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Abstract

Communication compression is a common technique in distributed optimization
that can alleviate communication overhead by transmitting compressed gradients
and model parameters. However, compression can introduce information distortion,
which slows down convergence and incurs more communication rounds to achieve
desired solutions. Given the trade-off between lower per-round communication
costs and additional rounds of communication, it is unclear whether communication
compression reduces the total communication cost.
This paper explores the conditions under which unbiased compression, a widely
used form of compression, can reduce the total communication cost, as well as the
extent to which it can do so. To this end, we present the first theoretical formulation
for characterizing the total communication cost in distributed optimization with
unbiased compressors. We demonstrate that unbiased compression alone does not
necessarily save the total communication cost, but this outcome can be achieved
if the compressors used by all workers are further assumed independent. We
establish lower bounds on the communication rounds required by algorithms using
independent unbiased compressors to minimize smooth convex functions and
show that these lower bounds are tight by refining the analysis for ADIANA.
Our results reveal that using independent unbiased compression can reduce the
total communication cost by a factor of up to Θ(

√
min{n, κ}) when all local

smoothness constants are constrained by a common upper bound, where n is the
number of workers and κ is the condition number of the functions being minimized.
These theoretical findings are supported by experimental results.

1 Introduction
Distributed optimization is a widely used technique in large-scale machine learning, where data
is distributed across multiple workers and training is carried out through worker communication.
However, dealing with a vast number of data samples and model parameters across workers poses a
significant challenge in terms of communication overhead, which ultimately limits the scalability of
distributed machine learning systems. To tackle this issue, communication compression strategies
[3, 8, 52, 55, 49] have emerged, aiming to reduce overhead by enabling efficient yet imprecise
message transmission. Instead of transmitting full-size gradients or models, these strategies exchange
compressed gradients or model vectors of much smaller sizes in communication.

There are two common approaches to compression: quantization and sparsification. Quantization
[3, 20, 39, 52] maps input vectors from a large, potentially infinite, set to a smaller set of discrete
values. In contrast, sparsification [57, 55, 50] drops a certain amount of entries to obtain a sparse
vector for communication. In literature [3, 27, 21], these compression techniques are often modeled
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as a random operator C, which satisfies the properties of unbiasedness E[C(x)] = x and ω-bounded
variance E∥C(x) − x∥2 ≤ ω∥x∥2. Here, x represents the input vector to be compressed, and ω
is a fixed parameter that characterizes the degree of information distortion. Besides, part of the
compressors can also be modeled as biased yet contractive operators [19, 48, 49].

While communication compression efficiently reduces the volume of vectors sent by workers, it suffers
substantial information distortion. As a result, algorithms utilizing communication compression
require additional rounds of communication to converge satisfactorily compared to algorithms without
compression. This adverse effect of communication compression has been extensively observed both
empirically [57, 25, 8] and theoretically [21, 49]. Since the extra rounds of communication needed to
compensate for the information loss may outweigh the saving in the per-round communication cost
from compression, this naturally motivates the following fundamental question:

Q1. Can unbiased compression alone reduce the total communication cost?

By “unbiased compression alone”, we refer to the compression that solely satisfies the assumptions
of unbiasedness and ω-bounded variance without any additional advanced properties. To address this
open question, we formulate the total communication cost as the product of the per-round communica-
tion cost and the number of rounds needed to reach an ϵ-accurate solution to distributed optimization
problems. Using this formulation, we demonstrate the decrease in the per-round communication cost
from unbiased compression is completely offset by additional rounds of communication. Therefore,
we answer Q1 by showing unbiased compression alone cannot ensure a lower total communication
cost, even with an optimal algorithmic design, see Sec. 3 for more details. This negative conclusion
drives us to explore the next fundamental open question:

Q2. Under what additional conditions and how much can unbiased compression
provably save the total communication cost?

Fortunately, some pioneering works [40, 32, 33] have shed light on this question. They impose
independence on unbiased compressors, i.e., the compressed vectors {Ci(xi)}ni=1 sent by workers
are mutually independent regardless of the inputs {xi}ni=1. This independence assumption enables
an "error cancellation" effect, producing a more accurate compressed vector n−1

∑n
i=1 Ci(xi) and

hence incurring fewer additional rounds of communication compared to dependent compressors.
Consequently, the decrease in the per-round communication cost outweighs the extra communication
rounds, reducing the total communication cost.

However, it remains unclear how much the total communication cost can be reduced at most by
independent unbiased compression and whether we can develop algorithms to achieve this optimal
reduction. Addressing this question poses significant challenges as it necessitates a study of the
optimal convergence rate for algorithms using independent unbiased compression.
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Figure 1: Performance of ADIANA us-
ing random-s sparsification compressors with
shared (s.d.) or independent (i.d.) randomness
against distributed Nesterov’s accelerated algo-
rithm with no compression in communication.
Experimental descriptions are in Appendix F.1

This paper provides the first affirmative answer to this
question for convex problems by: (i) establishing lower
bounds on convergence rates of distributed algorithms
employing independent unbiased compression, and (ii)
demonstrating the tightness of these lower bounds by re-
visiting ADIANA [32] and presenting novel and refined
convergence rates nearly attaining the lower bounds.
Our results reveal that compared to non-compression
algorithms, independent unbiased compression can save
the total communication cost by up to Θ(

√
min{n, κ})-

fold, where n is the number of workers and κ ∈ [1,+∞]
is the function condition number. Figure 1 provides a
simple empirical justification. It shows independent
compression (ADIANA i.d.) reduces communication
costs compared to no compression (Nesterov’s Accel-
erated algorithm), while dependent compression (ADI-
ANA s.d.) does not, which validates our theory.

1.1 Contributions

Specifically, our contributions are as follows:
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Table 1: Lower and upper bounds on the number of communication rounds for distributed algorithms using
unbiased compression to achieve an ϵ-accurate solution. Notations ∆, n, L, µ (κ ≜ L/µ ≥ 1) are defined
in Section 2. ω is a parameter for unbiased compressors (Assumption 2). Õ and Ω̃ hides logarithmic factors
independent of ϵ. GC and SC denote generally-convex and strongly-convex functions respectively.

Method GC SC

Lower Bound Ω̃
(
ω ln( 1

ϵ
) +

(
1 + ω√

n

) √
L∆√
ϵ

)
Ω̃
((

ω +
(
1 + ω√

n

)√
κ
)
ln

(
1
ϵ

))
Lower Bound [19]♮ Ω

(
(1 + ω)

√
L∆√
ϵ

)
Ω̃
(
(1 + ω)

√
κ ln

(
1
ϵ

))
CGD [27]♢ O

(
(1 + ω)L∆

ϵ

)
Õ

(
(1 + ω)κ ln

(
1
ϵ

))
ACGD [32]♢ O

(
(1 + ω)

√
L∆√
ϵ

)
Õ

(
(1 + ω)

√
κ ln

(
1
ϵ

))
DIANA [40] O

((
1 + ω2+ω

n+ω

)
L∆
ϵ

)
Õ

((
ω +

(
1 + ω

n

)
κ
)
ln

(
1
ϵ

))
EF21 [49]♮ Õ

(
(1 + ω)L∆

ϵ

)
Õ

(
(1 + ω)κ ln

(
1
ϵ

))
ADIANA [32] — Õ

((
ω +

(
1 + ω3/4

n1/4 + ω√
n

)√
κ
)
ln

(
1
ϵ

))
CANITA [33]‡ O

(
ω

3√
L∆
3√ϵ

+
(
1 + ω3/4

n1/4 + ω√
n

) √
L∆√
ϵ

)
—

NEOLITHIC [19]♮ Õ
(
(1 + ω)

√
L∆√
ϵ

)
Õ

(
(1 + ω)

√
κ ln

(
1
ϵ

))
ADIANA (Thm. 3) O

(
ω

3√
L∆
3√ϵ

+
(
1 + ω√

n

) √
L∆√
ϵ

)
Õ

((
ω +

(
1 + ω√

n

)√
κ
)
ln

(
1
ϵ

))
♢ Results obtained in the single-worker setting and cannot be extended to the distributed setting.
‡ The rate is obtained by correcting mistakes in the derivations of [33]. See details in Appendix E.
♮ Results hold without assuming independence across compressors.

• We present a theoretical formalization of the total communication cost in distributed optimization
with unbiased compression. With this formulation, we demonstrate that unbiased compression
alone is insufficient to save the total communication cost, even with an optimal algorithmic
design. This is because any reduction in the per-round communication cost is fully offset by the
additional rounds of communication required due to the presence of compression errors.

• We prove lower bounds on the convergence complexity of distributed algorithms using indepen-
dent unbiased compression to minimize smooth convex functions. Compared to lower bounds
when using unbiased compression without independence [19], our lower bounds demonstrate
significant improvements when n and κ are large, see the first two lines in Table 1. This
improvement highlights the importance of independence in unbiased compression.

• We revisit ADIANA [32] by deriving an improved rate for strongly-convex functions and
proving a novel convergence result for generally-convex functions. Our rates nearly match the
lower bounds, suggesting their tightness and optimality. Our optimal complexities reveal that,
compared to non-compression algorithms, independent unbiased compression can decrease total
communication costs by up to O(

√
min{n, κ})-fold when all local smoothness constants are

constrained by a common upper bound.

• We support our theoretical findings with experiments on both synthetic data and real datasets.

We present the lower bounds, upper bounds, and complexities of state-of-the-art distributed algorithms
using independent unbiased compressors in Table 1. With our new and refined analysis, ADIANA
nearly matches the lower bounds for both strongly-convex and generally-convex functions.

1.2 Related work

Communication compression. Two main approaches to compression are extensively explored in
literature: quantization and sparsification. Quantization coarsely encodes input vectors into fewer
discrete values, e.g., from 32-bit to 8-bit integers [37, 18]. Schemes like Sign-SGD [52, 8] use 1 bit
per entry, introducing unbiased random information distortion. Other variants such as Q-SGD [3],
TurnGrad [58], and natural compression [20] quantize each entry with more effective bits. In contrast,
sparsification either randomly zeros out entries to yield sparse vectors [57], or transmits only the
largest model/gradient entries [55].
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Error compensation. Recent works [52, 59, 55, 4, 49] propose error compensation or feedback to
relieve the effects of compression errors. These techniques propagate information loss backward
during compression, thus preserving more useful information. Reference [52] uses error compensation
for 1-bit quantization, while the work [59] proposes error-compensated quantization for quadratic
problems. Error compensation also reduces sparsification-induced errors [55] and is studied for
convergence in non-convex scenarios [4]. Recently, the work [49] introduces EF21, an error feedback
scheme that compresses only local gradient increments with improved theoretical guarantees.

Lower bounds. Lower bounds in optimization set a limit for the performance of a single or a class of
algorithms. Prior works have established numerous lower bounds for optimization algorithms [1, 15,
6, 43, 7, 21, 64, 17, 44]. In the field of distributed optimization with communication compression,
reference [46] provides an algorithm-specific lower bound for strongly-convex functions, while the
work [53] establishes the bit-wise complexities for PL-type problems, which reflect the influence
of the number of agents n and dimension d, but not the condition number κ and the compression ω.
In particular, [21] characterizes the optimal convergence rate for all first-order and linear-spanning
algorithms, in the stochastic non-convex case, which is later extended by [19] to convex cases.

Accelerated algorithms with communication compression. There is a scarcity of academic
research on compression algorithms incorporating acceleration, as evident in a limited number
of studies [32, 33, 48]. References [32, 33] develop accelerated algorithms with compression in
the strongly-convex and generally-convex cases, respectively. For distributed finite-sum problems,
accelerated algorithms with compression can further leverage variance-reduction techniques to
expedite convergence [48].

Other communication-efficient strategies. Other than communication compression studied in this
paper, there are a few different techniques to mitigate the communication overhead in distributed
systems, including decentralized communication and lazy communication. Notable examples of
decentralized algorithms encompass decentralized SGD [12, 34, 30, 64], D2/Exact-Diffusion [56, 62,
61], gradient tracking [47, 60, 29, 2], and their momentum variants [35, 63]. Lazy communication
allows each worker to either perform multiple local updates as opposed to a single communication
round [38, 54, 41, 24, 14, 22], or by adaptively skipping communication [13, 36].

2 Problem setup
This section introduces the problem formulation and assumptions used throughout the paper. We
consider the following distributed stochastic optimization problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1)

where the global objective function f(x) is decomposed into n local objective functions {fi(x)}ni=1,
and each local fi(x) is maintained by node i. Next, we introduce the setup and assumptions.

2.1 Function class

We let F∆
L,µ (0 ≤ µ ≤ L) denote the class of convex and smooth functions satisfying Assumption

1. We define κ ≜ L/µ ∈ [1,+∞] as the condition number of the functions to be optimized. When
µ > 0, F∆

L,µ represents strongly-convex functions. Conversely, when µ = 0, F∆
L,µ represents

generally-convex functions with κ = ∞.
Assumption 1 (CONVEX AND SMOOTH FUNCTION). We assume each fi(x) is L-smooth and
µ-strongly convex, i.e., there exists constants L ≥ µ ≥ 0 such that

µ

2
∥y − x∥2 ≤ fi(y)− fi(x)− ⟨∇fi(x), y − x⟩ ≤ L

2
∥y − x∥2

for any x, y ∈ Rd and 1 ≤ i ≤ n. We further assume ∥x0 − x⋆∥2 ≤ ∆ where x⋆ is one of the global
minimizers of f(x) = 1

n

∑n
i=1 fi(x).

2.2 Compressor class

Each worker i ∈ {1, · · · , n} is equipped with a potentially random compressor Ci : Rd → Rd. We
let Uω denote the set of all ω-unbiased compressors satisfying Assumption 2, and U ind

ω denote the set
of all independent ω-unbiased compressors satisfying both Assumption 2 and Assumption 3.
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Assumption 2 (UNBIASED COMPRESSOR). We assume all compressors {Ci}ni=1 satisfy

E[Ci(x)] = x, E[∥Ci(x)− x∥2] ≤ ω∥x∥2, ∀x ∈ Rd (2)

for constant ω ≥ 0 and any input x ∈ Rd, where the expectation is taken over the randomness of the
compression operator Ci.2

Assumption 3 (INDEPENDENT COMPRESSOR). We assume all compressors {Ci}ni=1 are mutually
independent, i.e., outputs {Ci(xi)}ni=1 are mutually independent random variables for any {xi}ni=1.

2.3 Algorithm class

Similar to [19], we consider centralized and synchronous algorithms in which first, every worker is
allowed to communicate only directly with a central server but not between one another; second, all
iterations/communications are synchronized, meaning that all workers start each of their iterations
simultaneously. We further require algorithms to satisfy the so-called “linear-spanning” property,
which appears in [9, 10, 21, 19] (see formal definition in Appendix C). Intuitively, this property
requires each local model xk

i to lie in the linear manifold spanned by the local gradients and the
received messages at worker i. The linear-spanning property is satisfied by all algorithms in Table 1
as well as most first-order methods [42, 28, 23, 65].

Formally, this paper considers a class of algorithms specified by Definition 1.
Definition 1 (ALGORITHM CLASS). Given compressors {Ci}ni=1, we let A{Ci}n

i=1
denote the set of

all centralized, synchronous, linear-spanning algorithms admitting compression in which compressor
Ci, ∀ 1 ≤ i ≤ n, is applied for the messages sent by worker i to the server.

For any algorithm A ∈ A{Ci}n
i=1

, we define x̂k and xk
i as the output of the server and worker i

respectively, after k communication rounds.

2.4 Convergence complexity

With all the interested classes introduced above, we are ready to define our complexity metric for
convergence analysis. Given a set of local functions {fi}ni=1 ∈ F∆

L,µ, a set of compressors {Ci}ni=1 ∈
C (C = U ind

ω or Uω), and an algorithm A ∈ A{Ci}n
i=1

, we let x̂t
A denote the output of algorithm A

after t communication rounds. The convergence complexity of A solving f(x) = 1
n

∑n
i=1 fi(x)

under {(fi, Ci)}ni=1 is defined as

Tϵ(A, {(fi, Ci)}ni=1) = min
{
t ∈ N : E[f(x̂t

A)]−min
x

f(x) ≤ ϵ
}
. (3)

This measure corresponds to the number of communication rounds required by algorithm A to achieve
an ϵ-accurate optimum of f(x) in expectation.
Remark 1. The measure in (3) is commonly referred to as the communication complexity in literature
[51, 21, 31, 32]. However, we refer to it as the convergence complexity here to avoid potential
confusion with the notion of “communication complexity” and “total communication cost”. This
complexity metric has been traditionally used to compare communication rounds used by distributed
algorithms [32, 33]. However, it cannot capture the total communication costs of multiple algorithms
with different per-round communication costs, e.g., algorithms with or without communication
compression. Therefore, it is unable to address the motivating questions Q1 and Q2.
Remark 2. The definition of Tϵ can be independent of the per-round communication cost, which is
specified only through the degree of compression ω (i.e., choice of compressor class). However, to be
precise, we may further assume these compressors are non-adaptive with the same fixed per-round
communication cost. Namely, the compressors output compressed vectors that can be represented by
a fixed and common number of bits. Notably, such hypothesis of non-adaptive cost is widely adopted
for practical comparison of communication costs and is valid when input x is bounded or can be
encoded with finite bits [3, 59, 20, 22].

2Compression is typically employed for input x that is bounded [3, 59] or encoded with finite bits (e.g.,
float64 numbers) [20]. In these practical scenarios, ω-unbiased compression can be employed with finite bits.
For instance, random-s sparsification for r-bit d-dimensional vectors costs (nearly) rs = rd/(1 + ω) bits per
communication where ω = d/s− 1.
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3 Total communication cost
3.1 Fomulation of total communication cost

This section introduces the concept of Total Communication Cost (TCC). TCC can be calculated at
both the level of an individual worker and of the overall distributed machine learning system compris-
ing all n workers. In a centralized and synchronized algorithm where each worker communicates
compressed vectors of the same dimension, the TCC of the entire system is directly proportional to
the TCC of a single worker. Therefore, it is sufficient to use the TCC of a single worker as the metric
for comparing different algorithms. In this paper, we let TCC denote the total communication cost
incurred by each worker in achieving a desired solution when no ambiguity is present.

Let each worker to be equipped with a non-adaptive compressor with the same fixed per-round
communication cost, i.e., the compressor outputs compressed vectors of the same length (size), the
TCC of an algorithm A to solve problem (1) using a set of ω-unbiased compressors {Ci}ni=1 in
achieving an ϵ-accurate optimum can be characterized as

TCCϵ(A, {(fi, Ci)}ni=1) := per-round cost({Ci}ni=1)× Tϵ(A, {(fi, Ci)}ni=1). (4)

3.2 A tight lower bound for per-round cost

The per-round communication cost incurred by {Ci}ni=1 in (4) will vary with different ω values.
Typically, compressors that induce less information distortion, i.e., associated with a smaller ω, incur
higher per-round costs. To illustrate this, we consider random-s sparsification compressors, whose
per-round cost corresponds to the transmission of s entries, which depends on parameter ω through
s = d/(1+ω) (see Example 1 in Appendix A). Specifically, if each entry of the input x is numerically
represented with r bits, then the random-s sparsification incurs a per-round cost of rd/(1 + ω) bits
up to a logarithm factor.

The following proposition, motivated by the inspiring work [50], establishes a lower bound of TCC
when using any compressor satisfying Assumption 2.
Proposition 1. Let x ∈ Rd be the input to a compressor C and b be the number of bits needed
to compress x. Suppose each entry of input x is numerically represented with r bits, i.e., errors
smaller than 2−r are ignored. Then for any compressor C satisfying Assumption 2, the per-round
communciation cost of C(x) is lower bounded by b = Ωr(d/(1 + ω)) where r is viewed as an
absolute number in Ωr(·) (See the proof in Appendix B).

Proposition 1 presents a lower bound on the per-round cost of an arbitrary compressor satisfying
Assumption 2. This lower bound is tight since the random-s compressor discussed above can achieve
this lower bound up to a logarithm factor. Since d only relates to the problem instance itself and r is
often a constant absolute number in practice, e.g., r = 32 or 64, both of which are independent of the
choices of compressors and algorithm designs, they can be omitted from the lower bound order. As a
result, the TCC in (4) can be lower bounded by

TCCϵ = Ω((1 + ω)−1)× Tϵ(A, {(fi, Ci)}ni=1). (5)

Notably, when no compression is employed (i.e., ω = 0), TCCϵ = Ω(1)× Tϵ(A, {(fi, Ci)}ni=1) is
consistent with the convergence complexity.

4 Unbiased compressor alone cannot save total communication cost

With formulation (5), given the number of communication rounds Tϵ, the total communication cost
can be readily characterized. A recent pioneer work [19] characterizes a tight lower bound for
Tϵ(A, {(fi, Ci)}ni=1) when each Ci satisfies Assumption 2.
Lemma 1 ([19], Theorem 1, Informal). Relying on unbiased compressibility alone, i.e., {Ci}ni=1 ∈
Uω , without leveraging additional property of compressors such as mutual independence, the fewest
rounds of communication needed by algorithms with compressed communication to achieve an
ϵ-accurate solution to distributed strongly-convex and generally-convex optimization problems are
lower bounded by Tϵ = Ω((1 + ω)

√
κ ln (µ∆/ϵ)) and Tϵ = Ω((1 + ω)

√
L∆/ϵ), respectively.

Substituting Lemma 1 into our TCC lower bound in (5), we obtain TCCϵ = Ω̃(
√
κ ln(1/ϵ)) or

Ω(
√
L∆/ϵ) in the strongly-convex or generally-convex case, respectively, by relying solely on
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unbiased compression. These results do not depend on the compression parameter ω, indicating that
the lower per-round cost is fully compensated by the additional rounds of communication incurred by
compressor errors. Notably, these lower bounds are of the same order as optimal algorithms without
compression such as Nesterov’s accelerated gradient descent [43, 44], leading to the conclusion:
Theorem 1. When solving convex optimization problems following Assumption 1, any algorithm A ∈
A{Ci}n

i=1
that relies solely on unbiased compression satisfying Assumption 2 cannot reduce the total

communication cost compared to not using compression. The best achievable total communication
cost with unbiased compression alone is of the same order as without compression.

Theorem 1 presents a negative finding that unbiased compression alone is insufficient to reduce the
total communication cost, even with an optimal algorithmic design.3 Meanwhile, it also implies
that to develop algorithms that provably reduce the total communication cost, one must leverage
compressor properties beyond ω-unbiasedness as defined in (2). Fortunately, mutual independence is
one such property which we discuss in depth in later sections.

5 Independent unbiased compressor provably saves communication
5.1 An intuition on why independence can help

A series of works [40, 32, 33] have shown theoretical improvements in the total communication cost
by imposing independence across compressors, i.e., {Ci}ni=1 ∈ U ind

ω . The intuition behind the role
of independence among worker compressors can be illustrated by a simple example where workers
intend to transmit the same vector x to the server. Each worker i sends a compressed message Ci(x)
that adheres to Assumption 2. Consequently, the aggregated vector n−1

∑n
i=1 Ci(x) is an unbiased

estimate of x with variance

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(x)− x

∥∥∥∥∥
2
 =

1

n2

 n∑
i=1

E[∥Ci(x)− x∥2] +
∑
i ̸=j

E[⟨Ci(x)− x,Cj(x)− x⟩]

 .(6)

If the compressed vectors {Ci(x)}ni=1 are further assumed to be independent, i.e., {Ci}ni=1 ∈ U ind
ω ,

then the cancellation of cross error terms leads to the following equation:

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(xi)− x

∥∥∥∥∥
2
 =

1

n2

n∑
i=1

E[∥Ci(x)− x∥2] ≤ ω

n
∥x∥2. (7)

We observe that the mutual independence among unbiased compressors leads to a decreased variance,
which corresponds to the information distortion, of the aggregated message. Remarkably, this
reduction is achieved by a factor of n compared to the transmission of a single compressor. Therefore,
the independence among the compressors plays a pivotal role in enhancing the accuracy of the
aggregated vector, consequently reducing the number of required communication rounds.

On the contrary, in cases where independence is not assumed and no other properties of compressors
can be leveraged, the use of Cauchy’s inequality only allows us to bound variance (6) as follows:

E

∥∥∥∥∥ 1n
n∑

i=1

Ci(x)− x

∥∥∥∥∥
2
 ≤ 1

n

n∑
i=1

E[∥Ci(x)− x∥2] ≤ ω∥x∥2. (8)

It is important to note that the upper bound ω∥x∥2 can only be attained when the compressors {Ci}ni=1
are identical, indicating that this bound cannot be generally improved further. By comparing (7) and
(8), we can observe that the variance of the aggregated vector achieved through unbiased compression
with independence can be n times smaller than the variance achieved without independence.

5.2 Convergence lower bounds with independent unbiased compressors

While mutual independence can boost the unbiased worker compressors, it remains unclear how
much the total communication cost can be reduced at most by independent unbiased compression

3The theoretical results can vary from practical observations due to the particularities of real datasets with
which compressed algorithms can enjoy faster convergence, compared to the minimax optimal rates (e.g., ours
and [19]) justified without resorting any additional condition.
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and how to develop algorithms to achieve this optimal reduction. The following subsections aim to
address these open questions.

Following the formulation in (5), to establish the best achievable total communication cost using inde-
pendent unbiased compression, we shall study tight lower bounds on the number of communication
rounds Tϵ to achieve an ϵ-accurate solution, which is characterized by the following theorem.
Theorem 2. For any L ≥ µ ≥ 0, n ≥ 2, the following results hold. See the proof in Appendix C.

• Strongly-convex: For any ∆ > 0, there exists a constant cκ only depends on κ ≜ L/µ, a set
of local loss functions {fi}ni=1 ∈ F∆

L,µ>0, independent unbiased compressors {Ci}ni=1 ∈ U ind
ω ,

such that the output x̂ of any A ∈ A{Ci}n
i=1

starting from x0 requires

Tϵ(A, {(fi, Ci)}ni=1) = Ω

((
ω +

(
1 +

ω√
n

)√
κ

)
ln
(µ∆

ϵ

))
rounds of communication to reach E[f(x̂)]−minx f(x) ≤ ϵ for any 0 < ϵ ≤ cκµ∆.

• Generally-convex: For any ∆ > 0, there exists a constant c = Θ(1), a set of local loss functions
{fi}ni=1 ∈ F∆

L,0, independent unbiased compressors {Ci}ni=1 ∈ U ind
ω , such that the output x̂ of

any A ∈ A{Ci}n
i=1

starting from x0 requires at least

Tϵ(A, {(fi, Ci)}ni=1) = Ω

(
ω ln

(L∆
ϵ

)
+
(
1 +

ω√
n

)(L∆
ϵ

) 1
2

)
rounds of communication to reach E[f(x̂)]−minx f(x) ≤ ϵ for any 0 < ϵ ≤ cL∆.

Consistency with prior works. The lower bounds established in Theorem 2 are consistent with
the best-known lower bounds in previous literature. When ω = 0, our result reduces to the lower
bound for distributed first-order algorithms established by Y. Nesterov in [43]. When n = 1, our
result reduces to the lower bound established in [19] for the single-node case.

Independence improves lower bounds. A recent work [19] establishes lower bounds for unbiased
compression without the independence assumption, listed in the second row of Table 1. Compared to
these results, our lower bound in Theorem 2 replaces ω with ω/

√
n, showing a reduction in order.

This reduction highlights the role of independence in unbiased compression. To better illustrate the
reduction, we take the strongly-convex case as an example. The ratio of the number of communication
rounds Tϵ under unbiased compression with independence to the one without independence is:

ω + (1 + ω/
√
n)
√
κ

(1 + ω)
√
κ

=
1

1 + ω
+

ω

1 + ω

(
1√
n
+

1√
κ

)
= Θ

(
1

min{1 + ω,
√
n,

√
κ}

)
. (9)

Clearly, using independent unbiased compression can allow algorithms to converge faster, by up to a
factor of Θ(

√
min{n, κ}) (attained at ω ≳

√
min{n, κ}), in terms of the number of communication

rounds, compared to the best algorithms with unbiased compressors but without independence.

Total communication cost. Substituting Theorem 2 into the TCC formulation in (5), we can obtain
the TCC of algorithms using independent unbiased compression. Comparing this with algorithms
without compression, such as Nesterov’s accelerated algorithm, and using the relations in (9), we
can demonstrate that independent unbiased compression can reduce the total communication cost.
Such reduction can be up to Θ(

√
min{n, κ}) by using compressors with ω ≳

√
min{n, κ}, e.g.,

random-s sparsification with s ≲ d/
√
min{n, κ}.

5.3 ADIANA: a unified optimal algorithm

By comparing existing algorithms using independent unbiased compression, such as DIANA, ADI-
ANA, and CANITA, to our established lower bounds in Table 1, it becomes clear that there is a
noticeable gap between their convergence complexities and our established lower bounds. This gap
could indicate that these algorithms are suboptimal, but it could also mean that our lower bounds are
loose. As a result, our claim that using independent unbiased compression reduces the total commu-
nication cost by up to Θ(

√
min{n, κ}) times is not well-grounded yet. In this section, we address

this issue by revisiting ADIANA [32] (Algorithm 1) and providing novel and refined convergence
results in both strongly- and generally-convex cases.
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Algorithm 1: ADIANA

Input: Scalars {θ1,k}T−1
k=0 , θ2, α, β, {γk}T−1

k=0 , {ηk}T−1
k=0 , p.

Initialize w0 = x0 = y0 = z0 = h0 = h0
i , ∀ 1 ≤ i ≤ n.

for k = 0, · · · , T − 1 do
On server:

Update x: xk = θ1,kz
k + θ2w

k + (1− θ1,k − θ2)y
k and broadcast to all workers;

On all workers in parallel:
Compress the increment of local gradient mk

i = Ci(∇fi(x
k)− hk

i ) and send to the server;
Compress the increment of local gradient cki = Ci(∇fi(w

k)− hk
i ) and send to the server;

Update local shift hk+1
i = hk

i + αcki ;
On server:

Aggregate received compressed message gk = hk + 1
n

∑n
i=1 m

k
i ;

Update shift hk+1 = hk + α 1
n

∑n
i=1 c

k
i ;

Apply gradient descent yk+1 = xk − ηkg
k;

Update z: zk+1 = βzk + (1− β)xk + γk

ηk
(yk+1 − xk);

Update w: wk+1 =

{
yk, with probability p,

wk, with probability 1− p;

Output: x̂ = wT if f(wT ) ≤ f(yT ) else x̂ = yT .

In the strongly-convex case, we refine the analysis of [32] by: (i) adopting new parameter choices
where the initial scalar θ2 is delicately chosen instead of being fixed as θ2 = 1/2 in [32], (ii)
balancing different terms in the construction of the Lyapunov function. While we do not modify the
algorithm design, our technical ingredients are necessary to obtain an improved convergence rate. In
the generally-convex case, we provide the first convergence result for ADIANA, which is missing in
literature to our knowledge. In both strongly- and generally-convex cases, our convergence results
(nearly) match the lower bounds in Theorem 2. This verifies the tightness of our lower bounds for
both the convergence complexity and the total communication cost. In particular, our results are:
Theorem 3. For any L ≥ µ ≥ 0, ∆ ≥ 0, n ≥ 1, and precision ϵ > 0, the following results hold. See
the proof in Appendix D.

• Strongly-convex: If µ > 0, by setting parameters ηk ≡ η = nθ2/(120ωL), θ1,k ≡ θ1 =
1/(3

√
κ), α = p = 1/(1 + ω), γk ≡ γ = η/(2θ1 + ηµ), β = 2θ1/(2θ1 + ηµ), and θ2 =

1/(3
√
n+ 3n/ω), ADIANA requires

O
((

ω +

(
1 +

ω√
n

)√
κ

)
ln

(
L∆

ϵ

))
rounds of communication to reach E[f(x̂)]−minx f(x) ≤ ϵ.

• Generally-convex: If µ = 0, by setting parameters α = 1/(1 + ω), β = 1, p = θ2 =
1/(3(1 + ω)), θ1,k = 9/(k + 27(1 + ω)), γk = ηk/(2θ1,k), and

ηk = min

{
k + 1 + 27(1 + ω)

9(1 + ω)2(1 + 27(1 + ω))L
,

3n

200ω(1 + ω)L
,
1

2L

}
,

ADIANA requires

O

(
(1 + ω)

3

√
L∆

ϵ
+

(
1 +

ω√
n

)√
L∆

ϵ

)
rounds of communication to reach E[f(x̂)]−minx f(x) ≤ ϵ.

Tightness of our lower bounds. Comparing the upper bounds in Theorem 3 with the lower bounds
in Theorem 2, ADIANA attains the lower bound in the strongly-convex case up to a ln(κ) factor,
implying the tightness of our lower bound and ADIANA’s optimality. In the generally-convex case,
the upper bound matches the lower bound’s dominating term (1 + ω/

√
n)
√
L∆/ϵ but mismatches

the smaller term. This shows the tightness of our lower bound and ADIANA’s optimality in the
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Figure 2: Convergence results of various distributed algorithms on a synthetic least squares problem (left),
logistic regression problems with dataset a9a (middle) and w8a (right). The y-axis represents f(x̂)− f⋆ and
the x-axis indicates the total communicated bits sent by per worker.

high-precision regime ϵ < L∆
(

1+ω/
√
n

1+ω

)6
. Our refined rates for ADIANA are state-of-the-art

among existing algorithms using independent unbiased compression.

6 Experiments
In this section, we empirically compare ADIANA with DIANA [32], EF21 [49], and CANITA [33]
using unbiased compression, as well as Nesterov’s accelerated algorithm [43] which is an optimal
algorithm when no compression is employed. We conduct experiments on least-square problems
(strongly-convex) with synthetic datasets as well as logistic regression problems (generally-convex)
with real datasets. In all experiments, we measure the total communicated bits sent by a single worker,
which is calculated through communication rounds to acheive an ϵ-accurate solutions × per-round
communicated bits. All curves are averaged over 20 trials with the region of standard deviations
depicted. Due to the space limit, we only provide results with random-s compressors here. More
experimental results can be found in Appendix F.2.

Least squares. Consider a distributed least-square problem (1) with fi(x) :=
1
2∥Aix− bi∥2, where

Ai ∈ RM×d and bi ∈ RM are randomly generated. We set d = 20, n = 400, and M = 25, and
generate Ai’s by randomly generating a Gaussian matrix in RnM×d, then modify its condition number
to 104 through the SVD decomposition, and finally distribute its rows to all Ai. We use independent
random-1 compressors for communication compression. The results are depicted in Fig. 2 (left)
where we observe ADIANA beats all baselines in terms of the total communication cost. We do not
compare with CANITA since it does not have theoretical guarantees for strongly-convex problems.

Logistic regression. Consider a distributed logistic regression problem (1) with fi(x) :=
1
M

∑M
m=1 ln(1 + exp(−bi,ma⊤i,mx)), where {(ai,m, bi,m)}1≤i≤n,1≤m≤M are datapoints in a9a and

w8a datasets from LIBSVM [11]. We set n = 400 and choose independent random-⌊d/20⌋ compres-
sors for algorithms with compressed communication. The results are as shown in Fig. 2 (middle and
right). Again, we observe that ADIANA outperforms all baselines.

Influence of independence in unbiased compression. We also construct a delicate quadratic problem
to validate the role of independence in unbiased compression to save communication, see Fig. 1.
Experimental details are in Appendix F.1. We observe that ADIANA with independent random-s
compressors saves more bits than Nesterov’s accelerated algorithm while random-s compressors of
shared randomness do not. Furthermore, more aggresive compression, i.e., a larger ω, saves more
communication costs in total. These observations are consistent with our theories implied in (9).

7 Conclusion
This paper clarifies that unbiased compression alone cannot save communication, but this goal can
be achieved by further assuming mutual independence between compressors. We also demonstrate
the saving can be up to Θ(

√
min{n, κ}). Future research can explore when and how much biased

compressors can save communication in non-convex and stochastic scenarios.
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A Random sparsification

We illustrate the random-s sparsification here. More examples of unbiased compressors can be found
in literature [50].
Example 1 (RANDOM-s SPARSIFICATION). For any x ∈ Rd, the random-s sparsification is defined
by C(x) := d

s (ξ⊙x) where ⊙ denotes the entry-wise product and ξ ∈ {0, 1}d is a uniformly random
binary vector with s non-zero entries. This random-s sparsification operator C satisfies Assumption 2
with ω = d/s− 1. When each entry of the input x is represented with r bits, random-s sparsification
compressor takes rs bits to transmit s entries and log2

(
d
s

)
bits to transmit the indices of s transmitted

entries, resulting in a total rd
1+ω + log2

(
d
s

)
bits in each communication round, see [50, Table 1].

B Proof of Proposition 1

We first recall a result proved by [50].
Lemma 2 ([50], Theorem 2). Let C : Rd → Rd be any unbiased compressors satisfying 2 and b be
the total number of bits needed to encode the compressed vector C(x) for any x ∈ Rd. If each entry
of the input x is represented with r bits, it holds that max{ ω

1+ω , 4
−r}4b/d ≥ 1.

Using Lemma 2, when ω/(1+ω) ≤ 4−r, i.e., ω ≤ (4r − 1)−1 ≤ 1/3, we have (1+ω) = Θ(1) and
b ≥ rd = Ωr(d/(1 + ω)), where r is regarded as a constant in Ωr(·). When ω/(1 + ω) ≥ 4−r, we
have

b ≥ d log4(1 + ω−1) = d ln(1 + ω−1)/ ln(4) ≥ d
ω−1

ln(4)(1 + ω−1)
= Ωr

(
d

1 + ω

)
,

where we use the inequality ln(1 + t) ≥ t/(1 + t) with t = ω−1 ≥ 0.

C Proof of Theorem 2

Following [5, 9] , we denote the k-th coordinate of a vector x ∈ Rd by [x]k for k = 1, . . . , d, and let
prog(x) be

prog(x) :=

{
0, if x = 0,

max1≤k≤d{k : [x]k ̸= 0}, otherwise.

Similarly, for a set of multiple points X = {x1, x2, . . . }, we define prog(X ) := maxx∈X prog(x).
We call a function f zero-chain if it satisfies

prog(∇f(x)) ≤ prog(x) + 1, ∀x ∈ Rd,

which implies that starting from x0 = 0, a single gradient evaluation can only earn at most one more
non-zero coordinate for the model parameters.

Let us now illustrate the setup of distributed optimization with communication compression. For any
t ≥ 1, we consider the t-th communication round, which begins with the server broadcasting a vector
denoted as ut to all workers. We initialize u1 as x0. Upon receiving the vector ut from the server,
each worker performs necessary algorithmic operations, and the round concludes with each worker
sending a compressed message back to the server.

We denote vti as the vector that worker i aims to send in the t-th communication round before
compression, and v̂ti as the compressed vector that will be received by the server, i.e., v̂ti = Ci(v

t
i).

While we require communication to be synchronous among workers, we do not impose restrictions
on the number of gradient queries made by each worker within a communication round. We use Yt

i
to represent the set of vectors at which worker i makes gradient queries in the t-th communication
round, after receiving ut but before sending v̂ti .

Following the above description, we now formally state the linear spanning property in the setting of
centralized distributed optimization with communication compression.
Definition 2 (LINEAR-SPANNING ALGORITHMS). We say a distributed algorithm A is linear-
spanning if, for any t ≥ 1, the following conditions hold:
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1. The server can only send a vector in the linear manifold spanned by all the past received
messages, sent messages, i.e., ut ∈ span

(
{ur}t−1

r=1 ∪ {v̂ri : 1 ≤ i ≤ n}t−1
r=1

)
.

2. Worker i can only query at vectors in the linear manifold spanned by its
past received messages, compressed messages, and gradient queries, i.e., Yt

i ⊆
span

(
{ur}tr=1 ∪ {∇fi(y) : y ∈ Yr

i }
t−1
r=1 ∪ {v̂ri }

t−1
r=1

)
.

3. Worker i can only send a vector in the linear manifold spanned by its past re-
ceived messages, compressed messages, and local gradient queries, i.e., vti ∈
span

(
{ur}tr=1 ∪ {∇fi(y) : y ∈ Yr

i }tr=1 ∪ {v̂ri }
t−1
r=1

)
.

4. After t communication rounds, the server can only output a model in the linear
manifold spanned by all the past received messages, sent messages, i.e., x̂t ∈
span ({ur}tr=1 ∪ {v̂ri : 1 ≤ i ≤ n}tr=1).

In essence, when starting from x0 = 0, the above linear-spanning property requires that any expansion
of non-zero coordinates in vectors held by worker i (e.g., Yt

i , vti ) are attributed to its past local gradient
updates, local compression, or synchronization with the server. Meanwhile, it also requires that any
expansion of non-zero coordinate in vectors held, including the final algorithmic output, in the server
is due to the received compressed messages from workers.

Without loss of generality, we assume algorithms to start from x0 = 0 throughout the proofs. When
{fi}ni=1 are further assumed to be zero-chain, following Definition 2, one can easily establish by
induction that for any t ≥ 1,

max
1≤r≤t

prog(ur) ≤ max
1≤r<t

max
1≤i≤n

prog(v̂ri ) (10)

max
1≤r≤t

prog(vti) ≤ max
1≤r<t

max

{
max
1≤i≤n

prog(v̂ri ),prog(Yr
i )

}
≤ max

1≤r<t
max
1≤i≤n

prog(v̂ri ) + 1

prog(x̂t) ≤ max
1≤r≤t

max
1≤i≤n

prog(v̂ri )

Next, we outline the proofs for the lower bounds presented in Theorem 2. For each case, we provide
separate proofs for terms in the lower bound by constructing different hard-to-optimize examples,
respectively. The construction of these proofs follows four steps:

• Constructing a set of zero-chain local functions {fi}ni=1.

• Constructing a set of independent unbiased compressors {Ci}ni=1 ⊆ U ind
ω . These compressors

are delicately designed to impede algorithms from expanding the non-zero coordinates of model
parameters.

• Establishing a limitation on zero-respecting algorithms that utilize the predefined compressor
with t rounds of compressed communication on each worker. This limitation is based on the
non-zero coordinates of model parameters.

• Translating the above limitation into the lower bound of the complexity measure defined in
equation (3).

While the overall proof structure is similar to that of [19], our novel construction of functions and
compressors enable us to derive lower bounds for independent compressors. These lower bounds
clarify the unique properties and benefits of independent compressors.

We will use the following lemma in the analysis of the third step.
Lemma 3 ([19], Lemma 3). Given a constant p ∈ [0, 1] and random variables {Bt}∞t=0 such that
Bt ≤ B(t−1) + 1 and P(Bt ≤ Bt−1 | {Br}t−1

r=0) ≥ 1− p for any t ≥ 1, it holds for t ≥ 1/p, with
probability at least 1− e−1, that Bt ≤ B0 + ept.

C.1 Strongly-convex case

Below, we present two examples, each of which corresponding to a lower bound LBm for Tϵ. We
integrate the two lower bounds together and use the inequality

Tϵ ≥ max
1≤m≤2

{LBm} = Ω(LB1 + LB2)
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to accomplish the lower bound for strongly-convex problems in Theorem 2.

Example 1. In this example, we prove the lower bound Ω((1 + ω)(1 +
√
κ/n) ln (µ∆/ϵ)).

(Step 1.) We assume the variable x ∈ ℓ2 ≜ {([x]1, [x]2, . . . , ) :
∑∞

r=1[x]
2
r < ∞} to be infinitely

dimensional and square-summable for simplicity. It is easy to adapt the argument for finitely
dimensional variables as long as the dimension is proportionally larger than t. Let M be

M =


2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

 ∈ R∞×∞,

then it is easy to see 0 ⪯ M ⪯ 4I . Let {fi}ni=1 be as follows

fi(x) =

{
µ
2 ∥x∥

2 + L−µ
4

∑
r≥0([x]nr+i − [x]nr+i+1)

2, if 1 ≤ i ≤ n− 1,
µ
2 ∥x∥

2 + L−µ
4

(
[x]21 +

∑
r≥1([x]nr − [x]nr+1)

2 − 2λ[x]1

)
, if i = n.

where λ ∈ R\{0} is to be specified. It is easy to see that
∑

r≥0([x]nr+i − [x]nr+i+1)
2 and

[x]21 +
∑

r≥0([x]nr − [x]nr+1)
2 − 2λ[x]1 are convex and 4-smooth. Consequently, all fis are L-

smooth and µ-strongly convex. More importantly, it is easy to verify that all fis defined above are
zero-chain functions and satisfy

prog(∇fi(x))

{
= prog(x) + 1, if prog(x) ≡ i mod n,

≤ prog(x), otherwise.
(11)

We further have f(x) = 1
n

∑n
i=1 fi(x) = µ

2 ∥x∥
2 + L−µ

4n

(
x⊤Mx− 2λ[x]1

)
. For the functions

defined above, we also establish that
Lemma 4. Let κ ≜ L/µ ≥ 1, it holds for any x that,

f(x)−min
x

f(x) ≥ µ

2

1− 2

(
1 +

√
1 +

2(κ− 1)

n

)−1
2prog(x)

∥x0 − x⋆∥2.

Proof. The minimum x⋆ of function f satisfies
(

L−µ
2n M + µ

)
x⋆−λL−µ

2 e1 = 0, which is equivalent
to

2κ+ 2n− 2

κ− 1
[x⋆]1 − [x⋆]2 = λ,

−[x⋆]j−1 +
2κ+ 2n− 2

κ− 1
[x⋆]j − [x⋆]j+1 = 0, ∀ j ≥ 2. (12)

Note that

q =
κ+ n− 1−

√
n(2κ+ n− 2)

κ− 1
= 1− 2

1 +
√

1 + 2(κ−1)
n

is the only root of the equation q2 − 2κ+2n−2
κ−1 q + 1 = 0 that is smaller than 1. Then it is straight

forward to check x⋆ =
(
[x⋆]j = λqj

)
j≥1

satisfies (12). By the strong convexity of f , x⋆ is the
unique solution. Therefore, we have that

∥x− x⋆∥2 ≥
∞∑

j=prog(x)+1

λ2q2j = λ2 q
2(r+1)

1− q2
= q2r∥x0 − x⋆∥2.

Finally, using the strong convexity of f leads to the conclusion.

Following the proof of Lemma 4, we have

∥x0 − x⋆∥2 = λ2
∞∑
j=1

q2j = λ2 q2

1− q2
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Therefore, for any given ∆ > 0, letting λ =
√
((1− q2)∆)/q2 results in ∥x0 − x⋆∥2 = ∆.

Consequently, our construction ensures {fi}ni=1 ∈ F∆
L,µ.

(Step 2.) For the construction of ω-unbiased compressors, we consider {Ci}ni=1 to be independent
random sparsification compressors. Building upon Example 1, we make a slight modification: during
a round of communication on any worker, each coordinate is independetly chosen with a probability
of (1 + ω)−1 to be transmitted, and if selected, its value is scaled by (1 + ω) and then the scaled
value is transmitted. Notably, the indices of chosen coordinates are not identical across all workers
due to the independence of compressors. It can be easily verified that this construction ensures that
{Ci}ni=1 ⊆ U ind

ω .

(Step 3.) Since the algorithmic output x̂t calculated by the server lies in the linear manifold spanned
by received messages, we can use (10) to obtain the following expression:

prog(x̂t) ≤ max
1≤r≤t

max
1≤i≤n

max{prog(ur),prog(v̂ri )} = max
1≤r≤t

max
1≤i≤n

prog(v̂ri ) ≜ Bt. (13)

We next bound Bt with B0 := 0 by showing that {Bt}∞t=0 satisfies Lemma 3 with p = (1 + ω)−1.

For any linear-spanning algorithm A, according to (11), the worker i can only attain one additional
non-zero coordinate through local gradient-based updates when prog(Yt

i ) ≡ i mod n. In other
words, upon receiving messages {ur

i }tr=1 from the server, we have

prog(vti) ≤
{
max1≤r≤t prog(u

r
i ) + 1 ≤ Bt−1 + 1, if prog(Yt

i ) ≡ i mod n,

max1≤r≤t prog(u
r
i ) ≤ Bt−1, otherwise.

Consequently, we have

max
1≤r≤t

prog(vri ) ≤ max
1≤r≤t

Br−1 + 1 = Bt−1 + 1.

It then follows from the definition of the constructed Ci in Step 2 that max1≤i≤n prog(v̂
t
i) ≤

max1≤i≤n prog(v
t
i), and therefore we have:

Bt ≤ max
1≤r≤t

max
1≤i≤n

prog(vri ) ≤ Bt−1 + 1.

Next, we aim to prove that Bt ≤ Bt−1 + 1 with a probability of at least ω/(1 + ω). For any t ≥ 1,
let i ∈ {1, . . . , n} be such that Bt−1 ≡ i mod n. Due to the property in equation (11), during the
t-th communication round, if prog(Yt

i ) = Bt−1, worker i can push the number of non-zero entries
forward by 1, resulting in prog(vti) = Bt−1 + 1, using local gradient updates. Note that any other
worker j cannot achieve this even if prog(Yt

j) = Bt−1 due to equation (11).

Therefore, to achieve Bt = Bt−1 + 1, it is necessary for worker i to transmit a non-zero value at the
(Bt−1 + 1)-th entry to the server. Otherwise, we have Bt ≤ Bt−1. However, since the compressor
Ci associated with worker i has a probability ω/(1 + ω) to zero out the (Bt−1 + 1)-th entry in the
t-th communication round, we have

P
(
Bt ≤ Bt−1 | {Br}t−1

r=0

)
≥ ω/(1 + ω).

In summary, we have shown that Bt ≤ Bt−1 + 1 and P(Bt ≤ Bt−1 | {Br}t−1
r=0) ≥ ω/(1 + ω).

By applying Lemma 3, we can conclude that for any t ≥ (1 + ω)−1, with a probability of at least
1− e−1, it holds that Bt ≤ et/(1 + ω) and hence prog(x̂t) ≤ et/(1 + ω) due to (13).

(Step 4.) Using Lemma 4 and that prog(x̂t) ≤ et/(1 + ω) with probability at least 1 − e−1, we
obtain

E[f(x̂t)]−min
x

f(x) ≥ (1− e−1)µ∆

2

1− 2

(
1 +

√
1 +

2(κ− 1)

n

)−1
2et/(1+ω)

(14)

=Ω

(
µ∆exp

(
− 4et

(
√
κ/n+ 1)(1 + ω)

))
.
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Therefore, to ensure E[f(x̂t)] − minx f(x) ≤ ϵ, relation (14) implies the lower bound Tϵ =

Ω((1 + ω)(1 +
√
κ/n) ln(µ∆/ϵ)).

Example 2. Considering f1 = f to be homogeneous and Ci = I to be a loss-less compressor for all
1 ≤ i ≤ n, the problem reduces to single-node convex optimization. In this case, the lower bound of
Ω(

√
κ ln (µ∆/ϵ)) is well-known in the literature, as shown in [44, 43].

With the two lower bounds achieved in Examples 1 and 2, we have

Tϵ = Ω
(
(1 + ω)(1 +

√
κ/n) ln(µ∆/ϵ) +

√
κ ln(µ∆/ϵ)

)
= Ω

(
(1 + ω +

√
κ/n+ ω

√
κ/n+

√
κ) ln(µ∆/ϵ)

)
= Ω

(
(ω + ω

√
κ/n+

√
κ) ln(µ∆/ϵ)

)
which is the result for the strongly-convex case in Theorem 2.

C.2 Generally-convex case

Below, we present three examples, each of which corresponding to a lower bound LBm for Tϵ. We
integrate the three lower bounds together and use the inequality

Tϵ ≥ max
1≤m≤3

{LBm} = Ω(LB1 + LB2 + LB3)

to accomplish the lower bound for the generally-convex case in Theorem 2.

Example 1. In this example, we prove the lower bound Ω((1 + ω)(L∆/ϵ)1/2).

(Step 1.) We assume variable x ∈ Rd, where d can be sufficiently large and will be determined later.
Let M denote

M =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 ∈ Rd×d,

it is easy to verify 0 ⪯ M ⪯ 4I . Similar to example 1 of the strongly-convex case, we consider

fi(x) =

{
L
4

∑
r≥0([x]nr+i − [x]nr+i+1)

2, if 1 ≤ i ≤ n− 1,
L
4

(
[x]21 +

∑
r≥1([x]nr − [x]nr+1)

2 − 2λ[x]1

)
, if i = n.

where λ ∈ R\{0} is to be specified. It is easy to see that all fis are L-smooth. We further have
f(x) = 1

n

∑n
i=1 fi(x) =

L
4n

(
x⊤Mx− 2λ[x]1

)
. The fi functions defined above are also zero-chain

functions satisfying (11).

Following [43], it is easy to verify that the optimum of f satisfies

x⋆ =

(
λ

(
1− k

d+ 1

))
1≤k≤d

and f(x⋆) = min
x

f(x) = − λ2Ld

4n(d+ 1)
.

More generally, it holds for any 0 ≤ k ≤ d that

min
x: prog(x)≤k

f(x) = − λ2Lk

4n(k + 1)
. (15)

Since ∥x0 − x⋆∥2 = λ2

(d+1)2

∑d
k=1 k

2 = λ2d(2d+1)
6(d+1) ≤ λ2d

3 , letting λ =
√

3∆/d, we have {fi}ni=1 ∈
F∆

L,0.

(Step 2.) Same as Step 2 of Example 1 of the strongly-convex case, we consider {Ci}ni=1 to be
independent random sparsification operators.
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(Step 3.) Following the same argument as step 3 of example 1 of the strongly-convex case, we have
that for any t ≥ (1 + ω)−1, it holds with probability at least 1− e−1 that prog(x̂t) ≤ et/(1 + ω).

(Step 4.) Thus, combining (15), we have

E[f(x̂t)]−min
x

f(x) ≥(1− e−1)
λ2L

4n

(
d

d+ 1
− et/(1 + ω)

1 + et/(1 + ω)

)
=(1− e−1)

3L∆

4nd

(
d

d+ 1
− et/(1 + ω)

1 + et/(1 + ω)

)
Letting d = 1 + et/(1 + ω), we further have

E[f(x̂t)]−min
x

f(x) ≥ 3(1− e−1)L∆

8net(1 + ω)−1(1 + 2et(1 + ω)−1)
= Ω

(
(1 + ω)2L∆

nt2

)
.

Therefore, to ensure E[f(x̂t)]−minx f(x) ≤ ϵ, the above inequality implies the lower bound to be
T = Ω((1 + ω)(L∆/(nϵ))

1
2 ).

Example 2. Considering f1 = f to be homogeneous and Ci = I to be a loss-less compressor for
all 1 ≤ i ≤ n. The problem reduces to the single-node convex optimization. The lower bound
Ω(
√
L∆/ϵ) is well-known in literature, see, e.g., [44, 43].

Example 3. In this example, we prove the lower bound Ω(ω ln (L∆/ϵ)).

(Step 1.) We consider f1 = · · · = fn−1 = L∥x∥2/2 and fn = L∥x∥2/2 + nλ⟨1d, x⟩ where
1d ∈ Rd is the vector with all enries being 1 and λ ∈ R is to be determined. By definition, {fi}ni=1

are µ-strongly-convex and L-smooth and the solution x⋆ = − λ
L1d. Letting λ = L

√
∆/

√
n, we have

∥x⋆ − x0∥2 = ∆. Thus, the construction ensures {fi}ni=1 ∈ F∆
L,µ.

(Step 2.) Same as in Example 1, we consider {Ci}ni=1 to be independent random sparsification
operators.

(Step 3.) By the construction of {fi}ni=1, we observe that the optimization process relies solely on
transmitting the information of 1d from worker n to the server. Let Et denote the set of entries at
which the server has received a non-zero value from worker n in the first t communication rounds.
Note that for each entry, due to the construction of {Ci}ni=1, the server has a probability of at least
(ω/(1 + ω))t of not receiving a non-zero value at that entry from worker n. Consequently, |(Et)c| is
lower bounded by the sum of n independent Bernoulli(ωt/(1 + ω)t) random variables. Therefore,
we have E[|(Et)c|] ≥ dωt/(1 + ω)t.

(Step 4.) Given |Et|, due to the linear-spanning property, we have x̂t ∈ span{ej : j ∈ Et} where ej
is the j-th canonical vector. As a result, we have

E[f(x̂t)]−min
x

f(x)

≥E[ min
x∈span{ej :j∈Et}

f(x)]−min
x

f(x) =
L∆

2

E[|(Et)c|]
d

≥ L∆

2

ωt

(1 + ω)t
. (16)

Therefore, to ensure E[f(x̂t)]−minx f(x) ≤ ϵ, (16) implies the lower bound Tϵ = Ω(ω ln(L∆/ϵ)).

With the three lower bounds achieved in Examples 1, 2, and 3, we have

Tϵ = Ω
(√L∆

ϵ
+ (1 + ω)

√
L∆

nϵ
+ ω ln(L∆/ϵ)

)
= Ω

(√L∆

ϵ
+ ω

√
L∆

nϵ
+ ω ln(L∆/ϵ)

)
which is the result for the generally-convex case in Theorem 2.
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D Proof of Theorem 3

D.1 Strongly-convex case

We first present several important lemmas, followed by the definition of a Lyapunov function with
delicately chosen coefficients for each term. Finally, we prove Theorem 3 by utilizing these lemmas.
Throughout the convergence analysis, we use the following notations:

Wk =f(wk)− f⋆, Yk = f(yk)− f⋆, Zk = ∥zk − x⋆∥2,

Hk =
1

n

n∑
i=1

∥hk
i −∇fi(w

k)∥2, Gk = ∥gk −∇f(xk)∥2,

Gk
w =

1

n

n∑
i=1

∥∇fi(w
k)−∇fi(x

k)∥2, Gk
y =

1

n

n∑
i=1

∥∇fi(y
k)−∇fi(x

k)∥2.

We use Ek or E indicate the expectation with respect to the randomness in the k-th iteration or all
histortical randomness, respectively.
Lemma 5. If 0 ≤ β ≤ 1, it holds for ∀ k ≥ 0 that,

Zk+1 ≤2γk⟨gk, x⋆ − xk⟩+ 2γkβθ2
θ1,k

⟨gk, wk − xk⟩+ 2γkβ(1− θ1,k − θ2)

θ1,k
⟨gk, yk − xk⟩

+ βZk + (1− β)∥xk − x⋆∥2 + γ2
k∥gk∥2. (17)

Proof. Following the update rules in Algorithm 1, we have

Zk+1 =

∥∥∥∥βzk + (1− β)xk − x⋆ +
γk
ηk

(yk+1 − xk)

∥∥∥∥2
=∥β(zk − x⋆) + (1− β)(xk − x⋆)∥2 + γ2

k∥gk∥2

+ ⟨2γkgk, βzk + (1− β)xk − x⋆⟩. (18)

Since xk = θ1,kz
k + θ2w

k + (1− θ1,k − θ2)y
k, we have

βzk + (1− β)xk − x⋆ =(xk − x⋆) +
βθ2
θ1,k

(xk − wk) +
β(1− θ1,k − θ2)

θ1,k
(xk − yk). (19)

Plugging (19) into (18), using

∥β(zk − x⋆) + (1− β)(xk − x⋆)∥2 ≤ β∥zk − x⋆∥2 + (1− β)∥xk − x⋆∥2,

we obtain (17).

Lemma 6. Under Assumption 1, if parameters satisfy θ1,k, θ2, 1− θ1,k − θ2 ∈ (0, 1), ηk ∈
(
0, 1

2L

]
,

γk = ηk

2θ1,k+ηkµ
and β = 1− γµ =

2θ1,k
2θ1,k+ηkµ

, then we have for any iteration k ≥ 0 that

2γkβ

θ1,k
Ek[Yk+1] + Ek[Zk+1] ≤2γkβθ2

θ1,k
Wk +

2γkβ(1− θ1,k − θ2)

θ1,k
Yk + βZk +

5γkβηk
4θ1,k

Gk

− γkβθ2
Lθ1,k

Gk
w − γkβ(1− θ1,k − θ2)

Lθ1,k
Gk
y . (20)

Proof. By Assumption 1 and update rules in Algorithm 1, we have

f(yk+1) ≤f(xk) + ⟨∇f(xk), yk+1 − xk⟩+ L

2
∥yk+1 − xk∥2

=f(xk)− ⟨∇f(xk), ηkg
k⟩+ L

2
η2k∥gk∥2

=f(xk)− ηk⟨∇f(xk)− gk, gk⟩+
(
Lη2k
2

− ηk

)
∥gk∥2. (21)
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By L-smoothness and µ-strongly convexity, we have for ∀u ∈ Rd that

f(u) ≥ f(xk) + ⟨∇f(xk), u− xk⟩+ µ

2
∥u− xk∥2,

and that

fi(u) ≥ fi(x
k) + ⟨∇fi(x

k), u− xk⟩+ 1

2L
∥∇fi(u)−∇fi(x

k)∥2,

thus we obtain for ∀u ∈ Rd,

f(xk) ≤f(u)− ⟨∇f(xk), u− xk⟩

−max

{
µ

2
∥u− xk∥2, 1

2Ln

n∑
i=1

∥∇fi(u)−∇fi(x
k)∥2

}
. (22)

Applying Young’s inequality to (21) and using ηk ≤ 1/(2L), we reach

f(yk+1) ≤f(xk) +
ηk
2
Gk − ηk

2
(1− Lηk)∥gk∥2

≤f(xk) +
ηk
2
Gk − ηk

4
∥gk∥2. (23)

Adding (17) in Lemma 5 to
(

2γkβ
θ1,k

+ 2γk(1− β)
)
×(23) + 2γk×(22) (where u = x⋆) + 2γkβθ2

θ1,k
×(22)

(where u = wk) + 2γkβ(1−θ1,k−θ2)
θ1,k

×(22) (where u = yk) and using the unbiasedness of gk, we
obtain

2γkβ

θ1,k
Ek[Yk+1] + Ek[Zk+1]

≤βZk + (1− β − µγk)∥xk − x⋆∥2 +
(
γ2
k − ηkγkβ

2θ1,k

)
Ek[∥gk∥2] + ηk

(
γkβ

θ1,k
+ γk(1− β)

)
Gk

− γkβθ2
Lθ1,k

Gk
w − γkβ(1− θ1,k − θ2)

Lθ1,k
Gk
y +

2γkβθ2
θ1,k

Wk +
2γkβ(1− θ1,k − θ2)

θ1,k
Yk

− 2γk(1− β)Ek[Yk+1]− ηkγk(1− β)

2
Ek[∥gk∥2]

On top of that, by applying our choice of the parameters, it can be easily verified that 1−β−µγk = 0,
γ2
k − ηkγkβ

2θ1,k
= 0, 1− β ≤ β

4θ1,k
, which leads to (20).

Lemma 7 ([32], Lemma 3, 4, 5). Under Assumptions 1, 2, and 3, the iterates of Algorithm 1 satisfy
the following inequalities:

E[Wk+1] =(1− p)E[Wk] + pE[Yk], (24)

E[Gk] ≤2ω

n
E[Gk

w] +
2ω

n
E[Hk], (25)

E[Hk+1] ≤
(
1− α

2

)
E[Hk] + 2p

(
1 +

2p

α

)
(E[Gk

w] + E[Gk
y ]). (26)

Now we define a Lyapunov function Ψk for k ≥ 1 as

Ψk = λk−1Wk +
2γk−1β

θ1,k−1
Yk + Zk +

10ηk−1ω(1 + ω)γk−1β

θ1,k−1n
Hk, ∀k ≥ 1, (27)

where λk = γkβ
pθ1,k

(θ1,k + θ2 − p+
√

(p− θ1,k − θ2)2 + 4pθ2). Furthermore, it is straightforward
to verify that

2γkβθ2
pθ1,k

≤ λk ≤ 2γkβ(θ1,k + θ2)

pθ1,k
.

Now we restate the convergence result in the strongly-convex case in Theorem 3 and prove it using
Lemma 6, 7 and the Lyapunov function.
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Theorem 4. If µ > 0 and parameters satisfy ηk ≡ η = nθ2/(120ωL), θ1,k ≡ θ1 = 1/(3
√
κ),

α = p = 1/(1 + ω), γk ≡ γ = η/(2θ1 + ηµ), β = 2θ1/(2θ1 + ηµ), and θ2 = 1/(3
√
n + 3n/ω),

then the number of communication rounds performed by ADIANA to find an ϵ-accurate solution such
that E[f(x̂)]−minx f(x) ≤ ϵ is at most O((ω + (1 + ω/

√
n)
√
κ) ln(L∆/ϵ)).

Proof. In the strongly-convex case, parameters {γk}k≥1 and {θ1,k}k≥1 are constants, then so
is λk. Thus, we simply write γ ≜ γk, θ1 ≜ θ1,k, and λ ≜ λk for all k ≥ 1. Considering
(20)+λ(24)+ 5γβη

4θ1
(25)+ 10ηω(1+ω)γβ

nθ1
(26), we have

E[Ψk+1] ≤
(
2γβθ2
θ1

+ (1− p)λ

)
Wk +

(
2γβ(1− θ1 − θ2)

θ1
+ pλ

)
Yk + βZk

+

(
1− 1

4(1 + ω)

)
10ηω(1 + ω)γβ

θ1n
Hk −

(
γβθ2
Lθ1

− 125γβηω

2nθ1

)
Gk
w

−
(
γβ(1− θ1 − θ2)

Lθ1
− 60ηωγβ

nθ1

)
Gk
y . (28)

By the definition of λ, we have

2γβθ2
θ1

+ (1− p)λ =λ

(
1− p+

2pθ2√
(p− θ1 − θ2)2 + 4pθ2 + θ1 + θ2 − p

)

=λ

1− p+
2pθ2

2θ2 +
4θ1θ2√

(p−θ1−θ2)2+4pθ2−θ1+θ2+p


≤λ

(
1− p+

p

1 + 2θ1
(p+θ1+θ2)−θ1+θ2+p

)
=

(
1− pθ1

p+ θ1 + θ2

)
λ, (29)

and

2γβ(1− θ1 − θ2)

θ1
+ pλ =

2γβ

θ1

[
1− θ1 − θ2 +

1

2

(
θ1 + θ2 − p+

√
(p− θ1 − θ2)2 + 4pθ2

)]
=
2γβ

θ1

(
1− 2pθ1

p+ θ1 + θ2 +
√
(p− θ1 − θ2)2 + 4pθ2

)

≤
(
1− pθ1

p+ θ1 + θ2

)
2γβ

θ1
. (30)

From the choice of η, it is easy to verify that

γβθ2
Lθ1

− 5γβηω

2nθ1
− 60ηωγβ

nθ1
≥ 0, (31)

and further noting 1− θ1 − θ2 ≥ θ2,

γβ(1− θ1 − θ2)

Lθ1
− 60ηωγβ

nθ1
≥ 0. (32)

Plugging (29), (30), (31), and (32) into (28), we obtain

E[Ψk+1] ≤
(
1−min

{
pθ1

p+ θ1 + θ2
,

ηµ

2θ1 + ηµ
,

1

4(1 + ω)

})
Ψk

≤

(
1− 1

p+θ1+θ2
pθ1

+ 2θ1+ηµ
ηµ + 4(1 + ω)

)
Ψk

≤

1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
Ψk, ∀k ≥ 0, (33)
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where Ψ0 := λW0 + 2γβ
θ1

Y0 + Z0 + 10ηω(1+ω)γβ
θ1n

H0. Note that since we use initialization y0 =

z0 = w0 = h0
i = h0, ∀1 ≤ i ≤ n, we have W0 = Y0 ≤ (L∆)/2, Z0 ≤ ∆, H0 ≤ L2∆, which

indicates that

Ψ0 ≤ L

2
· (λW + λY + λZ + λH)∆,

where λW = λ ≥ 2γβθ2
θ1p

, λY = 2γβ
θ1

, λZ = 2
L , λH = 20ηω(1+ω)γβL

θ1n
. These coefficients have the

following inequalities:

λW + λY ≥ 4η(θ2 + p)

p(2θ1 + ηµ)2
=

nθ2(θ2 + p)

30ωLp(2/3
√
κ+ nθ2/120ωκ)2

≥ nθ2(θ2 + p)κ

15ωLp

≥ κ

135L
≥ 1

270
λZ ,

and
3

32
(λW + λY ) ≥

κ

1440L
≥ (1 + ω)nθ22κ

160ωL
≥ 40η2ω(1 + ω)L

(2θ1 + ηµ)2n
= λH .

Consequently, the initial value of the Lyapunov function can be bounded as

Ψ0 ≤ 136L(λW + λY )∆,

which together with (33) further implies that

min{E[f(wT )],E[f(yT )]} − f⋆

≤min

{
1

λW
,
1

λY

}1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
T

Ψ0

≤272L∆

1− 1

250
(
ω +

(
1 + ω√

n

)√
κ
)
T

.

Thus, O
((

ω +
(
1 + ω√

n

)√
κ
)
ln
(
L∆
ϵ

))
iterations are sufficient to guarantee an ϵ-solution.

D.2 Generally-convex case

In this subsection, we restate the convergence result in the generally-convex case as in Theorem 3
and prove it using Lemma 6, 7 and the Lyapunov function defined in (27).
Theorem 5. If µ = 0 and parameters satisfy α = 1/(1 + ω), β = 1, p = θ2 = 1/(3(1 + ω)),
θ1,k = 9/(k + 27(1 + ω)), γk = ηk/(2θ1,k), and

ηk = min

{
k + 1 + 27(1 + ω)

9(1 + ω)2(1 + 27(1 + ω))L
,

3n

200ω(1 + ω)L
,
1

2L

}
,

then the number of communication rounds performed by ADIANA to find an ϵ-accurate solution such
that E[f(x̂)]−minx f(x) ≤ ϵ is provided by O((1 + ω/

√
n)
√

L∆/ϵ+ (1 + ω) 3
√
L∆/ϵ) .

Proof. Considering (20)+λk(24)+ 5γkβηk

4θ1,k
(25)+ 10ηkω(1+ω)γkβ

nθ1,k
(26) and applying the choice of θ2,

p and α, we have

Ek[Ψ
k+1]

≤
(
2γkβθ2
θ1,k

+ (1− p)λk

)
Wk +

(
2γkβ(1− θ1,k − θ2)

θ1,k
+ pλk

)
Yk + βZk

+

(
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γkβ

nθ1,k
Hk −

(
γkβθ2
Lθ1,k

− 5ωγkβηk
2nθ1,k

− 100ηkωγkβ

9nθ1,k

)
Gk
w

−
(
γkβ(1− θ1,k − θ2)

Lθ1,k
− 100ηkωγkβ

9nθ1,k

)
Gk
y . (34)
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Similar to the proof of Theorem 4, we can simplify (34) by validating

2γkβθ2
θ1,k

+ (1− p)λk ≤
(
1− pθ1,k

p+θ1,k+θ2

)
λk ≤

(
1− θ1,k

3

)
λk,

2γkβ(1−θ1,k−θ2)
θ1,k

+ pλk ≤
(
1− pθ1,k

p+θ1,k+θ2

)
2γkβ
θ1,k

≤
(
1− θ1,k

3

)
2γkβ
θ1,k

,
γkβθ2
Lθ1,k

− 5ωγkβηk

2nθ1,k
− 100ηkωγkβ

9nθ1,k
≥ 0,

γkβ(1−θ1,k−θ2)
Lθ1,k

− 100ηkωγkβ
9nθ1,k

≥ 0,

and then obtain

Ek[Ψ
k+1] ≤

(
1− θ1,k

3

)
λkWk +

(
1− θ1,k

3

)
2γk
θ1,k

Yk + Zk

+

(
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γk

θ1,kn
Hk. (35)

For ∀k ≥ 1, we have θ1,k ≤ θ1,k−1 and thus(
1− θ1,k

3

)
λk =

(
1− 3

k + 27(1 + ω)

)
ηk

2pθ21,k

(
θ1,k +

√
θ21,k + 4pθ2

)
≤
(
1− 3

k + 27(1 + ω)

)
ηk

2pθ21,k
(θ1,k−1 +

√
θ21,k−1 + 4pθ2)

=

(
1− 3

k + 27(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2
ηk

ηk−1
λk−1.

Further noting ηk

ηk−1
≤ 1 + 1

k+27(1+ω) , we obtain(
1− θ1,k

3

)
λk ≤

(
1− 3

k + 27(1 + ω)

)(
1− 1

k + 27(1 + ω)

)−2(
1 +

1

k + 27(1 + ω)

)
λk−1

≤λk−1. (36)

Similarly,(
1− θ1,k

3

)
2γk
θ1,k

=

(
1− 3

k + 27(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2
ηk

ηk−1

2γk−1

θ1,k−1

≤
(
1− 3

k + 27(1 + ω)

)(
1− 1

k + 27(1 + ω)

)−2(
1 +

1

k + 27(1 + ω)

)
2γk−1

θ1,k−1

≤ 2γk−1

θ1,k−1
, (37)

and (
1− 1

4(1 + ω)

)
10ηkω(1 + ω)γkβ

nθ1,k

=

(
1− 1

4(1 + ω)

)(
k + 27(1 + ω)

k − 1 + 27(1 + ω)

)2(
ηk

ηk−1

)2
10ηk−1ω(1 + ω)γk−1β

nθ1,k−1

≤

(
1− 5

k+27(1+ω)

)(
1 + 3

k+27(1+ω)

)
(
1− 1

k+27(1+ω)

)2 10ηk−1ω(1 + ω)γk−1β

nθ1,k−1

≤10ηk−1ω(1 + ω)γk−1β

θ1,k−1n
. (38)
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Combining (35),(36),(37), and (38), we have for ∀ k ≥ 1 that

Ek[Ψ
k+1] ≤ Ψk. (39)

By applying (39) with k = T − 1, T − 2, · · · , 1 and (35) with k = 0, we obtain

E[ΨT ] ≤
(
1− θ1,0

3

)
2γ0(θ1,0 + θ2)

pθ1,0
W0 +

(
1− θ1,0

3

)
2γ0
θ1,0

Y0 + Z0

+

(
1− 1

4(1 + ω)

)
10η0ω(1 + ω)γ0

θ1,0n
H0

≤ 2

L
W0 +

1

L
Y0 + Z0 +

3

40L2
H0 ≤

(
1 +

1

2
+ 1 +

3

40

)
∆ ≤ 3∆.

Note that

ΨT ≥λT−1WT +
2γT−1β

θ1,T−1
YT ≥ 2γT−1βθ2

θ1,T−1p
WT +

2γT−1β

θ1,T−1
YT =

ηT−1

θ21,T−1

(WT + YT ),

thus
max{E[f(wT )],E[f(yT )]} − f⋆

≤
θ21,T−1

ηT−1
E[ΨT ]

≤ 243∆

(T − 1 + 27(1 + ω))2
·max

{
9(1 + ω)2(1 + 27(1 + ω))L

T + 27(1 + ω)
,
200ω(1 + ω)L

3n
, 2L

}
=O

(
(1 + ω2/n)L∆

T 2
+

(1 + ω3)L∆

T 3

)
,

thus it suffices to achieve an ϵ-solution with O
((

1 + ω√
n

)√
L∆
ϵ + (1 + ω) 3

√
L∆
ϵ

)
iterations.

E Correction on CANITA [33]

We observe that when ω ≫ n, the original convergence rate of CANITA [33] contradicts the lower
bounds presented in our Theorem 2. This discrepancy may stem from errors in the derivation of
equations (35) and (36) in [33], or from the omission of certain conditions such as ω = Ω(n). To
address this issue, we provide a corrected proof and the corresponding convergence rate. Here
we modify the choice of β0 in ([33], Theorem 2) to 9(1 + b + ω)2/(2(1 + b)), while keeping all
other choices consistent with the original proof, i.e., b = min{ω,

√
ω(1 + ω)2/n}, pt ≡ 1/(1 + b),

αt ≡ 1/(1+ω), θt = 3(1+ b)/(t+9(1+ b+ω)), β = 48ω(1+ω)(1+ b+2(1+ω))/(n(1+ b)2)
and

ηt =

{
1

L(β0+3/2) , for t = 0,

min
{(

1 + 1
t+9(1+b+ω)

)
ηt−1,

1
L(β+3/2)

}
, for t ≥ 1.

By definition we have

ηT =min

{
T + 1 + 9(1 + b+ ω)

1 + 9(1 + b+ ω)
η0,

1

L(β + 3/2)

}
=min

{
T + 1 + 9(1 + b+ ω)

1 + 9(1 + b+ ω)

1

L(β0 + 3/2)
,

1

L(β + 3/2)

}
≥min

{
(T + 9(1 + b+ ω))(1 + b)

60L(1 + b+ ω)3
,

1

L(β + 3/2)

}
(40)

Plugging (40) and ([33],34) into ([33],33), we obtain

E[FT+1] =O
(

(1 + b+ ω)3L∆

(T + 9(1 + b+ ω))3
+

(1 + b)(β + 3/2)L∆

(T + 9(1 + b+ ω))2

)
=O

(
(1 + b+ ω)3L∆

T 3
+

(1 + b)(β + 3/2)L∆

T 2

)
. (41)
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Using b = min{ω,
√
ω(1 + ω)2/n}, we have

(1 + b+ ω)3 = Θ
(
(1 + ω)3

)
,

and

(1 + b)(β + 3/2) =Θ

(
(1 + b) +

ω(1 + ω)(1 + b+ ω)

n(1 + b)

)
=Θ

(
1 +

ω3/2

n1/2
+

ω2

n

)
,

thus (41) can be simplified as

E[FT+1] = O
(
(1 + ω)3L∆

T 3
+

(1 + ω3/2/n1/2 + ω2/n)L∆

T 2

)
.

Consequently, for ϵ < L∆/2 (i.e., a precision that the initial point does not satisfy), the communica-
tion rounds to achieve precision ϵ is given by O

(
ω

3√
L∆
3
√
ϵ

+
(
1 + ω3/4

n1/4 + ω√
n

) √
L∆√
ϵ

)
.

F Experimental details and additional results

This section provides more details of the experiments listed in Sec. 6, as well as a few new experiments
to validate our theories.

F.1 Experimental details

This section offers a comprehensive and detailed description of the experiments listed in Sec. 6,
including problem formulation, data generation, cost calculation, and algorithm implementation.

Least squares. The local objective function of node i is defined as fi(x) := 1
2∥Aix− bi∥2, where

Ai ∈ RM×d, bi ∈ RM . We set d = 20, M = 25, and the number of nodes n = 400. To generate Ai’s,
we first randomly generate a Gaussian matrix G ∈ RnM×d; we then apply the SVD decomposition
G = UΣV ⊤ and replace the singular values in Σ by an arithmetic sequence starting from 1 and
ending at 100 to get Σ̃ and the resulted data matrix G̃ = U Σ̃V ⊤; we finally allocate the submatrix of
G̃ composed of the ((i− 1)M + 1)-th row to the (iM)-th row to be Ai for all 1 ≤ i ≤ n.

Logistic regression. The local objective function of node i is defined as fi(x) := 1
M

∑M
m=1 ln(1 +

exp(−bi,ma⊤i,mx), where number of nodes n = 400, ai,m stands for the feature of the m-th datapoint
in the node i’s dataset, and bi,m stands for the corresponding label. In a9a dataset, node i owns the
(81(i− 1) + 1)-th to the (81i)-th datapoint with feature dimension d = 123. In w8a dataset, node i
owns the (120(i− 1) + 1)-th to the (120i)-th datapoint with feature dimension d = 300.

Constructed problem. The local objective function of node i is defined as

fi(x) :=

{
µ
2 ∥x∥

2 + L−µ
4 ([x]21 +

∑
1≤r≤d/2−1([x]2r − [x]2r+1)

2 + [x]2d − 2[x]1), if i ≤ n/2,
µ
2 ∥x∥

2 + L−µ
4 (
∑

1≤r≤d/2([x]2r−1 − [x]2r)
2), if i > n/2,

where [x]l denotes the l-th entry of vector x ∈ Rd. We set µ = 1, L = 104, d = 20 and number of
nodes n = 400.

Compressors. We apply various compressors to the algorithms with communication compression
through our experiments. In the constructed quadratic problem, we consider ADIANA algorithm with
random-s compressors (see Example 1 in Appendix A) in six different settings, i.e., three choices of
s (s = 1, 2, 4), with two different (shared or independent) randomness settings. In the least squares
and logistic regression problems, we apply the independent random-⌊d/20⌋ compressor to ADIANA,
CANITA and DIANA algorithm. In particular, we use the unscaled version of the independent
random-⌊d/20⌋ compressor for EF21 to guarantee convergence, where the values of selected entries
are transmitted directly to the server without being scaled by d/s times. In Appendix F.2, we further
apply independent natural compression [20] and random quantization [3] with s = ⌈

√
d⌉ in the

above algorithms.
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Figure 3: Convergence results of various distributed algorithms on a synthetic least squares problem (left),
logistic regression problems with dataset a9a (middle) and w8a (right). The y-axis represents f(x̂)− f⋆ and the
x-axis indicates the total communicated bits sent by per worker. All compressors used are independent natural
compression.

Total communicated bits. For non-compression algorithms and algorithms with a fixed-length
compressor, such as random-s and natural compression, the total communication bits can be calculated
using the following formula: total communication bits = number of iterations × communication
rounds per iteration × communicated bits per round. Among the algorithms we compare, ADIANA
and CANITA communicate twice per iteration, while the other algorithms communicate only once.
The communicated bits per round for non-compression algorithms amount to 64d for d float64
entries. In the case of the random-s compressor, the communicated bits per communication are
calculated as 64s + ⌈log2

(
d
s

)
⌉. Similarly, for natural compression, the communicated bits per

round are fixed at 12d, with 1 sign bit and 11 exponential bits allocated for each entry. In the case
of adaptive-length random quantization, the communication cost is evaluated using Elias integer
encoding [16]. This cost is then averaged among n nodes, providing a more representative estimate.

Algorithm implementation. We implement ADIANA, CANITA, DIANA, EF21 algorithms fol-
lowing the formulation in Algorithm 1, [33], [26], and [49], respectively. We implement Nesterov’s
accelerated algorithm with the following recursions:

yk = (1− θt)x
k + θtz

k,

xk+1 = yk − ηk∇f(yk),

zk+1 = xk + 1
θk
(xk+1 − xk).

The value of α in ADIANA, CANITA and DIANA are all set to 1/(1 + ω), and we set γk, β of
ADIANA as in Theorem 3. Other parameters are all selected through running Bayesian Optimization
[45] for the first 20% iterations with 5 initial points and 20 trials. The exact value of the selected
parameters are listed in Appendix F.3. Each curve (except for Nesterov’s accelerated algorithm which
does not involve randomness) is averaged through 20 trials, with the range of standard deviation
depicted.

Computational resource. All experiments are run on an NVIDIA A100 server. Each trial consumes
up to 10 minutes of running time.

F.2 Additional experiments

Addtional compressors. In addition to the experiments in Sec. 6, we consider applying different
compressors in the algorithms with communication compression. Fig. 3 and Fig. 4 show results of
using natural compression and random quantization, respectively. These results are consistent with
the results in Sec. 6.

CIFAR-10 dataset. We also consider binominal logistic regression with CIFAR-10 dataset, where
labels of each datum are categorized by whether they equal to 3, i.e., the corresponding figures
belong to the cat category. The full training set with 50000 images, are devided equally to n = 250
nodes. The compressor choices follow the same strategies as in Appendix F.1, where dimension
d = 3072. Fig. 5 compares convergence results between Nesterov method and ADIANA with
different compressors. It can be observed that ADIANA equipped with more aggressive compressors,
i.e., those with bigger ω, benefits more from the compression, which is consistent with our theoretical
results.
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Figure 4: Convergence results of various distributed algorithms on a synthetic least squares problem (left),
logistic regression problems with dataset a9a (middle) and w8a (right). The y-axis represents f(x̂)− f⋆ and the
x-axis indicates the total communicated bits sent by per worker. All compressors used are independent random
quantization.
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Figure 5: Experimental results of logistic regression problem on the CIFAR-10 dataset. The objective function
is constructed by relabeling the 10 classes into 2 classes, namely cat (corresponding to the original cat class)
and non-cat (corresponding to the rest classes). ADIANA w. R.S. / R.Q. / N.C. represents ADIANA algorithm
with random-⌊d/20⌋ compressor / random quantization compressor with s = ⌈

√
d⌉ / natural compression

compressor, where d = 3072 is the dimension of gradient vectors as well as the number of features in CIFAR-10
dataset. The experiments are conducted under the same setting as in the "Algorithm implementation" part in
Appendix F.1.

F.3 Parameter values

In this subsection, we list all the parameter values that are selected by applying Bayesian Optimization.
Table 2, 3, 4, 5, 6 list the parameters chosen in the least squares problem, logistic regression using
a9a dataset, logistic regression using w8a dataset, the constructed problem, and logistic regression
using CIFAR-10 dataset, respectively.
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Table 2: Parameters for algorithms in the least squares problem. Notation R.S. stands for independent
random sparsification, N.C. stands for independent natural compression, R.Q. stands for independent random
quantization.

Algorithm Parameters

Nesterov η = 3.0× 10−2, θ = 1.4× 10−2.
ADIANA R.S. η = 4.8× 10−2, θ1 = 2.2× 10−2, θ2 = 7.6× 10−2, p = 4.1× 10−2.
ADIANA N.C. η = 3.9× 10−2, θ1 = 1.0× 10−2, θ2 = 2.9× 10−1, p = 9.9× 10−1.
ADIANA R.Q. η = 6.5× 10−2, θ1 = 1.4× 10−2, θ2 = 2.7× 10−1, p = 5.5× 10−1.

DIANA R.S. γ = 7.9× 10−2.
DIANA N.C. γ = 7.4× 10−2.
DIANA R.Q. γ = 7.6× 10−2.

EF21 R.S. γ = 6.2× 10−2.
EF21 N.C. γ = 6.8× 10−2.
EF21 R.Q. γ = 7.4× 10−2.

Table 3: Parameters for algorithms in the logistic regression problem with a9a dataset. Notation k stands for
the index of iteration. Other notations are as in Table 2.

Algorithm Parameters

Nesterov η = 9.4× 10−1, θ = 1.7× 10−1.

ADIANA R.S. η = 2.1, θ1 = 1.3×101

k+5.2×102 , θ2 = 2.1× 10−1, p = 7.7× 10−1.

ADIANA N.C. η = 2.1, θ1 = 1.0
k+4.3 , θ2 = 8.0× 10−3, p = 8.0× 10−1.

ADIANA R.Q. η = 2.2, θ1 = 1.3
k+1.3 , θ2 = 1.5× 10−1, p = 8.5× 10−1.

CANITA R.S. η = min{k+2.1×102

2.1×102 , 1.4}, θ = 2.0×101

k+2.3×102 , p = 7.8× 10−1.

CANITA N.C. η = 1.2, θ = 2.1
k+1.2×101 , p = 5.2× 10−1.

CANITA R.Q. η = 2.0, θ = 3.0
k+3.0 , p = 7.2× 10−1.

DIANA N.C. γ = 2.6.
DIANA R.S. γ = 9.4× 10−1.
DIANA R.Q. γ = 4.7× 10−1

EF21 R.S. γ = 1.3.
EF21 N.C. γ = 1.6.
EF21 R.Q. γ = 2.7.
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Table 4: Parameters for algorithms in logistic regression with w8a dataset. Notations are as in Table 3.

Algorithm Parameters

Nesterov η = 1.5× 101, θ = 9.4× 10−1.
ADIANA R.S. η = min{k+4.1×102

1.2×102 , 15}, θ1 = 8.8
k+4.8×102 , θ2 = 2.4× 10−2, p = 3.6× 10−1.

ADIANA N.C. η = 1.5× 101, θ1 = 2.5
k+1.1×101 , θ2 = 6.7× 10−1, p = 8.3× 10−1.

ADIANA R.Q. η = 1.5× 101, θ1 = 1.9
k+7.4 , θ2 = 4.2× 10−1, p = 9.9× 10−1.

CANITA R.S. η = min{k+2.0×102

2.2×102 , 7.7}, θ = 1.1×101

k+2.3×102 , p = 4.3× 10−1.

CANITA N.C. η = min{k+1.1×101

2.7 , 1.1× 101}, θ = 5.4
k+7.4×101 , p = 4.9× 101.

CANITA R.Q. η = min{k+1.6×101

7.3 , 1.5× 101}, θ = 2.2
k+2.2×101 , p = 4.6× 10−1.

DIANA R.S. γ = 1.5× 101.
DIANA N.C. γ = 1.6× 101.
DIANA R.Q. γ = 1.5× 101.

EF21 R.S. γ = 2.0× 101.
EF21 N.C. γ = 1.5× 101.
EF21 R.Q. γ = 1.5× 101.

Table 5: Parameters for algorithms in the constructed problem. Notation i.d.rand-s denotes independent
random-s compressor, s.d.rand-s denotes random-s compressor with shared randomness.

Algorithm Parameters

Nesterov η = 1.4× 10−1, θ = 1.2× 10−4.
ADIANA i.d.rand-1 η = 1.5× 10−4, θ1 = 1.8× 10−1, θ2 = 1.3× 10−1, p = 1.5× 10−1.
ADIANA i.d.rand-2 η = 1.5× 10−4, θ1 = 1.5× 10−4, θ2 = 5.0× 10−2, p = 1.9× 10−1.
ADIANA i.d.rand-4 η = 1.3× 10−4, θ1 = 9.2× 10−2, θ2 = 5.0× 10−2, p = 2.3× 10−1.
ADIANA s.d.rand-1 η = 1.4× 10−6, θ1 = 2.0× 10−2, θ2 = 1.6× 10−1, p = 2.7× 10−2.
ADIANA s.d.rand-2 η = 9.6× 10−6, θ1 = 7.0× 10−2, θ2 = 4.3× 10−1, p = 1.8× 10−1.
ADIANA s.d.rand-4 η = 1.6× 10−5, θ1 = 6.0× 10−2, θ2 = 2.1× 10−1, p = 1.6× 10−1.

Table 6: Parameters for algorithms in logistic regression with CIFAR-10 dataset. Notations are as in Table 4.

Algorithm Parameters

Nesterov η = 1.1× 10−1, θ = 1.5× 10−1.
ADIANA R.S. η = 1.4× 10−1, θ1 = 12

k+3.3×102 , θ2 = 9.0× 10−2, p = 4.3× 10−1.

ADIANA N.C. η = 1.4× 10−1, θ1 = 1.0×10−2

k+7.0 , θ2 = 7.0× 10−1, p = 8.5× 10−1.

ADIANA R.Q. η = 1.2× 101, θ1 = 8.2
k+59 , θ2 = 8.0× 10−1, p = 6.0× 10−1.
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