
A Random sparsification

We illustrate the random-s sparsification here. More examples of unbiased compressors can be found
in literature [51].
Example 1 (RANDOM-s SPARSIFICATION). For any x ∈ Rd, the random-s sparsification is defined
by C(x) := d

s (ξ⊙x) where ⊙ denotes the entry-wise product and ξ ∈ {0, 1}d is a uniformly random
binary vector with s non-zero entries. This random-s sparsification operator C satisfies Assumption 2
with ω = d/s− 1. When each entry of the input x is represented with r bits, random-s sparsification
compressor takes rs bits to transmit s entries and log2

(
d
s

)
bits to transmit the indices of s transmitted

entries, resulting in a total rd
1+ω + log2

(
d
s

)
bits in each communication round, see [51, Table 1].

B Proof of Proposition 1

We first recall a result proved by [51].
Lemma 2 ([51], Theorem 2). Let C : Rd → Rd be any unbiased compressors satisfying 2 and b be
the total number of bits needed to encode the compressed vector C(x) for any x ∈ Rd. If each entry
of the input x is represented with r bits, it holds that max{ ω

1+ω , 4
−r}4b/d ≥ 1.

Using Lemma 2, when ω/(1+ω) ≤ 4−r, i.e., ω ≤ (4r − 1)−1 ≤ 1/3, we have (1+ω) = Θ(1) and
b ≥ rd = Ωr(d/(1 + ω)), where r is regarded as a constant in Ωr(·). When ω/(1 + ω) ≥ 4−r, we
have

b ≥ d log4(1 + ω−1) = d ln(1 + ω−1)/ ln(4) ≥ d
ω−1

ln(4)(1 + ω−1)
= Ωr

(
d

1 + ω

)
,

where we use the inequality ln(1 + t) ≥ t/(1 + t) with t = ω−1 ≥ 0.

C Proof of Theorem 2

Following [5, 9] , we denote the k-th coordinate of a vector x ∈ Rd by [x]k for k = 1, . . . , d, and let
prog(x) be

prog(x) :=

{
0, if x = 0,

max1≤k≤d{k : [x]k ̸= 0}, otherwise.

Similarly, for a set of multiple points X = {x1, x2, . . . }, we define prog(X) := maxx∈X prog(x).
We call a function f zero-chain if it satisfies

prog(∇f(x)) ≤ prog(x) + 1, ∀x ∈ Rd,

which implies that starting from x0 = 0, a single gradient evaluation can only earn at most one more
non-zero coordinate for the model parameters.

Let us now illustrate the setup of distributed optimization with communication compression. For any
t ≥ 1, we consider the t-th communication round, which begins with the server broadcasting a vector
denoted as ut to all workers. We initialize u1 as x0. Upon receiving the vector ut from the server,
each worker performs necessary algorithmic operations, and the round concludes with each worker
sending a compressed message back to the server.

We denote vti as the vector that worker i aims to send in the t-th communication round before
compression, and v̂ti as the compressed vector that will be received by the server, i.e., v̂ti = Ci(v

t
i).

While we require communication to be synchronous among workers, we do not impose restrictions
on the number of gradient queries made by each worker within a communication round. We use Yt

i
to represent the set of vectors at which worker i makes gradient queries in the t-th communication
round, after receiving ut but before sending v̂ti .

Following the above description, we now formally state the linear spanning property in the setting of
centralized distributed optimization with communication compression.
Definition 2 (LINEAR-SPANNING ALGORITHMS). We say a distributed algorithm A is linear-
spanning if, for any t ≥ 1, the following conditions hold:

14

1. The server can only send a vector in the linear manifold spanned by all the past received
messages, sent messages, i.e., ut ∈ span

(
{ur}t−1

r=1 ∪ {v̂ri : 1 ≤ i ≤ n}t−1
r=1

)
.

2. Worker i can only query at vectors in the linear manifold spanned by its
past received messages, compressed messages, and gradient queries, i.e., Yt

i ⊆
span

(
{ur}tr=1 ∪ {∇fi(y) : y ∈ Yr

i }
t−1
r=1 ∪ {v̂ri }

t−1
r=1

)
.

3. Worker i can only send a vector in the linear manifold spanned by its past re-
ceived messages, compressed messages, and local gradient queries, i.e., vti ∈
span

(
{ur}tr=1 ∪ {∇fi(y) : y ∈ Yr

i }tr=1 ∪ {v̂ri }
t−1
r=1

)
.

4. After t communication rounds, the server can only output a model in the linear
manifold spanned by all the past received messages, sent messages, i.e., x̂t ∈
span ({ur}tr=1 ∪ {v̂ri : 1 ≤ i ≤ n}tr=1).

In essence, when starting from x0 = 0, the above linear-spanning property requires that any expansion
of non-zero coordinates in vectors held by worker i (e.g., Yt

i , vti) are attributed to its past local gradient
updates, local compression, or synchronization with the server. Meanwhile, it also requires that any
expansion of non-zero coordinate in vectors held, including the final algorithmic output, in the server
is due to the received compressed messages from workers.

Without loss of generality, we assume algorithms to start from x0 = 0 throughout the proofs. When
{fi}ni=1 are further assumed to be zero-chain, following Definition 2, one can easily establish by
induction that for any t ≥ 1,

max
1≤r≤t

prog(ur) ≤ max
1≤r<t

max
1≤i≤n

prog(v̂ri) (10)

max
1≤r≤t

prog(vti) ≤ max
1≤r<t

max

{
max
1≤i≤n

prog(v̂ri),prog(Yr
i)

}
≤ max

1≤r<t
max
1≤i≤n

prog(v̂ri) + 1

prog(x̂t) ≤ max
1≤r≤t

max
1≤i≤n

prog(v̂ri)

Next, we outline the proofs for the lower bounds presented in Theorem 2. For each case, we provide
separate proofs for terms in the lower bound by constructing different hard-to-optimize examples,
respectively. The construction of these proofs follows four steps:

• Constructing a set of zero-chain local functions {fi}ni=1.

• Constructing a set of independent unbiased compressors {Ci}ni=1 ⊆ U ind
ω . These compressors

are delicately designed to impede algorithms from expanding the non-zero coordinates of model
parameters.

• Establishing a limitation on zero-respecting algorithms that utilize the predefined compressor
with t rounds of compressed communication on each worker. This limitation is based on the
non-zero coordinates of model parameters.

• Translating the above limitation into the lower bound of the complexity measure defined in
equation (3).

While the overall proof structure is similar to that of [19], our novel construction of functions and
compressors enable us to derive lower bounds for independent compressors. These lower bounds
clarify the unique properties and benefits of independent compressors.

We will use the following lemma in the analysis of the third step.
Lemma 3 ([19], Lemma 3). Given a constant p ∈ [0, 1] and random variables {Bt}∞t=0 such that
Bt ≤ B(t−1) + 1 and P(Bt ≤ Bt−1 | {Br}t−1

r=0) ≥ 1− p for any t ≥ 1, it holds for t ≥ 1/p, with
probability at least 1− e−1, that Bt ≤ B0 + ept.

C.1 Strongly-convex case

Below, we present two examples, each of which corresponding to a lower bound LBm for Tϵ. We
integrate the two lower bounds together and use the inequality

Tϵ ≥ max
1≤m≤2

{LBm} = Ω(LB1 + LB2)

15

to accomplish the lower bound for strongly-convex problems in Theorem 2.

Example 1. In this example, we prove the lower bound Ω((1 + ω)(1 +
√
κ/n) ln (µ∆/ϵ)).

(Step 1.) We assume the variable x ∈ ℓ2 ≜ {([x]1, [x]2, . . . ,) :
∑∞

r=1[x]
2
r < ∞} to be infinitely

dimensional and square-summable for simplicity. It is easy to adapt the argument for finitely
dimensional variables as long as the dimension is proportionally larger than t. Let M be

M =

2 −1
−1 2 −1

−1 2 −1
.

 ∈ R∞×∞,

then it is easy to see 0 ⪯ M ⪯ 4I . Let {fi}ni=1 be as follows

fi(x) =

{
µ
2 ∥x∥

2 + L−µ
4

∑
r≥0([x]nr+i − [x]nr+i+1)

2, if 1 ≤ i ≤ n− 1,
µ
2 ∥x∥

2 + L−µ
4

(
[x]21 +

∑
r≥1([x]nr − [x]nr+1)

2 − 2λ[x]1

)
, if i = n.

where λ ∈ R\{0} is to be specified. It is easy to see that
∑

r≥0([x]nr+i − [x]nr+i+1)
2 and

[x]21 +
∑

r≥0([x]nr − [x]nr+1)
2 − 2λ[x]1 are convex and 4-smooth. Consequently, all fis are L-

smooth and µ-strongly convex. More importantly, it is easy to verify that all fis defined above are
zero-chain functions and satisfy

prog(∇fi(x))

{
= prog(x) + 1, if prog(x) ≡ i mod n,

≤ prog(x), otherwise.
(11)

We further have f(x) = 1
n

∑n
i=1 fi(x) = µ

2 ∥x∥
2 + L−µ

4n

(
x⊤Mx− 2λ[x]1

)
. For the functions

defined above, we also establish that
Lemma 4. Let κ ≜ L/µ ≥ 1, it holds for any x that,

f(x)−min
x

f(x) ≥ µ

2

1− 2

(
1 +

√
1 +

2(κ− 1)

n

)−1
2prog(x)

∥x0 − x⋆∥2.

Proof. The minimum x⋆ of function f satisfies
(

L−µ
2n M + µ

)
x⋆−λL−µ

2 e1 = 0, which is equivalent
to

2κ+ 2n− 2

κ− 1
[x⋆]1 − [x⋆]2 = λ,

−[x⋆]j−1 +
2κ+ 2n− 2

κ− 1
[x⋆]j − [x⋆]j+1 = 0, ∀ j ≥ 2. (12)

Note that

q =
κ+ n− 1−

√
n(2κ+ n− 2)

κ− 1
= 1− 2

1 +
√

1 + 2(κ−1)
n

is the only root of the equation q2 − 2κ+2n−2
κ−1 q + 1 = 0 that is smaller than 1. Then it is straight

forward to check x⋆ =
(
[x⋆]j = λqj

)
j≥1

satisfies (12). By the strong convexity of f , x⋆ is the
unique solution. Therefore, we have that

∥x− x⋆∥2 ≥
∞∑

j=prog(x)+1

λ2q2j = λ2 q
2(r+1)

1− q2
= q2r∥x0 − x⋆∥2.

Finally, using the strong convexity of f leads to the conclusion.

Following the proof of Lemma 4, we have

∥x0 − x⋆∥2 = λ2
∞∑
j=1

q2j = λ2 q2

1− q2

16

Therefore, for any given ∆ > 0, letting λ =
√
((1− q2)∆)/q2 results in ∥x0 − x⋆∥2 = ∆.

Consequently, our construction ensures {fi}ni=1 ∈ F∆
L,µ.

(Step 2.) For the construction of ω-unbiased compressors, we consider {Ci}ni=1 to be independent
random sparsification compressors. Building upon Example 1, we make a slight modification: during
a round of communication on any worker, each coordinate is independetly chosen with a probability
of (1 + ω)−1 to be transmitted, and if selected, its value is scaled by (1 + ω) and then the scaled
value is transmitted. Notably, the indices of chosen coordinates are not identical across all workers
due to the independence of compressors. It can be easily verified that this construction ensures that
{Ci}ni=1 ⊆ U ind

ω .

(Step 3.) Since the algorithmic output x̂t calculated by the server lies in the linear manifold spanned
by received messages, we can use (10) to obtain the following expression:

prog(x̂t) ≤ max
1≤r≤t

max
1≤i≤n

max{prog(ur),prog(v̂ri)} = max
1≤r≤t

max
1≤i≤n

prog(v̂ri) ≜ Bt. (13)

We next bound Bt with B0 := 0 by showing that {Bt}∞t=0 satisfies Lemma 3 with p = (1 + ω)−1.

For any linear-spanning algorithm A, according to (11), the worker i can only attain one additional
non-zero coordinate through local gradient-based updates when prog(Yt

i) ≡ i mod n. In other
words, upon receiving messages {ur

i }tr=1 from the server, we have

prog(vti) ≤
{
max1≤r≤t prog(u

r
i) + 1 ≤ Bt−1 + 1, if prog(Yt

i) ≡ i mod n,

max1≤r≤t prog(u
r
i) ≤ Bt−1, otherwise.

Consequently, we have

max
1≤r≤t

prog(vri) ≤ max
1≤r≤t

Br−1 + 1 = Bt−1 + 1.

It then follows from the definition of the constructed Ci in Step 2 that max1≤i≤n prog(v̂
t
i) ≤

max1≤i≤n prog(v
t
i), and therefore we have:

Bt ≤ max
1≤r≤t

max
1≤i≤n

prog(vri) ≤ Bt−1 + 1.

Next, we aim to prove that Bt ≤ Bt−1 + 1 with a probability of at least ω/(1 + ω). For any t ≥ 1,
let i ∈ {1, . . . , n} be such that Bt−1 ≡ i mod n. Due to the property in equation (11), during the
t-th communication round, if prog(Yt

i) = Bt−1, worker i can push the number of non-zero entries
forward by 1, resulting in prog(vti) = Bt−1 + 1, using local gradient updates. Note that any other
worker j cannot achieve this even if prog(Yt

j) = Bt−1 due to equation (11).

Therefore, to achieve Bt = Bt−1 + 1, it is necessary for worker i to transmit a non-zero value at the
(Bt−1 + 1)-th entry to the server. Otherwise, we have Bt ≤ Bt−1. However, since the compressor
Ci associated with worker i has a probability ω/(1 + ω) to zero out the (Bt−1 + 1)-th entry in the
t-th communication round, we have

P
(
Bt ≤ Bt−1 | {Br}t−1

r=0

)
≥ ω/(1 + ω).

In summary, we have shown that Bt ≤ Bt−1 + 1 and P(Bt ≤ Bt−1 | {Br}t−1
r=0) ≥ ω/(1 + ω).

By applying Lemma 3, we can conclude that for any t ≥ (1 + ω)−1, with a probability of at least
1− e−1, it holds that Bt ≤ et/(1 + ω) and hence prog(x̂t) ≤ et/(1 + ω) due to (13).

(Step 4.) Using Lemma 4 and that prog(x̂t) ≤ et/(1 + ω) with probability at least 1 − e−1, we
obtain

E[f(x̂t)]−min
x

f(x) ≥ (1− e−1)µ∆

2

1− 2

(
1 +

√
1 +

2(κ− 1)

n

)−1
2et/(1+ω)

(14)

=Ω

(
µ∆exp

(
− 4et

(
√
κ/n+ 1)(1 + ω)

))
.

17

Therefore, to ensure E[f(x̂t)] − minx f(x) ≤ ϵ, relation (14) implies the lower bound Tϵ =

Ω((1 + ω)(1 +
√
κ/n) ln(µ∆/ϵ)).

Example 2. Considering f1 = f to be homogeneous and Ci = I to be a loss-less compressor for all
1 ≤ i ≤ n, the problem reduces to single-node convex optimization. In this case, the lower bound of
Ω(

√
κ ln (µ∆/ϵ)) is well-known in the literature, as shown in [45, 44].

With the two lower bounds achieved in Examples 1 and 2, we have

Tϵ = Ω
(
(1 + ω)(1 +

√
κ/n) ln(µ∆/ϵ) +

√
κ ln(µ∆/ϵ)

)
= Ω

(
(1 + ω +

√
κ/n+ ω

√
κ/n+

√
κ) ln(µ∆/ϵ)

)
= Ω

(
(ω + ω

√
κ/n+

√
κ) ln(µ∆/ϵ)

)
which is the result for the strongly-convex case in Theorem 2.

C.2 Generally-convex case

Below, we present three examples, each of which corresponding to a lower bound LBm for Tϵ. We
integrate the three lower bounds together and use the inequality

Tϵ ≥ max
1≤m≤3

{LBm} = Ω(LB1 + LB2 + LB3)

to accomplish the lower bound for the generally-convex case in Theorem 2.

Example 1. In this example, we prove the lower bound Ω((1 + ω)(L∆/ϵ)1/2).

(Step 1.) We assume variable x ∈ Rd, where d can be sufficiently large and will be determined later.
Let M denote

M =

2 −1
−1 2 −1

.
−1 2 −1

−1 2

 ∈ Rd×d,

it is easy to verify 0 ⪯ M ⪯ 4I . Similar to example 1 of the strongly-convex case, we consider

fi(x) =

{
L
4

∑
r≥0([x]nr+i − [x]nr+i+1)

2, if 1 ≤ i ≤ n− 1,
L
4

(
[x]21 +

∑
r≥1([x]nr − [x]nr+1)

2 − 2λ[x]1

)
, if i = n.

where λ ∈ R\{0} is to be specified. It is easy to see that all fis are L-smooth. We further have
f(x) = 1

n

∑n
i=1 fi(x) =

L
4n

(
x⊤Mx− 2λ[x]1

)
. The fi functions defined above are also zero-chain

functions satisfying (11).

Following [44], it is easy to verify that the optimum of f satisfies

x⋆ =

(
λ

(
1− k

d+ 1

))
1≤k≤d

and f(x⋆) = min
x

f(x) = − λ2Ld

4n(d+ 1)
.

More generally, it holds for any 0 ≤ k ≤ d that

min
x: prog(x)≤k

f(x) = − λ2Lk

4n(k + 1)
. (15)

Since ∥x0 − x⋆∥2 = λ2

(d+1)2

∑d
k=1 k

2 = λ2d(2d+1)
6(d+1) ≤ λ2d

3 , letting λ =
√

3∆/d, we have {fi}ni=1 ∈
F∆

L,0.

(Step 2.) Same as Step 2 of Example 1 of the strongly-convex case, we consider {Ci}ni=1 to be
independent random sparsification operators.

18

(Step 3.) Following the same argument as step 3 of example 1 of the strongly-convex case, we have
that for any t ≥ (1 + ω)−1, it holds with probability at least 1− e−1 that prog(x̂t) ≤ et/(1 + ω).

(Step 4.) Thus, combining (15), we have

E[f(x̂t)]−min
x

f(x) ≥(1− e−1)
λ2L

4n

(
d

d+ 1
− et/(1 + ω)

1 + et/(1 + ω)

)
=(1− e−1)

3L∆

4nd

(
d

d+ 1
− et/(1 + ω)

1 + et/(1 + ω)

)
Letting d = 1 + et/(1 + ω), we further have

E[f(x̂t)]−min
x

f(x) ≥ 3(1− e−1)L∆

8net(1 + ω)−1(1 + 2et(1 + ω)−1)
= Ω

(
(1 + ω)2L∆

nt2

)
.

Therefore, to ensure E[f(x̂t)]−minx f(x) ≤ ϵ, the above inequality implies the lower bound to be
T = Ω((1 + ω)(L∆/(nϵ))

1
2).

Example 2. Considering f1 = f to be homogeneous and Ci = I to be a loss-less compressor for
all 1 ≤ i ≤ n. The problem reduces to the single-node convex optimization. The lower bound
Ω(
√
L∆/ϵ) is well-known in literature, see, e.g., [45, 44].

Example 3. In this example, we prove the lower bound Ω(ω ln (L∆/ϵ)).

(Step 1.) We consider f1 = · · · = fn−1 = L∥x∥2/2 and fn = L∥x∥2/2 + nλ⟨1d, x⟩ where
1d ∈ Rd is the vector with all enries being 1 and λ ∈ R is to be determined. By definition, {fi}ni=1

are µ-strongly-convex and L-smooth and the solution x⋆ = − λ
L1d. Letting λ = L

√
∆/

√
n, we have

∥x⋆ − x0∥2 = ∆. Thus, the construction ensures {fi}ni=1 ∈ F∆
L,µ.

(Step 2.) Same as in Example 1, we consider {Ci}ni=1 to be independent random sparsification
operators.

(Step 3.) By the construction of {fi}ni=1, we observe that the optimization process relies solely on
transmitting the information of 1d from worker n to the server. Let Et denote the set of entries at
which the server has received a non-zero value from worker n in the first t communication rounds.
Note that for each entry, due to the construction of {Ci}ni=1, the server has a probability of at least
(ω/(1 + ω))t of not receiving a non-zero value at that entry from worker n. Consequently, |(Et)c| is
lower bounded by the sum of n independent Bernoulli(ωt/(1 + ω)t) random variables. Therefore,
we have E[|(Et)c|] ≥ dωt/(1 + ω)t.

(Step 4.) Given |Et|, due to the linear-spanning property, we have x̂t ∈ span{ej : j ∈ Et} where ej
is the j-th canonical vector. As a result, we have

E[f(x̂t)]−min
x

f(x)

≥E[min
x∈span{ej :j∈Et}

f(x)]−min
x

f(x) =
L∆

2

E[|(Et)c|]
d

≥ L∆

2

ωt

(1 + ω)t
. (16)

Therefore, to ensure E[f(x̂t)]−minx f(x) ≤ ϵ, (16) implies the lower bound Tϵ = Ω(ω ln(L∆/ϵ)).

With the three lower bounds achieved in Examples 1, 2, and 3, we have

Tϵ = Ω
(√L∆

ϵ
+ (1 + ω)

√
L∆

nϵ
+ ω ln(L∆/ϵ)

)
= Ω

(√L∆

ϵ
+ ω

√
L∆

nϵ
+ ω ln(L∆/ϵ)

)
which is the result for the generally-convex case in Theorem 2.

19

D Proof of Theorem 3

D.1 Strongly-convex case

We first present several important lemmas, followed by the definition of a Lyapunov function with
delicately chosen coefficients for each term. Finally, we prove Theorem 3 by utilizing these lemmas.
Throughout the convergence analysis, we use the following notations:

Wk =f(wk)− f⋆, Yk = f(yk)− f⋆, Zk = ∥zk − x⋆∥2,

Hk =
1

n

n∑
i=1

∥hk
i −∇fi(w

k)∥2, Gk = ∥gk −∇f(xk)∥2,

Gk
w =

1

n

n∑
i=1

∥∇fi(w
k)−∇fi(x

k)∥2, Gk
y =

1

n

n∑
i=1

∥∇fi(y
k)−∇fi(x

k)∥2.

We use Ek or E indicate the expectation with respect to the randomness in the k-th iteration or all
histortical randomness, respectively.
Lemma 5. If 0 ≤ β ≤ 1, it holds for ∀ k ≥ 0 that,

Zk+1 ≤2γk⟨gk, x⋆ − xk⟩+ 2γkβθ2
θ1,k

⟨gk, wk − xk⟩+ 2γkβ(1− θ1,k − θ2)

θ1,k
⟨gk, yk − xk⟩

+ βZk + (1− β)∥xk − x⋆∥2 + γ2
k∥gk∥2. (17)

Proof. Following the update rules in Algorithm 1, we have

Zk+1 =

∥∥∥∥βzk + (1− β)xk − x⋆ +
γk
ηk

(yk+1 − xk)

∥∥∥∥2
=∥β(zk − x⋆) + (1− β)(xk − x⋆)∥2 + γ2

k∥gk∥2

+ ⟨2γkgk, βzk + (1− β)xk − x⋆⟩. (18)

Since xk = θ1,kz
k + θ2w

k + (1− θ1,k − θ2)y
k, we have

βzk + (1− β)xk − x⋆ =(xk − x⋆) +
βθ2
θ1,k

(xk − wk) +
β(1− θ1,k − θ2)

θ1,k
(xk − yk). (19)

Plugging (19) into (18), using

∥β(zk − x⋆) + (1− β)(xk − x⋆)∥2 ≤ β∥zk − x⋆∥2 + (1− β)∥xk − x⋆∥2,

we obtain (17).

Lemma 6. Under Assumption 1, if parameters satisfy θ1,k, θ2, 1− θ1,k − θ2 ∈ (0, 1), ηk ∈
(
0, 1

2L

]
,

γk = ηk

2θ1,k+ηkµ
and β = 1− γµ =

2θ1,k
2θ1,k+ηkµ

, then we have for any iteration k ≥ 0 that

2γkβ

θ1,k
Ek[Yk+1] + Ek[Zk+1] ≤2γkβθ2

θ1,k
Wk +

2γkβ(1− θ1,k − θ2)

θ1,k
Yk + βZk +

5γkβηk
4θ1,k

Gk

− γkβθ2
Lθ1,k

Gk
w − γkβ(1− θ1,k − θ2)

Lθ1,k
Gk
y . (20)

Proof. By Assumption 1 and update rules in Algorithm 1, we have

f(yk+1) ≤f(xk) + ⟨∇f(xk), yk+1 − xk⟩+ L

2
∥yk+1 − xk∥2

=f(xk)− ⟨∇f(xk), ηkg
k⟩+ L

2
η2k∥gk∥2

=f(xk)− ηk⟨∇f(xk)− gk, gk⟩+
(
Lη2k
2

− ηk

)
∥gk∥2. (21)

20

By L-smoothness and µ-strongly convexity, we have for ∀u ∈ Rd that

f(u) ≥ f(xk) + ⟨∇f(xk), u− xk⟩+ µ

2
∥u− xk∥2,

and that

fi(u) ≥ fi(x
k) + ⟨∇fi(x

k), u− xk⟩+ 1

2L
∥∇fi(u)−∇fi(x

k)∥2,

thus we obtain for ∀u ∈ Rd,

f(xk) ≤f(u)− ⟨∇f(xk), u− xk⟩

−max

{
µ

2
∥u− xk∥2, 1

2Ln

n∑
i=1

∥∇fi(u)−∇fi(x
k)∥2

}
. (22)

Applying Young’s inequality to (21) and using ηk ≤ 1/(2L), we reach

f(yk+1) ≤f(xk) +
ηk
2
Gk − ηk

2
(1− Lηk)∥gk∥2

≤f(xk) +
ηk
2
Gk − ηk

4
∥gk∥2. (23)

Adding (17) in Lemma 5 to
(

2γkβ
θ1,k

+ 2γk(1− β)
)
×(23) + 2γk×(22) (where u = x⋆) + 2γkβθ2

θ1,k
×(22)

(where u = wk) + 2γkβ(1−θ1,k−θ2)
θ1,k

×(22) (where u = yk) and using the unbiasedness of gk, we
obtain

2γkβ

θ1,k
Ek[Yk+1] + Ek[Zk+1]

≤βZk + (1− β − µγk)∥xk − x⋆∥2 +
(
γ2
k − ηkγkβ

2θ1,k

)
Ek[∥gk∥2] + ηk

(
γkβ

θ1,k
+ γk(1− β)

)
Gk

− γkβθ2
Lθ1,k

Gk
w − γkβ(1− θ1,k − θ2)

Lθ1,k
Gk
y +

2γkβθ2
θ1,k

Wk +
2γkβ(1− θ1,k − θ2)

θ1,k
Yk

− 2γk(1− β)Ek[Yk+1]− ηkγk(1− β)

2
Ek[∥gk∥2]

On top of that, by applying our choice of the parameters, it can be easily verified that 1−β−µγk = 0,
γ2
k − ηkγkβ

2θ1,k
= 0, 1− β ≤ β

4θ1,k
, which leads to (20).

Lemma 7 ([33], Lemma 3, 4, 5). Under Assumptions 1, 2, and 3, the iterates of Algorithm 1 satisfy
the following inequalities:

E[Wk+1] =(1− p)E[Wk] + pE[Yk], (24)

E[Gk] ≤2ω

n
E[Gk

w] +
2ω

n
E[Hk], (25)

E[Hk+1] ≤
(
1− α

2

)
E[Hk] + 2p

(
1 +

2p

α

)
(E[Gk

w] + E[Gk
y]). (26)

Now we define a Lyapunov function Ψk for k ≥ 1 as

Ψk = λk−1Wk +
2γk−1β

θ1,k−1
Yk + Zk +

10ηk−1ω(1 + ω)γk−1β

θ1,k−1n
Hk, ∀k ≥ 1, (27)

where λk = γkβ
pθ1,k

(θ1,k + θ2 − p+
√

(p− θ1,k − θ2)2 + 4pθ2). Furthermore, it is straightforward
to verify that

2γkβθ2
pθ1,k

≤ λk ≤ 2γkβ(θ1,k + θ2)

pθ1,k
.

Now we restate the convergence result in the strongly-convex case in Theorem 3 and prove it using
Lemma 6, 7 and the Lyapunov function.

21

Theorem 4. If µ > 0 and parameters satisfy ηk ≡ η = nθ2/(120ωL), θ1,k ≡ θ1 = 1/(3
√
κ),

α = p = 1/(1 + ω), γk ≡ γ = η/(2θ1 + ηµ), β = 2θ1/(2θ1 + ηµ), and θ2 = 1/(3
√
n + 3n/ω),

then the number of communication rounds performed by ADIANA to find an ϵ-accurate solution such
that E[f(x̂)]−minx f(x) ≤ ϵ is at most O((ω + (1 + ω/

√
n)
√
κ) ln(L∆/ϵ)).

Proof. In the strongly-convex case, parameters {γk}k≥1 and {θ1,k}k≥1 are constants, then so
is λk. Thus, we simply write γ ≜ γk, θ1 ≜ θ1,k, and λ ≜ λk for all k ≥ 1. Considering
(20)+λ(24)+ 5γβη

4θ1
(25)+ 10ηω(1+ω)γβ

nθ1
(26), we have

E[Ψk+1] ≤
(
2γβθ2
θ1

+ (1− p)λ

)
Wk +

(
2γβ(1− θ1 − θ2)

θ1
+ pλ

)
Yk + βZk

+

(
1− 1

4(1 + ω)

)
10ηω(1 + ω)γβ

θ1n
Hk −

(
γβθ2
Lθ1

− 125γβηω

2nθ1

)
Gk
w

−
(
γβ(1− θ1 − θ2)

Lθ1
− 60ηωγβ

nθ1

)
Gk
y . (28)

By the definition of λ, we have

2γβθ2
θ1

+ (1− p)λ =λ

(
1− p+

2pθ2√
(p− θ1 − θ2)2 + 4pθ2 + θ1 + θ2 − p

)

=λ

1− p+
2pθ2

2θ2 +
4θ1θ2√

(p−θ1−θ2)2+4pθ2−θ1+θ2+p

≤λ

(
1− p+

p

1 + 2θ1
(p+θ1+θ2)−θ1+θ2+p

)
=

(
1− pθ1

p+ θ1 + θ2

)
λ, (29)

and

2γβ(1− θ1 − θ2)

θ1
+ pλ =

2γβ

θ1

[
1− θ1 − θ2 +

1

2

(
θ1 + θ2 − p+

√
(p− θ1 − θ2)2 + 4pθ2

)]
=
2γβ

θ1

(
1− 2pθ1

p+ θ1 + θ2 +
√
(p− θ1 − θ2)2 + 4pθ2

)

≤
(
1− pθ1

p+ θ1 + θ2

)
2γβ

θ1
. (30)

From the choice of η, it is easy to verify that

γβθ2
Lθ1

− 5γβηω

2nθ1
− 60ηωγβ

nθ1
≥ 0, (31)

and further noting 1− θ1 − θ2 ≥ θ2,

γβ(1− θ1 − θ2)

Lθ1
− 60ηωγβ

nθ1
≥ 0. (32)

Plugging (29), (30), (31), and (32) into (28), we obtain

E[Ψk+1] ≤
(
1−min

{
pθ1

p+ θ1 + θ2
,

ηµ

2θ1 + ηµ
,

1

4(1 + ω)

})
Ψk

≤

(
1− 1

p+θ1+θ2
pθ1

+ 2θ1+ηµ
ηµ + 4(1 + ω)

)
Ψk

≤

1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
Ψk, ∀k ≥ 0, (33)

22

where Ψ0 := λW0 + 2γβ
θ1

Y0 + Z0 + 10ηω(1+ω)γβ
θ1n

H0. Note that since we use initialization y0 =

z0 = w0 = h0
i = h0, ∀1 ≤ i ≤ n, we have W0 = Y0 ≤ (L∆)/2, Z0 ≤ ∆, H0 ≤ L2∆, which

indicates that

Ψ0 ≤ L

2
· (λW + λY + λZ + λH)∆,

where λW = λ ≥ 2γβθ2
θ1p

, λY = 2γβ
θ1

, λZ = 2
L , λH = 20ηω(1+ω)γβL

θ1n
. These coefficients have the

following inequalities:

λW + λY ≥ 4η(θ2 + p)

p(2θ1 + ηµ)2
=

nθ2(θ2 + p)

30ωLp(2/3
√
κ+ nθ2/120ωκ)2

≥ nθ2(θ2 + p)κ

15ωLp

≥ κ

135L
≥ 1

270
λZ ,

and
3

32
(λW + λY) ≥

κ

1440L
≥ (1 + ω)nθ22κ

160ωL
≥ 40η2ω(1 + ω)L

(2θ1 + ηµ)2n
= λH .

Consequently, the initial value of the Lyapunov function can be bounded as

Ψ0 ≤ 136L(λW + λY)∆,

which together with (33) further implies that

min{E[f(wT)],E[f(yT)]} − f⋆

≤min

{
1

λW
,
1

λY

}1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
T

Ψ0

≤272L∆

1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
T

.

Thus, O
((

ω +
(
1 + ω√

n

)√
κ
)
ln
(
L∆
ϵ

))
iterations are sufficient to guarantee an ϵ-solution.

D.2 Generally-convex case

In this subsection, we restate the convergence result in the generally-convex case as in Theorem 3
and prove it using Lemma 6, 7 and the Lyapunov function defined in (27).
Theorem 5. If µ = 0 and parameters satisfy α = 1/(1 + ω), β = 1, p = θ2 = 1/(3(1 + ω)),
θ1,k = 9/(k + 27(1 + ω)), γk = ηk/(2θ1,k), and

ηk = min

{
k + 1 + 27(1 + ω)

9(1 + ω)2(1 + 27(1 + ω))L
,

3n

200ω(1 + ω)L
,
1

2L

}
,

then the number of communication rounds performed by ADIANA to find an ϵ-accurate solution such
that E[f(x̂)]−minx f(x) ≤ ϵ is provided by O((1 + ω/

√
n)
√

L∆/ϵ+ (1 + ω) 3
√
L∆/ϵ) .

Proof. Considering (20)+λk(24)+ 5γkβηk

4θ1,k
(25)+ 10ηkω(1+ω)γkβ

nθ1,k
(26) and applying the choice of θ2,

p and α, we have

Ek[Ψ
k+1]

≤
(
2γkβθ2
θ1,k

+ (1− p)λk

)
Wk +

(
2γkβ(1− θ1,k − θ2)

θ1,k
+ pλk

)
Yk + βZk

+

(
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γkβ

nθ1,k
Hk −

(
γkβθ2
Lθ1,k

− 5ωγkβηk
2nθ1,k

− 100ηkωγkβ

9nθ1,k

)
Gk
w

−
(
γkβ(1− θ1,k − θ2)

Lθ1,k
− 100ηkωγkβ

9nθ1,k

)
Gk
y . (34)

23

Similar to the proof of Theorem 4, we can simplify (34) by validating

2γkβθ2
θ1,k

+ (1− p)λk ≤
(
1− pθ1,k

p+θ1,k+θ2

)
λk ≤

(
1− θ1,k

3

)
λk,

2γkβ(1−θ1,k−θ2)
θ1,k

+ pλk ≤
(
1− pθ1,k

p+θ1,k+θ2

)
2γkβ
θ1,k

≤
(
1− θ1,k

3

)
2γkβ
θ1,k

,
γkβθ2
Lθ1,k

− 5ωγkβηk

2nθ1,k
− 100ηkωγkβ

9nθ1,k
≥ 0,

γkβ(1−θ1,k−θ2)
Lθ1,k

− 100ηkωγkβ
9nθ1,k

≥ 0,

and then obtain

Ek[Ψ
k+1] ≤

(
1− θ1,k

3

)
λkWk +

(
1− θ1,k

3

)
2γk
θ1,k

Yk + Zk

+

(
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γk

θ1,kn
Hk. (35)

For ∀k ≥ 1, we have θ1,k ≤ θ1,k−1 and thus(
1− θ1,k

3

)
λk =

(
1− 3

k + 27(1 + ω)

)
ηk

2pθ21,k

(
θ1,k +

√
θ21,k + 4pθ2

)
≤
(
1− 3

k + 27(1 + ω)

)
ηk

2pθ21,k
(θ1,k−1 +

√
θ21,k−1 + 4pθ2)

=

(
1− 3

k + 27(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2
ηk

ηk−1
λk−1.

Further noting ηk

ηk−1
≤ 1 + 1

k+27(1+ω) , we obtain(
1− θ1,k

3

)
λk ≤

(
1− 3

k + 27(1 + ω)

)(
1− 1

k + 27(1 + ω)

)−2(
1 +

1

k + 27(1 + ω)

)
λk−1

≤λk−1. (36)

Similarly,(
1− θ1,k

3

)
2γk
θ1,k

=

(
1− 3

k + 27(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2
ηk

ηk−1

2γk−1

θ1,k−1

≤
(
1− 3

k + 27(1 + ω)

)(
1− 1

k + 27(1 + ω)

)−2(
1 +

1

k + 27(1 + ω)

)
2γk−1

θ1,k−1

≤ 2γk−1

θ1,k−1
, (37)

and (
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γkβ

nθ1,k

=

(
1− 1

4(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2(
ηk

ηk−1

)2
10ηk−1ω(1 + ω)γk−1β

nθ1,k−1

≤

(
1− 5

k+27(1+ω)

)(
1 + 3

k+27(1+ω)

)
(
1− 1

k+27(1+ω)

)2 10ηk−1ω(1 + ω)γk−1β

nθ1,k−1

≤10ηk−1ω(1 + ω)γk−1β

θ1,k−1n
. (38)

24

Combining (35),(36),(37), and (38), we have for ∀ k ≥ 1 that

Ek[Ψ
k+1] ≤ Ψk. (39)

By applying (39) with k = T − 1, T − 2, · · · , 1 and (35) with k = 0, we obtain

E[ΨT] ≤
(
1− θ1,0

3

)
2γ0(θ1,0 + θ2)

pθ1,0
W0 +

(
1− θ1,0

3

)
2γ0
θ1,0

Y0 + Z0

+

(
1− 1

4(1 + ω)

)
10η0ω(1 + ω)γ0

θ1,0n
H0

≤ 2

L
W0 +

1

L
Y0 + Z0 +

3

40L2
H0 ≤

(
1 +

1

2
+ 1 +

3

40

)
∆ ≤ 3∆.

Note that

ΨT ≥λT−1WT +
2γT−1β

θ1,T−1
YT ≥ 2γT−1βθ2

θ1,T−1p
WT +

2γT−1β

θ1,T−1
YT =

ηT−1

θ21,T−1

(WT + YT),

thus
max{E[f(wT)],E[f(yT)]} − f⋆

≤
θ21,T−1

ηT−1
E[ΨT]

≤ 243∆

(T − 1 + 27(1 + ω))2
·max

{
9(1 + ω)2(1 + 27(1 + ω))L

T + 27(1 + ω)
,
200ω(1 + ω)L

3n
, 2L

}
=O

(
(1 + ω2/n)L∆

T 2
+

(1 + ω3)L∆

T 3

)
,

thus it suffices to achieve an ϵ-solution with O
((

1 + ω√
n

)√
L∆
ϵ + (1 + ω) 3

√
L∆
ϵ

)
iterations.

E Correction on CANITA [34]

We observe that when ω ≫ n, the original convergence rate of CANITA [34] contradicts the lower
bounds presented in our Theorem 2. This discrepancy may stem from errors in the derivation of
equations (35) and (36) in [34], or from the omission of certain conditions such as ω = Ω(n). To
address this issue, we provide a corrected proof and the corresponding convergence rate. Here
we modify the choice of β0 in ([34], Theorem 2) to 9(1 + b + ω)2/(2(1 + b)), while keeping all
other choices consistent with the original proof, i.e., b = min{ω,

√
ω(1 + ω)2/n}, pt ≡ 1/(1 + b),

αt ≡ 1/(1+ω), θt = 3(1+ b)/(t+9(1+ b+ω)), β = 48ω(1+ω)(1+ b+2(1+ω))/(n(1+ b)2)
and

ηt =

{
1

L(β0+3/2) , for t = 0,

min
{(

1 + 1
t+9(1+b+ω)

)
ηt−1,

1
L(β+3/2)

}
, for t ≥ 1.

By definition we have

ηT =min

{
T + 1 + 9(1 + b+ ω)

1 + 9(1 + b+ ω)
η0,

1

L(β + 3/2)

}
=min

{
T + 1 + 9(1 + b+ ω)

1 + 9(1 + b+ ω)

1

L(β0 + 3/2)
,

1

L(β + 3/2)

}
≥min

{
(T + 9(1 + b+ ω))(1 + b)

60L(1 + b+ ω)3
,

1

L(β + 3/2)

}
(40)

Plugging (40) and ([34],34) into ([34],33), we obtain

E[FT+1] =O
(

(1 + b+ ω)3L∆

(T + 9(1 + b+ ω))3
+

(1 + b)(β + 3/2)L∆

(T + 9(1 + b+ ω))2

)
=O

(
(1 + b+ ω)3L∆

T 3
+

(1 + b)(β + 3/2)L∆

T 2

)
. (41)

25

Using b = min{ω,
√
ω(1 + ω)2/n}, we have

(1 + b+ ω)3 = Θ
(
(1 + ω)3

)
,

and

(1 + b)(β + 3/2) =Θ

(
(1 + b) +

ω(1 + ω)(1 + b+ ω)

n(1 + b)

)
=Θ

(
1 +

ω3/2

n1/2
+

ω2

n

)
,

thus (41) can be simplified as

E[FT+1] = O
(
(1 + ω)3L∆

T 3
+

(1 + ω3/2/n1/2 + ω2/n)L∆

T 2

)
.

Consequently, for ϵ < L∆/2 (i.e., a precision that the initial point does not satisfy), the communica-
tion rounds to achieve precision ϵ is given by O

(
ω

3√
L∆
3
√
ϵ

+
(
1 + ω3/4

n1/4 + ω√
n

) √
L∆√
ϵ

)
.

F Experimental details and additional results

This section provides more details of the experiments listed in Sec. 6, as well as a few new experiments
to validate our theories.

F.1 Experimental details

This section offers a comprehensive and detailed description of the experiments listed in Sec. 6,
including problem formulation, data generation, cost calculation, and algorithm implementation.

Least squares. The local objective function of node i is defined as fi(x) := 1
2∥Aix− bi∥2, where

Ai ∈ RM×d, bi ∈ RM . We set d = 20, M = 25, and the number of nodes n = 400. To generate Ai’s,
we first randomly generate a Gaussian matrix G ∈ RnM×d; we then apply the SVD decomposition
G = UΣV ⊤ and replace the singular values in Σ by an arithmetic sequence starting from 1 and
ending at 100 to get Σ̃ and the resulted data matrix G̃ = U Σ̃V ⊤; we finally allocate the submatrix of
G̃ composed of the ((i− 1)M + 1)-th row to the (iM)-th row to be Ai for all 1 ≤ i ≤ n.

Logistic regression. The local objective function of node i is defined as fi(x) := 1
M

∑M
m=1 ln(1 +

exp(−bi,ma⊤i,mx), where number of nodes n = 400, ai,m stands for the feature of the m-th datapoint
in the node i’s dataset, and bi,m stands for the corresponding label. In a9a dataset, node i owns the
(81(i− 1) + 1)-th to the (81i)-th datapoint with feature dimension d = 123. In w8a dataset, node i
owns the (120(i− 1) + 1)-th to the (120i)-th datapoint with feature dimension d = 300.

Constructed problem. The local objective function of node i is defined as

fi(x) :=

{
µ
2 ∥x∥

2 + L−µ
4 ([x]21 +

∑
1≤r≤d/2−1([x]2r − [x]2r+1)

2 + [x]2d − 2[x]1), if i ≤ n/2,
µ
2 ∥x∥

2 + L−µ
4 (
∑

1≤r≤d/2([x]2r−1 − [x]2r)
2), if i > n/2,

where [x]l denotes the l-th entry of vector x ∈ Rd. We set µ = 1, L = 104, d = 20 and number of
nodes n = 400.

Compressors. We apply various compressors to the algorithms with communication compression
through our experiments. In the constructed quadratic problem, we consider ADIANA algorithm with
random-s compressors (see Example 1 in Appendix A) in six different settings, i.e., three choices of
s (s = 1, 2, 4), with two different (shared or independent) randomness settings. In the least squares
and logistic regression problems, we apply the independent random-⌊d/20⌋ compressor to ADIANA,
CANITA and DIANA algorithm. In particular, we use the unscaled version of the independent
random-⌊d/20⌋ compressor for EF21 to guarantee convergence, where the values of selected entries
are transmitted directly to the server without being scaled by d/s times. In Appendix F.2, we further
apply independent natural compression [20] and random quantization [3] with s = ⌈

√
d⌉ in the

above algorithms.

26

0.0 0.2 0.4 0.6 0.8 1.0 1.2
communication bits (×1e6)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

f(
x)

 -
f*

Nesterov
ADIANA
DIANA
EF21

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
communication bits (×1e6)

10−5

10−4

10−3

10−2

10−1

100

f(
x)

 -
f*

Nesterov
ADIANA
CANITA
DIANA
EF21

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
communication bits (×1e6)

10−4

10−3

10−2

10−1

f(
x)

 -
f*

Nesterov
ADIANA
CANITA
DIANA
EF21

Figure 3: Convergence results of various distributed algorithms on a synthetic least squares problem (left),
logistic regression problems with dataset a9a (middle) and w8a (right). The y-axis represents f(x̂)− f⋆ and the
x-axis indicates the total communicated bits sent by per worker. All compressors used are independent natural
compression.

Total communicated bits. For non-compression algorithms and algorithms with a fixed-length
compressor, such as random-s and natural compression, the total communication bits can be calculated
using the following formula: total communication bits = number of iterations × communication
rounds per iteration × communicated bits per round. Among the algorithms we compare, ADIANA
and CANITA communicate twice per iteration, while the other algorithms communicate only once.
The communicated bits per round for non-compression algorithms amount to 64d for d float64
entries. In the case of the random-s compressor, the communicated bits per communication are
calculated as 64s + ⌈log2

(
d
s

)
⌉. Similarly, for natural compression, the communicated bits per

round are fixed at 12d, with 1 sign bit and 11 exponential bits allocated for each entry. In the case
of adaptive-length random quantization, the communication cost is evaluated using Elias integer
encoding [16]. This cost is then averaged among n nodes, providing a more representative estimate.

Algorithm implementation. We implement ADIANA, CANITA, DIANA, EF21 algorithms fol-
lowing the formulation in Algorithm 1, [34], [27], and [50], respectively. We implement Nesterov’s
accelerated algorithm with the following recursions:

yk = (1− θt)x
k + θtz

k,

xk+1 = yk − ηk∇f(yk),

zk+1 = xk + 1
θk
(xk+1 − xk).

The value of α in ADIANA, CANITA and DIANA are all set to 1/(1 + ω), and we set γk, β of
ADIANA as in Theorem 3. Other parameters are all selected through running Bayesian Optimization
[46] for the first 20% iterations with 5 initial points and 20 trials. The exact value of the selected
parameters are listed in Appendix F.3. Each curve (except for Nesterov’s accelerated algorithm which
does not involve randomness) is averaged through 20 trials, with the range of standard deviation
depicted.

Computational resource. All experiments are run on an NVIDIA A100 server. Each trial consumes
up to 10 minutes of running time.

F.2 Additional experiments

Addtional compressors. In addition to the experiments in Sec. 6, we consider applying different
compressors in the algorithms with communication compression. Fig. 3 and Fig. 4 show results of
using natural compression and random quantization, respectively. These results are consistent with
the results in Sec. 6.

CIFAR-10 dataset. We also consider binominal logistic regression with CIFAR-10 dataset, where
labels of each datum are categorized by whether they equal to 3, i.e., the corresponding figures
belong to the cat category. The full training set with 50000 images, are devided equally to n = 250
nodes. The compressor choices follow the same strategies as in Appendix F.1, where dimension
d = 3072. Fig. 5 compares convergence results between Nesterov method and ADIANA with
different compressors. It can be observed that ADIANA equipped with more aggressive compressors,
i.e., those with bigger ω, benefits more from the compression, which is consistent with our theoretical
results.

27

0.0 0.2 0.4 0.6 0.8 1.0 1.2
communication bits (×1e6)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

f(
x)

 -
f*

Nesterov
ADIANA
DIANA
EF21

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
communication bits (×1e6)

10−6

10−5

10−4

10−3

10−2

10−1

100

f(
x)

 -
f*

Nesterov
ADIANA
CANITA
DIANA
EF21

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
communication bits (×1e6)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

f(
x)

 -
f*

Nesterov
ADIANA
CANITA
DIANA
EF21

Figure 4: Convergence results of various distributed algorithms on a synthetic least squares problem (left),
logistic regression problems with dataset a9a (middle) and w8a (right). The y-axis represents f(x̂)− f⋆ and the
x-axis indicates the total communicated bits sent by per worker. All compressors used are independent random
quantization.

0.0 2.0 4.0 6.0 8.0
communication bits (×1e6)

10−2

10−1

f(
x)

 -
f*

Nesterov
ADIANA w. R.S.
ADIANA w. R.Q.
ADIANA w. N.C.

Figure 5: Experimental results of logistic regression problem on the CIFAR-10 dataset. The objective function
is constructed by relabeling the 10 classes into 2 classes, namely cat (corresponding to the original cat class)
and non-cat (corresponding to the rest classes). ADIANA w. R.S. / R.Q. / N.C. represents ADIANA algorithm
with random-⌊d/20⌋ compressor / random quantization compressor with s = ⌈

√
d⌉ / natural compression

compressor, where d = 3072 is the dimension of gradient vectors as well as the number of features in CIFAR-10
dataset. The experiments are conducted under the same setting as in the "Algorithm implementation" part in
Appendix F.1.

F.3 Parameter values

In this subsection, we list all the parameter values that are selected by applying Bayesian Optimization.
Table 2, 3, 4, 5, 6 list the parameters chosen in the least squares problem, logistic regression using
a9a dataset, logistic regression using w8a dataset, the constructed problem, and logistic regression
using CIFAR-10 dataset, respectively.

28

Table 2: Parameters for algorithms in the least squares problem. Notation R.S. stands for independent
random sparsification, N.C. stands for independent natural compression, R.Q. stands for independent random
quantization.

Algorithm Parameters

Nesterov η = 3.0× 10−2, θ = 1.4× 10−2.
ADIANA R.S. η = 4.8× 10−2, θ1 = 2.2× 10−2, θ2 = 7.6× 10−2, p = 4.1× 10−2.
ADIANA N.C. η = 3.9× 10−2, θ1 = 1.0× 10−2, θ2 = 2.9× 10−1, p = 9.9× 10−1.
ADIANA R.Q. η = 6.5× 10−2, θ1 = 1.4× 10−2, θ2 = 2.7× 10−1, p = 5.5× 10−1.

DIANA R.S. γ = 7.9× 10−2.
DIANA N.C. γ = 7.4× 10−2.
DIANA R.Q. γ = 7.6× 10−2.

EF21 R.S. γ = 6.2× 10−2.
EF21 N.C. γ = 6.8× 10−2.
EF21 R.Q. γ = 7.4× 10−2.

Table 3: Parameters for algorithms in the logistic regression problem with a9a dataset. Notation k stands for
the index of iteration. Other notations are as in Table 2.

Algorithm Parameters

Nesterov η = 9.4× 10−1, θ = 1.7× 10−1.

ADIANA R.S. η = 2.1, θ1 = 1.3×101

k+5.2×102 , θ2 = 2.1× 10−1, p = 7.7× 10−1.

ADIANA N.C. η = 2.1, θ1 = 1.0
k+4.3 , θ2 = 8.0× 10−3, p = 8.0× 10−1.

ADIANA R.Q. η = 2.2, θ1 = 1.3
k+1.3 , θ2 = 1.5× 10−1, p = 8.5× 10−1.

CANITA R.S. η = min{k+2.1×102

2.1×102 , 1.4}, θ = 2.0×101

k+2.3×102 , p = 7.8× 10−1.

CANITA N.C. η = 1.2, θ = 2.1
k+1.2×101 , p = 5.2× 10−1.

CANITA R.Q. η = 2.0, θ = 3.0
k+3.0 , p = 7.2× 10−1.

DIANA N.C. γ = 2.6.
DIANA R.S. γ = 9.4× 10−1.
DIANA R.Q. γ = 4.7× 10−1

EF21 R.S. γ = 1.3.
EF21 N.C. γ = 1.6.
EF21 R.Q. γ = 2.7.

29

Table 4: Parameters for algorithms in logistic regression with w8a dataset. Notations are as in Table 3.

Algorithm Parameters

Nesterov η = 1.5× 101, θ = 9.4× 10−1.
ADIANA R.S. η = min{k+4.1×102

1.2×102 , 15}, θ1 = 8.8
k+4.8×102 , θ2 = 2.4× 10−2, p = 3.6× 10−1.

ADIANA N.C. η = 1.5× 101, θ1 = 2.5
k+1.1×101 , θ2 = 6.7× 10−1, p = 8.3× 10−1.

ADIANA R.Q. η = 1.5× 101, θ1 = 1.9
k+7.4 , θ2 = 4.2× 10−1, p = 9.9× 10−1.

CANITA R.S. η = min{k+2.0×102

2.2×102 , 7.7}, θ = 1.1×101

k+2.3×102 , p = 4.3× 10−1.

CANITA N.C. η = min{k+1.1×101

2.7 , 1.1× 101}, θ = 5.4
k+7.4×101 , p = 4.9× 101.

CANITA R.Q. η = min{k+1.6×101

7.3 , 1.5× 101}, θ = 2.2
k+2.2×101 , p = 4.6× 10−1.

DIANA R.S. γ = 1.5× 101.
DIANA N.C. γ = 1.6× 101.
DIANA R.Q. γ = 1.5× 101.

EF21 R.S. γ = 2.0× 101.
EF21 N.C. γ = 1.5× 101.
EF21 R.Q. γ = 1.5× 101.

Table 5: Parameters for algorithms in the constructed problem. Notation i.d.rand-s denotes independent
random-s compressor, s.d.rand-s denotes random-s compressor with shared randomness.

Algorithm Parameters

Nesterov η = 1.4× 10−1, θ = 1.2× 10−4.
ADIANA i.d.rand-1 η = 1.5× 10−4, θ1 = 1.8× 10−1, θ2 = 1.3× 10−1, p = 1.5× 10−1.
ADIANA i.d.rand-2 η = 1.5× 10−4, θ1 = 1.5× 10−4, θ2 = 5.0× 10−2, p = 1.9× 10−1.
ADIANA i.d.rand-4 η = 1.3× 10−4, θ1 = 9.2× 10−2, θ2 = 5.0× 10−2, p = 2.3× 10−1.
ADIANA s.d.rand-1 η = 1.4× 10−6, θ1 = 2.0× 10−2, θ2 = 1.6× 10−1, p = 2.7× 10−2.
ADIANA s.d.rand-2 η = 9.6× 10−6, θ1 = 7.0× 10−2, θ2 = 4.3× 10−1, p = 1.8× 10−1.
ADIANA s.d.rand-4 η = 1.6× 10−5, θ1 = 6.0× 10−2, θ2 = 2.1× 10−1, p = 1.6× 10−1.

Table 6: Parameters for algorithms in logistic regression with CIFAR-10 dataset. Notations are as in Table 4.

Algorithm Parameters

Nesterov η = 1.1× 10−1, θ = 1.5× 10−1.
ADIANA R.S. η = 1.4× 10−1, θ1 = 12

k+3.3×102 , θ2 = 9.0× 10−2, p = 4.3× 10−1.

ADIANA N.C. η = 1.4× 10−1, θ1 = 1.0×10−2

k+7.0 , θ2 = 7.0× 10−1, p = 8.5× 10−1.

ADIANA R.Q. η = 1.2× 101, θ1 = 8.2
k+59 , θ2 = 8.0× 10−1, p = 6.0× 10−1.

30

	Random sparsification
	Proof of Proposition 1
	Proof of Theorem 2
	Strongly-convex case
	Generally-convex case

	Proof of Theorem 3
	Strongly-convex case
	Generally-convex case

	Correction on CANITA li2021canita
	Experimental details and additional results
	Experimental details
	Additional experiments
	Parameter values

