigma_{X_{2} \mid \hat{X}_{1}}^{2} 2^{-2 R_{2}}$ where

$$
\begin{equation*}
\sigma_{X_{2} \mid \hat{X}_{1}}^{2}:=\frac{1}{2} \log \left(\rho_{1}^{2} \sigma_{1}^{2} 2^{-2 R_{1}}+2^{2 H\left(N_{1}\right)}\right) . \tag{354}
\end{equation*}
$$

Notice that (353) can be written as follows

$$
\begin{equation*}
\lambda_{1} \hat{X}_{1}+\lambda_{2} \hat{X}_{2}=\left(1-2^{-2 R_{2}}\right)\left(X_{2}+Q^{\prime}\right) \tag{355}
\end{equation*}
$$

where Q^{\prime} is a Gaussian random variable independent of X_{2} with a zero-mean and variance $\frac{\sigma_{X_{2} \mid \hat{X}_{1}}^{2} 2^{-2 R_{2}}}{1-2^{-2 R_{2}}}$. Defining $W_{2}:=\left(1-2^{-2 R_{2}}\right)\left(X_{2}+Q^{\prime}\right)$ yields the desired result.

Now, we proceed with the proof of the theorem. According to Lemma 2 , there exist real γ_{1} and γ_{1}^{\prime} such that

$$
\begin{equation*}
\gamma_{1} \hat{X}_{1}=\gamma_{1}^{\prime} X_{r, 1}^{\mathrm{RD}} \tag{356}
\end{equation*}
$$

Define

$$
\begin{equation*}
\kappa_{1}:=\frac{\gamma_{1}^{\prime}}{\gamma_{1}} \tag{357}
\end{equation*}
$$

Then, according to Lemma 3 there exist $\lambda_{1}, \lambda_{2}, \lambda_{1}^{\prime}$ and λ_{2}^{\prime} such that

$$
\begin{equation*}
\lambda_{1} \hat{X}_{1}+\lambda_{2} \hat{X}_{2}=\lambda_{1}^{\prime} X_{r, 1}^{\mathrm{RD}}+\lambda_{2}^{\prime} X_{r, 2}^{\mathrm{RD}} \tag{358}
\end{equation*}
$$

The above equation can be written as

$$
\begin{align*}
\hat{X}_{2} & =\frac{\lambda_{1}^{\prime}-\lambda_{1} \kappa_{1}}{\lambda_{2}} X_{r, 1}^{\mathrm{RD}}+\frac{\lambda_{2}^{\prime}}{\lambda_{2}} X_{r, 2}^{\mathrm{RD}} \tag{359}\\
& :=\theta_{1} X_{r, 1}^{\mathrm{RD}}+\theta_{2} X_{r, 2}^{\mathrm{RD}} \tag{360}
\end{align*}
$$

A similar justification holds for the third frame.
Next, we prove the statement when at least one of the rate constraints in (338)-(340) hold with strict inequality. In the following, we construct new reconstructions $\left(\hat{X}_{1}^{\prime}, \hat{X}_{2}^{\prime}\right)$ based on $\left(\hat{X}_{1}, \hat{X}_{2}\right)$ such that they satisfy the rate constraints $\left(R_{1}, R_{2}\right)$ with equality. Then, we will be able to apply the two lemmas we proved to show that $\left(\hat{X}_{1}, \hat{X}_{2}\right)$ are linearly related to MMSE reconstructions $\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right)$.
Construction of \hat{X}_{1}^{\prime} :
Now, let

$$
\begin{equation*}
\hat{R}_{1}:=I\left(X_{1} ; \hat{X}_{1}\right), \tag{361}
\end{equation*}
$$

where $\hat{R}_{1} \leq R_{1}$. Also, recall that

$$
\begin{equation*}
R_{1}=I\left(X_{1} ; X_{r, 1}^{\mathrm{RD}}\right) \tag{362}
\end{equation*}
$$

Now, let \hat{X}_{1}^{\prime} such that $\hat{X}_{1}^{\prime} \rightarrow X_{r, 1}^{\mathrm{RD}} \rightarrow X_{1}$ holds and

$$
\begin{equation*}
\hat{X}_{1}^{\prime}=X_{r, 1}^{\mathrm{RD}}+W_{1} \tag{363}
\end{equation*}
$$

where $W_{1} \sim \mathcal{N}\left(0, \nu_{1}^{2}\right)$ independent of \hat{X}_{1} and ν_{1}^{2} will be determined in the following. Notice that $I\left(X_{1} ; \hat{X}_{1}^{\prime}\right)$ is a monotonically decreasing function of ν_{1}^{2}. So, one choose ν_{1}^{2} such that

$$
\begin{equation*}
I\left(\hat{X}_{1}^{\prime} ; X_{1}\right)=I\left(X_{1} ; \hat{X}_{1}\right)=\hat{R}_{1} \tag{364}
\end{equation*}
$$

Now, according to Lemma2 since \hat{X}_{1}^{\prime} and \hat{X}_{1} have the same rates, there exists a coefficient κ_{1}^{\prime} such that

$$
\begin{align*}
\hat{X}_{1} & =\kappa_{1}^{\prime} \hat{X}_{1}^{\prime} \tag{365}\\
& =\kappa_{1}^{\prime} X_{r, 1}^{\mathrm{RD}}+\kappa_{1}^{\prime} W_{1} \tag{366}
\end{align*}
$$

Now, define $Z_{1}:=\kappa_{1}^{\prime} W_{1}$ and notice that

$$
\begin{equation*}
\hat{X}_{1}=\kappa_{1}^{\prime} X_{r, 1}^{\mathrm{RD}}+Z_{1} \tag{367}
\end{equation*}
$$

662 Construction of \hat{X}_{2}^{\prime} :
Next, consider the second step. Define

$$
\begin{equation*}
\hat{R}_{2}:=I\left(X_{2} ; \hat{X}_{2} \mid \hat{X}_{1}\right) \tag{368}
\end{equation*}
$$

where $\hat{R}_{2} \leq R_{2}$. Also, recall that

$$
\begin{equation*}
R_{2}=I\left(X_{2} ; X_{r, 2}^{\mathrm{RD}} \mid X_{r, 1}^{\mathrm{RD}}\right) \tag{369}
\end{equation*}
$$

Define $\tilde{X}_{2}:=\mathbb{E}\left[X_{2} \mid X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right]$ to be the MMSE reconstruction and consider that

$$
\begin{align*}
R_{2} & =I\left(X_{2} ; X_{r, 2}^{\mathrm{RD}} \mid X_{r, 1}^{\mathrm{RD}}\right) \tag{370}\\
& =I\left(X_{2} ; \tilde{X}_{2} \mid X_{r, 1}^{\mathrm{RD}}\right), \tag{371}
\end{align*}
$$

where the last equality follows because both Markov chains $X_{2} \rightarrow\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right) \rightarrow \tilde{X}_{2}$ and $X_{2} \rightarrow$ $\tilde{X}_{2} \rightarrow\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right)$ hold where the latter one is satisfied for Gaussian random variables for which we can write $X_{2}=\mathbb{E}\left[X_{2} \mid X_{r, 1}, X_{r, 2}\right]+W^{\prime}$ such that W^{\prime} is independent of $\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}\right)$.
Now, we show that $I\left(X_{2} ; \tilde{X}_{2} \mid X_{r, 1}^{\mathrm{RD}}\right) \leq I\left(X_{2} ; \tilde{X}_{2} \mid \hat{X}_{1}^{\prime}\right)$. This is justified in the following

$$
\begin{align*}
I\left(X_{2} ; \tilde{X}_{2} \mid \hat{X}_{1}^{\prime}\right) & =I\left(X_{2} ; \tilde{X}_{2} \mid X_{r, 1}^{\mathrm{RD}}+W_{1}\right) \tag{372}\\
& =H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}+W_{1}\right)-H\left(X_{2} \mid \tilde{X}_{2}, X_{r, 1}^{\mathrm{RD}}+W_{1}\right) \tag{373}\\
& \geq H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}+W_{1}, W_{1}\right)-H\left(X_{2} \mid \tilde{X}_{2}, X_{r, 1}^{\mathrm{RD}}+W_{1}\right) \tag{374}\\
& =H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}, W_{1}\right)-H\left(X_{2} \mid \tilde{X}_{2}, X_{r, 1}^{\mathrm{RD}}+W_{1}\right) \tag{375}\\
& \geq H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}, W_{1}\right)-H\left(X_{2} \mid \tilde{X}_{2}\right) \tag{376}\\
& =H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}\right)-H\left(X_{2} \mid \tilde{X}_{2}\right) \tag{377}\\
& =H\left(X_{2} \mid X_{r, 1}^{\mathrm{RD}}\right)-H\left(X_{2} \mid \tilde{X}_{2}, X_{r, 1}^{\mathrm{RD}}\right) \tag{378}\\
& =I\left(X_{2} ; \tilde{X}_{2} \mid X_{r, 1}^{\mathrm{RD}}\right) \tag{379}
\end{align*}
$$

where (377) follows because W_{1} is independent of $\left(X_{2}, X_{r, 1}^{\mathrm{RD}}\right)$ and (378) follows from the Markov chain $X_{2} \rightarrow \tilde{X}_{2} \rightarrow X_{r, 1}^{\mathrm{RD}}$.

Define

$$
\begin{equation*}
R_{2}^{\prime}:=I\left(X_{2} ; \tilde{X}_{2} \mid \hat{X}_{1}^{\prime}\right), \tag{380}
\end{equation*}
$$

and consider the fact that $R_{2}^{\prime} \geq R_{2}$. Now, we introduce \hat{X}_{2}^{\prime} such that $\hat{X}_{2}^{\prime} \rightarrow\left(\tilde{X}_{2}, \hat{X}_{1}^{\prime}\right) \rightarrow X_{2}$ forms a Markov chain and

$$
\begin{equation*}
\hat{X}_{2}^{\prime}=\tilde{X}_{2}+\hat{X}_{1}^{\prime}+W_{2} \tag{381}
\end{equation*}
$$

where $W_{2} \sim \mathcal{N}\left(0, \nu_{2}^{2}\right)$ independent of $\left(\tilde{X}_{2}, \hat{X}_{1}\right)$ and ν_{2}^{2} will be determined in the following. Since $I\left(X_{2} ; \hat{X}_{2}^{\prime} \mid \hat{X}_{1}^{\prime}\right)$ is a monotonically decreasing function of ν_{2}^{2}, we can choose ν_{2}^{2} such that

$$
\begin{equation*}
I\left(X_{2} ; \hat{X}_{2}^{\prime} \mid \hat{X}_{1}^{\prime}\right)=I\left(X_{2} ; \hat{X}_{2} \mid \hat{X}_{1}\right)=\hat{R}_{2} \tag{382}
\end{equation*}
$$

Then, according to Lemma 3 there exist $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \hat{\lambda}_{1}$ and $\hat{\lambda}_{2}$ such that

$$
\begin{equation*}
\lambda_{1}^{\prime} \hat{X}_{1}^{\prime}+\lambda_{2}^{\prime} \hat{X}_{2}^{\prime}=\hat{\lambda}_{1} \hat{X}_{1}+\hat{\lambda}_{2} \hat{X}_{2} \tag{383}
\end{equation*}
$$

Plugging (363), (367) and (381) into the above expression and letting $\tilde{X}_{2}=\alpha X_{r, 1}^{\mathrm{RD}}+\beta X_{r, 2}^{\mathrm{RD}}$ for some α, β, we get

$$
\begin{equation*}
\left(\lambda_{1}^{\prime}+(1+\alpha) \lambda_{2}^{\prime}-\hat{\lambda}_{1} \kappa^{\prime}\right) X_{r, 1}^{\mathrm{RD}}+\lambda_{2}^{\prime} \beta X_{r, 2}^{\mathrm{RD}}+\left(\lambda_{1}^{\prime}+\lambda_{2}^{\prime}\right) W_{1}+\lambda_{2}^{\prime} W_{2}-\hat{\lambda}_{1} Z_{1}=\hat{\lambda}_{2} \hat{X}_{2} \tag{384}
\end{equation*}
$$

Now define

$$
\begin{align*}
\theta_{1} & :=\frac{\lambda_{1}^{\prime}+(1+\alpha) \lambda_{2}^{\prime}-\hat{\lambda}_{1} \kappa^{\prime}}{\hat{\lambda}_{2}} \tag{385}\\
\theta_{2} & :=\frac{\lambda_{2}^{\prime} \beta}{\hat{\lambda}_{2}} \tag{386}\\
Z_{2} & :=\frac{\left(\lambda_{1}^{\prime}+\lambda_{2}^{\prime}\right)}{\hat{\lambda}_{2}} W_{1}+\frac{\lambda_{2}^{\prime}}{\hat{\lambda}_{2}} W_{2}-\frac{\hat{\lambda}_{1}}{\hat{\lambda}_{2}} Z_{1} \tag{387}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\hat{X}_{2}=\theta_{1} X_{r, 1}^{\mathrm{RD}}+\theta_{2} X_{r, 2}^{\mathrm{RD}}+Z_{2} \tag{388}
\end{equation*}
$$

Notice that the above proof only uses the information about reconstructions of the operating points in DP-tradeoff and it does not depend on the choice of PLF. So, it holds for both PLF-JD and PLF-FMD. This concludes the proof.

H. 3 Gaussian Example

Assume that the sources are symmetric in the sense that $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=1, \rho_{1}=\rho_{2}=\rho_{3}:=\rho$ for some $0<\rho \leq 1$. Also, suppose that the perception thresholds are symmetric, i.e., $P_{1}=P_{2}=P_{3}:=$ P for some $0<P \leq 1$. We choose the rate tuple R such that the minimum distortions $D_{j}^{\min }=D$ for $j \in\{1,2,3\}$. According to Appendix H.1. such rates are given by

$$
\begin{align*}
& R_{1}=\frac{1}{2} \log \frac{1}{D} \tag{389}\\
& R_{2}=\frac{1}{2} \log \frac{\rho^{2} D+(1-\rho)}{D} \tag{390}\\
& R_{3}=\frac{1}{2} \log \frac{\rho^{2} D+\left(1-\rho^{2}\right)}{D} . \tag{391}
\end{align*}
$$

The covariance matrix of the MMSE representations $\operatorname{cov}\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}, X_{r, 3}^{\mathrm{RD}}\right)$ is given by $(1-D) \Sigma$ where

$$
\Sigma:=\left(\begin{array}{ccc}
1 & \rho & \rho^{2} \tag{392}\\
\rho & 1 & \rho \\
\rho^{2} & \rho & 1
\end{array}\right)
$$

If we introduce the 0-PLF while keeping the rates as those of MMSE reconstructions, it can be shown that the optimal distortions are all equal to $D_{1}=D_{2}=D_{3}=2-2 \sqrt{1-D}$. Denote the reconstructions by ($\hat{X}_{D_{1}}^{0}, \hat{X}_{D_{2}}^{0}, \hat{X}_{D_{3}}^{0}$) and notice that the covariance matrix of the reconstructions is equal to that of the sources and is given by Σ. Thus, the covariance matrix of ($\left.X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}, X_{r, 3}^{\mathrm{RD}}\right)$ is $(1-D)$ times the covariance matrix of $\left(\hat{X}_{D_{1}}^{0}, \hat{X}_{D_{2}}^{0}, \hat{X}_{D_{3}}^{0}\right)$. So, the reconstructions $\left(X_{r, 1}^{\mathrm{RD}}, X_{r, 2}^{\mathrm{RD}}, X_{r, 3}^{\mathrm{RD}}\right)$ and $\left(\hat{X}_{D_{1}}^{0}, \hat{X}_{D_{2}}^{0}, \hat{X}_{D_{3}}^{0}\right)$ can be transformed to each other by the scaling factor $\frac{1}{\sqrt{1-D}}$. This inspires the idea that reconstructions corresponding to different tuples (D, P) are linearly related to those of MMSE representations which is the essence of the following Theorem6 Moreover, both PLFs either based on FMD or JD perform similarly in this example since individually scaling the reconstruction of each frame finally ends up in matching the covariance matrix of all frames.

I Justification of low-rate regime for Moving MNSIT

In the MovingMNIST dataset, the digit in I-frame is generated uniformly across the 32×32 center region in a 64×64 image, meaning that $\log (32 \times 32)=10$ bits are required to localize the digits and any lower rate would result in much less correlated reconstructions. As such, one can consider $R_{1}=12$ bits (2 extra bits for content and style) as a low rate. For P-frames, the movement is uniformly constrained within a 10×10 region so any rate $R_{2} \leq \log _{2}(10 \times 10)=6.6$ bits (excluding residual compensation) can be considered a low rate.

J Experiment Details

J. 1 Training Setup and Overview

Our compression architecture is built on the scale-space flow model [32], which allows end-to-end training without relying on pre-trained optical flow estimators. For better compression efficiency, we replace the residual compression module with the conditioning one [33]. In the following, we will interchangeably refer X_{1} as the I-frame and subsequent ones as P-frames. The annotation for the encoder, decoder, and critic (discriminator) will be referred to as f, g, and h respectively and their specific functionality (e.g motion compression, joint perception critic) will be described within context through a subscript/superscript.
Distortion and Perception Measurement: We follow the setup in prior works [16,21] for distortion and perception measurement. Specifically, we use MSE loss $\mathbb{E}\left[\|X-\hat{X}\|^{2}\right]$ as a distortion metric and Wasserstein-1 distance as a perception metric, which can be estimated through the WGAN critics (following the Kanotorovich-Rubinstein duality). For the marginal perception metric, we optimize

Figure 6: Compression diagram for (a) I-frame (b) P-frame with universal representation and (c) P-frame with optimized representation. For simplicity, we do not show the shared randomness K.
our critics h_{m} to classify between original image X and synthetic ones \hat{X}. This will then allow us to measure $W_{1}\left(P_{X}, P_{\hat{X}}\right)$ since:

$$
\begin{equation*}
W_{1}\left(P_{X}, P_{\hat{X}}\right)=\sup _{h_{m} \in \mathcal{F}} \mathbb{E}\left[h_{m}(X)\right]-\mathbb{E}\left[h_{m}(\hat{X})\right] \tag{393}
\end{equation*}
$$

where \mathcal{F} is a set of all bounded 1-Lipschitz functions. Similarly, the joint perception metric is realized through $W_{1}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1} \ldots \hat{X}_{j}}\right)$ by training a critic h_{j} that classifies between synthetic and authentic sequences:

$$
\begin{equation*}
W_{1}\left(P_{X_{1} \ldots X_{j}}, P_{\hat{X}_{1} \ldots \hat{X}_{j}}\right)=\sup _{h_{j} \in \mathcal{F}} \mathbb{E}\left[h_{j}\left(X_{1}, \ldots, X_{i}\right)\right]-\mathbb{E}\left[h_{j}\left(\hat{X}_{1}, \ldots, \hat{X}_{i}\right)\right] \tag{394}
\end{equation*}
$$

In practice, the set of 1-Lipschitz functions is limited by the neural network architecture. Also, although our analysis employs the Wasserstein-2 distance as a perception metric, it is worth noting that the ideal reconstructions (0-PLF) for this metric and the one used in our study should be identical.
I-frame Compressor: We compress I-frames in a similar fashion as previous works [16, 21]. Our encoder f_{I} and decoder g_{I} in Figure 6a contain a series of convolution operations and we control the rate R_{1} by varying the dimension and quantization level in the bottleneck. The model utilizes common randomness through the dithered quantization operation. For a given rate R_{1}, we vary the amount of DP tradeoff by controlling the hyper-parameter $\lambda_{i}^{\text {marginal }}$ in the following minimization objective \mathcal{L}_{1} :

$$
\begin{equation*}
\mathcal{L}_{1}=\mathbb{E}\left[\left\|X_{1}-\hat{X}_{1}\right\|^{2}\right]+\lambda_{i}^{\text {marginal }} W_{1}\left(P_{X_{1}}, P_{\hat{X}_{1}}\right) \tag{395}
\end{equation*}
$$

Following the results from Zhang et al. [16], we fix the encoder after optimizing the encoder-decoder pair for MSE representations. We then fix the encoder and train another decoder to obtain the optimal reconstruction with perfect perception, i.e, $W_{1}\left(P_{X}, P_{\hat{X}}\right) \approx 0$. We will leverage these universal representation results to compress P-frames (both end-to-end and universal).
P-frame Compressor: We describe the loss functions before explaining our architectures. Given previous reconstructions $\hat{X}_{[i-1]}:=\left\{\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}_{i-1}\right\}$, one can adjust the distortion-joint perception tradeoff by controlling the hyper-parameter $\lambda_{i}^{\text {joint }}$ in the following objective \mathcal{L}_{i}.

$$
\begin{equation*}
\mathcal{L}_{i}^{\text {joint }}=\mathbb{E}\left[\left\|X_{i}-\hat{X}_{i}\right\|^{2}\right]+\lambda_{i}^{\text {joint }} W_{1}\left(P_{X_{[i]}}, P_{\hat{X}_{[i]}}\right) \tag{396}
\end{equation*}
$$

Note that in order to achieve 0-PLF-JD, previous reconstructions $\hat{X}_{[i-1]}$ must also achieve 0-PLF-JD, since it is impossible to reconstruct such \hat{X}_{i} if the previous $\hat{X}_{[i-1]}$ are not temporally consisten $\left[^{2}\right.$ For the FMD metric, we use the loss function in 395).
In the universal model in Figure 6b, the motion encoder f_{i}^{m} compresses and sends the quantized flow fields $\left[X_{r, i}^{m}\right]$ between the MMSE reconstruction \tilde{X}_{i-1} and X_{i}. Given $\left[X_{r, i}^{m}\right]$, the flow decoder and warping module g_{i}^{m} will transform \tilde{X}_{i-1} into \tilde{X}_{i}^{w} (predicted frame). We use f_{i}^{c} to compress the

[^2]residual information $\left[X_{r, i}^{c}\right.$] between X_{i} and $\tilde{X}_{i}^{w}{ }^{3}$, which will be decoded by g_{i}^{c}. We note that for MMSE representation, g_{i}^{c} only requires \tilde{X}_{i}^{w} as a conditional input while an additional conditioning input $\hat{X}_{[i-1]}$ is required when perceptual optimization is involved. Together, $f_{i}^{m}, g_{i}^{m}, f_{i}^{c}$, and g_{i}^{c} are optimized for MMSE reconstructions. To train for different DP tradeoffs, we fix $f_{i}^{m}, g_{i}^{m}, f_{i}^{c}$ and adapt the new decoder \hat{g}_{i}^{c} (conditioning on $\tilde{X}_{i}^{w}, \hat{X}_{[i-1]}$). We note that fixing g_{i}^{m} for universal representation is essential since $\left[X_{r, i}^{c}\right]$ is dependent on the outputs \tilde{X}_{i}^{w} of g_{i}^{m}.

In the end-to-end model in Figure 6, we use an MMSE representation to estimate the motion vector, as in the case of the universal model. The only difference is that the encoder f_{i}^{c} also uses previous \hat{X}_{i} and the encoders will be jointly trained with the decoders.

J. 2 Networks Architecture

In this section, we describe the network architecture for universal and end-to-end P-frame compressor models. ${ }^{4}$. In the architecture layout, we denote BN2D and SN for the Batchnorm2D and Spectral Normalization layers. Convolutional and transposed convolutional layer are denoted as "conv" and "upconv" respectively, which is accompanied by number of filters, kernel size, stride, and padding.

Motion Encoder and Decoder. The universal and optimized end-to-end model shares the same architecture for the motion encoder and decoder. (f_{i}^{m} and g_{i}^{m} respectively). We follow the original implementations [32] and present the convolutional architecture in Table 3. Different from the original implementation, however, we replace the last layer with dithered quantization layer (as in [16]) in our implementation. The output dimension of the motion encoder is denoted as d_{m}.

Table 3: Motion Encoder f_{i}^{m} and Decoder g_{i}^{m}.
(a) Encoder f_{i}^{m}

Input-64×64×(2×channels)
conv $(64: 5: 2: 0)$, BN2D, 1 -ReLU
conv $(64: 5: 2: 0)$, BN2D, 1-ReLU
conv $(64: 5: 2: 0)$, BN2D, 1-ReLU
conv $(64: 5: 2: 0)$, BN2D, 1-ReLU
conv $\left(d_{m}: 4: 2: 0\right)$, BN2D
Quantizer

(b) Decoder g_{i}^{m}

Input- d_{m}
upconv (64:4:1:0), BN2D, 1-ReLU
upconv (64:5:2:0), BN2D, 1-ReLU
upconv (64:5:2:0), BN2D, 1-ReLU
upconv (64:5:2:0), BN2D, 1-ReLU
upconv (3:5:2:0), BN2D

Residual Encoder and Decoder. The architecture of the conditional residual encoder is shown in Table 4 a , where we stack multiple frames along their channel dimension as an input. As described previously, in the residual encoder, the universal model requires only X_{i}, \tilde{X}_{i}^{w} while the end-to-end model will receive X_{i}, \tilde{X}_{i}^{w} and $\hat{X}_{[i-1]}$. We denote the output dimension of this residual encoder as d_{r}. In the decoding part, the decoder will first condition all the previous reconstructions $\left.\hat{X}_{[} i-1\right]$ by projecting them into an embedding vector of size 192 (conditioning module in Table 4 b). Then we concatenate this vector with the output of f_{i}^{r}. The concatenated vector will be fed into the decoder (Table 4r) to produce the reconstruction \hat{X}_{i}.

FMD and JD Critics. For the video critics, our PLF-JD critic architecture is inspired by the work of Kwon and Park [40], where we concatenate frames sequentially along their channel dimensions. For both PLF-FMD and PLF-JD critics, we add spectral normalization layers for better convergence. Their architecture is shown in Table [5

Rate and output dimension The rate R is computed by $\log _{2}\left(d_{\text {enc }} \times L\right)$, where L is the number of quantization levels and $d_{e n c}=d_{r}+d_{m}$. Table 6 provides configurations of the rate, d_{m}, d_{r}, and L in the experiment.
Training Details: We use a batch size of 64, RMSProp optimizer with a learning rate of 5×10^{-5}, and train each model with 360 epochs, where the training set contains 60000 images. To accelerate

[^3]Table 4: Residual Encoder, Conditional Module, and Residual Decoder.

(a)E	coder f_{i}^{c}	(b)Conditional
	nput	Input
conv (64:5:2:0), BN2D, 1-ReLU	conv (64:5:2:0), BN2
conv (64:5:2:0)), BN2D, 1-ReLU	conv (64:5:2:0), BN2
conv (64:5:2:0),), BN2D, 1-ReLU	conv (64:5:2:0), BN2
conv (64:5:2:0)), BN2D, 1-ReLU	conv (64:5:2:0), BN2
conv (d_{r} :	4:1:0), BN2D	conv (192:4:1:0)
	antizer	
(c)Decoder		
Input-($\left.d_{r}+192\right)$		
upconv (64:4:1:0) uc4s1, BN2D, 1-ReLU		
upconv (64:5:2:0), BN2D, 1-ReLU		
upconv (64:5:2:0), BN2D, 1-ReLU		
upconv (64:5:2:0), BN2D, 1-ReLU		
upconv (channels:5:2:0), BN2D		

Table 5: PLF-FMD and PLF-JD critic for frame i.
(a) PLF-FMD Critic

Input- $64 \times 64 \times$ channels
SN, conv $(64: 4: 2: 1), 1$ ReLU
SN, conv $(128: 4: 2: 1), 1$-ReLU
SN, conv $(256: 4: 2: 1), 1$-ReLU
conv $(512: 4: 2: 1), 1$-ReLU
Linear

(b) PLF-JD Critic

Input- $64 \times 64 \times(i \times$ channels $)$
SN, conv $(64: 4: 2: 1), 1$ ReLU
SN, conv $(128: 4: 2: 1), 1-R e L U$
SN, conv $(256: 4: 2: 1), 1$ ReLU
conv (512:4:2:1), 1-ReLU
Linear

training, we pre-train each model for 60 epochs with the MSE objective only. Under WGAN-GP framework [30], we use the gradient penalty of 10 and update the encoders/decoders for every 5 iterations. The parameters λ controlling the tradeoff are in Table 7. Training takes 2 days per model on a single NVIDIA P100 GPU. For the MovingMNIST factor of two bound and permanence of error experiments, we repeat the training 3 times.

Table 6: Rate, embedding dimension d_{m}, d_{r} and quantization level L.
(a) P-frame encoder, $R_{1}=\infty$.

R_{2}	d_{m}	d_{r}	L
1 bit	1	0	2
2 bits	1	1	2
3.17 bits	1	1	3

(b) P-frame encoder, $R_{1}=\epsilon$ (12 bits).

R_{2}	$d_{\text {enc }}$	L
4 bit	4	2
8 bits	8	2
12 bits	12	2

J. 3 Permanence of Error on KTH Datasets

The KTH dataset is a widely-used benchmark dataset in computer vision research, consisting of video sequences of human actions performed in various scenarios. We show more examples supporting our argument for the permanence of error on this realistic dataset. We use 16 bits for each frame. In general, the 0-PLF-JD decoder consistently outputs correlated but incorrect reconstructions due to the error induced by the first reconstructions, i.e., the P-frames will follow the wrong direction induced from the I-frame reconstruction. Besides the moving direction, we also notice that the type of actions (i.e. walking, jogging, and running) is also affected. On the other hand, while losing some temporal cohesion, MMSE and 0-PLF FMD decoders manage to fix the movement error.

J. 4 RDP Tradeoff for 3 frames

We extend our experimental results for the RDP-tradeoff and the principal of universality to the case of GOP size 3. As mentioned in the main paper, while the universal model only requires MMSE representations, the optimal end-to-end model also requires the MMSE reconstructions from previous frames to provide best estimates for motion flow vectors. Practically, this is challenging for our employed architecture since only previous \hat{X}_{1}, \hat{X}_{2} are available. As a result, to compare the RDP

Table 7: Perception loss and their associated λ

Perception Loss	$\lambda \times 10^{-3}$
Joint Distance (JD)	$0.0,0.7,1.0,1.15,1.2,1.25,1.3,1.5,1.7$
	$2.0,3.0,5.0,8.0,10.0,40.0,80.0$
Frame Marginal Distance (FMD)	$0.0,0.4,0.7,1.0,1.5,2.0,2.5,3.0,3.5,4.0,7.0,10.0,40.0$

Figure 7: Additional Experimental Results for the Permanence of Error Phenomenon on KTH Dataset.
tradeoff between universal and end-to-end model, we also provide the end-to-end model with the MMSE estimate from previous frames while noting that this is unfeasible in practice. Interestingly, we show in Figure 8 the RDP tradeoff curves for the third frame X_{3} and its reconstruction \hat{X}_{3}, observing that the universal and optimized curves are still relatively close to each other. When $\left(R_{1}, R_{2}, R_{3}\right)=(\infty, \epsilon, \epsilon)$, we note that the distortion for X_{3} is larger than X_{2} since the allocated rate is not enough to correct the motion. Finally, for the case $\left(R_{1}, R_{2}, R_{3}\right)=(\epsilon, \epsilon, \epsilon)$, we note that the curves again converge as in the case of $\left(R_{1}, R_{2}\right)=(\epsilon, \epsilon)$ due to the incorrect reconstruction in the I-frame.

J. 5 Diversity and Correlation

When $\left(R_{1}, R_{2}\right)=(\infty, \epsilon)$, our theoretical analysis predicted that the decoder optimized for JD is capable of producing diverse reconstructions. On the other hand, an optimized decoder for FMD will tend to produce reconstructions that are highly correlated with the previous reconstruction $\hat{X}_{1}{ }^{5}$ In

[^4]

Figure 8: RDP tradeoff curves for end-to-end and universal models. We plot the tradeoff for the two regimes: $R_{1}=\infty$ and $R_{1}=\epsilon$ in (a) and (b) respectively. The universal and optimal curves are close to each other.

Table 8: Diversity (a) between \hat{X}_{2} and Correlation Measures (b) between \hat{X}_{2} and X_{1}.
(a) Diversity Measures \uparrow.

R_{2}	Joint	Marginal
1 bit	0.0096	0.0004
2 bits	0.0082	0.0029
3.17 bits	0.0042	0.0022

(b) Correlation Measures. \uparrow

R_{2}	Joint	Marginal
1 bit	0.5218	0.6202
2 bits	0.5190	0.5969
3.17 bits	0.5205	0.5508

our experiment, we also observe such behavior, summarized in Table 8 and show several examples for $R_{2}=2$ bits in Figure 9 . We observe that reconstructions from the joint metric deviate more randomly from X_{1} than the marginal reconstructions. The marginal reconstructions, on the other hand, stay much closer to their original reconstruction \hat{X}_{1}.

We measure the diversity in \hat{X}_{2} reconstruction using $\mathrm{E}\left[\operatorname{Var}\left(\hat{X}_{2} \mid X_{1}, X_{2}\right)\right]$ and the correlation with \hat{X}_{1} by $\mathrm{E}\left[\operatorname{sim}\left(\hat{\mathrm{X}}_{2}, \mathrm{X}_{1}\right)\right]$, where $\operatorname{sim}(u, v)$ is the cosine distance between u, v. Table 8 a shows that as we increase the number of bits in R_{2}, the diversity decreases as the decoder can reconstruct the frame more precisely. In Table 8 p , we see that the joint metric keeps the correlation relatively constant, showing that it actually preserves the temporal consistency. On the other hand, as the rate becomes larger, 0-PLF-FMD reconstruction tends to be less correlated with the previous frame X_{1}. Finally, we note that our architecture innately utilizes common randomness to produce diverse reconstructions and does not suffer from mode-collapse behavior in general conditional GAN settings [41].

Figure 9: Diversity in reconstruction \hat{X}_{2} for 0-PLF-JD and correlation with previous frames \hat{X}_{1} for 0-PLF-JMD. We show X_{1} in the first column. From the second column, the light-dark region represents X_{1} and the color digit represents X_{2}, \hat{X}_{2}. For each perception metric, we show two samples.

K Limitations

809 This work studies the effects of different perception loss functions, namely the PLF-JD and PLF-FMD, 810 on the performance of lossy causal video compression. Our theoretical analysis and experiment

811
812
813
814
815 reveal the error permanence phenomenon and show the universality principle, suggesting that MMSE representation can be transformed into other points on the DP tradeoffs.
In practice, one might want to combine these two losses, for example, perfect framewise realism (0-PLF FMD) while retaining some degree of temporal cohesion (PLF-JD small), which is not considered in this work. Furthermore, analysis for other types of video compression schemes, such as with B-frame, and scaling the universality compression architecture to high-definition videos are also desired.

[^0]: ${ }^{1}$ The inequalities of the form $f(\epsilon)+O\left(\epsilon^{2}\right) \leq g(\epsilon)+O\left(\epsilon^{2}\right)$, where $f(\epsilon), g(\epsilon)=\Omega\left(\epsilon^{2}\right)$, imply that $f(\epsilon) \leq g(\epsilon)$. So, in such inequalities, we work with dominant terms $(f(\epsilon), g(\epsilon))$ and ignore the small terms $O\left(\epsilon^{2}\right)$. A similar argument holds if we have other orders of ϵ and the functions $f(),. g($.$) approach zero slower$ than them.

[^1]: ${ }^{a}$ As justified in 253-259, the coefficient ω_{1} (the coefficient of \hat{X}_{1}^{G} in \hat{X}_{2}^{G}) has some correction terms of $O(\epsilon)$ which are ignored in the presentation of \hat{X}_{2}^{G} since they do not contribute to dominant terms of distortion.

[^2]: ${ }^{2}$ This follows from the inequality: $W_{2}^{2}\left(P_{X_{1}, X_{2}}, P_{\hat{X}_{1}, \hat{X}_{2}}\right) \geq W_{2}^{2}\left(P_{X_{1}}, P_{\hat{X}_{1}}\right)+W_{2}^{2}\left(P_{X_{2}}, P_{\hat{X}_{2}}\right)$

[^3]: ${ }^{3}$ Here, we use conditioning [33| instead of sending $X_{i}-\tilde{X}_{i-1}^{w}$ as in the original work |32|
 ${ }^{4}$ For the I-frame compressor, we follow the DCGAN implementation by Denton et al [39], adding the dithered quantization layer in the encoder's last layer(https://github.com/edenton/svg/blob/master/ models/dcgan_64.py)

[^4]: ${ }^{5} X_{1}=\hat{X}_{1}$ in this regime.

