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Abstract
Independent component analysis (ICA) is a fundamental statistical tool used to re-
veal hidden generative processes from observed data. However, traditional ICA ap-
proaches struggle with the rotational invariance inherent in Gaussian distributions,
often necessitating the assumption of non-Gaussianity in the underlying sources.
This may limit their applicability in broader contexts. To accommodate Gaussian
sources, we develop an identifiability theory that relies on second-order statistics
without imposing further preconditions on the distribution of sources, by introduc-
ing novel assumptions on the connective structure from sources to observed vari-
ables. Different from recent work that focuses on potentially restrictive connective
structures, our proposed assumption of structural variability is both considerably
less restrictive and provably necessary. Furthermore, we propose two estimation
methods based on second-order statistics and sparsity constraint. Experimental
results are provided to validate our identifiability theory and estimation methods.

1 Introduction

Independent component analysis (ICA) [12] has emerged as an essential statistical tool in the scientific
community, with application in various disciplines including neuroscience [27], biology [41, 9], and
Earth science [32]. It aims to uncover the hidden generative processes that govern the observed data
and separate mixed signals into independent sources. However, it is known that the traditional ap-
proaches of ICA struggle with Gaussian sources, which may limit their applicability in a wide variety
of contexts. For instance, several biological traits and measurements such as height, blood pressure,
and measurement errors in genetics, as well as the thermal noises in electronic circuits, may often
be normally distributed [29, 34]. Classical identifiability results in ICA rely on higher-order statistics
(e.g., Kurtois) [24], and cannot provide desired theoretical guarantees when there is more than one
Gaussian source. Identifiability based on second-order statistic is thus essential in these scenarios.

The primary hurdle in applying ICA to Gaussian sources lies in the rotational invariance of Gaussian
distribution [25]. To address this issue, earlier studies [30, 5, 35] incorporated additional information
by assuming that the sources are nonstationary. However, this extra information may not always
be readily available, limiting the generalizability of these approaches. Thus, recent research [49, 1]
has started to delve into the connective structure between the sources and the observed variables, as
opposed to solely focusing on distributional assumptions (e.g., non-Gaussianity and nonstationarity).
This shift of focus is motivated by a key observation: despite the rotational invariance in the distribu-
tion of Gaussian sources, the sparsity of mixing matrix undergoes noticeable changes, i.e., it may be
denser after rotation [49]. Building on this insight, Zheng et al. [49] introduced two assumptions on the
support of the mixing matrix to achieve identifiability of Gaussian sources, leading to a novel perspec-
tive for tackling this long-standing challenge in the field of ICA. On the other hand, Abrahamsen and
Rigollet [1] assumed that the mixing matrix is generated from a sparse Bernoulli-Gaussian ensemble.
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Although the rotational invariance of Gaussian distribution can be resolved by the structural assump-
tions on the mixing matrix proposed by Zheng et al. [49], they may be deemed overly restrictive. For
instance, both of their structural assumptions cannot deal with the case where the set of observed
variables influenced by one source is a subset of those affected by another source, which may not
be uncommon in practice. This may limit the applicability of ICA in complex real-world scenarios,
thus underscoring the need for a weaker and more flexible structural assumption that is capable of
addressing the rotational invariance in a more universally applicable manner.

To enhance the applicability with Gaussian sources, we develop an identifiability theory of ICA from
second-order statistics under more flexible structural constraints. We introduce a novel assumption,
namely structural variability, that is considerably weaker than existing ones. Notably, this assumption
is proved to be among the necessary conditions for identifying Gaussian sources by focusing on the
connective structure (i.e., the support of the mixing matrix). Moreover, we propose two estimation
methods grounded in sparsity regularization and continuous constrained optimization. The efficacy
of our proposed methods has been validated through experiments, which also reaffirm the validity of
our theoretical result. Lastly, as a matter of independent interest, we establish the connection between
our identifiability result of ICA with causal discovery from second-order statistics; our finding further
bridges the gap between these two fields and provides insights into the interpretation of our result.

2 Problem Setting

We consider the ICA setup given by x = Ãs, where x ∈ Rn denotes the observed random vector,
s ∈ Rn is the latent random vector representing the independent components, also called sources,
and Ã = [ã1| · · · |ãn] ∈ Rn×n denotes the unknown mixing matrix. We assume here that Ã has
full rank and all sources are standardized. For the estimated mixing matrix Â and the ground-truth
one Ã, we write Â ∼ Ã if they differ only in column permutations and sign changes of columns,
and Â ̸∼ Ã vice versa. The goal is then to estimate Â such that Â ∼ Ã; in this case, one could
identify a one-on-one mapping between the ground truth sources and the estimated ones, i.e., the
unknown mixing process has been demixed during estimation. Since the support of a mixing matrix
A essentially represents the connective structure between sources and observed variables, we have
the following definition for the ease of reference.
Definition 1 (Connective Structure). Given a mixing matrix A, we define its connective structure
as a directed bipartite graph GA = (VA, EA) from sources s to observed variables x, where the nodes
and edges are defined as VA := {si}ni=1 ∪ {xi}ni=1 and EA := {(sj , xi) : aij ̸= 0}, respectively.

Notations. We use bold capital letters (e.g., A), bold lowercase letters (e.g., a), and italic letters
(e.g., a) to denote matrices, vectors, and scalar quantities, respectively. For any matrix A, we denote
its j-th column by aj , i-th row by ai,:, and (i, j)-th entry by ai,j . We also denote by AJ the submatrix
of A by obtaining the columns indexed by set J . For any vector a, we denote its i-th entry by ai.
We define the support set of matrix A as supp(A) := {(i, j) : ai,j ̸= 0}, and its support matrix as
ξA which is of the same size as A, where (ξA)i,j = × if ai,j ̸= 0 and (ξA)i,j = 0 otherewise. The
notations of support set and support matrix are similarly defined for vector a. We denote by ∥A∥0
the number of nonzero entries in A, and we have ∥A∥0 = | supp(A)| = ∥ξA∥0. Furthermore, we
denote the n× n identity matrix and m× n zero matrix by In and 0m×n, respectively; to lighten the
notation, we drop their subscripts when the context is clear. We also use [n] to denote {1, 2, . . . , n}.

3 Identifiability Result without Assuming Non-Gaussianity

By exploiting the non-Gaussianity of the sources, such as fourth-order cumulant, existing approaches
are able to estimate the true mixing matrix Ã up to signed column permutation when there is at most
one Gaussian source [23, 2]. However, these approaches typically fail in the presence of more than
one Gaussian source, because higher-order statistics cannot be utilized for full identifiability. The
primary challenge of achieving identifiability for Gaussian sources lies in the rotational invariance
of the Gaussian distribution. More specifically, the second-order statistics (or, more specifically,
population-level covariance matrix) Σ̃ = ÃÃ⊤ remains unchanged if one replaces Ã with ÃU
for any orthogonal matrix U. Therefore, considering only second-order statistics, the true mixing
matrix Ã is, generally speaking, only identifiable up to right orthogonal transformation without
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further assumptions. In this section, we adopt a different perspective that departs from traditional
distributional assumptions (i.e., non-Gaussianity and fourth-order cumulant), and instead introduces
novel and precise assumptions on the connective structure, specifically the support of the mixing
matrix. These assumptions enable identification of the true mixing matrix Ã up to signed column
permutation using second-order statistics and sparsity constraint. Roughly speaking, with the
population-level covariance matrix Σ̃, we consider the following formulation:

min
A∈Rn×n

∥A∥0 subject to AA⊤ = Σ̃ = ÃÃ⊤. (1)

Note that we start with the assumption of AA⊤ = Σ̃ in the formulation above and our identifiability
result (e.g., in Theorem 1); such an assumption can be obtained, e.g., from the equality of Gaussian
likelihoods in the large sample limit. This also inspires our sparsity-regularized likelihood-based
estimation method that will be described in Section 4.2, which is more inline with, e.g., model
selection approaches based on sparsity-regularized likelihood [36, 18].

In Section 3.1, we first examine various types of constraints arising from second-order statistics. We
then present the main identifiability result in Section 3.2. We show that our assumptions are strictly
weaker than existing sparsity assumptions in Section 3.3, and establish the connection between our
identifiability theory with causal discovery in Section 3.4. All proofs are given in Appendices C and D.

3.1 Semialgebraic Constraints Arising from Second-Order Statistics

We first discuss various notions related to constraints arising from covariance matrices of observed
variables x, which serve as a fundamental basis for introducing our assumptions and identifiability
result of ICA in Section 3.2. These notions have been studied in the field of algebraic statistics [16],
factor analysis [15], graphical models [19, 40], and causality [14, 20].

We begin with the following definition on the set of covariance matrices entailed by ξ for different
values of the free parameters in ξ.
Definition 2 (Covariance Set). The covariance set of support matrix ξ is defined as

Σ(ξ) := {AA⊤ : A ∈ Rn×n, supp(A) ⊆ supp(ξ),A is non-singular}.

The support ξ of mixing matrix A imposes certain constraints on the entries of the covariance
matrix Σ = AA⊤, which, by Tarski–Seidenberg theorem (see [6]), correspond to semialgebraic
constraints, i.e., equality and inequality constraints. The covariance set Σ(ξ) is then said to be a
semialgebraic set, i.e., a set that can be described with a finite number of polynomial equations and
inequalities [6]. Clearly, if a covariance matrix Σ belongs to the covariance set Σ(ξ), then Σ satisfies
the semialgebraic constraints imposed by ξ.

For an equality constraint, the set of values satisfying the constraint has zero Lebesgue measure
over the parameter space involved. Given a support matrix ξ, we denote by H(ξ) the set of equality
constraints it imposes on the corresponding covariance matrices. On the other hand, the set of values
satisfying an inequality constraint has nonzero Lebesgue measure. To illustrate these constraints, we
provide a three-variable example below. Note that the example only serves as illustrations of the
constraints; our estimation methods (in Section 4) do not require deriving them in practice.
Example 1 (Semialgebraic Constraints). Consider support matrices

ξ1 =

[× 0 0
× × 0
× 0 ×

]
and ξ2 =

[× 0 ×
× × 0
0 × ×

]
.

The equality constraints imposed by ξ1 include
Σ1,1Σ2,3 − Σ1,2Σ1,3 = 0,

while the inequality constraints imposed by ξ2 include
(Σ1,1Σ2,2Σ3,3+Σ1,1Σ

2
2,3−Σ2,2Σ

2
1,3−Σ3,3Σ

2
1,2)

2−4(Σ1,1Σ2,2−Σ2
1,2)(Σ1,1Σ3,3Σ

2
2,3−Σ2

1,3Σ
2
2,3) ≥ 0.

The detailed derivation can be found in Appendix D.1 and provides insights into how such constraints
arise from the corresponding support matrices. In the example above, the covariance matrix Σ
generated by any mixing matrix A with support ξ1 must satisfy the corresponding equality constraint;
similarly, the covariance matrix Σ generated by any mixing matrix A with support ξ2 must satisfy
the above inequality constraint. These constraints serve as footprints of the mixing matrix on the
covariance matrix, and can be exploited for its identifiability, which we explain in the next section.
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3.2 Identifiability Result from Second-Order Statistics

In this section, we present our identifiability result of ICA from second-order statistics. The core idea
is to introduce precise and mild assumptions on the connective structure from sources to observed
variables. These assumptions facilitate the identification of the mixing matrix through the application
of a sparsity constraint, formulated in Problem (1). To begin, we describe our primary assumption
concerning the connective structure as follows.
Assumption 1 (Structural Variability). Every pair of the columns in the support matrix of A differ
in more than one entry. That is, for every i, j ∈ [n] and i ̸= j, we have

| supp(ai) ∪ supp(aj)| − | supp(ai) ∩ supp(aj)| > 1.

The assumption above implies that every pair of sources should influence more than one different ob-
served variable. Notably, in the field of nonlinear ICA with auxiliary variable, Hyvärinen and Morioka
[22], Hyvärinen et al. [26] have adopted the assumption of sufficient variability which requires that
the auxiliary variable has a sufficiently diverse effect on the distributions of sources; specifically, the
conditional distributions of the sources given the auxiliary variable must vary sufficiently. In contrast,
our assumption of structural variability requires that every pair of sources influence sufficiently
diverse sets of observed variables, facilitating the disentanglement of each source.

We provide several examples in Appendix E.1 to illustrate the broad applicability of the assumption
above. Furthermore, the following proposition justifies such an assumption because it is a necessary
condition for identifiability via second-order statistics and sparsity. The intuition is that if Assumption
1 is violated, there exists a rotation that maps matrix Ã to another matrix Â which has equal or
smaller number of nonzero entries and is not a column permutation of Ã.
Proposition 1. If the true mixing matrix Ã does not satisfy Assumption 1, then there exists a solution
Â to Problem (1) such that Â ̸∼ Ã.
Remark 1 (Necessary Condition). Assumption 1 is a necessary condition for identifiability of ICA
via second-order statistics and under sparsity constraint.

We also adopt the following assumption on the mixing matrix for the identifiability of ICA.
Assumption 2 (Permutations to Lower Triangular Matrix). The matrix A can be permuted by
independent row and column permutations to be lower triangular. That is, there exist permutation
matrices P1 and P2 such that P⊤

1 AP2 is lower triangular.

As we show in the proof of identifiability result in Theorem 1, Assumption 2, loosely speaking,
ensures that the resulting covariance matrix does not contain “nontrivial” inequality constraints. In
Example 1, support matrix ξ1 satisfies Assumption 2 and leads to an equality constraint, while matrix
ξ2 fails to meet this assumption, resulting in an inequality constraint. The Lebesgue measure of the
parameters leading to such inequality constraint is not zero, thus requiring additional assumptions to
handle such cases. Therefore, we adopt Assumption 2 in this work and focus on equality constraints.

A key ingredient of our identifiability result based on sparsity is the dimension of the covariance set
Σ(ξ). It may be natural to expect that the dimension of Σ(ξ), denoted as dim(Σ(ξ)), equals the
number of parameters used to specify the mixing matrices, i.e., ∥ξ∥0. This is not the case for general
mixing matrices, but we show that such property holds under Assumption 2.
Proposition 2 (Dimension of Covariance Set). Let ξ be a support matrix that satisfies Assump-
tion 2. Then, its covariance set has a dimension of ∥ξ∥0, i.e., dim(Σ(ξ)) = ∥ξ∥0.

Note that Assumption 2 allows independent row and column permutations, which thus may be rather
mild especially for sparse mixing matrix. Below we provide an example of the connective structure
that satisfies this assumption. We also introduce an efficient approach to verify whether a mixing
matrix satisfies Assumption 2 in Appendix E.2.
Example 2. If the connective structure GA of mixing matrix A is a polytree, then matrix A satisfies
Assumption 2.

Finally, the following assumption is needed to ensure that the equality constraints arising from
the covariance matrix are entailed by the true mixing matrix, rather than accidental parameter
cancellations. This establishes a correspondence between equality constraints in the covariance
matrix and those imposed by the support of the mixing matrix. Similar assumption has been
employed in various tasks such as causal discovery [39, 20], as discussed in Section 3.4.
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Assumption 3 (Faithfulness). For a mixing matrix A and the resulting covariance matrix Σ, Σ
satisfies an equality constraint κ only if κ ∈ H(ξA).

The following proposition justifies Assumption 3 and demonstrates that it is a generic property in the
sense that it holds almost everywhere in the space of possible mixing matrices. In other words, it is
only violated for a set of mixing matrices with zero Lebesgue measure.
Proposition 3 (Generic Property). Suppose that the nonzero coefficients of matrix A are randomly
drawn from a distribution that is absolutely continuous with respect to Lebesgue measure. Then,
matrix A satisfies Assumption 3 with probability one.

With the aforementioned assumptions in place, we are ready to present our main identifiability result
of ICA: by making use of second-order statistics and sparsity constraint, we show that the true mixing
matrix can be identified up to signed column permutation. The key intuition is as follows: although
in general there is rotational invariance in second-order statistics, the sparsity of the estimated mixing
matrix, under our assumptions above, is guaranteed to be denser than the true mixing matrix after
any rotation (except permutation). Note that the proof leverages the technical tools developed by
Ghassami et al. [20] which involve different types of rotations.
Theorem 1 (Identifiability with Sparsity). Suppose that the true mixing matrix Ã satisfies Assump-
tions 1, 2, and 3. Let Â be a solution of the following problem:

min
A∈Rn×n

∥A∥0 subject to AA⊤ = ÃÃ⊤ and A satisfies Assumption 2. (2)

Then, we have Â ∼ Ã.

3.3 Related Sparsity Assumptions

As briefly discussed in Section 1, Zheng et al. [49] have also provided identifiability result of ICA
without assuming non-Gaussianity. Their approach, similar to ours, relies on assumptions related to
the support of the mixing matrix, which are provided below.
Assumption 4 (Zheng et al. [49]). For every set I ⊆ [n] where |I| > 1 and for all i ∈ I, we have∣∣∣∣⋃

j∈I
supp(aj)

∣∣∣∣− rank(overlap(AI)) > |supp(ai)| . (3)

Assumption 5 (Zheng et al. [49]). For every i ∈ [n], there exists set I ⊂ [n] such that⋂
j∈I

supp(aj,:) = {i}.

While Assumptions 4 and 5 shed light on resolving the long-standing challenge of the rotational
indeterminacy of Gaussian sources, their general applicability remains unclear. One notable restriction
is that they require each column of the support matrix to not be a subset of the other, formalized
below. This may be overly restrictive in practical scenarios and is not the case for our Assumption 1.
Assumption 6 (Column Subset). Each column in the support of A is not a subset of the other.

Since the true generating process of real-world data is inaccessible, it is challenging to quantitatively
evaluate the applicability of these sparsity assumptions. In light of this challenge, we demonstrate
the significance and advantage of our Assumption 1 by proving that it is strictly weaker than Assump-
tions 4 and 5. This also strengthens the validity of our result (i.e., Proposition 1) that Assumption 1 is
a necessary condition for achieving identifiability with second-order statistics and sparsity constraint.
Theorem 2. For mixing matrix A, we have the following chain of chain of implications:

Assumption 4 =⇒ Assumption 6 =⇒ Assumption 1.
Furthermore, there exists a matrix A satisfying Assumption 1 that does not satisfy Assumption 4.

Theorem 3. For mixing matrix A, we have the following chain of chain of implications:
Assumption 5 =⇒ Assumption 6 =⇒ Assumption 1.

Furthermore, there exists a matrix A satisfying Assumption 1 that does not satisfy Assumption 5.
Remark 2. Assumption 1 is not only strictly weaker than both Assumption 4 and 5, but also ac-
commodates cases where one column of mixing matrix A is a subset of of another (provided that
their supports differ in more than one entry). On the other hand, the latter two assumptions cannot
accommodate such cases, further demonstrating the flexibility and broader scope of Assumption 1.
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3.4 Connection with Causal Discovery

ICA has emerged as a useful tool for causal discovery over the past two decades [38]. In particular,
Shimizu et al. [38] demonstrated that the identifiability of ICA based on non-Gaussianity can be
leveraged to discover the complete structure of a linear non-Gaussian structural equation model
(SEM). In this section, we establish the connection and provide an analogy between ICA and causal
discovery from second-order statistics. This connection further bridges the gap between these two
fields, and provides insights into the interpretation of our identifiability result.

Let Rn×n
off be the set of matrices whose diagonal entries are zero, and diag(Rn

>0) be the set of
positive diagonal matrices. Consider the linear SEM x = B̃⊤x + e, where x denotes the random
vector, B̃ ∈ Rn×n

off denotes the weighted adjacency matrix representing a directed graph without
self-loop, and e is the independent noise vector with covariance matrix Ω̃ ∈ diag(Rn

>0). The graph
is often assumed to be a directed acyclic graph (DAG); in this case, two DAGs are said to be Markov
equivalent if they share the same skeleton and v-structures [43], resulting in the same set of conditional
independencies. Also, the inverse covariance matrix of x is given by Θ̃ = (I− B̃)Ω̃−1(I− B̃)⊤. We
refer readers to Spirtes et al. [39], Glymour et al. [21] for more details and a review of causal discovery.

Score-based method is a major class of causal discovery methods that optimizes a goodness-of-fit
measure under a sparsity constraint [21], e.g., BIC [36]. In essence, score-based causal discovery from
second-order statistics can often be formulated in the large sample limit as the following optimization
problem (the commonly used acyclicity constraint is omitted here and will be clarified subsequently):

min
B∈Rn×n

off ,
Ω∈diag(Rn

>0)

∥B∥0 subject to (I−B)Ω−1(I−B)⊤ = Θ̃ = (I− B̃)Ω̃−1(I− B̃)⊤. (4)

By substituting A := (I−B)Ω− 1
2 into the above formulation, we obtain the ICA formulation with

second-order statistics and sparsity constraint introduced in Problem (1). To establish a precise
connection between formulations (4) and (1), we present the following theorem which indicates that
these formulations can be translated into each other.
Theorem 4 (Equivalent Formulations). Suppose Ã = (I− B̃)Ω̃− 1

2 . Then, we have:

(a) Let (B̂, Ω̂) be a solution to Problem (4). Then, Â := (I− B̂)Ω̂− 1
2 is a solution to Problem (1).

(b) Let Â be a solution to Problem (1). Then, there exist matrices B̂ ∈ Rn×n
off and Ω̂ ∈ diag(Rn

>0)

such that Â ∼ (I− B̂)Ω̂− 1
2 , and (B̂, Ω̂) is a solution to Problem (4).

Thus, the formulations of causal discovery and ICA via second-order statistics and sparsity constraint
share inherent similarities. The key difference lies in their respective goals–the former aims to estimate
the support of B̃ up to a Markov equivalence class [39], while the latter aims to estimate Ã up to signed
column permutation. The other difference is that (I− B̃)Ω̃−1(I− B̃)⊤ represents the inverse covari-
ance matrix Θ̃ of x in causal discovery, while ÃÃ⊤ represents the covariance matrix Σ̃ of x in ICA.

In addition to establishing the connection between formulations (4) and (1), we show that the
assumptions we employ for identifiability of ICA, namely Assumptions 1, 2, and 3, are inherently
related to causal discovery. Notably, Assumption 3 has been used in causal discovery [39, 20] to
ensure that the conditional independencies in the distribution are entailed by the true directed graph.
We now present a result that establishes the connection of Assumptions 1 and 2 with causal discovery.

Theorem 5. Suppose A ∼ (I−B)Ω− 1
2 for matrices A ∈ Rn×n, B ∈ Rn×n

off , and Ω ∈ diag(Rn
>0).

Then, A satisfies Assumptions 1 and 2 if and only if B represents a DAG whose Markov equivalence
class is a singleton.

In causal discovery, it is rather common to assume that the true directed graph is acyclic and
accordingly incorporate an acyclicity constraint to formulation (4). As indicated in Theorem 5 (and
Proposition 10 in Appendix D.8), this acyclicity assumption corresponds to Assumption 2 in the
context of ICA. Therefore, Theorem 4 can be straightforwardly extended to show the equivalence
between formulations (2) and (4) with an additional acyclicity constraint on matrix B. Furthermore,
it is worth noting that the mapping from mixing matrix A satisfying Assumption 2 to a DAG is
unique, which is straightforwardly implied by Shimizu et al. [38, Appendix A].
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Proposition 4 (Shimizu et al. [38]). Suppose matrix A is non-singular and satisfies Assumption 2.
Then, there exist unique matrices B ∈ Rn×n

off and Ω ∈ diag(Rn
>0) such that A ∼ (I − B)Ω− 1

2 .
Furthermore, matrix B represents a DAG.

Moreover, as indicated in Theorem 5 (and Proposition 11 in Appendix D.8), Assumption 1 implies
that the Markov equivalence class of B is a singleton; in this case, the true DAG can be completely
identified. In particular, the Markov equivalence class of DAG is a singleton when all edges are either
part of a v-structure or required to be oriented to avoid forming new v-structures or cycles [31, 4].

4 Estimation Methods with Second-Order Statistics

Building upon the identifiability result provided in Section 3, we propose two estimation methods that
leverage second-order statistics and sparsity. These methods involve solving a continuous constrained
optimization problem, which we discuss in detail in this section. First, in Section 4.1, we introduce a
novel approach to formulate the search space in Problem (2) that enables the application of continuous
optimization techniques. We then describe the proposed estimation methods in Section 4.2. All
proofs are provided in Appendix D.

4.1 Characterization of Search Space

The key to achieving the identifiability result presented in Theorem (1) lies in the optimization
problem (2), where the search space involves the matrices A that satisfy Assumption 2. Consequently,
a crucial question arises: is there an efficient approach for exploring the space of matrices A that
satisfy Assumption 2? Inspired by Zheng et al. [48], Wei et al. [45], Zhang et al. [47], we introduce
the following function to characterize the search space:

g(A) = tr

(
n∑

k=2

(off(A)⊙ off(A))k

)
, where (off(A))i,j =

{
0, if i = j,

ai,j , otherwise.

Here, symbol ⊙ denotes the Hadamard product. We then provide the following lemma that establishes
the relationship between function g(A) and a specific type of permutation, namely simultaneous
equal row and column permutation.
Lemma 1. For any matrix A, g(A) = 0 if and only if it can be permuted via simultaneous equal
row and column permutations to be lower triangular.

Intuitively speaking, if we interpret matrix A as a weighted adjacency matrix of a directed graph, say
G, then tr((off(A)⊙ off(A))k) counts the number of length-k weighted closed walks in G excluding
the self-loops. Therefore, g(A) counts the total number of weighted closed walks in G without
including self-loops. g(A) = 0 then implies that G does not contain any cycle longer than one (i.e.,
it may contain self-loops). It is known that a directed graph is acyclic if and only if its weighted
adjacency matrix can be permuted via simultaneous equal row and column permutations to be strictly
lower triangular. In our case, G may contain self-loops, and thus can be permuted to a lower triangular
form. This distinction elucidates the difference between our characterization and that introduced by
Zheng et al. [48], Zhang et al. [47], i.e., their characterization focuses on matrices that are strictly
lower triangular, while ours focuses on lower triangular matrices.

The following proposition sheds light on the connection between g(A) and Assumption 2.

Proposition 5. The matrix A satisfies Assumption 2 if and only if there is a matrix Â such that it is
a column permutation of A and that g(Â) = 0.

The above proposition indicates that the search for matrices A satisfying Assumption 2 can be
effectively conducted by considering the constraint g(A) = 0. Accordingly, we establish an
alternative formulation of the identifiability result presented in Section 3.2. In the following section,
we will introduce efficient approaches for solving Problem (5) .
Theorem 6 (Alternative Formulation of Identifiability). Suppose that the true mixing matrix Ã

satisfies Assumptions 1, 2, and 3. Let Â be a solution of the following problem:

min
A∈Rn×n

∥A∥0 subject to AA⊤ = ÃÃ⊤ and g(A) = 0. (5)

Then, we have Â ∼ Ã.
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Algorithm 1 Decomposition-Based Method

Require: initial penalty coefficient c1 > 0; multiplicative factor β > 1; maximum number of
iterations kmax > 0; tolerance ϵ1, ϵ2 > 0; initial solution A0; empirical covariance matrix Σ̄

1: for k = 1, 2, . . . , kmax do
2: Solve Ak := argminA∈Rn×n ρ(A) + ck

2 ∥AA⊤ − Σ̄∥2F + ck
2 g(A)2 initialized at Ak−1

3: if ∥AkA
⊤
k − Σ̄∥2F < ϵ1 and g(Ak) < ϵ2 then break

4: Update penalty coefficient ck+1 := βck
5: Output solution Ak

Algorithm 2 Likelihood-Based Method

Require: initial penalty coefficient c1 > 0; multiplicative factor β > 1; maximum number of
iterations kmax > 0; tolerance ϵ > 0; initial solution A0; empirical covariance matrix Σ̄

1: for k = 1, 2, . . . , kmax do
2: Solve Ak := argminA∈Rn×n L(A; Σ̄) + ρ(A) + ck

2 g(A)2 initialized at Ak−1

3: if g(Ak) < ϵ then break
4: Update penalty coefficient ck+1 := βck
5: Output solution Ak

4.2 Estimation Methods

Based on the identifiabiltiy results of Theorems 1 and 6, we propose two estimation methods, called
SparseICA, to perform ICA from second-order statistics that leverage sparsity regularization and
continuous constrained optimization. To proceed, we define Σ̄ as the empirical covariance matrix of
observed variables x and T as the sample size.

Decomposition-based method. Given the formulation in Eq. (5), we consider the following
constrained optimization problem

min
A∈Rn×n

ρ(A) subject to AA⊤ − Σ̄ = 0 and g(A) = 0, (6)

where ρ(A) is a suitable sparsity regularizer, often expressible as ρ(A) =
∑

i,j ρ(ai,j). Formula-
tion (5) indicates that one should apply the ℓ0 regularizer ρ(A) = ∥A∥0. Alternatively, other possible
choices include the ℓ1 regularizer ρ(A) = ∥A∥1 that supports continuous optimization. Further
details regarding our specific choice of sparsity regularizer will be elaborated later in this section. On
the other hand, we simply use the empirical covariance matrix Σ̄ as an estimate of the true covariance
matrix Σ̃, which is found to work well across different sample sizes in our experiments. One may
also adopt a regularized estimator of the form Σ̄ + ηI with a proper choice of η, which may have
notable advantage in certain cases [13, 28, 37].

Likelihood-based method. In addition to the decomposition-based method above, we introduce a
likelihood-based estimation method formulated by the following constrained optimization problem:

min
A∈Rn×n

L(A; Σ̄) + ρ(A) subject to g(A) = 0, (7)

where L(A; Σ̄) =
T

2
tr((A⊤A)−1Σ̄) + T log |detA|

is the negative Gaussian log-likelihood function and ρ(A) is a sparsity regularizer. The following
result establishes the theoretical guarantee of this likelihood-based method.

Theorem 7 (Likelihood-Based Method). Suppose that the true mixing matrix Ã satisfies Assump-
tions 1, 2, and 3. Let Â be a solution of Problem (7) with sparsity regularizer ρ(A) = 0.5∥A∥0 log T .
Then, we have Â ∼ Ã in the large sample limit.

Implementation. Based on Theorems 6 and 7, ideally one should adopt the ℓ0 regularizer
ρ(A) = λ∥A∥0 and develop an exact discrete search procedure over the support space of matrix A.
However, such approach may pose computational challenges in practice. Since the functions L(A; Σ̄)
and g(A) are differentiable, in this work we develop an estimation procedure that leverages efficient
continuous optimization techniques. Therefore, some possible choices for ρ(A) are ℓ1, smoothly
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clipped absolute deviation (SCAD) [17], and minimax concave penalty (MCP) [46] regularizers.
The ℓ1 regularizer has been shown to exhibit bias during estimation [17, 10], especially for large
coefficients. Here, we adopt the MCP regularizer that is less susceptible to such issue, given by

ρ(ai,j) =

{
λ|ai,j | −

a2
i,j

2α , if |ai,j | ≤ αλ,
αλ2

2 , otherwise,

where λ and α are hyperparameters.

To solve Eqs. (6) and (7), standard constrained optimization methods can be used, such as quadratic
penalty method, augmented Lagrangian method, and barrier method [7, 8, 33]. In this work, we adopt
the quadratic penalty method that converts each constrained problem into a sequence of unconstrained
optimization problems where the constraint violations are increasingly penalized. We describe the
full procedure of the decomposition-based and likelihood-based methods based on quadratic penalty
method in Algorithms 1 and 2, respectively. The unconstrained problem in each iteration can be
solved using different continuous optimization solvers, including first-order methods such as gradient
descent and steepest descent, as well as second-order methods such as quasi-Newton methods. In our
experiments presented in the subsequent section, we employ L-BFGS [11], a quasi-Newton method,
to solve the unconstrained optimization problem.

It is worth noting that the formulations in Eqs. (6) and (7) involve solving nonconvex optimization
problems; in practice, the optimization procedure may return stationary points that correspond to
suboptimal local solutions. Therefore, we run the method for a number of times and choose the
final mixing matrix via model selection. Further details regarding the optimization procedure and
implementation are provided in Appendix F.

5 Experiments

To empirically validate our proposed identifiability results, we carry out experiments under various
settings. We also conduct ablation studies to verify the necessity of the proposed assumptions and
include FastICA [23] as a representative baseline. Specifically, we consider the following methods:

• SparseICA: Decomposition-based (Eq. (6)) or likelihood-based (Eq. (7)) method on data
where both Assumptions 1 and 2 hold;

• Vanilla: Decomposition-based (Eq. (6)) or likelihood-based (Eq. (7)) method without the
constraint g(A) = 0, on data where neither Assumption 1 nor Assumption 2 holds;

• FastICA-D: FastICA on data where both Assumptions 1 and 2 hold;
• FastICA: FastICA on data where neither Assumption 1 nor Assumption 2 holds.

For all experiments, we simulate 10 sources, and generate the supports of the true mixing matrices Ã
according to the assumptions required by each method above. The nonzero entries of Ã are sampled
uniformly at random from [−0.8,−0.2] ∪ [0.2, 0.8]. We use mean correlation coefficient (MCC) and
Amari distance [3] as evaluation metrics, where all results are reported for 10 random trials.

Different sample sizes. We first consider entirely Gaussian sources and different sample sizes.
The empirical results of MCC are shown in Figure 1, while those of Amari distance are given in
Figure 4 in Appendix G. By comparing SparseICA with Vanilla and FastICA, it is evident that the
identification performance is much better across different sample sizes when the required assumptions
on the connective structure are satisfied, as validated by Wilcoxon signed-rank test at 5% significance
level. Furthermore, the unsatisfactory results of FastICA-D indicate that our estimation methods
are also essential for ensuring the quality of the identification, which further validates the proposed
identifiability theory. Since FastICA-D performs similarly to FastICA, it suggests that the data-
generating process, while meeting our assumption, may not be inherently simpler to recover without
considering specific procedure to handle Gaussian sources. In addition, as expected, the performance
of SparseICA improves in terms of both MCC and Amari distance as the sample size increases.

Different ratios of Gaussian sources. We now conduct empirical study to investigate the perfor-
mance in the presence of Gaussian and non-Gaussian sources. Here, the non-Gaussian sources follow
exponential distributions. We consider different ratios of Gaussian sources, which are specifically
0, 0.2, 0.4, 0.6, 0.8, and 1. For instance, ratio of 0.6 indicates that there are 6 Gaussian sources
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Figure 1: Empirical results of MCC across different sample sizes. Error bars indicate the standard
errors calculated based on 10 random trials.
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Figure 2: Empirical results of MCC across different ratios of Gaussian sources. Error bars indicate
the standard errors calculated based on 10 random trials.

and 4 non-Gaussian sources. The empirical results of MCC based on 1000 samples are depicted
in Figure 1, while those of Amari distance are provided in Figure 4 in Appendix G. One observes
that the identification performance SparseICA is rather stable across different ratios of Gaussian
sources, which may not be surprising as it leverages only second-order statistics. On the other hand,
the performance of FastICA-D and FastICA deteriorates as the ratio of Gaussian sources increases,
because it relies on non-Gaussianity of the sources. It is also observed that, in the presence of
Gaussian sources, FastICA-D and FastICA may perform well, provided that the ratio (or number)
of Gaussian sources is not large. This suggests a potential future direction to integrate our method
based on second-order statistics with existing methods that rely on non-Gaussianity, which may better
handle both Gaussian and non-Gaussian sources.

6 Conclusion

We develop an identifiability theory of ICA from second-order statistics without relying on non-
Gaussianity. Specifically, we introduce novel and precise assumptions on the connective structure
from sources and observed variables, and show that our proposed assumption of structural variability
is strictly weaker than the previous ones. Importantly, we prove that this assumption is one of the
necessary conditions for achieving identifiability in the investigated setting. We further propose two
estimation methods based on second-order statistics that leverage sparsity regularization. Moreover,
we establish a precise connection between our identifiability result of ICA and causal discovery
from second-order statistics, which may open up avenues for exploring the interplay between ICA
and causal discovery with linear Gaussian SEM. Our theoretical claims have also been empirically
validated across different settings. The limitations include the lack of finite sample analysis and
broader application of our theory in more real-world tasks, which are worth exploring in future work.
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A Preliminaries on Support Rotation

Before presenting the proofs of the theoretical results, we review the definition of support rotation
and its potential effects on a support matrix, given by Ghassami et al. [20]. Note that the definition
and remark below are quoted from Ghassami et al. [20, Section 3.1], with only minor modifications.

Definition 3 (Support Rotation [20]). The support rotation, denoted as R(i, j, k), is a transforma-
tion that modifies a support matrix ξ by applying a Givens rotation in the (j, k) plane, setting the
element ξi,j to zero. The outcome of is the support matrix of QG

(
j, k, tan−1 (−qi,j/qi,k)

)
, where

Q ∈ argmaxQ′

∣∣∣supp(Q′G
(
j, k, tan−1

(
−q′i,j/q

′
i,k

)))∣∣∣ such that the support matrix of Q′ is ξ.
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Note that G
(
j, k, tan−1

(
−q′ij/q

′
i,k

))
is the Givens rotation in the (j, k) plane that makes the q′i,j

entry zero.

Remark 3 (Ghassami et al. [20]). The effects of applying a support rotation R(i, j, k) can be cate-
gorized into the following four cases:

• Reduction: If ξi,j = ξi,k = × and ξl,j = ξl,k for all l ∈ [p]\{i}, then only ξi,j becomes zero.

• Reversible acute rotation: If ξi,j = ξi,k = × and there exists a row i′ such that the j-th and
k-th columns differ only in that row, then ξi,j becomes zero and both ξi′,j and ξi′,k become ×.

• Irreversible acute rotation: If ξi,j = ξi,k = × and the j-th and k-th columns differ in at least
two rows, then ξi,j becomes zero and all entries on the j-th and k-th columns become × on the
rows on which they differed.

• Column swap: If ξi,j = × and ξi,k = 0, then columns j and k are swapped.

B Proofs of Useful Lemmas

We provide several lemmas that will be useful for subsequent proofs.

B.1 Proof of Lemma 2

Lemma 2 (Nonzero Diagonal Entries). For any non-singular matrix A, there exists a permutation
matrix P such that the diagonal entries of AP are nonzero.

Proof. We prove it by contradiction. Suppose that there always exists a zero diagonal entry in every
column permutation.

We first represent the determinant of the matrix A as its Leibniz formula:

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)

)
,

where Sn is the set of n-permutations. Because for every permutation, there always exists a diagonal
entry with value zero, we have

n∏
i=1

ai,σ(i) = 0, ∀σ ∈ Sn.

Thus, it follows that det(A) = 0. This indicates that the matrix A is singular, which leads to a
contradiction.

B.2 Proof of Lemma 3

Lemma 3 (Non-Singular Solution). Let Ã be a non-singular matrix. Suppose Â is a matrix such
that ÂÂ⊤ = ÃÃ⊤. Then, Â is non-singular.

Proof. A matrix is non-singular (or invertible) if and only if its determinant is nonzero. Therefore,
we need to show that det(Â) ̸= 0.

From the given, we have ÂÂ⊤ = ÃÃ⊤. Taking determinants on both sides, we get

det(ÂÂ⊤) = det(ÃÃ⊤).

Since Â and Ã are square matrices, we can simplify both sides:

det(Â)2 = det(Ã)2.

Since Ã is non-singular, we know that det(Ã) ̸= 0. Therefore, det(Â)2 ̸= 0. This implies that
det(Â) ̸= 0. Thus, Â is non-singular.
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B.3 Proof of Lemma 5

Lemma 4. Let A be a matrix with all diagonal entries being nonzero. Then, there exists matrix
B ∈ Rn×n

off and Ω ∈ diag(Rn
>0) such that A = (I−B)Ω− 1

2D, where D is a diagonal matrix with
diagonal entries being ±1.

Proof. Since the diagonal entries of A are nonzero, we can construct a diagonal matrix D such that
the diagonal entries of AD are positive, by defining di,i = 1 if ai,i > 0 and di,i = −1 if ai,i < 0.
Let Ω be a diagonal matrix of the same size as matrix A, where (Ω)i,i = 1/(AD)2i,i, Also, let
B := I − ADΩ

1
2 . Since the diagonal entries of matrix ADΩ

1
2 are ones, the diagonal entries of

matrix B are zeros. Therefore, we have B ∈ Rn×n
off , Ω ∈ diag(Rn

>0), and A = (I − B)Ω− 1
2D,

where D is a diagonal matrix with entries being ±1.

Lemma 5. Let A be a non-singular matrix. Then, there exists matrix B ∈ Rn×n
off and Ω ∈ diag(Rn

>0)

such that A ∼ (I−B)Ω− 1
2 .

Proof. Since matrix A is non-singular, by Lemma 2, there exists a permutation matrix P such
that the diagonal entries of AP are nonzero. By Lemma 4, there exists matrix B ∈ Rn×n

off and
Ω ∈ diag(Rn

>0) such that AP = (I−B)Ω− 1
2D, where D is a diagonal matrix with diagonal entries

being ±1. Clearly, we have A ∼ (I−B)Ω− 1
2 .

B.4 Proof of Lemma 6

Lemma 6. Suppose A ∼ (I−B)Ω− 1
2 for matrices A ∈ Rn×n, B ∈ Rn×n

off , and Ω ∈ diag(Rn
>0).

Then, we have ∥A∥0 = ∥B∥0 + n.

Proof. First notice that the diagonal entries of B are zeros, which implies

∥I−B∥0 = ∥I∥0 + ∥B∥0 = ∥B∥0 + n.

Since Ω− 1
2 is a diagonal matrix, right multiplication of Ω− 1

2 amounts to rescaling the columns of
I−B, and does not affect its support. Therefore, we have

∥(I−B)Ω− 1
2 ∥0 = ∥I−B∥0 = ∥B∥0 + n.

Since A ∼ (I−B)Ω− 1
2 , matrices A and (I−B)Ω− 1

2 differ only in signed column permutations.
Therefore, their number of nonzero entries are the same, i.e.,

∥A∥0 = ∥B∥0 + n.

B.5 Proof of Lemma 8

We first provide the following lemma that will be used to prove Lemma 8.
Lemma 7. Let P1 and P2 be two permutation matrices. Then, P⊤

1 P2 is lower triangular if and
only if P1 = P2.

Proof. The “if part” is clear because permutation matrices are orthogonal matrices, and thus P⊤
1 P1 =

I is lower triangular. It remains to prove the “only if part”. Since P⊤
1 P2 is also a permutation matrix,

this matrix being lower triangular implies that it is an identity matrix, because identity matrix is the
only permutation matrix that is lower triangular. We then have P⊤

1 P2 = I, which implies

P1 = P−⊤
2 = P2.

We now provide the proof of Lemma 8.
Lemma 8. Given matrix B ∈ Rn×n

off , if I−B satisfies Assumption 2, then I−B is non-singular.

Proof. Since I−B satisfies Assumption 2, there exist permutation matrices P1 and P2 such that

P⊤
1 (I−B)P2 = P⊤

1 P2 −P⊤
1 BP2

is lower triangular. For all i, j ∈ [n] such that (P⊤
1 P2)i,j ̸= 0, we have (P⊤

1 BP2)i,j = 0, which
implies that P⊤

1 P2 must be lower triangular, because otherwise, P⊤
1 P2 −P⊤

1 BP2 cannot be lower
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triangular. By Lemma 7, we then have P1 = P2. This indicates that I−P⊤
1 BP1 is lower triangular,

with diagonal entries equal to one. Therefore, we have

det(I−P⊤
1 BP1) = 1,

which implies

det(I−B) = det(P1(I−B)P⊤
1 ) = det(I−P⊤

1 BP1) = 1.

Since the determinant of I−B is nonzero, it is non-singular.

C Proof of Theorem 1

We first describe the notion of covariance equivalence that is needed for the proof of Theorem
1. Specifically, if two support matrices ξ1 and ξ2 entail the same set of covariance matrices, i.e.,
Σ(ξ1) = Σ(ξ2), they are said to be covariance equivalent. This means that for any combination of
parameter values in ξ1, there exists a corresponding set of parameter values in ξ2 that leads to the
same covariance matrix, and vice versa. Furthermore, two support matrices are covariance equivalent
if and only if they lead to the same set of semialgebraic constraints on the covariance matrices.

We now give the proof of Theorem 1. The proof makes use of Proposition 2, Proposition 6, Proposi-
tion 7, and Corollary 1, which are provided in Appendices C.1, C.2, C.3, and C.4, respectively. Note
that the proof is partly inspired by that of Ghassami et al. [20, Theorem 3].

Theorem 1 (Identifiability with Sparsity). Suppose that the true mixing matrix Ã satisfies Assump-
tions 1, 2, and 3. Let Â be a solution of the following problem:

min
A∈Rn×n

∥A∥0 subject to AA⊤ = ÃÃ⊤ and A satisfies Assumption 2. (2)

Then, we have Â ∼ Ã.

Proof. Let Â be a solution of Problem (2). This implies ÂÂ⊤ = Σ̃ = ÃÃ⊤ and that Â satisfies
Assumption 2. Since Ã is non-singular, by Lemma 3, matrix Â is non-singular.

Since Â can entail the covariance matrix Σ̃, we have Σ̃ ∈ Σ(ξÂ), which indicates that Σ̃ contains
all semialgebraic constraints of ξÂ. Under Assumption 3, we have

H(ξÂ) ⊆ H(ξÃ). (8)

The sparsity term in the objective function implies

∥Â∥0 ≤ ∥Ã∥0, (9)

because otherwise Â will never be a solution of Problem (2).

We now show by contradiction that H(ξÂ) ̸⊂ H(ξÃ). Suppose H(ξÂ) ⊂ H(ξÃ), which indi-
cates dim(Σ(ξÂ)) > dim(Σ(ξÃ)). Since the support matrices ξÂ and ξÃ satisfy Assumption 2,
Proposition 2 implies ∥ξÂ∥0 > ∥ξÃ∥0, which is contradictory with Inequality (9). This implies

H(ξÂ) ̸⊂ H(ξÃ). (10)

By Eqs. (8) and (10), we obtain H(ξÂ) = H(ξÃ), which, by Proposition 7, implies that the support
matrices ξÂ and ξÃ are covariance equivalent, because they satisfy Assumption 2. By Proposition 6,
we conclude that the columns of ξÂ are a permutation of those of ξÃ.

Recall that matrices Ã and Â are non-singular, and entail the same covariance matrix Σ̃. Since the
columns of ξÂ are a permutation of those of ξÃ, by Corollary 1, we have Â ∼ Ã.

C.1 Dimension of Covariance Set

We first define the Jacobian matrix of Σ = AA⊤ w.r.t. the free parameters of A as ∂Σ
∂A , which is a

n2 × ∥A∥0 matrix, where the rows are indexed by (i, j) ∈ [n] × [n], and columns are indexed by
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(k, l) ∈ supp(A). That is, for (i, j) ∈ [n]× [n] and (k, l) ∈ supp(A), we have

(
∂Σ

∂A

)
(i,j),(k,l)

=
∂Σi,j

∂ak,l
=



2ai,l if i = j and k = i,

0 if i = j and k ̸= i,

aj,l if i ̸= j and k = i,

ai,l if i ̸= j and k = j,

0 if i ̸= j and k ̸∈ {i, j}.

. (11)

Given a matrix M, we denote by off(M) and on(M) the off-diagonal and diagonal entries of M,
respectively. With a slight abuse of notation, we rewrite the above Jacobian matrix as the following
form that consists of four submatrices, by permuting the corresponding columns and rows:

∂Σ

∂A
=

[
∂ off(Σ)
∂ off(A)

∂ off(Σ)
∂ on(A)

∂ on(Σ)
∂ off(A)

∂ on(Σ)
∂ on(A)

]
. (12)

Each submatrix above represents the Jacobian matrix for different parts (i.e., off-diagonal and
diagonal entries) of matrix Σ taken w.r.t. different free parameters (i.e., off-diagonal and diagonal
free parameters) in matrix A. Note that column and row permutations do not affect the rank of the
matrix. Since we are primarily interested in the rank of the above Jacobian matrix and its submatrices,
we use the same notation to refer to different column and/or row permutations of the corresponding
Jacobian matrix, depending on the context.
Lemma 9. Let A be a lower triangular matrix. Then, we have

rank

(
∂Σ

∂A

∣∣∣∣
A=In

)
= ∥A∥0.

Proof. Let d be the number of diagonal free parameters in matrix A. This indicates that off(A) and
on(A) contain ∥A∥0 − d and d free parameters, respectively.

By specializing A = In and using Eq. (11), we have
∂ off(Σ)

∂ on(A)

∣∣∣∣
A=In

= 0,
∂ on(Σ)

∂ off(A)

∣∣∣∣
A=In

= 0, and
∂ on(Σ)

∂ on(A)

∣∣∣∣
A=In

= 2Id, (13)

where the last equality is obtained after row permutations of the corresponding matrix. Also, since
matrix A is lower triangular, each nonzero entry of ∂ off(Σ)

∂ off(A)

∣∣
A=In

corresponds to either

∂Σk,l

∂ak,l
= 1 or

∂Σl,k

∂ak,l
= 1 for some k > l.

In this case, each column of ∂ off(Σ)
∂ off(A)

∣∣
A=In

contains precisely two nonzero entries, while each row
either contains precisely one nonzero entry, or does not contain any nonzero entry. Therefore,
∂ off(Σ)
∂ off(A)

∣∣
A=In

can be rewritten after row permutations as

∂ off(Σ)

∂ off(A)

∣∣∣∣
A=In

=

I∥A∥0−d

I∥A∥0−d

0

 ,

which yields

rank

(
∂ off(Σ)

∂ off(A)

∣∣∣∣
A=In

)
= ∥A∥0 − d. (14)

Substituting Eq. (13) into Eq. (12), we have

∂Σ

∂A

∣∣∣∣
A=In

=

[
∂ off(Σ)
∂ off(A)

∣∣
A=In

0

0 2Id

]
,

which, with Eq. (14), implies

rank

(
∂Σ

∂A

∣∣∣∣
A=In

)
= rank

(
∂ off(Σ)

∂ off(A)

∣∣∣∣
A=In

)
+ rank(2Id)

= ∥A∥0 − d+ d

= ∥A∥0.
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Proposition 2 (Dimension of Covariance Set). Let ξ be a support matrix that satisfies Assump-
tion 2. Then, its covariance set has a dimension of ∥ξ∥0, i.e., dim(Σ(ξ)) = ∥ξ∥0.

Proof. Since ξ satisfies Assumption 2, it can be permuted by column and row permutations to be
lower triangular; in this case, the resulting covariance matrix and the original covariance matrix differ
in equal row and column permutations. Note that the dimension of the covariance set remains the
same after simultaneous equal row and column permutations of the covariance matrices. Therefore, it
suffices to consider the case where ξ is lower triangular, and show that it has a dimension of ∥ξ∥0.

As indicated by Geiger et al. [19, Theorem 10], the dimension of dim(Σ(ξ)) equals the maximum
rank of the corresponding Jacobian matrix. In this case, it suffices to consider the columns of the
Jacobian matrix that correspond to the nonzero entries of support matrix ξ, i.e., the free parameters of
matrix A, which we denote by ∂Σ

∂A . By Lemma 9, when A = In, the Jacobian matrix ∂Σ
∂A has full

column rank that is equal to ∥ξ∥0. Therefore, the dimension of the covariance set is ∥ξ∥0.

C.2 Covariance Equivalence and Column Permutation of Support

We now state a result that is adapted from Ghassami et al. [20, Proposition 5] to the context of ICA.
In our proof of Theorem 1, only the “only if part” of the following result is used.
Proposition 6 (Ghassami et al. [20, Proposition 5]). Consider two support matrices ξ1 and ξ2. If
every pair of columns of ξ1 differ in more than one entry, then ξ1 and ξ2 are covariance equivalent if
and only if the columns of ξ2 are a permutation of columns of ξ1.

C.3 Equality Constraints and Covariance Equivalence

In this section, we show how Assumption 2 allows one to go from two support matrices ξ1 and ξ2
having the same equality constraints to covariance equivalence.

Following Ghassami et al. [20], we first denote the covariance set of a directed graph G by

Θ(G) := {(I−B)Ω−1(I−B)⊤ : B ∈ Rn×n
off ,Ω ∈ diag(Rn

>0), supp(B) ⊆ supp(BG)},
where BG is the adjacency matrix of G. With a slight abuse of notation, we denote by H(G) the set
of the equality constraints imposed by G on the resulting matrix (I−B)Ω−1(I−B)⊤.
Lemma 10. Let ξ be a non-singular support matrix that satisfies Assumption 2.2 Then, there exists a
DAG G such that Σ(ξ) = Θ(G).
Proof. Since ξ is non-singular, by Lemma 2, it can be mapped via column permutations to another
support matrix ξ′ with diagonal entries being nonzero. Since ξ satisfies Assumption 2, Proposition 10
implies that ξ′ represents a DAG, say G, where the support of its adjacency matrix is supp(BG) =
supp(off(ξ′)). Since column permutations of support matrices do not affect the resulting covariance
matrices, we have Σ(ξ) = Σ(ξ′). Therefore, it suffices to prove Σ(ξ′) = Θ(G).
Since ξ′ is a support matrix with diagonal entries being nonzero, we have

supp(ξ′) = supp(I) ∪ supp(off(ξ′)). (15)

We consider both parts of the statements.

Proof of Θ(G) ⊆ Σ+(ξ′):

Suppose M ∈ Θ(G). By definition of Θ(G), there exist B ∈ Rn×n
off and Ω ∈ diag(Rn

>0) such that

supp(B) ⊆ supp(off(ξ′)) and M = (I−B)Ω−1(I−B)⊤. (16)

Let A := (I−B)Ω− 1
2 , which, with Eq. (16), implies AA⊤ = M. Recall that G is a DAG, which

indicates B also represents a DAG, Therefore, I − B, and thus A, are non-singular. Since right
multiplication of Ω− 1

2 does not affect the support of I−B, by Eqs. (15) and (16), we have

supp(A) = supp(I−B) = supp(I) ∪ supp(B) ⊆ supp(I) ∪ supp(off(ξ′)) = supp(ξ′).

Therefore, we have supp(A) ⊆ supp(ξ′), which, with the non-singularity of matrix A, implies
M = AA⊤ ∈ Σ(ξ′).

2We say that a support matrix ξ is non-singular if there exists non-singular matrix A such that supp(A) ⊆
supp(ξ).
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Proof of Σ(ξ′) ⊆ Θ(G):
Suppose M ∈ Σ(ξ′). By definition of Σ(ξ′), there exists non-singular matrix A ∈ Rn×n such that

supp(A) ⊆ supp(ξ′) and M = AA⊤. (17)
Since matrix A is non-singular, all of its diagonal entries must be nonzero, because otherwise the
corresponding determinant will be zero, which contradicts its non-singularity. By Lemma 4, there
exists matrix B ∈ Rn×n

off and Ω ∈ diag(Rn
>0) such that A = (I−B)Ω− 1

2D, where D is a diagonal
matrix with diagonal entries being ±1. By Eq. (17), we have (I −B)Ω−1(I −B)⊤ = M. Since
right multiplication of Ω− 1

2D does not affect the support of I−B, by Eqs. (15) and (17), we have
supp(I) ∪ supp(B) = supp(I−B) = supp(A) ⊆ supp(ξ) = supp(I) ∪ supp(off(ξ′)).

Note that supp(I) and supp(B) are disjoint. Furthermore, supp(I) and supp(off(ξ′)) are disjoint.
Therefore, we have supp(B) ⊆ supp(off(ξ′)) and thus M = (I−B)Ω−1(I−B)⊤ ∈ Θ(G).
Proposition 7. Let ξ1 and ξ2 be non-singular support matrices that satisfy Assumption 2. If they
have the same set of equality constraints, i.e., H(ξ2) = H(ξ2), then they are covariance equivalent.
Proof. Since matrices ξ1 and ξ2 are non-singular and satisfy Assumption 2, by Lemma 10, there
exist DAGs G1 and G2 such that

Σ(ξ1) = Θ(G1) and Σ(ξ2) = Θ(G2), (18)
which imply

H(ξ1) = H(G1) and H(ξ2) = H(G2). (19)

We now provide a proof by contrapositive. Suppose that ξ1 and ξ2 are not covariance equivalent, i.e.,
Σ(ξ1) ̸= Σ(ξ2). By Eq. (18), we have Θ(G1) ̸= Θ(G2), i.e., DAGs G1 and G2 are not covariance
equivalent. By Ghassami et al. [20, Proposition 1], DAGs G1 and G2 are not Markov equivalent,
which indicates that they do not have the same skeleton and v-structures [43]. This implies that
they lead to different sets of conditional independence constraints, which in this case correspond to
different sets of polynomial equality constraints [39], i.e., H(G1) ̸= H(G2). By Eq. (19), we have
H(ξ1) ̸= H(ξ2).

C.4 Identifiability of Parameters from Support

In the following, we provide a result that establish the identifiability of the parameters in mixing
matrix from its support.
Proposition 8. Consider two non-singular matrices A1 and A2 that satisfy Assumption 2 and that
entail the same covariance matrix, i.e., Σ = A1A

⊤
1 = A2A

⊤
2 . If matrices A1 and A2 have the

same support, then they differ only in sign changes of columns.
Proof. Since matrix A1 satisfies Assumption 2, there exist permutation matrices P1 and P2 such that
P⊤

1 A1P2 is lower triangular. Clearly, P⊤
1 A2P2 is also lower triangular, because matrices A1 and

A2 have the same support. Since matrices P⊤
1 A1P2 and P⊤

1 A2P2 are non-singular, all diagonal
entries of these two matrices must be nonzero, because otherwise the corresponding determinant will
be zero, which contradict their non-singularity. Let D1 and D2 be diagonal matrices with diagonal
entries being ±1 such that the diagonal entries of P⊤

1 A1D1P2 and P⊤
1 A2D2P2 are positive. (The

procedure for constructing such diagonal matrices D1 and D2 is straightforward and omitted here.)

Furthermore, we have
(P⊤

1 A1D1P2)(P
⊤
1 A1D1P2)

⊤ = (P⊤
1 A2D2P2)(P

⊤
1 A2D2P2)

⊤ = P⊤
1 ΣP1. (20)

Since matrix A1 is non-singular, matrices Σ, and thus P⊤
1 ΣP1, are symmetric positive definite.

Here, Eq. (20) can be viewed as the Cholesky decomposition of P⊤
1 ΣP1, where P⊤

1 A1D1P2 and
P⊤

1 A2D2P2 are the Cholesky factors. Recall that they are lower triangular matrices with all diagonal
entries being positive; in this case, it is known that such Cholesky factor is unique [42]. Therefore,
we have

P⊤
1 A1D1P2 = P⊤

1 A2D2P2,

which implies
A1 = A2D2D

−1
1 = A2D2D1.

Since D2D1 is a diagonal matrix with diagonal entries being ±1, we conclude that matrices A1 and
A2 differ only in sign changes of columns.
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Corollary 1 (Identifiability of Parameters from Support). Consider two non-singular matrices
A1 and A2 that satisfy Assumption 2 and that entail the same covariance matrix, i.e., Σ = A1A

⊤
1 =

A2A
⊤
2 . If the columns of ξA1

are a permutation of those of ξA2
, then we have A1 ∼ A2.

Proof. Suppose by contradiction that A1 ̸∼ A2. This implies that, for every permutation matrix
P such that ξA1

= ξA2P, matrices A1 and A2P differ in more than sign changes of columns. By
Proposition 8, this cannot happen.

D Proofs of Other Results

D.1 Proof of Example 1

Example 1 (Semialgebraic Constraints). Consider support matrices

ξ1 =

[× 0 0
× × 0
× 0 ×

]
and ξ2 =

[× 0 ×
× × 0
0 × ×

]
.

The equality constraints imposed by ξ1 include

Σ1,1Σ2,3 − Σ1,2Σ1,3 = 0,

while the inequality constraints imposed by ξ2 include

(Σ1,1Σ2,2Σ3,3+Σ1,1Σ
2
2,3−Σ2,2Σ

2
1,3−Σ3,3Σ

2
1,2)

2−4(Σ1,1Σ2,2−Σ2
1,2)(Σ1,1Σ3,3Σ

2
2,3−Σ2

1,3Σ
2
2,3) ≥ 0.

Proof. We first consider matrix A1 with the support ξ1. That is, matrix A1 is of the form

A1 =

[
a1,1 0 0
a2,1 a2,2 0
a3,1 0 a3,3

]
.

The entries of the resulting covariance matrix Σ = A1A
⊤
1 are then given by

Σ1,1 = a21,1, Σ1,2 = a1,1a2,1,

Σ2,2 = a22,1 + a22,2, Σ1,3 = a1,1a3,1,

Σ3,3 = a23,1 + a23,3, Σ2,3 = a2,1a3,1,

which imply
Σ1,1Σ2,3 − Σ1,2Σ1,3 = 0.

We now consider matrix A2 with the support ξ2. That is, matrix A2 is of the form

A2 =

[
a1,1 0 a1,3
a2,1 a2,2 0
0 a3,2 a3,3

]
.

The entries of the resulting covariance matrix Σ = A2A
⊤
2 are then given by

Σ1,1 = a21,1 + a21,3, Σ1,2 = a1,1a2,1,

Σ2,2 = a22,1 + a22,2, Σ1,3 = a1,3a3,3,

Σ3,3 = a23,2 + a23,3, Σ2,3 = a2,2a3,2.

Suppose we fix the value of a3,2. This leads to

a23,2 = Σ3,3 −
Σ2

1,3

Σ1,1 −
Σ2

1,2

Σ2,2−
Σ2
2,3

a2
3,2

,

which can be rewritten as

(Σ1,1Σ2,2−Σ2
1,2)a

4
3,2+(−Σ1,1Σ2,2Σ3,3−Σ1,1Σ

2
2,3+Σ2,2Σ

2
1,3+Σ3,3Σ

2
1,2)a

2
3,2+(Σ1,1Σ3,3Σ

2
2,3−Σ2

1,3Σ
2
2,3) = 0.

Since the value of a3,2 is a real number, we have

(Σ1,1Σ2,2Σ3,3 +Σ1,1Σ
2
23 − Σ2,2Σ

2
1,3 − Σ3,3Σ

2
1,2)

2 − 4(Σ1,1Σ2,2 − Σ2
1,2)(Σ1,1Σ3,3Σ

2
2,3 − Σ2

1,3Σ
2
2,3) ≥ 0.
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D.2 Proof of Proposition 1

Proposition 1. If the true mixing matrix Ã does not satisfy Assumption 1, then there exists a solution
Â to Problem (1) such that Â ̸∼ Ã.

Proof. Since the true mixing matrix Ã does not satisfy Assumption 1, there exist i, j ∈ [n], i ̸= j
such that

| supp(ãi) ∪ supp(ãj)| − | supp(ãi) ∩ supp(ãj)| ≤ 1.

This leads to the following two cases:

• Case 1: | supp(ãi) ∪ supp(ãj)| − | supp(ãi) ∩ supp(ãj)| = 1. In this case, since the mixing
matrix is of full column rank, there must exist a k ∈ [n] such that (ξÃ)

k,i
= (ξÃ)

k,j
= ×.

Thus, we can always apply a reversible acute rotation (see Remark 3) to the i-th and j-th
columns of matrix Ã. This operation leads to another matrix Ä with ∥Ä∥0 = ∥Ã∥0 and
ÄÄ⊤ = ÃÃ⊤. In the reversible acute rotation, we can set either (ξÃ)

k,i
or (ξÃ)

k,j
to 0. This

implies ∥äk,:∥0 < ∥ãk,:∥0, and therefore Ä ̸∼ Ã. Now, suppose that the true mixing matrix
Ã is not a solution to Problem (1). Clearly, there must exist a solution Â to Problem (1) such
that ∥Â∥0 < ∥Ã∥0, which indicates Â ̸∼ Ã. It remains to consider the case where matrix Ã

is a solution to Problem (1). In this case, since ∥Ä∥0 = ∥Ã∥0, matrix Ä is also a solution to
Problem (1), and we have shown that Ä ̸∼ Ã.

• Case 2: | supp(ãi) ∪ supp(ãj)| − | supp(ãi) ∩ supp(ãj)| = 0. In this case, we can always
apply a reduction (see Remark 3) to the i-th and j-th columns of matrix Ã. This operation leads
to another matrix Ä with ∥Ä∥0 < ∥Ã∥0 and ÄÄ⊤ = ÃÃ⊤. Therefore, there must exist a
solution Â to Problem (1) such that ∥Â∥0 ≤ ∥Ä∥0 < ∥Ã∥0, which indicates Â ̸∼ Ã.

In either case, there exists a solution to Problem (1) whose columns are not signed permutations of
the columns of Ã.

D.3 Proof of Example 2

Example 2. If the connective structure GA of mixing matrix A is a polytree, then matrix A satisfies
Assumption 2.

Proof. Suppose that the matrix A does not satisfy Assumption 2. This means that there does not
exist permutation matrices P1 and P2 such that P⊤

1 AP2 is lower triangular, which implies that,
in the connective structure GA, there exists a path that alternates between source and observed
variable nodes, i.e., a sequence of nodes {si1 , xj1 , si2 , xj2 , ..., sik , xjk , si1} where each pair (sit , xjt)
corresponds to a nonzero entry ajt,it in A, for t = 1, . . . , k. Thus, by replacing the directed edges on
this path with undirected edges, we obtain a cycle. Therefore, GA cannot be a polytree.

D.4 Proof of Proposition 3

The proof of the following proposition is adapted from that of Ghassami et al. [20, Proposition 8].
Proposition 3 (Generic Property). Suppose that the nonzero coefficients of matrix A are randomly
drawn from a distribution that is absolutely continuous with respect to Lebesgue measure. Then,
matrix A satisfies Assumption 3 with probability one.

Proof. Let ϕ be the set of possible equality constraints of any covariance matrix with the same size
as Σ, which is a finite set because the number of variables is finite. Consider a matrix Â with the
same support as A (i.e., ξÂ = ξA) that violates Assumption 3, where the corresponding covariance
matrix is Σ̂. To violate Assumption 3, Σ̂ has to satisfy an equality constraint κ ∈ ϕ \H(ξA). Thus,
the set of possible matrices with the same support as A that violate Assumption 3 is a subset of⋃

κ∈ϕ\H(ξA)

{
Â : ξÂ = ξA and Σ̂ satisfies equality constraint κ

}
.

By the definition of equality constraint, each set in the union above has zero Lebesgue measure, and
thus the finite union above also has zero Lebesgue measure. This implies that the set of possible
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matrices with the same support as A that violate Assumption 3 has zero Lebesgue measure. Therefore,
Assumption 3 is satisfied with probability one.

D.5 Proof of Theorem 2

We first prove the following proposition that will be used to prove both Theorems 2 and 3.
Proposition 9. If mixing matrix A satisfies Assumption 6, then it satisfies Assumption 1.

Proof. We provide a proof by contrapositive. Suppose A does not satisfy Assumption 1. This means
that there exist some i, j ∈ [n] with i ̸= j such that

| supp(ai) ∪ supp(aj)| − | supp(ai) ∩ supp(aj)| ≤ 1.

The difference can be either 0 or 1.

• Case 1: | supp(ai) ∪ supp(aj)| − | supp(ai) ∩ supp(aj)| = 0. This implies supp(ai) =
supp(aj), i.e., the supports of ai and aj are identical. In this case, Assumption 6 is clearly
violated, as supp(ai) is a subset of supp(aj) and vice versa.

• Case 2: | supp(ai) ∪ supp(aj)| − | supp(ai) ∩ supp(aj)| = 1. This implies that one of the
columns is a proper subset of the other, meaning either supp(ai) ⊂ supp(aj) or supp(aj) ⊂
supp(ai). Again, this violates Assumption 6.

Hence, in either case, if A does not satisfy Assumption 1, then it does not satisfy Assumption 6.

We now prove the following theorem.
Theorem 2. For mixing matrix A, we have the following chain of chain of implications:

Assumption 4 =⇒ Assumption 6 =⇒ Assumption 1.

Furthermore, there exists a matrix A satisfying Assumption 1 that does not satisfy Assumption 4.

Proof. We first prove Assumption 4 =⇒ Assumption 6.

In Assumption 4, Eq. (3) is assumed to be satsified for all I ⊆ [n] where |I| > 1. Thus, in order
to prove that Assumption 4 implies Assumption 6, it is sufficient to only consider the case where
|I| = 2. That is, for every i, j ∈ [n] and i ̸= j, we have

| supp(ai) ∪ supp(aj)| > rank(overlap(A{i,j})) + |supp(ai)| ,
where we set i as the target index without loss of generality.

Because rank(overlap(A{i,j})) ≥ 1, we have

| supp(ai) ∪ supp(aj)| > 1 + |supp(ai)| . (21)

Suppose | supp(ai)| ≥ | supp(aj)|. Eq. (21) implies that supp(aj) is not a subset of supp(ai).
Similarly, if | supp(aj)| ≥ | supp(ai)|, we could also show that supp(ai) is not a subset of supp(aj).
Thus, Assumption 6 is satisfied.

According to Proposition 9, we have Assumption 6 =⇒ Assumption 1, which completes the proof
of the first part, i.e., Assumption 4 =⇒ Assumption 6 =⇒ Assumption 1.

We now provide an example of mixing matrix satisfying the Assumption 1 that does not satisfy
Assumption 4. Suppose the mixing matrix Ã has a support as follows:

ξÃ =

[× 0 0
× × 0
× 0 ×

]
Clearly, Assumption 1 is satisfied since every pair of columns differ on more than one entry. However,
for k = 1 and I = {1, 2}, we have∣∣∣∣∣ ⋃

k′∈I

supp(ak′)

∣∣∣∣∣− rank(overlap(AI)) ≤

∣∣∣∣∣ ⋃
k′∈I

supp(ak′)

∣∣∣∣∣ = 3.

Since |supp(ak)| = |supp(a1)| = 3, it is not possible for Eq. (3) to hold for Ã when k = 1 and
I = {1, 2}. Thus, Assumption 4 is violated. The proof of part (b) is finished.
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D.6 Proof of Theorem 3

Theorem 3. For mixing matrix A, we have the following chain of chain of implications:

Assumption 5 =⇒ Assumption 6 =⇒ Assumption 1.

Furthermore, there exists a matrix A satisfying Assumption 1 that does not satisfy Assumption 5.

Proof. We first prove the contrapositive of Assumption 5 =⇒ Assumption 6. Suppose that
Assumption 6 does not hold. This means that there exist distinct indices i, j ∈ [n], such that supp(ai)
is a subset of supp(aj).

Now, for any set of row indices I ⊂ [n], consider the intersection over the supports of all rows j ∈ I ,
denoted by

⋂
j∈I supp(aj,:). Because supp(ai) is a subset of supp(aj), it is clear that i cannot be

the only element in this intersection. Therefore, it is impossible to satisfy
⋂

j∈I supp(aj,:) = {i} for
any choice of I, which indicates that Assumption 5 is violated.

According to Proposition 9, we have Assumption 6 =⇒ Assumption 1, which completes the proof
of the first part, i.e., Assumption 5 =⇒ Assumption 6 =⇒ Assumption 1.

We now provide an example of mixing matrix satisfying the Assumption 1 that does not satisfy
Assumption 5. Suppose the mixing matrix Ã has a support as follows:

ξÃ =

[× 0 0
× × 0
× 0 ×

]
Clearly, Assumption 1 is satisfied since the supports of each pair of columns differ on more than one
entry. However, Assumption 5 is violated since there does not exist any set of rows such that the
intersection of their nonzero indices is 2 or 3.

D.7 Proof of Theorem 4

Theorem 4 (Equivalent Formulations). Suppose Ã = (I− B̃)Ω̃− 1
2 . Then, we have:

(a) Let (B̂, Ω̂) be a solution to Problem (4). Then, Â := (I− B̂)Ω̂− 1
2 is a solution to Problem (1).

(b) Let Â be a solution to Problem (1). Then, there exist matrices B̂ ∈ Rn×n
off and Ω̂ ∈ diag(Rn

>0)

such that Â ∼ (I− B̂)Ω̂− 1
2 , and (B̂, Ω̂) is a solution to Problem (4).

Proof. We consider both parts of the statements.

Part (a):

We provide a proof by contrapositive. For matrices B̂ and Ω̂, suppose Â := (I− B̂)Ω̂− 1
2 is not a

solution to Problem (1). That is, there exists matrix Ä such that

∥Ä∥0 < ∥Â∥0 (22)

and
ÄÄ⊤ = ÃÃ⊤. (23)

By Lemma 3, matrix Ä is non-singular, and thus, by Lemma 5, there exist matrices B̈ ∈ Rn×n
off and

Ω̈ ∈ diag(Rn
>0) such that

Ä ∼ (I− B̈)Ω̈− 1
2 .

Lemma 6 implies
∥Â∥0 = ∥B̂∥0 + n and ∥Ä∥0 = ∥B̈∥0 + n,

which, with Inequality (22), indicate ∥B̈∥0 < ∥B̂∥0. Furthermore, using Eq. (23) and the assumption
Ã = (I− B̃)Ω̃− 1

2 , we have

(I− B̈)Ω̈−1(I− B̈)⊤ = (I− B̃)Ω̃−1(I− B̃)⊤.

Therefore, (B̈, Ω̈) satisfies the constraint of Problem (4) and leads to a smaller zero norm for the
objective function, and thus (B̂, Ω̂) will never be a solution of Problem (4).
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Part (b):

Let Â be a solution to Problem (1). By Lemma 3, matrix Â is non-singular, and thus, by Lemma 5,
there exist matrices B̂ ∈ Rn×n

off and Ω̂ ∈ diag(Rn
>0) such that

Â ∼ (I− B̂)Ω̂− 1
2 .

It then remains to prove that (B̂, Ω̂) is a solution to Problem (4), which we do so by contradiction.
Suppose that (B̂, Ω̂) is not a solution to Problem (4). That is, there exists solution (B̈, Ω̈) such that

∥B̈∥0 < ∥B̂∥0 (24)

and
(I− B̈)Ω̈−1(I− B̈)⊤ = (I− B̃)Ω̃−1(I− B̃)⊤. (25)

Define Ä := (I − B̈)Ω̃− 1
2 . Lemma 6 implies ∥Â∥0 = ∥B̂∥0 + n and ∥Ä∥0 = ∥B̈∥0 + n, which,

with Inequality (24), indicates ∥Ä∥0 < ∥Â∥0. Furthermore, using Eq. (25) and the assumption
Ã = (I− B̃)Ω̃− 1

2 , we have
ÄÄ⊤ = ÃÃ⊤.

Therefore, Ä satisfies the constraint of Problem (1) and leads to a smaller zero norm for the objective
function, and thus Â will never be a solution of Problem (1), which is a contradiction.

D.8 Proof of Theorem 5

In this section, we first provide the proofs of Propositions 10 and 11, which together straightforwardly
imply Theorem 5. Before proving Proposition 10, we state the following lemma from Shimizu et al.
[38] that is useful for the proof.

Lemma 11 (Shimizu et al. [38, Lemma 1]). Let A be a lower triangular matrix with all diagonal
entries being nonzero. Let P1 and P2 be two permutation matrices. Then, a permutation of rows
and columns of A, i.e., P⊤

1 AP2, has only nonzero entries in the diagonal if and only if the row and
column permutations are equal, i.e., P1 = P2.

We now provide the proof of Proposition 10.

Proposition 10. Suppose A ∼ (I − B)Ω− 1
2 for matrices A ∈ Rn×n, B ∈ Rn×n

off , and Ω ∈
diag(Rn

>0). Then, A satisfies Assumption 2 if and only if matrix B represents a DAG.

Proof. Without loss of generality, we consider the case in which A and (I−B)Ω− 1
2 differ only in

column permutations, instead of signed column permutations. This is because, for the latter case,
there exists a diagonal matrix D with diagonal entries being ±1 such that AD and (I − B)Ω− 1

2

differ only in column permutations, and furthermore, AD satisfies Assumption 2 if and only if A
satisfies Assumption 2.

Therefore, suppose there exists a permutation matrix P1 such that

A = (I−B)Ω− 1
2P1. (26)

We now consider both parts of the statements.

If part:

Suppose that matrix B represents a DAG. Then, there exists permutation matrix P2 such that P⊤
2 BP2

is strictly lower triangular. Therefore, P⊤
2 (I−B)P2 = I−P⊤

2 BP2 is lower triangular. This implies
that P⊤

2 (I−B)Ω− 1
2P2 is lower triangular because Ω− 1

2 is a diagonal matrix and does not affect
the support. By substituting Eq. (26), P⊤

2 AP−1
1 P2 is lower triangular. Clearly, P−1

1 P2 is also a
permutation matrix. Therefore, matrix A can be permuted by row and column permutations to be
lower triangular, and thus satisfies Assumption 2.

Only if part:

Suppose matrix A satisfies Assumption 2. Then, there exist permutation matrices P2 and P3 such
that P⊤

2 AP3 is lower triangular. Substituting Eq. (26), P⊤
2 (I−B)Ω− 1

2P1P3 is lower triangular.
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Since P1P3 is also permutation matrix, this indicates that (I − B)Ω− 1
2 , and thus I − B, satisfy

Assumption 2. By Lemma 8, I−B is non-singular, which indicates that

det(I−B) ̸= 0.

Note that
det(Ω− 1

2 ) > 0 and det(P1) = 1.

With Eq. (26), we have
det(A) ̸= 0,

and therefore
det(P⊤

2 AP3) ̸= 0.

It is known that the determinant of a lower triangular matrix is the product of its diagonal entries.
Since P⊤

2 AP3 is lower triangular and det(P⊤
2 AP3) ̸= 0, all diagonal entries of P⊤

2 AP3 must be
nonzero. Now define

P4 := P−1
2 and P5 := P−1

3 P−1
1 , (27)

both of which are permutation matrices. By some algebraic manipulations of Eq. (26) and further
substituting the above definitions, we have

P⊤
4 (P

⊤
2 AP3)P5 = (I−B)Ω− 1

2 ,

where all diagonal entries are nonzeros. Applying Lemma 11 w.r.t. matrix P⊤
2 AP3, we have

P4 = P5,

which, by plugging into Eq. (27), implies

P2 = P1P3.

Since we have shown that P⊤
2 (I−B)Ω− 1

2P1P3 is lower triangular, further substitution of P2 =

P1P3 indicates that P⊤
2 (I−B)Ω− 1

2P2 is lower triangular. Since right multiplication of Ω− 1
2 does

not affect the support of I−B, we see that

P⊤
2 (I−B)P2 = I−P⊤

2 BP2

is also lower triangular. This indicates that P⊤
2 BP2 is lower triangular, which, with the assumption

that the diagonal entries of B are zeros, imply that P⊤
2 BP2 is strictly lower triangular. Therefore,

matrix B represents a DAG.

After proving Proposition 10, we now consider Proposition 11. Before that, we provide a result by
Ghassami et al. [20] that is useful for the proof. We first describe the notion of parent exchange by
Ghassami et al. [20]. Let △ be the symmetric difference operator that identifies the elements present
in either of the sets but not in the intersection. For DAG G with weighted adjacency matrix B, its
vertices xi and xj are said to be parent exchangeable if | supp((I −B)i)△ supp((I −B)j)| = 1,
i.e., there exists k ∈ [n] such that supp((I−B)i)△ supp((I−B)j) = {k}. In such case, a support
rotation can be performed on columns (ξI−B)i and (ξI−B)j that sets a nonzero entry on those
columns, except (ξI−B)i,i and (ξI−B)j,j , to zero. In other words, the parent of xi and xj that
corresponds to the zeroed entry is removed. Furthermore, the entry (ξI−B)k,i or (ξI−B)k,j is set
to ×, which corresponds to adding the missing edge xk → xi or xk → xj . Ghassami et al. [20]
defined such an operation to be a parent exchange. We then provide the following corollary that is
straightforwardly derived from Ghassami et al. [20, Corollary 2 & Proposition 1].
Corollary 2 (Ghassami et al. [20, Corollary 2]). DAGs G1 and G2 are Markov equivalent if and
only if there exists a sequence of parent exchanges that maps G1 to G2, and one that maps G2 to G1.

We now provide the proof of Proposition 11.
Proposition 11. Let G be a DAG with weighted adjacency matrix B. Then, matrix I−B satisfies
Assumption 1 if and only if the Markov equivalence class of G is a singleton.

Proof. We consider both parts of the statements.
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If part:

We provide a proof by contrapositive. Suppose that matrix I − B does not satisfy Assumption 2.
That is, there exist i, j ∈ [n] and i ̸= j such that

| supp((I−B)i)△ supp((I−B)j)| < 1.

Clearly, we have supp((I−B)i) ̸= supp((I−B)j), because otherwise there will be a cycle with
length of two over variables xi and xj , which contradicts the assumption that G is a acyclic. This
implies

| supp((I−B)i)△ supp((I−B)j)| = 1. (28)
By definition, xi and xj are parent exchangeable, and therefore there exists a parent exchange that
maps DAG G to another directed graph G′ where G′ ̸= G. We now show by contradiction that G′ is a
DAG. Suppose that G′ is a not DAG. By Eq. (28), there exists variable xk such that

supp((I−B)i)△ supp((I−B)j) = {k}.
Here, we must have k = i or k = j, because otherwise we have

(ξI−B)i,i = (ξI−B)j,j = (ξI−B)i,j = (ξI−B)j,i = ×,

which leads to a cycle over variables xi and xj . Without loss of generality, we consider the case of
k = j, which implies

supp((I−B)i)△ supp((I−B)j) = {j} (29)
and (ξI−B)j,i = 0. This indicates that the entry (ξI−B)j,i is set to × (i.e., the edge xj → xi is
added) after the parent exchange to DAG G′, which subsequently leads to a cycle in G′. In this
case, there must exist a path xi → xl1 → · · · → xlm → xj in DAG G, where m < n − 2 and
l1, . . . , lm ∈ [n] \ {i, j}, to which adding the edge xj → xi leads to a cycle in DAG G′. By Eq. (29),
xlm is also a parent of xi, indicating that there exists a cycle xi → xl1 → · · · → xlm → xi in DAG
G, which contradicts the assumption that G is acyclic. Therefore, G′ must be a DAG.

Since there exists a parent exchange that maps DAG G to another DAG G′, clearly there also exists a
(reversed) parent exchange that maps DAG G′ back to DAG G. By Corollary 2, DAGs G and G′ are
Markov equivalent. Therefore, the Markov equivalence class of G contains at least two DAGs and is
not a singleton.

Only if part:

Suppose that matrix I−B satisfies Assumption 2. That is, for all i, j ∈ [n] and i ̸= j,we have
| supp((I−B)i)△ supp((I−B)j)| > 1.

In this case, every pair of vertices are not parent exchangeable, and thus parent exchange cannot be
applied for any pair of vertices in DAG G. Therefore, for any DAG G′ ̸= G, there exists no sequence
of parent exchanges that maps G to G′, implying that they are not Markov equivalent. This indicates
that all DAGs are not Markov equivalent to DAG G, except itself, and thus the Markov equivalence
class of G is a singleton.

With Propositions 10 and 11 in place, we provide the proof of Theorem 5.

Theorem 5. Suppose A ∼ (I−B)Ω− 1
2 for matrices A ∈ Rn×n, B ∈ Rn×n

off , and Ω ∈ diag(Rn
>0).

Then, A satisfies Assumptions 1 and 2 if and only if B represents a DAG whose Markov equivalence
class is a singleton.
Proof. We consider both parts of the statements.

If part:

Suppose matrix B represents a DAG whose Markov equivalence class is a singleton. By Propo-
sition 10, matrix A satisfies Assumption 2. Furthermore, Proposition 11 implies that I − B, and
thus (I−B)Ω− 1

2 , satisfy Assumption 1. Since A and (I−B)Ω− 1
2 differ only in signed column

permutations, and Assumption 1 involves only pairwise comparison of the support matrix, A must
also satisfy Assumption 1.

Only if part:

Suppose A satisfies Assumptions 1 and 2. By Proposition 10, matrix B represents a DAG. Since
A and (I − B)Ω− 1

2 differ only in signed column permutations, and Assumption 1 involves only
pairwise comparison of the support matrix, I−B also satisfies Assumption 1. By Proposition 11, the
Markov equivalence class of the DAG represented by B is a singleton.
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D.9 Proof of Lemma 1

Before proving Lemma 1, we first provide another result that is useful for the proof. To ease further
reasoning, we define the function

f(A) = tr

(
n∑

k=1

(A⊙A)k

)
,

and clearly we have
g(A) ≡ f(off(A)). (30)

Zheng et al. [48], Zhang et al. [47] have shown that, for any matrix A, f(A) = 0 if and only if A
represents the weighted adjacency matrix of a DAG. Also, it is known that the weighted adjacency
matrix of a directed graph can be permuted via simultaneous equal row and column permutations to
be strictly lower triangular if and only if the graph is a DAG. Therefore, we provide the following
corollary that is straightforwardly implied by the results by Zheng et al. [48], Wei et al. [45].
Lemma 12 (Wei et al. [45, Theorem 1]). For any matrix A, f(A) = 0 if and only if it can be
permuted via simultaneous equal row and column permutations to be strictly lower triangular.

We now provide the proof for Lemma 1.
Lemma 1. For any matrix A, g(A) = 0 if and only if it can be permuted via simultaneous equal
row and column permutations to be lower triangular.

Proof. We first define DA as a diagonal matrix of the same size as matrix A, where its diagonal entries
are equal to those of A and its non-diagonal entries are zero. Clearly, we have A = off(A) +DA.
For any matrix P, This implies

P⊤AP = P⊤ off(A)P+P⊤DAP. (31)

If part:

Suppose that there exists permutation matrix P such that P⊤AP is lower triangular. By Eq. (31),
we have P⊤ off(A)P = P⊤AP − P⊤DAP. Clearly, the diagonal entries of P⊤AP are exactly
the same as those of P⊤DAP, which cancel out each other. Therefore, the diagonal entries of
P⊤ off(A)P are zeros, indicating that it is strictly lower triangular. By Lemma 12, this implies
f(off(A)) = 0, and thus g(A) = 0 by Eq. (30).

Only if part:

Suppose g(A) = f(off(A)) = 0. By Lemma 12, there exists permutation matrix P such that
P⊤ off(A)P is strictly lower triangular. Clearly, P⊤DAP is a diagonal matrix. By Eq. (31), P⊤AP
is lower triangular, i.e., A can be permuted via simultaneous equal row and column permutations to
be lower triangular.

D.10 Proof of Proposition 5

Proposition 5. The matrix A satisfies Assumption 2 if and only if there is a matrix Â such that it is
a column permutation of A and that g(Â) = 0.

Proof. We consider both parts of the statements.

If part:

Suppose that there exists matrix Â such that it is a column permutation of A and that g(Â) = 0.
By definition, there exists permutation matrix P2 such that Â = AP2. Also, by Lemma 1, there
exists permutation matrix P1 such that P⊤

1 ÂP1 is lower triangular, which implies that P⊤
1 AP2P1

is lower triangular. Clearly, P2P1 is also a permutation matrix. Therefore, matrix A can be permuted
by row and column permutations to be lower triangular, indicating that it satisfies Assumption 2.

Only if part:

Suppose that matrix A satisfies Assumption 2, i.e., there exist permutation matrices P1 and P2

such that P⊤
1 AP2 is lower triangular. Defining P3 := P2P

−1
1 , which is also a permutation matrix,
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and substituting it into the previous statement, we see that P⊤
1 AP3P1 is lower triangular. Further

substitution of Â := AP3 implies that P⊤
1 ÂP1 is lower triangular, which, by Lemma 1, indicates

g(Â) = 0. Clearly, Â is a column permutation of A.

D.11 Proof of Theorem 6

Theorem 6 (Alternative Formulation of Identifiability). Suppose that the true mixing matrix Ã

satisfies Assumptions 1, 2, and 3. Let Â be a solution of the following problem:

min
A∈Rn×n

∥A∥0 subject to AA⊤ = ÃÃ⊤ and g(A) = 0. (5)

Then, we have Â ∼ Ã.
Proof. Let Â be a solution to Problem (5). Suppose by contradiction that it is not a solution to
Problem (2). That is, there exists matrix Ä satisfying Assumption 2 such that

∥Ä∥0 < ∥Â∥0 and ÄÄ⊤ = ÃÃ⊤. (32)

By Proposition 5, there exists permutation matrix P such that g(ÄP) = 0. Furthermore, by Eq. (32),
we have

∥ÄP∥0 < ∥Â∥0 and (ÄP)(ÄP)⊤ = ÃÃ⊤.

Therefore, ÄP satisfies the constraint of Problem (5) and leads to a smaller zero norm for the
objective function, and thus Â will never be a solution of Problem (5), which is a contradiction.
Therefore, Â must be a solution to Problem (2). Since matrix Ã also satisfies Assumptions 1, 2,
and 3, applying Theorem 1 completes the proof.

D.12 Proof of Theorem 7

Theorem 7 (Likelihood-Based Method). Suppose that the true mixing matrix Ã satisfies Assump-
tions 1, 2, and 3. Let Â be a solution of Problem (7) with sparsity regularizer ρ(A) = 0.5∥A∥0 log T .
Then, we have Â ∼ Ã in the large sample limit.

Proof. First, we have g(Â) = 0 and, in the large sample limit, Σ̄ = Σ̃. Similar to BIC [36], the
likelihood term dominates in the large sample limit as the weight of the likelihood function increases
much faster than that of the sparsity regularizer. Therefore, in the large sample limit, we have
ÂÂ = Σ̃ = ÃÃ. Also, for any matrix A that satisfies AA = ÃÃ and g(A) = 0, the sparsity
regularizer indicates ∥Â∥0 ≤ ∥A∥0, because otherwise Â will never be a solution of Problem (7).
This implies that Â is also a solution to Problem (5). Since matrix Ã also satisfies Assumptions 1, 2,
and 3, applying Theorem 1 completes the proof.

E Supplementary Discussion on Structural Assumptions

E.1 Examples Satisfying Structural Variability Assumption

To illustrate the intuition of the proposed assumption of structural variability (i.e., Assumption 1),
we provide several examples on the connective structure from sources to observed variables (which
corresponds to the support of mixing matrix) satisfying that assumption, as illustrated in Figure 3.

E.2 Efficient Approach for Verifying Assumption 2

Assumption 2 involves finding a certain combination of row and column permutations for mixing
matrix A, which may at first appear inefficient to verify. We provide a more efficient way to do so,
by leveraging the interpretation of our assumptions in the context of causal discovery (see Section 3.4
for detailed discussion). Specifically, we provide the following corollary that is a straightforward
consequence of Lemma 2 and Proposition 10, whose proof is omitted.
Corollary 3 (Verification of Assumption 2). Let A be a non-singular matrix and P be a permuta-
tion matrix such that the diagonal entries of AP are nonzero. Let G = (V, E) be a directed graph
where V = {v1, . . . , vn} and E = {vj → vi : (AP)i,j ̸= 0, i ̸= j}. Then, directed graph G is
acyclic if and only if matrix A satisfies Assumption 2.
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Figure 3: Graphical representations of examples that satisfy Assumption 1.

Specifically, Corollary 3 implies that it suffices to find a column permutation such that the diagonal
entries of the permuted matrix are nonzero. Note that such column permutation is guaranteed to exist
as indicated by Lemma 2. We then construct a directed graph G based on such permuted matrix and
check if G contains cycle, e.g., via depth-first search. Instead of searching for a certain combination of
row and column permutations, this procedure may be more efficient because it involves only finding
specific column permutations.

F Supplementary Estimation Details

We provide the estimation details for the methods described in Section 4.2. In our experiments, we use
the average log-likelihood 1

T L(A; Σ̄) as the objective (instead of L(A; Σ̄) in Eq. (7)) for likelihood-
based method. For the sparsity term ρ(A), we use MCP with hyperparameters λ = 1, α = 40 and
λ = 0.1, α = 10 for decomposition-based and likelihood-based methods, respectively.

Furthermore, for both methods, we use the L-BFGS algorithm [11] implemented in SciPy [44] to
solve each unconstrained optimization problem of quadartic penalty method. Since the formulations
involve solving nonconvex optimization problems, we run L-BFGS with 30 random initializations,
where each entry of the initial solution A0 is sampled uniformly at random from [−0.1, 0.1]. In
this case, the final solution is chosen via model selection. For quadratic penalty method, we use
c1 = 10−5 and c1 = 10−2 for decomposition-based and likelihood-based methods, respectively, and
use β = 1.5 for both methods.

Lastly, we also use a threshold of 0.01 to remove small weights in the estimated mixing matrix. We
run each of the experiments on 12 CPUs and 8 GBs of memory.

Computational complexity. To compute the constraint term g(A), a straightforward approach is
to compute each matrix power in g(A) and then sum their traces up, which requires O(n) matrix
multiplications. In our implementation, we adopt a more efficient approach with computational
complexity of O(log n) matrix multiplications, inspired by Zhang et al. (2020). The rough idea is
to perform exponentiation by squaring (i.e., a procedure similar to binary search) and recursively
compute the term g(A).

Furthermore, each L-BFGS run has a computational complexity of O(m2n2 +m3 +mn2t), where
m ≪ n2 is the memory size and t is the number of inner iterations of the L-BFGS run. Typically, we
have t = 250 for each L-BFGS run, and 125 iterations for the quadratic penalty method.

G Supplementary Experimental Results

In addition to the MCC reported in Section 5, we report the Amari distance to evaluate the identifica-
tion performance in Figures 4 and 5, respectively.
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(a) Likelihood-based method.
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(b) Decomposition-based method.

Figure 4: Empirical results of Amari distance across different sample sizes. Error bars indicate the
standard errors calculated based on 10 random trials.
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(a) Likelihood-based method.
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(b) Decomposition-based method.

Figure 5: Empirical results of Amari distance across different ratios of Gaussian sources. Error bars
indicate the standard errors calculated based on 10 random trials.
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