
A Appendix for AD-PT: Autonomous Driving Pre-training with Large-scale1

Point Cloud Dataset2

In this supplementary material, we provide more details and experimental results not included in our3

main text.4
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B More Details about Large-scale Pre-training Dataset Preparation.21

In this section, we give some preliminary experimental results and analysis on large-scale pre-training22

dataset preparation.23

B.1 Preliminary Experiments on Class-aware Pseudo Label Generator24

As mentioned in Sec. 3.2.1 in our submission, we explore how to improve the performance on25

ONCE. We first analyze the results in the ONCE benchmark and find that CenterPoint reaches the26

SOTA performance on pedestrian and cyclist while PV-RCNN achieves the best performance on27

vehicle. To use a stronger baseline to further improve the performance, we conduct experiments using28

PV-RCNN++ as the baseline detector. As shown in Tab. 10, PV-RCNN++ with center head can not29

obtain a satisfactory performance on ONCE while PV-RCNN++ with anchor head can achieve better30

accuracy on vehicle and pedestrian.31

Further, to obtain more accurate pseudo labels, we use a semi-supervised learning method to further32

improve the performance as shown in Tab. 11. Finally, we individually train pedestrian using33

CenterPoint and other classes using PV-RCNN++.34

Table 10: Effects of using different heads on PV-RCNN++. We report mAP using the ONCE
evaluation metric.

Detector Head Choice Vehicle Pedestrian Cyclist

PV-RCNN++ Center Head 71.61 45.27 61.15
PV-RCNN++ Anchor Head 81.72 43.86 66.17

B.2 Analysis on Pseudo Label Threshold on Different Classes35

Fig. 7 shows the precision under different IoU thresholds. The precision can be calculated by36

Precision = TP/(FP + TP), where FP and TP denote false positive and true positive, respectively.37

We can observe that when IoU thresholds are more than 0.8, 0.7, 0.7 for vehicle, pedestrian and38

cyclist, the number of TP instances is significantly more than that of FP instances.39
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Table 11: Effects of using MeanTeacher. We report mAP using the ONCE evaluation metric.
Detector MeanTeacher Vehicle Pedestrian Cyclist

CenterPoint % - 46.22 -
CenterPoint ! - 56.01 -

PV-RCNN++ % 81.72 - 66.17
PV-RCNN++ ! 82.50 - 71.19
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Figure 7: The Precision under different IoU thresholds.

The visualization of the pseudo label results under different thresholds in Fig. 8, we can see that40

some FP pseudo labels will be annotated when setting low thresholds, while some TP instances can41

not be annotated when the thresholds are relatively high. To more intuitively see the impact of the42

threshold on pseudo labeling, we use the model to annotate the samples of the ONCE validation set43

for comparison with ground-truths.44

B.3 Visualization Results of Pseudo Labels45

Fig. 9 shows the visualization results of our final pseudo label results.46

B.4 Details of Object Re-scaling47

In detail, given a bounding box b = (cx, cy, cz, l, w, h, θh) and point clouds (pxi , pyi , p
z
i ) within it, where48

(cx, cy, cz), (l, w, h) and θh denote the center, size and heading angle of the bounding box. We first49

transform points into the local coordinate with the following formula:50

(pli, p
w
i , p

h
i ) = (pxi − cx, p

y
i − cy, p

z
i − cz) ·R,

R =

cos θh − sin θh 0
sin θh cos θh 0
0 0 1

 ,
(1)

where · is matrix multiplication. Then, to derive the scaled object, the point coordinates inside the51

box and the bounding box size are scaled to be α(pli, p
w
i , p

h
i ) and α(l, w, h), where α is the scaling52

factor. Finally, the points inside the scaled box are transformed back to the ego-car coordinate system53

and shifted to the center (cx, cy, cz) as54

p̃i = α(pli, p
w
i , p

h
i ) ·RT + (cx, cy, cz). (2)

B.5 Taxonomy difference between different datasets55

As shown in Tab. 12, there exists a huge taxonomy difference between some fine-tuning datasets and56

the pre-training dataset. As a result, some foreground instances may be regarded as background if57

only using pseudo label as supervision.58
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Visualization results under different pseudo label thresholds. (a-c): annotations with low
thresholds (i.e., 0.6, 0.5, 0.5 for vehicle, pedestrian and cyclist, respectively). (d-f): the thresholds
used in our methods. (g-i): high thresholds (i.e., 0.9, 0.8, 0.8 for vehicle, pedestrian and cyclist,
respectively). The green and red bounding boxes represent ground-truths and detector predictions,
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 9: Pseudo-labeled annotation results on unlabeled set.

C Detailed Dataset Description and Evaluation Metrics59

C.1 Dataset Description60

ONCE dataset. ONCE dataset [4] is a large-scale dataset that is built to encourage the exploration61

of self-supervised and semi-supervised learning in the autonomous driving scenario. ONCE is62

collected by a 40-beam LiDAR in multiple cities in China and contains diverse weather conditions63
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Table 12: Taxonomy difference between different datasets.
Dataset classes

ONCE (Pre-train) Car, Truck, Bus, Pedestrian, Cyclist
Waymo (Fine-tune) Vehicle, Pedestrian, Cyclist

nuScenes (Fine-tune) Car, Truck, Construction vehicle, Bus, Trailer, Barrier, Motorcycle, Bicycle,
Pedestrian, Traffic cone

KITTI (Fine-tune) Car, Pedestrian, Cyclist

(e.g., sunny, cloudy, rainy), traffic conditions, time periods (e.g., morning, noon, afternoon, night) and64

areas (e.g., downtown, suburbs, highway, tunnel, bridge).65

Waymo Open Dataset. Waymo Open Dataset [5] is a widely-used large-scale autonomous driving66

dataset that is composed of 1000 sequences and divided into a train set with 798 sequences (∼150k67

samples) and a validation set with 202 sequences (∼40k samples). The Waymo dataset is gathered in68

the USA by a 64-beam LiDAR and 4 200-beam short-range LiDAR with annotations in full 360◦.69

We use the 1.0 version of Waymo Open Dataset.70

nuScenes Dataset. NuScnenes dataset [1] provides point cloud data from 32-beam LiDAR collected71

from Singapore and Boston, USA. It consists of 28130 training samples and 6019 validation samples.72

The data is obtained during different times in the day, different weather conditions and a diverse set73

of locations (e.g., urban, residential, nature and industrial).74

KITTI Dataset. KITTI dataset [2] is a common-used autonomous driving dataset that contains75

7481 training samples and is divided into a train set with 3712 samples and a validation set with 376976

samples. The point cloud data is collected by a 64-beam LiDAR in Germany. KITTI dataset only77

provides the annotations for the objects within the field of view of the front RGB camera.78

C.2 Evaluation Metrics79

ONCE evaluation metric. Following ONCE official evaluation metric, we merge the car, bus and80

truck class into a super-class (i.e., vehicle). APOri
3D is used to evaluate the performance of the ONCE81

dataset, which can be obtained by the following formula:82

APOri
3D = 100

∫ 1

0

max{p(r′|r′ ≥ r)}dr, (3)

where r is recall rates from 0.02 to 1.00 at step 0.02 and p(r) denotes the precision-recall curve.83

Mean average precision (mAP) is the average of the scores of the three categories. The Intersection84

over Union (IoU) thresholds are set to 0.7, 0.3 and 0.5 for vehicle, pedestrian and cyclist, respectively.85

Waymo evaluation metric. Two difficulty levels (i.e., LEVEL 1 and LEVEL 2) are utilized86

to evaluate the detection accuracy of Waymo dataset and we mainly focus on more difficult L287

performance. Among each difficulty level, we report AP and APH which can be formulated as:88

AP = 100

∫ 1

0

max{p(r′)|r′ ≥ r}dr, AP = 100

∫ 1

0

max{h(r′)|r′ ≥ r}dr, (4)

where the different between h(r) and p(r) is h(r) is weighted by the accuracy of heading accuracy.89

nuScenes evaluation metric. Following the official NuScenes Evaluation Metric, we report mAP90

and nuScenes detection score (NDS). AP is defined as matches by thresholding the 2D center distance91

d on the ground plane and the mAP can be calculated by:92

mAP =
1

C
1

D
∑
c∈C

∑
d∈D

AP, (5)

where C is the set of classes and D is the set of thresholds (i.e., {0.5,1,2,4}). We mainly focus on 1093

classes. NDS is the weighted of mAP and five true positive metrics, including Average Translation94
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Error (ATE), Average Scale Error (ASE), Average Orientation Error (AOE), Average Velocity Error95

(AVE) and Average Attribute Error (AAE). The NDS can be formulated as:96

mTP =
1

C
∑
c∈C

TPc, NDS =
1

10
[5mAP +

∑
mTP∈TP

(1−min(1,mTP ))], (6)

where TP is the set of true positive metrics.97

KITTI evaluation metric. We report mAP with 40 recall positions to evaluate the detection98

performance and the 3D IoU thresholds is set to 0.7 for cars and 0.5 for pedestrians and cyclists.99

D More Implementation Details100

As shown in Tab. 13, we list some details about pre-training and fine-tuning datasets. Note that the101

voxel size of nuScenes is set to [0.1, 0.1, 0.2] following [3]. It can be seen that different datasets102

may have different dimensions of input features (e.g., ONCE use 4 dimension features as input while103

Waymo and nuScenes use 5 dimension features) causing the input dimension of the first layer network104

to be different. We simply do not load the parameters of the first layer when this happens while105

fine-tuning. In the pre-training phase, we merge the pseudo-labeled data and a small amount of106

labeled data (i.e., ONCE train set) as the pre-training dataset. In the fine-tuning phase, we fine-tune107

30 epochs for Waymo, 20 epochs for nuScenes and 80 epochs for KITTI.108

Table 13: Some implementation details about pre-training and fine-tuning datasets.
Dataset Point cloud range voxel size input features

ONCE (Pre-train) [-75.2, -75.2, -5.0, 75.2, 75.2, 3.0] [0.1, 0.1, 0.2] [x, y, z, intensity]
Waymo (Fine-tune) [-75.2, -75.2, -2.0, 75.2, 75.2, 4.0] [0.1, 0.1, 0.15] [x, y, z, intensity, elongation]

nuScenes (Fine-tune) [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] [0.1, 0.1, 0.2] [x, y, z, intensity, timestamp]
KITTI (Fine-tune) [0.0, -40.0, -3.0, 70.4, 40.0, 1.0] [0.05, 0.05, 0.1] [x, y, z, intensity]

E More Experimental Results109

E.1 Ablation Studies on Unknown-aware Instance Learning Head110

In this part, we conduct experiments to ablate the hyper-parameters in unknown-aware instance111

learning head (i.e., the number M of selected features and the distance threshold τ ).112

Tab. 14 shows the results using different numbers of selected features in unknown-aware instance113

learning head when pre-training. When M is small, some foreground instances with relatively114

low scores are ignored, while when M is large, the matched background regions are increased.115

Considering these factors, we choose M to be 256.116

Tab. 15 shows the performance under different distance thresholds in Eq. 4 in the main submission.117

The number of matched features is relatively small when using a lower τ , thus can not fully exploit118

the unknown foreground instances. When using a larger threshold, some mismatches may occur.119

Finally, we set τ to 0.3 as mentioned in our main submission.120

Table 14: Ablation studies of the number M of selected features.

M
Waymo L2 AP / APH

Overall Vehicle Pedestrian Cyclist

128 67.71 / 64.98 67.91 / 67.45 68.54 / 61.87 66.67 / 65.63
256 68.33 / 65.69 68.17 / 67.70 68.82 / 62.39 68.00 / 67.00
512 67.93 / 65.24 68.04 / 67.36 68.63 / 62.12 67.14 / 66.23

E.2 More Results of Pre-training Scalability121

In this section, we show more results to verify the pre-training scalability. We pre-train the model on122

the small, middle and large splits of the ONCE dataset and then fine-tune the model on 3% Waymo123

5



Table 15: Ablation studies of the distance threshold τ .

τ
Waymo L2 AP/APH

Overall Vehicle Pedestrian Cyclist

0.1 67.90 / 65.22 68.01 / 67.54 68.52 / 62.01 67.17 / 66.12
0.3 68.33 / 65.69 68.17 / 67.70 68.82 / 62.39 68.00 / 67.00
0.5 67.82 / 65.15 67.73 / 67.26 68.26 / 61.73 67.49 / 66.46

and 20% KITTI train data. As shown in Tab. 16, as the scale of the pre-training dataset and the124

diversity of scenarios increases, the performance of fine-tuning on the downstream dataset will also125

improve.126

Table 16: The pre-training scalability. We use ONCE to pre-train and Waymo and KITTI to fine-tune.

Pre-training dataset Waymo L2 AP/APH KITTI Moderate mAP

Overall Vehicle Pedestrian Cyclist Overall Car Pedestrian Cyclist

ONCE (∼100k) 68.33 / 65.69 68.17 / 67.70 68.82 / 62.39 68.00 / 67.00 69.43 82.75 57.59 67.96
ONCE (∼500k) 69.04 / 66.52 68.69 / 68.23 69.81 / 63.74 68.61 / 67.60 71.36 83.17 58.14 72.78
ONCE (∼1M) 69.63 / 67.08 69.03 / 68.57 70.54 / 64.34 69.33 / 68.33 72.37 83.47 59.84 73.81

E.3 Results of fine-tuning on ONCE.127

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Visualization of fine-tuning results. We visualize the results of three downstream datasets.
(a-c): results of Waymo. (d-f): results of nuScenes. (g-i): results of KITTI.
The green and red bounding boxes represent ground-truths and detector predictions, respectively.

In our main submission, we report the fine-tuning performance on multiple datasets which are128

different from the pre-training dataset. Here, we show some fine-tuning performance on ONCE. As129

shown in Tab. 17, the performance can be largely improved when the baseline detectors are initialized130

by AD-PT. For example, when using SECOND as the baseline detector, the overall performance can131

be improved from 56.47% to 64.10% (+7.63%). We use the ONCE train set to fine-tune the model.132
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Table 17: The fine-tuning performance on ONCE validation set.
Init. SECOND CenterPoint

Overall 0-30m 30-50m >50m Overall 0-30m 30-50m >50m

Random Initialization 56.47 65.94 51.05 36.44 64.94 74.52 59.47 44.28
AD-PT Initialization 64.10 74.34 57.69 41.23 67.73 76.48 61.85 46.29

E.4 Visualization Results.133

Fig. 10 shows the visualization results of three downstream datasets (i.e., Waymo, nuScenes, KITTI).134
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