
Fast Exact Leverage Score Sampling from Khatri-Rao
Products with Applications to Tensor Decomposition

Vivek Bharadwaj 1,2, Osman Asif Malik 2, Riley Murray 3,2,1,
Laura Grigori 4, Aydın Buluç 2, 1, James Demmel 1

1Electrical Engineering and Computer Science Department, UC Berkeley
2Computational Research Division, Lawrence Berkeley National Lab

3International Computer Science Institute
4 Institute of Mathematics, EPFL & Lab for Simulation and Modelling, Paul Scherrer Institute

Abstract

We present a data structure to randomly sample rows from the Khatri-Rao product
of several matrices according to the exact distribution of its leverage scores. Our
proposed sampler draws each row in time logarithmic in the height of the Khatri-
Rao product and quadratic in its column count, with persistent space overhead
at most the size of the input matrices. As a result, it tractably draws samples
even when the matrices forming the Khatri-Rao product have tens of millions
of rows each. When used to sketch the linear least squares problems arising in
CANDECOMP / PARAFAC tensor decomposition, our method achieves lower
asymptotic complexity per solve than recent state-of-the-art methods. Experiments
on billion-scale sparse tensors validate our claims, with our algorithm achieving
higher accuracy than competing methods as the decomposition rank grows.

1 Introduction

The Khatri-Rao product (KRP, denoted by ⊙) is the column-wise Kronecker product of two matrices,
and it appears in diverse applications across numerical analysis and machine learning [16]. We
examine overdetermined linear least squares problems of the form minX ∥AX −B∥F , where the
design matrix A = U1⊙ ...⊙UN is the Khatri-Rao product of matrices Uj ∈ RIj×R. These problems
appear prominently in signal processing [23], compressed sensing [31], inverse problems related to
partial differential equations [5], and alternating least squares (ALS) CANDECOMP / PARAFAC
(CP) tensor decomposition [13]. In this work, we focus on the case where A has moderate column
count (several hundred at most). Despite this, the problem remains formidable because the height of
A is

∏N
j=1 Ij . For row counts Ij in the millions, it is intractable to even materialize A explicitly.

Several recently-proposed randomized sketching algorithms can approximately solve least squares
problems with Khatri-Rao product design matrices [4, 12, 15, 18, 29]. These methods apply a
sketching operator S to the design and data matrices to solve the reduced least squares problem
minX̃

∥∥∥SAX̃ − SB
∥∥∥
F

, where S has far fewer rows than columns. For appropriately chosen S, the
residual of the downsampled system falls within a specified tolerance ε of the optimal residual with
high probability 1− δ. In this work, we constrain S to be a sampling matrix that selects and reweights
a subset of rows from both A and B. When the rows are selected according to the distribution of
statistical leverage scores on the design matrix A, only Õ (R/(εδ)) samples are required (subject to
the assumptions at the end of section 2.1). The challenge, then, is to efficiently sample according to
the leverage scores when A has Khatri-Rao structure.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



We propose a leverage-score sampler for the Khatri-Rao product of matrices with tens of millions of
rows each. After construction, our sampler draws each row in time quadratic in the column count, but
logarithmic in the total row count of the Khatri-Rao product. Our core contribution is the following
theorem.
Theorem 1.1 (Efficient Khatri-Rao Product Leverage Sampling). Given U1, ..., UN with Uj ∈ RIj×R,
there exists a data structure satisfying the following:

1. The data structure has construction time O
(∑N

j=1 IjR
2
)

and requires additional storage

space O
(∑N

j=1 IjR
)
. If a single entry in a matrix Uj changes, it can be updated in time

O(R log (Ij/R)). If the entire matrix Uj changes, it can be updated in time O
(
IjR

2
)
.

2. The data structure produces J samples from the Khatri-Rao product U1⊙ ...⊙UN according
to the exact leverage score distribution on its rows in time

O

(
NR3 + J

N∑
k=1

R2 logmax (Ik, R)

)
using O(R3) scratch space. The structure can also draw samples from the Khatri-Rao
product of any subset of U1, ..., UN .

The efficient update property and ability to exclude one matrix are important in CP decomposition.
When the inputs U1, ..., UN are sparse, an analogous data structure with O

(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space exists with identical sampling time. Since
the output factor matrices U1, ..., UN are typically dense, we defer the proof to Appendix A.8.
Combined with error guarantees for leverage-score sampling, we achieve an algorithm for alternating
least squares CP decomposition with asymptotic complexity lower than recent state-of-the-art methods
(see Table 1).

Our method provides the most practical benefit on sparse input tensors, which may have dimension
lengths in the tens of millions (unlike dense tensors that quickly incur intractable storage costs at
large dimension lengths) [25]. On the Amazon and Reddit tensors with billions of nonzero entries,
our algorithm STS-CP can achieve 95% of the fit of non-randomized ALS between 1.5x and 2.5x
faster than a high-performance implementation of the state-of-the-art CP-ARLS-LEV algorithm [15].
Our algorithm is significantly more sample-efficient; on the Enron tensor, only ∼ 65, 000 samples
per solve were required to achieve the 95% accuracy threshold above a rank of 50, which could not
be achieved by CP-ARLS-LEV with even 54 times as many samples.

Table 1: Asymptotic Complexity to decompose an N -dimensional I × ...× I dense tensor via CP
alternating least squares. For randomized algorithms, each approximate least-squares solution has
residual within (1 + ε) of the optimal value with high probability 1− δ. Factors involving logR and
log(1/δ) are hidden (Õ notation). See A.1 for details.

ALGORITHM COMPLEXITY PER ITERATION

CP-ALS [13] N(N + I)IN−1R
CP-ARLS-LEV [15] N(R+ I)RN/(εδ)
TNS-CP [19] N3IR3/(εδ)
GAUSSIAN TNE [17] N2(N1.5R3.5/ε3 + IR2)/ε2

STS-CP (OURS) N(NR3 log I + IR2)/(εδ)

2 Preliminaries and Related Work

Notation. We use [N ] to denote the set {1, ..., N} for a positive integer N . We use Õ notation to
indicate the presence of multiplicative terms polylogarithmic in R and (1/δ) in runtime complexities.
For the complexities of our methods, these logarithmic factors are no more than O(log(R/δ)). We

2



use Matlab notation A [i, :] , A [:, i] to index rows, resp. columns, of matrices. For consistency, we
use the convention that A [i, :] is a row vector. We use · for standard matrix multiplication, ⊛ as the
elementwise product, ⊗ to denote the Kronecker product, and ⊙ for the Khatri-Rao product. See
Appendix A.2 for a definition of each operation. Given matrices A ∈ Rm1×n, B ∈ Rm2×n, the j-th
column of the Khatri-Rao product A⊙B ∈ Rm1m2×n is the Kronecker product A [:, j]⊗B [:, j].

We use angle brackets ⟨·, ..., ·⟩ to denote a generalized inner product. For identically-sized vectors /
matrices, it returns the sum of all entries in their elementwise product. For A,B,C ∈ Rm×n,

⟨A,B,C⟩ :=
m,n∑

i=1,j=1

A [i, j]B [i, j]C [i, j] .

Finally, M+ denotes the pseudoinverse of matrix M .

2.1 Sketched Linear Least Squares

A variety of random sketching operators S have been proposed to solve overdetermined least squares
problems minX ∥AX −B∥F when A has no special structure [30, 2]. When A has Khatri-Rao
product structure, prior work has focused on sampling matrices [6, 15], which have a single nonzero
entry per row, operators composed of fast Fourier / trigonometric transforms [12], or Countsketch-
type operators [27, 1]. For tensor decomposition, however, the matrix B may be sparse or implicitly
specified as a black-box function. When B is sparse, Countsketch-type operators still require the
algorithm to iterate over all nonzero values in B. As Larsen and Kolda [15] note, operators similar
to the FFT induce fill-in when applied to a sparse matrix B, destroying the benefits of sketching.
Similar difficulties arise when B is implicitly specified. This motivates our decision to focus on row
sampling operators, which only touch a subset of entries from B. Let x̂1, ..., x̂J be a selection of J
indices for the rows of A ∈ RI×R, sampled i.i.d. according to a probability distribution q1, ..., qI .
The associated sampling matrix S ∈ RJ×I is specified by

S [j, i] =

{
1√
Jqi

, if x̂j = i

0, otherwise

where the weight of each nonzero entry corrects bias induced by sampling. When the probabilities qj
are proportional to the leverage scores of the rows of A, strong guarantees apply to the solution of
the downsampled problem.

Leverage Score Sampling. The leverage scores of a matrix assign a measure of importance to each
of its rows. The leverage score of row i from matrix A ∈ RI×R is given by

ℓi = A [i, :] (A⊤A)+A [i, :]
⊤ (1)

for 1 ≤ i ≤ I . Leverage scores can be expressed equivalently as the squared row norms of the matrix
Q in any reduced QR factorization of A [8]. The sum of all leverage scores is the rank of A [30].
Dividing the scores by their sum, we induce a probability distribution on the rows used to generate a
sampling matrix S. The next theorem has appeared in several works, and we take the form given by
Malik et al. [19]. For an appropriate sample count, it guarantees that the residual of the downsampled
problem is close to the residual of the original problem.

Theorem 2.1 (Guarantees for Leverage Score Sampling). Given A ∈ RI×R and ε, δ ∈ (0, 1), let S ∈
RJ×I be a leverage score sampling matrix for A. Further define X̃ = argminX ∥SAX − SB∥F .
If J ≳ Rmax (log (R/δ) , 1/(εδ)), then with probability at least 1− δ it holds that∥∥∥AX̃ −B

∥∥∥
F
≤ (1 + ε)min

X
∥AX −B∥F .

For the applications considered in this work, R ranges up to a few hundred. As ε and δ tend to 0
with fixed R, 1/(εδ) dominates log(R/δ). Hence, we assume that the minimum sample count J to
achieve the guarantees of the theorem is Ω(R/(εδ)).

3



2.2 Prior Work

Khatri-Rao Product Leverage Score Sampling. Well-known sketching algorithms exist to quickly
estimate the leverage scores of dense matrices [8]. These algorithms are, however, intractable for
A = U1 ⊙ ...⊙UN due to the height of the Khatri-Rao product. Cheng et al. [6] instead approximate
each score as a product of leverage scores associated with each matrix Uj . Larsen and Kolda [15]
propose CP-ARLS-LEV, which uses a similar approximation and combines random sampling with a
deterministic selection of high-probability indices. Both methods were presented in the context of CP
decomposition. To sample from the Khatri-Rao product of N matrices, both require O(RN/(εδ))
samples to achieve the (ε, δ) guarantee on the residual of each least squares solution. These methods
are simple to implement and perform well when the Khatri-Rao product has column count up to 20-30.
On the other hand, they suffer from high sample complexity as R and N increase. The TNS-CP
algorithm by Malik et al. [19] samples from the exact leverage score distribution, thus requiring only
O(R/(εδ)) samples per least squares solve. Unfortunately, it requires time O

(∑N
j=1 IjR

2
)

to draw
each sample.

Comparison to Woodruff and Zandieh. The most comparable results to ours appear in work by
Woodruff and Zandieh [29], who detail an algorithm for approximate ridge leverage-score sampling
for the Khatri-Rao product in near input-sparsity time. Their work relies on a prior oblivious method
by Ahle et al. [1], which sketches a Khatri-Rao product using a sequence of Countsketch / OSNAP
operators arranged in a tree. Used in isolation to solve a linear least squares problem, the tree sketch
construction time scales as O

(
1
ε

∑N
j=1 nnz(Uj)

)
and requires an embedding dimension quadratic in

R to achieve the (ε, δ) solution-quality guarantee. Woodruff and Zandieh use a collection of these
tree sketches, each with carefully-controlled approximation error, to design an algorithm with linear
runtime dependence on the column count R. On the other hand, the method exhibits O(N7) scaling
in the number of matrices involved, has O(ε−4) scaling in terms of the desired accuracy, and relies
on a sufficiently high ridge regularization parameter. Our data structure instead requires construction
time quadratic in R. In exchange, we use distinct methods to design an efficiently-updatable sampler
with runtime linear in both N and ε−1. These properties are attractive when the column count R is
below several thousand and when error as low as ϵ ≈ 10−3 is needed in the context of an iterative
solver (see Figure 5). Moreover, the term O(R2

∑N
j=1 Ij) in our construction complexity arises from

symmetric rank-k updates, a highly-optimized BLAS3 kernel on modern CPU and GPU architectures.
Appendix A.3 provides a more detailed comparison between the two approaches.

Kronecker Regression. Kronecker regression is a distinct (but closely related) problem to the
one we consider. There, A = U1 ⊗ ...⊗ UN and the matrices Ui have potentially distinct column
counts R1, ..., RN . While the product distribution of leverage scores from U1, ..., UN provides only
an approximation to the leverage score distribution of the Khatri-Rao product [6, 15], it provides the
exact leverage distribution for the Kronecker product. Multiple works [7, 9] combine this property
with other techniques, such as dynamically-updatable tree-sketches [21], to produce accurate and
updatable Kronecker sketching methods. None of these results apply directly in our case due to the
distinct properties of Kronecker and Khatri-Rao products.

3 An Efficient Khatri-Rao Leverage Sampler

Without loss of generality, we will prove part 2 of Theorem 1.1 for the case where A = U1⊙ ...⊙UN ;
the case that excludes a single matrix follows by reindexing matrices Uk. We further assume that
A is a nonzero matrix, though it may be rank-deficient. Similar to prior sampling works [18, 29],
our algorithm will draw one sample from the Khatri-Rao product by sampling a row from each of
U1, U2, .... in sequence and computing their Hadamard product, with the draw from Uj conditioned
on prior draws from U1, ..., Uj−1.

Let us index each row of A by a tuple (i1, ..., iN ) ∈ [I1]× ...× [IN ]. Equation (1) gives

ℓi1,...,iN = A [(i1, ..., iN ), :] (A⊤A)+A [(i1, ..., iN ), :]
⊤
. (2)

For 1 ≤ k ≤ N , define Gk := U⊤
k Uk ∈ RR×R and G :=

(
⊛N

k=1 Gk

)
∈ RR×R; it is a well-known

fact that G = A⊤A [13]. For a single row sample from A, let ŝ1, ..., ŝN be random variables for the

4



draws from multi-index set [I1]× ...× [IN ] according to the leverage score distribution. Assume,
for some k, that we have already sampled an index from each of [I1] , ..., [Ik−1], and that the first
k − 1 random variables take values ŝ1 = s1, ..., ŝk−1 = sk−1. We abbreviate the latter condition as
ŝ<k = s<k. To sample from Ik, we seek the distribution of ŝk conditioned on ŝ1, ...ŝk−1. Define
h<k as the transposed elementwise product1 of rows already sampled:

h<k :=

k−1

⊛
i=1

Ui [si, :]
⊤
. (3)

Also define G>k as

G>k := G+ ⊛
N

⊛
i=k+1

Gi. (4)

Then the following theorem provides the conditional distribution of ŝk.
Theorem 3.1 (Malik 2022, [18], Adapted). For any sk ∈ [Ik],

p(ŝk = sk | ŝ<k = s<k) = C−1⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩

:= qh<k,Uk,G>k
[sk]

(5)

where C = ⟨h<kh
⊤
<k, U

⊤
k Uk, G>k⟩ is nonzero.

We include the derivation of Theorem 3.1 from Equation (2) in Appendix A.4. Computing all
entries of the probability vector qh<k,Uk,G>k

would cost O(IjR
2) per sample, too costly when Uj

has millions of rows. It is likewise intractable (in preprocessing time and space complexity) to
precompute probabilities for every possible conditional distribution on the rows of Uj , since the
conditioning random variable has

∏j−1
k=1 Ik potential values. Our key innovation is a data structure to

sample from a discrete distribution of the form qh<k,Uk,G>k
without materializing all of its entries or

incurring superlinear cost in either N or ε−1. We introduce this data structure in the next section and
will apply it twice in succession to get the complexity in Theorem 1.1.

3.1 Efficient Sampling from qh,U,Y

We introduce a slight change of notation in this section to simplify the problem and generalize our
sampling lemma. Let h ∈ RR be a vector and let Y ∈ RR×R be a positive semidefinite (p.s.d.)
matrix, respectively. Our task is to sample J rows from a matrix U ∈ RI×R according to the
distribution

qh,U,Y [s] := C−1⟨hh⊤, U⊤ [s, :]U [s, :] , Y ⟩ (6)

provided the normalizing constant C = ⟨hh⊤, U⊤U, Y ⟩, is nonzero. We impose that all J rows are
drawn with the same matrices Y and U , but potentially distinct vectors h. The following lemma
establishes that an efficient sampler for this problem exists.
Lemma 3.2 (Efficient Row Sampler). Given matrices U ∈ RI×R, Y ∈ RR×R with Y p.s.d., there
exists a data structure parameterized by positive integer F that satisfies the following:

1. The structure has construction time O
(
IR2

)
and storage requirement O

(
R2⌈I/F ⌉

)
. If

I < F , the storage requirement drops to O(1).

2. After construction, the data structure can produce a sample according to the distribution
qh,U,Y in time O(R2 log⌈I/F ⌉+ FR2) for any vector h.

3. If Y is a rank-1 matrix, the time per sample drops to O(R2 log⌈I/F ⌉+ FR).

This data structure relies on an adaptation of a classic binary-tree inversion sampling technique [22].
Consider a partition of the interval [0, 1] into I bins, the i-th having width qh,U,Y [i]. We sample
d ∼ Uniform [0, 1] and return the index of the containing bin. We locate the bin index through a
binary search terminated when at most F bins remain in the search space, which are then scanned in
linear time. Here, F is a tuning parameter that we will use to control sampling complexity and space
usage.

1For a > b, assume that⊛b
i=a (...) produces a vector / matrix filled with ones.

5



[1..8]

[1..4]

[1, 2] [3, 4]

[5..8]

[5, 6] [7, 8]

q1 q2 q3 q4 q5 q6 q7 q8

Figure 1: A segment tree T8,2 and probability dis-
tribution {q1, ..., q8} on [1, ..., 8].

We can regard the binary search as a walk down
a full, complete binary tree TI,F with ⌈I/F ⌉
leaves, the nodes of which store contiguous, dis-
joint segments S(v) = {S0(v)..S1(v)} ⊆ [I]
of size at most F . The segment of each in-
ternal node is the union of segments held by
its children, and the root node holds {1, ..., I}.
Suppose that the binary search reaches node
v with left child L(v) and maintains the inter-
val [low, high] ⊆ [0, 1] as the remaining search
space to explore. Then the search branches left
in the tree iff d < low +

∑
i∈S(L(v)) qh,U,Y [i] .

This branching condition can be evaluated effi-
ciently if appropriate information is stored at each node of the segment tree. Excluding the offset
“low”, the branching threshold takes the form∑

i∈S(v)

qh,U,Y [i] = C−1⟨hh⊤,
∑

i∈S(v)

U [i, :]
⊤
U [i, :] , Y ⟩ := C−1⟨hh⊤, Gv, Y ⟩. (7)

Here, we call each matrix Gv ∈ RR×R a partial Gram matrix. In time O(IR2) and space
O(R2⌈I/F ⌉), we can compute and cache Gv for each node of the tree to construct our data structure.
Each subsequent binary search costs O(R2) time to evaluate Equation (7) at each of log⌈I/F ⌉
internal nodes and O(FR2) to evaluate qh,U,Y at the F indices held by each leaf, giving point 2 of
the lemma. This cost at each leaf node reduces to O(FR) in case Y is rank-1, giving point 3. A
complete proof of this lemma appears in Appendix A.5.

3.2 Sampling from the Khatri-Rao Product

We face difficulties if we directly apply Lemma 3.2 to sample from the conditional distribution in
Theorem 3.1. Because G>k is not rank-1 in general, we must use point 2 of the lemma, where no
selection of the parameter F allows us to simultaneously satisfy the space and runtime constraints of
Theorem 1.1. Selecting F = R results in cost O(R3) per sample (violating the runtime requirement
in point 2), whereas F = 1 results in a superlinear storage requirement O(IR2) (violating the
space requirement in point 1, and becoming prohibitively expensive for I ≥ 106). To avoid these
extremes, we break the sampling procedure into two stages. The first stage selects a 1-dimensional
subspace spanned by an eigenvector of G>k, while the second samples according to Theorem 3.1
after projecting the relevant vectors onto the selected subspace. Lemma 3.2 can be used for both
stages, and the second stage benefits from point 3 to achieve better time and space complexity.

Below, we abbreviate q = qh<k,Uk,G>k
and h = h<k. When sampling from Ik, observe that G>k is

the same for all samples. We compute a symmetric eigendecomposition G>k = V ΛV ⊤, where each
column of V is an eigenvector of G>k and Λ = diag((λu)

R
u=1) contains the eigenvalues along the

diagonal. This allows us to rewrite entries of q as

q [s] = C−1
R∑

u=1

λu⟨hh⊤, Uk [s, :]
⊤
Uk [s, :] , V [:, u]V [:, u]

⊤⟩. (8)

Define matrix W ∈ RIk×R elementwise by

W [t, u] := ⟨hh⊤, Uk [t, :]
⊤
Uk [t, :] , V [:, u]V [:, u]

⊤⟩

and observe that all of its entries are nonnegative. Since λu ≥ 0 for all u (G>k is p.s.d.), we can
write q as a mixture of probability distributions given by the normalized columns of W :

q =

R∑
u=1

w [u]
W [:, u]

∥W [:, u]∥1
,

where the vector w of nonnegative weights is given by w [u] = (C−1λu ∥W [:, u]∥1). Rewriting q
in this form gives us the two stage sampling procedure: first sample a component u of the mixture
according to the weight vector w, then sample an index in {1..Ik} according to the probability vector

6



defined by W [:, u] / ∥W [:, u]∥1. Let ûk be a random variable distributed according to the probability
mass vector w. We have, for C taken from Theorem 3.1,

p(ûk = uk) = C−1λuk

Ik∑
t=1

W [t, uk]

= C−1λuk
⟨hh⊤, V [:, uk]V [:, uk]

⊤
, Gk⟩

= qh,
√
ΛV ⊤,Gk

[uk] .

(9)

Hence, we can use point 2 of Lemma 3.2 to sample a value for ûk efficiently. Because
√
ΛV ⊤

has only R rows with R ∼ 102, we can choose tuning parameter F = 1 to achieve lower time per
sample while incurring a modest O(R3) space overhead. Now, introduce a random variable t̂k with
distribution conditioned on ûk = uk given by

p(t̂k = tk | ûk = uk) := W [tk, uk] / ∥W [:, uk]∥1 . (10)

This distribution is well-defined, since we suppose that ûk = uk occurs with nonzero probability
e [uk], which implies that ∥W [:, uk]∥1 ̸= 0. Our remaining task is to efficiently sample from the
distribution above. Below, we abbreviate h̃ = V [:, uk]⊛ h and derive

p(t̂k = tk | ûk = uk) =
⟨hh⊤, Uk [tk, :]

⊤
Uk [tk, :] , V [:, uk]V [:, uk]

⊤⟩
∥W [:, uk]∥1

=
⟨h̃h̃⊤, Uk [tk, :]

⊤
Uk [tk, :] , [1]⟩

∥W [:, uk]∥1
= qh̃,Uk,[1]

[tk] .

(11)

Based on the last line of Equation (11), we apply Lemma 3.2 again to build an efficient data structure
to sample a row of Uk. Since Y = [1] is a rank-1 matrix, we can use point 3 of the lemma and select
a larger parameter value F = R to reduce space usage. The sampling time for this stage becomes
O(R2 log⌈Ij/R⌉).
To summarize, Algorithms 1 and 2 give the construction and sampling procedures for our data
structure. They rely on the “BuildSampler" and “RowSample" procedures from Algorithms 3 and
4 in Appendix A.5, which relate to the data structure in Lemma 3.2. In the construction phase, we
build N data structures from Lemma 3.2 for the distribution in Equation (11). Construction costs
O
(∑N

j=1 IjR
2
)

, and if any matrix Uj changes, we can rebuild Zj in isolation. Because F = R,
the space required for Zj is O (IjR). In the sampling phase, the procedure in Algorithm 2 accepts
an optional index j of a matrix to exclude from the Khatri-Rao product. The procedure begins
by computing the symmetric eigendecomposition of each matrix G>k. The eigendecomposition
is computed only once per binary tree structure, and its computation cost is amortized over all J
samples. It then creates data structures Ek for each of the distributions specified by Equation (9).
These data structures (along with those from the construction phase) are used to draw ûk and t̂k in
succession. The random variables t̂k follow the distribution in Theorem 3.1 conditioned on prior
draws, so the multi-index (t̂k)k ̸=j follows the leverage score distribution on A, as desired. Appendix
A.6 proves the complexity claims in the theorem and provides further details about the algorithms.

3.3 Application to Tensor Decomposition

A tensor is a multidimensional array, and the CP decomposition represents a tensor as a sum of
outer products [13]. See Appendix A.9 for an overview. To approximately decompose tensor
T ∈ RI1×...×IN , the popular alternating least squares (ALS) algorithm begins with randomly
initialized factor matrices Uj , Uj ∈ RIj×R for 1 ≤ j ≤ N . We call the column count R the rank of
the decomposition. Each round of ALS solves N overdetermined least squares problems in sequence,
each optimizing a single factor matrix while holding the others constant. The j-th least squares
problem occurs in the update

Uj := argmin
X

∥∥U̸=j ·X⊤ − mat(T , j)⊤
∥∥
F

where U̸=j = UN ⊙ ...⊙Uj+1 ⊙Uj−1 ⊙ ...⊙U1 is the Khatri-Rao product of all matrices excluding
Uj and mat(·) denotes the mode-j matricization of tensor T . Here, we reverse the order of matrices

7



in the Khatri-Rao product to match the ordering of rows in the matricized tensor (see Appendix A.9
for an explicit formula for the matricization). These problems are ideal candidates for randomized
sketching [4, 12, 15], and applying the data structure in Theorem 1.1 gives us the STS-CP algorithm.

Corollary 3.3 (STS-CP). Suppose T is dense, and suppose we solve each least squares problem
in ALS with a randomized sketching algorithm. A leverage score sampling approach as defined in
section 2 guarantees that with Õ(R/(εδ)) samples per solve, the residual of each sketched least
squares problem is within (1 + ε) of the optimal residual with probability (1 − δ). The efficient
sampler from Theorem 1.1 brings the complexity of ALS to

Õ

#it
εδ

·
N∑
j=1

(
NR3 log Ij + IjR

2
)

where “#it" is the number of ALS iterations, and with any term log Ij replaced by logR if Ij < R.

Algorithm 1 ConstructKRPSampler(U1, ..., UN )

1: for j = 1..N do
2: Zj := BuildSampler(Uj , F = R, [1])
3: Gj := U⊤

j Uj

Algorithm 2 KRPSample(j, J)

1: G :=⊛k ̸=j Gk

2: for k ̸= j do
3: G>k := G+ ⊛⊛N

k=j+1 Gk

4: Decompose G>k = VkΛkV
⊤
k

5: Ek := BuildSampler(
√
Λk · V ⊤

k , F =
1, Gk)

6: for d = 1..J do
7: h = [1, ..., 1]

⊤

8: for k ̸= j do
9: ûk := RowSample(Ek, h)

10: t̂k := RowSample(Zk, h⊛ (Vk [:, ûk]))
11: h ∗= Uk

[
t̂k, :
]

12: sd = (t̂k)k ̸=j

13: return s1, ..., sJ

The proof appears in Appendix A.9 and com-
bines Theorem 1.1 with Theorem 2.1. STS-CP
also works for sparse tensors and likely provides
a greater advantage here than the dense case, as
sparse tensors tend to have much larger mode
size [25]. The complexity for sparse tensors de-
pends heavily on the sparsity structure and is
difficult to predict. Nevertheless, we expect a
significant speedup based on prior works that
use sketching to accelerate CP decomposition
[6, 15].

4 Experiments

Experiments were conducted on CPU nodes
of NERSC Perlmutter, an HPE Cray EX
supercomputer, and our code is available
at https://github.com/vbharadwaj-bk/
fast_tensor_leverage.git. On tensor de-
composition experiments, we compare our algo-
rithms against the random and hybrid versions of
CP-ARLS-LEV proposed by Larsen and Kolda
[15]. These algorithms outperform uniform sam-
pling and row-norm-squared sampling, achiev-
ing excellent accuracy and runtime relative to
exact ALS. In contrast to TNS-CP and the Gaus-
sian tensor network embedding proposed by Ma
and Solomonik (see Table 1), CP-ARLS-LEV
is one of the few algorithms that can practically
decompose sparse tensors with mode sizes in the millions. In the worst case, CP-ARLS-LEV requires
Õ(RN−1/(εδ)) samples per solve for an N -dimensional tensor to achieve solution guarantees like
those in Theorem 2.1, compared to Õ(R/(εδ)) samples required by STS-CP. Appendices A.10, A.11,
and A.13 provide configuration details and additional results.

4.1 Runtime Benchmark

Figure 2 shows the time to construct our sampler and draw 50,000 samples from the Khatri-Rao
product of i.i.d. Gaussian initialized factor matrices. We quantify the runtime impacts of varying N ,
R, and I . The asymptotic behavior in Theorem 1.1 is reflected in our performance measurements,
with the exception of the plot that varies R. Here, construction becomes disproportionately cheaper
than sampling due to cache-efficient BLAS3 calls during construction. Even when the full Khatri-Rao
product has ≈ 3.78 × 1022 rows (for I = 225, N = 3, R = 32), we require only 0.31 seconds on
average for sampling (top plot, rightmost points).

8

https://github.com/vbharadwaj-bk/fast_tensor_leverage.git
https://github.com/vbharadwaj-bk/fast_tensor_leverage.git


102 103 104 105 106 107

I

10 3

10 2

10 1

100

Ti
m

e 
(s

)

R = 32, N = 3

16 32 64 128
R

0

1

2

Ti
m

e 
(s

)

I = 222, N=3

2 4 6 8
N

0.2

0.4

0.6

I = 222, R=32

Construction Sampling

Figure 2: Average time (5 trials) to construct
our proposed sampler and draw J = 50, 000
samples from U1⊙...⊙UN , with Uj ∈ RI×R ∀j.
Error bars indicate 3 standard deviations.

4 5 6 7 8 9 104 5 6 7 8 9 10
N

10 6

10 5

10 4

10 3

10 2

10 1

100

101

R
es

id
ua

l E
rr

or
 

R = 64

16 32 64 128
R

N = 6

10 1

100

101

102

D
is

to
rt

io
n 

D
(S

, A
)

R = 64 N = 6

Product Approximation
Our Sampler

Figure 3: Distortion and residual error (50 tri-
als) for varying R and N on least squares, I =
216, J = 5000. “X” marks indicate outliers 1.5
times the interquartile range beyond the median,
stars indicate means.

4.2 Least Squares Accuracy Comparison

We now test our sampler on least squares problems of the form minx ∥Ax− b∥, where A = U1 ⊙
... ⊙ UN with Uj ∈ RI×R for all j. We initialize all matrices Uj entrywise i.i.d. from a standard
normal distribution and randomly multiply 1% of all entries by 10. We choose b as a Kronecker
product c1⊗ ...⊗cN , with each vector cj ∈ RI also initialized entrywise from a Gaussian distribution.
We assume this form for b to tractably compute the exact solution to the linear least squares problem
and evaluate the accuracy of our randomized methods. We do not give our algorithms access to the
Kronecker form of b; they are only permitted on-demand, black-box access to its entries.

For each problem instance, define the distortion of our sampling matrix S with respect to the column
space of A as

D(S,A) =
κ(SQ)− 1

κ(SQ) + 1
(12)

where Q is an orthonormal basis for the column space of A and κ(SQ) is the condition number of SQ.
A higher-quality sketch S exhibits lower distortion, which quantifies the preservation of distances
from the column space of A to the column space of SA [20]. For details about computing κ(SQ)

efficiently when A is a Khatri-Rao product, see Appendix A.12. Next, define ε =
residualapprox

residualopt
− 1,

where residualapprox is the residual of the randomized least squares algorithm. ε is nonnegative and
(similar to its role in Theorem 2.1) quantifies the quality of the randomized algorithm’s solution.

For varying N and R, Figure 3 shows the average values of D and ε achieved by our algorithm
against the leverage product approximation used by Larsen and Kolda [15]. Our sampler exhibits
nearly constant distortion D for fixed rank R and varying N , and it achieves ε ≈ 10−2 even when
N = 9. The product approximation increases both the distortion and residual error by at least an
order of magnitude.

4.3 Sparse Tensor Decomposition

We next apply STS-CP to decompose several large sparse tensors from the FROSTT collection [25]
(see Appendix A.11 for more details on the experimental configuration). Our accuracy metric is the
tensor fit. Letting T̃ be our low-rank CP approximation, the fit with respect to ground-truth tensor T
is fit(T̃ , T ) = 1−

∥∥∥T̃ − T
∥∥∥
F
/ ∥T ∥F .

Table 4 in Appendix A.13.1 compares the runtime per round of our algorithm against the Tensorly
Python package [14] and Matlab Tensor Toolbox [3], with dramatic speedup over both. As Figure 4
shows, the fit achieved by CP-ARLS-LEV compared to STS-CP degrades as the rank increases for

9



25 50 75 100 125
Target Rank

0.20

0.22

0.24

Fi
t

Uber (~3.3e6 nz)

25 50 75 100 125
Target Rank

0.05

0.10

0.15

0.20

Fi
t

Enron* (~5.4e7 nz)

25 50 75 100 125
Target Rank

0.05

0.06

0.07

0.08

Fi
t

NELL-2* (~7.7e7 nz)

25 50 75 100 125
Target Rank

0.34

0.36

0.38

0.40

Fi
t

Amazon (~1.8e9 nz)

25 50 75 100 125
Target Rank

0.06

0.08

0.10

Fi
t

Reddit* (~4.7e9 nz)
CP-ARLS-LEV
CP-ARLS-LEV (hybrid)
STS-CP (ours)
Exact Solve

Figure 4: Average fits (8 trials) achieved by randomized (J = 216) and exact ALS for sparse tensor
CP decomposition. Error bars indicate 3 standard deviations. See Appendix A.11 for details.

0 10 20 30
LSTSQ Problem Number

10 3

10 2
Amazon

0 10 20 30 40
LSTSQ Problem Number

10 3

10 2

Uber

CP-ARLS-LEV hybrid STS-CP (ours)

Figure 5: Average ε (5 runs) for randomized
least squares solves in 10 ALS rounds, R = 50.

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

0.080

0.085

0.090

0.095

0.100

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

Figure 6: Fit vs. time, Reddit tensor, R = 100.
Thick lines are averages 4 trial interpolations.

fixed sample count. By contrast, STS-CP improves the fit consistently, with a significant improvement
at rank 125 over CP-ARLS-LEV. Timings for both algorithms are available in Appendix A.13.5.
Figure 5 explains the higher fit achieved by our sampler on the Uber and Amazon tensors. In the first
10 rounds of ALS, we compute the exact solution to each least squares problem before updating the
factor matrix with a randomized algorithm’s solution. Figure 5 plots ε as ALS progresses for hybrid
CP-ARLS-LEV and STS-CP. The latter consistently achieves lower residual per solve. We further
observe that CP-ARLS-LEV exhibits an oscillating error pattern with period matching the number of
modes N .

To assess the tradeoff between sampling time and accuracy, we compare the fit as a function of
ALS update time for STS-CP and random CP-ARLS-LEV in Figure 6 (time to compute the fit
excluded). On the Reddit tensor with R = 100, we compared CP-ARLS-LEV with J = 216 against
CP-ARLS-LEV with progressively larger sample count. Even with 218 samples per randomized least
squares solve, CP-ARLS-LEV cannot achieve the maximum fit of STS-CP. Furthermore, STS-CP
makes progress more quickly than CP-ARLS-LEV. See Appendix A.13.4 for similar plots for other
datasets.

5 Discussion and Future Work

Our method for exact Khatri-Rao leverage score sampling enjoys strong theoretical guarantees and
practical performance benefits. Especially for massive tensors such as Amazon and Reddit, our
randomized algorithm’s guarantees translate to faster progress to solution and higher final accuracies.
The segment tree approach described here can be applied to sample from tensor networks besides the
Khatri-Rao product. In particular, modifications to Lemma 3.2 permit efficient leverage sampling
from a contraction of 3D tensor cores in ALS tensor train decomposition. We leave the generalization
of our fast sampling technique as future work.

10



Acknowledgements, Funding, and Disclaimers

We thank the referees for valuable feedback which helped improve the paper.

V. Bharadwaj was supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship
under Award Number DE-SC0022158. O. A. Malik and A. Buluç were supported by the Office
of Science of the DOE under Award Number DE-AC02-05CH11231. L. Grigori was supported
by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program through grant agreement 810367. R. Murray was supported by Laboratory
Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director,
Office of Science, of the U.S. DOE under Contract No. DE-AC02-05CH11231. R. Murray was also
funded by an NSF Collaborative Research Framework under NSF Grant Nos. 2004235 and 2004763.
This research used resources of the National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility, under Contract No. DE-AC02-05CH11231 using NERSC award
ASCR-ERCAP0024170.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government or any agency thereof.

References
[1] Thomas D. Ahle, Michael Kapralov, Jakob B. T. Knudsen, Rasmus Pagh, Ameya Velingker,

David P. Woodruff, and Amir Zandieh. Oblivious Sketching of High-Degree Polynomial Kernels,
pages 141–160. Society for Industrial and Applied Mathematics, 2020. doi: 10.1137/1.
9781611975994.9.

[2] Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on computing, 39(1):302–322, 2009.

[3] Brett W. Bader and Tamara G. Kolda. Efficient matlab computations with sparse and factored
tensors. SIAM Journal on Scientific Computing, 30(1):205–231, 2008. doi: 10.1137/060676489.

[4] Casey Battaglino, Grey Ballard, and Tamara G. Kolda. A practical randomized CP tensor
decomposition. SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018. doi:
10.1137/17M1112303.

[5] Ke Chen, Qin Li, Kit Newton, and Stephen J. Wright. Structured random sketching for PDE
inverse problems. SIAM Journal on Matrix Analysis and Applications, 41(4):1742–1770, 2020.
doi: 10.1137/20M1310497.

[6] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. SPALS: Fast alternating least
squares via implicit leverage scores sampling. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[7] Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching for
Kronecker product regression and low rank approximation. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

[8] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. J. Mach. Learn. Res., 13(1):
3475–3506, dec 2012. ISSN 1532-4435.

[9] Matthew Fahrbach, Gang Fu, and Mehrdad Ghadiri. Subquadratic Kronecker regression with
applications to tensor decomposition. In Advances in Neural Information Processing Systems,
volume 35, pages 28776–28789. Curran Associates, Inc., 2022.

11



[10] Azzam Haidar, Tingxing Dong, Stanimire Tomov, Piotr Luszczek, and Jack Dongarra. Frame-
work for batched and GPU-resident factorization algorithms to block Householder transforma-
tions. In ISC High Performance, Frankfurt, Germany, 07-2015 2015. Springer, Springer.

[11] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288,
2011. doi: 10.1137/090771806.

[12] Ruhui Jin, Tamara G Kolda, and Rachel Ward. Faster Johnson–Lindenstrauss transforms via
Kronecker products. Information and Inference: A Journal of the IMA, 10(4):1533–1562,
October 2020. ISSN 2049-8772. doi: 10.1093/imaiai/iaaa028.

[13] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, August 2009. ISSN 0036-1445. doi: 10.1137/07070111X. Publisher: Society
for Industrial and Applied Mathematics.

[14] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python. Journal of Machine Learning Research (JMLR), 20(26), 2019.

[15] Brett W. Larsen and Tamara G. Kolda. Practical leverage-based sampling for low-rank tensor
decomposition. SIAM J. Matrix Analysis and Applications, 43(3):1488–1517, August 2022. doi:
10.1137/21M1441754.

[16] Shuangzhe Liu and Götz Trenkler. Hadamard, Khatri-Rao, Kronecker and other matrix products.
International Journal of Information and Systems Sciences, 4(1):160–177, 2008.

[17] Linjian Ma and Edgar Solomonik. Cost-efficient gaussian tensor network embeddings for
tensor-structured inputs. In Advances in Neural Information Processing Systems, volume 35,
pages 38980–38993. Curran Associates, Inc., 2022.

[18] Osman Asif Malik. More efficient sampling for tensor decomposition with worst-case guarantees.
In Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 14887–14917. PMLR, 17–23 Jul 2022.

[19] Osman Asif Malik, Vivek Bharadwaj, and Riley Murray. Sampling-based decomposition
algorithms for arbitrary tensor networks, October 2022. arXiv:2210.03828 [cs, math].

[20] Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson, Maksim Mel-
nichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek, Michał Dereziński, Miles E.
Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra. Randomized numerical linear algebra :
A perspective on the field with an eye to software, 2023.

[21] Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. In Advances
in Neural Information Processing Systems, volume 35, pages 4791–4804. Curran Associates,
Inc., 2022.

[22] Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka. Optimal
approximate sampling from discrete probability distributions. Proceedings of the ACM on
Programming Languages, 4(POPL):1–31, January 2020. ISSN 2475-1421. doi: 10.1145/
3371104.

[23] N.D. Sidiropoulos and R.S. Budampati. Khatri-Rao space-time codes. IEEE Transactions on
Signal Processing, 50(10):2396–2407, 2002. doi: 10.1109/TSP.2002.803341.

[24] Shaden Smith and George Karypis. SPLATT: The Surprisingly ParalleL spArse Tensor Toolkit.
https://github.com/ShadenSmith/splatt, 2016.

[25] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George
Karypis. FROSTT: The formidable repository of open sparse tensors and tools, 2017. URL
http://frostt.io/.

12

https://github.com/ShadenSmith/splatt
http://frostt.io/


[26] Linghao Song, Yuze Chi, Atefeh Sohrabizadeh, Young-kyu Choi, Jason Lau, and Jason Cong.
Sextans: A streaming accelerator for general-purpose sparse-matrix dense-matrix multiplication.
In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’22, page 65–77, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450391498. doi: 10.1145/3490422.3502357.

[27] Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and guaranteed
tensor decomposition via sketching. Advances in neural information processing systems, 28,
2015.

[28] Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, and Viktor Prasanna. Accelerating
sparse MTTKRP for tensor decomposition on FPGA. In Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA ’23, page 259–269, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394178. doi:
10.1145/3543622.3573179.

[29] David Woodruff and Amir Zandieh. Leverage score sampling for tensor product matrices in
input sparsity time. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 23933–23964. PMLR, 17–23
Jul 2022.

[30] David P Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014.

[31] Yao Yu, Athina P. Petropulu, and H. Vincent Poor. MIMO radar using compressive sampling.
IEEE Journal of Selected Topics in Signal Processing, 4(1):146–163, February 2010. doi:
10.1109/JSTSP.2009.2038973.

13



A Appendix

A.1 Details about Table 1

CP-ALS [13] is the standard, non-randomized alternating least squares method given by Algorithm
6 in Appendix A.9. The least squares problems in the algorithm are solved by exact methods.
CP-ARLS-LEV is the algorithm proposed by Larsen and Kolda [15] that samples rows from the
Khatri-Rao product according to a product distribution of leverage scores on each factor matrix. The
per-iteration runtimes for both algorithms are re-derived in Appendix C.3 of the work by Malik [18]
from their original sources. Malik [18] proposed the CP-ALS-ES algorithm (not listed in the table),
which is superseded by the TNS-CP algorithm [19]. We report the complexity from Table 1 of the
latter work. The algorithm by Ma and Solomonik [17] is based on a general method to sketch tensor
networks. Our reported complexity is listed in Table 1 for Algorithm 1 in their work.

Table 1 does not list the one-time initialization costs for any of the methods. All methods require
at least O(NIR) time to randomly initialize factor matrices, and CP-ALS requires no further setup.
CP-ARLS-LEV, TNS-CP, and STS-CP all require O(NIR2) initialization time. CP-ARLS-LEV
uses the initialization phase to compute the initial leverage scores of all factor matrices. TNS-CP uses
the initialization step to compute and cache Gram matrices of all factors Uj . STS-CP must build the
efficient sampling data structure described in Theorem 1.1. The algorithm from Ma and Solomonik
requires an initialization cost of O(INm), where m is a sketch size parameter that is O(NR/ε2) to
achieve the (ε, δ) accuracy guarantee for each least squares solve.

A.2 Definitions of Matrix Products

Table 2 defines the standard matrix product ·, Hadamard product ⊛, Kronecker product ⊗, and
Khatri-Rao product ⊙, as well as the dimensions of their operands.

Table 2: Matrix product definitions.

OPERATION SIZE OF A SIZE OF B SIZE OF C DEFINITION

C = A ·B (m, k) (k, n) (m,n) C[i, j] =
∑k

a=1 A [i, a]B [a, j]
C = A⊛B (m,n) (m,n) (m,n) C [i, j] = A [i, j]B [i, j]
C = A⊗B (m1, n1) (m2, n2) (m2m1, n2n1) C [(i2, i1), (j2, j1)] = A [i1, j1]B [i2, j2]
C = A⊙B (m1, n) (m2, n) (m2m1, n) C [(i2, i1), j] = A [i1, j]B [i2, j]

A.3 Further Comparison to Prior Work

In this section, we provide a more detailed comparison of our sampling algorithm with the one
proposed by Woodruff and Zandieh [29]. Their work introduces a ridge leverage-score sampling
algorithm for Khatri-Rao products with the attractive property that the sketch can be formed in
input-sparsity time. For constant failure probability δ, the runtime to produce a (1± ϵ) ℓ2-subspace
embedding for A = U1 ⊙ ... ⊙ UN is given in Appendix B of their work (proof of Theorem 2.7).
Adapted to our notation, their runtime is

O

(
log4 R logN

N∑
i=1

nnz(Ui) +
N7s2λR

ε4
log5 R logN

)

where sλ =
∑R

i=1
λi

λi+λ , λ1, ..., λR are the eigenvalues of the Gram matrix G of matrix A, and λ ≥ 0
is a regularization parameter. For comparison, our runtime for constant failure probability δ is

O

(
R

N∑
i=1

nnz(Ui) +
R3

ε
log

(
N∏
i=1

Ii

)
logR

)
.

Woodruff and Zandieh’s method provides a significant advantage for large column count R or high
regularization parameter λ. As a result, it is well-suited to the problem of regularized low-rank
approximation when the column count R is given by the number of data points in a dataset. On the

14



other hand, the algorithm has poor dependence on the matrix count N and error parameter ε. For
tensor decomposition, R is typically no larger than a few hundred, while high accuracy (ϵ ≈ 10−3) is
required for certain tensors to achieve a fit competitive with non-randomized methods (see section
4.3, Figures 4 and 5). When λ is small, we have sλ ≈ R. Here, Woodruff and Zandieh’s runtime has
an O(R3) dependence similar to ours. When R ≤ log4 R logN , our sampler has faster construction
time as well.

Finally, we note that our sampling data structure can be constructed using highly cache-efficient,
parallelizable symmetric rank-R updates (BLAS3 operation dSYRK). As a result, the quadratic
dependence on R in our algorithm can be mitigated by dense linear algebra accelerators, such as
GPUs or TPUs.

A.4 Proof of Theorem 3.1

Theorem 3.1 appeared in a modified form as Lemma 10 in the work by Malik [18]. This original
version used the definition G̃>k = Φ⊛⊛N

a=k+1 Gk in place of G>k defined in Equation (4), where
Φ was a sketched approximation of G+. Woodruff and Zandieh [29] exhibit a version of the theorem
with similar modifications. We prove the version stated in our work below.

Proof of Theorem 3.1. We rely on the assumption that the Khatri-Rao product A is a nonzero matrix
(but it may be rank-deficient). We begin by simplifying the expression for the leverage score of a row
of A corresponding to multi-index (i1, ..., iN ). Beginning with Equation (2), we derive

ℓi1,...,iN = A [(i1, ..., iN ), :]G+A [(i1, ..., iN ), :]
⊤

= ⟨A [(i1, ..., iN ), :]
⊤
A [(i1, ..., iN ), :] , G+⟩

= ⟨

(
N

⊛
a=1

Ua [ia, :]

)⊤( N

⊛
a=1

Ua [ia, :]

)
, G+⟩

= ⟨
N

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , Uk [ik, :]

⊤
Uk [ik, :]⊛

N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :] , G

+⟩

= ⟨
k−1

⊛
a=1

Ua [ia, :]
⊤
Ua [ia, :] , Uk [ik, :]

⊤
Uk [ik, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩.

(13)
We proceed to the main proof of the theorem. To compute p(ŝk = sk | ŝ<k = s<k), we marginalize
over random variables ŝk+1...ŝN . Recalling the definition of h<k from Equation (3), we have

p(ŝk = sk | ŝ<k = s<k) ∝
∑

ik+1,...,iN

p

(
(ŝ<k = s<k) ∧ (ŝk = sk) ∧

N∧
u=k+1

(ŝu = iu)

)
∝

∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN .

(14)

The first line above follows by marginalizing over ŝk+1, ..., ŝN . The second line follows because the
joint random variable (ŝ1, ..., ŝN ) follows the distribution of statistical leverage scores on the rows of

15



A. We now plug in Equation (13) to get∑
ik+1,...,iN

ℓs1,...,sk,ik+1,...,iN

=
∑

ik+1,...,iN

⟨
k−1

⊛
a=1

Ua [sa, :]
⊤
Ua [sa, :] , Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩

=
∑

ik+1,...,iN

⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ua [ia, :]
⊤
Ua [ia, :]⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ia∑
ia=1

Ua [ia, :]
⊤
Ua [ia, :]⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G

+ ⊛
N

⊛
a=k+1

Ga⟩

= ⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩.

(15)
We now compute the normalization constant C for the distribution by summing the last line of
Equation (15) over all possible values for ŝk:

C =

Ik∑
sk=1

⟨h<kh
⊤
<k, Uk [sk, :]

⊤
Uk [sk, :] , G>k⟩

= ⟨h<kh
⊤
<k,

Ik∑
sk=1

Uk [sk, :]
⊤
Uk [sk, :] , G>k⟩

= ⟨h<kh
⊤
<k, Gk, G>k⟩.

(16)

For k = 1, we have h<k = [1, ..., 1]
⊤, so C = ⟨Gk, G>k⟩. Then C is the sum of all leverage

scores, which is known to be the rank of A [30]. Since A was assumed nonzero, C ̸= 0. For k > 1,
assume that the conditioning event ŝ<k = s<k occurs with nonzero probability. This is a reasonable
assumption, since our sampling algorithm will never select prior values ŝ1, ..., ŝk−1 that have 0
probability of occurrence. Let C̃ be the normalization constant for the conditional distribution on
ŝk−1. Then we have

0 < p(ŝk−1 = sk−1 | ŝ<k−1 = s<k−1)

= C̃−1⟨h<k−1h
⊤
<k−1, Uk−1 [sk−1, :]

⊤
Uk−1 [sk−1, :] , G>k−1⟩

= C̃−1⟨h<kh
⊤
<k, G>k−1⟩

= C̃−1⟨h<kh
⊤
<k, Gk ⊛G>k⟩

= C̃−1⟨h<kh
⊤
<k, Gk, G>k⟩

= C̃−1C

(17)

Since C̃ > 0, we must have C > 0.

A.5 Proof of Lemma 3.2

We detail the construction procedure, sampling procedure, and correctness of our proposed data
structure. Recall that TI,F denotes the collection of nodes in a full, complete binary tree with ⌈I/F ⌉
leaves. Each leaf v ∈ TI,F holds a segment S(v) = {S0(v)..S1(v)} ⊆ {1..I}, with |S(v)| ≤ F and
S(u)∩S(v) = ∅ for distinct leaves u, v. For each internal node v, S(v) = S(L(v))∪S(R(v)), where
L(v) and R(v) denote the left and right children of node v. The root node r satisfies S(r) = {1..I}.

Construction: Algorithm 3 gives the procedure to build the data structure. We initialize a segment
tree TI,F and compute Gv for all leaf nodes v ∈ TI,F as a sum of outer products of rows from U
(lines 1-3). Starting at the level above the leaves, we then compute Gv for each internal node as

16



the sum of GL(v) and GR(v), the partial Gram matrices of its two children. Runtime O(IR2) is
required to compute I outer products across all iterations of the loop on line 3. Our segment tree has
⌈I/F ⌉ − 1 internal nodes, and the addition in line 6 contributes runtime O(R2) for each internal
node. This adds complexity O(R2(⌈I/F ⌉ − 1)) ≤ O(IR2), for total construction time O(IR2).

To analyze the space complexity, observe that we store a matrix Gv ∈ RR×R at all 2⌈I/F ⌉−1 nodes
of the segment tree, for asymptotic space usage O(⌈I/F ⌉R2). We can cut the space usage in half by
only storing Gv when v is either the root or a left child in our tree, since the sampling procedure in
Algorithm 4 only accesses the partial Gram matrix stored by left children. We can cut the space usage
in half again by only storing the upper triangle of each symmetric matrix Gv . Finally, in the special
case that I < F , the segment tree has depth 1 and the initial binary search can be eliminated entirely.
As a result, the data structure has O(1) space overhead, since we can avoid storing any partial Gram
matrices Gv . This proves the complexity claims in point 1 of Lemma 3.2.

Algorithm 3 BuildSampler(U ∈ RI×R, F , Y )

1: Build tree TI,F with depth d = ⌈log⌈I/F ⌉⌉
2: for v ∈ leaves(TI,F ) do
3: Gv :=

∑
i∈S(v) U [i, :]

⊤
U [i, :]

4: for u = d− 2...0 do
5: for v ∈ level(TI,F , u) do
6: Gv := GL(v) +GR(v)

Sampling: Algorithm 4 gives the procedure to draw a sample from our proposed data structure.
It is easy to verify that the normalization constant C for qh,U,Y is ⟨hh⊤, Groot(TI,F ), Y ⟩, since
Groot(TI,F ) = U⊤U . Lines 8 and 9 initialize a pair of templated procedures m̃ and q̃, each of which
accepts a node from the segment tree. The former is used to compute the branching threshold at
each internal node, and the latter returns the probability vector qh,U,Y [S0(v) : S1(v)] for the segment
{S0(v)..S1(v)} maintained by a leaf node. To see this last fact, observe for i ∈ [I] that

q̃(v) [i− S0(v)]

= C−1U [i, :] · (hh⊤ ⊛ Y ) · U [i, :]
⊤

= C−1⟨hh⊤, U [i, :]
⊤
U [i, :] , Y ⟩

= qh,U,Y [i] .

(18)

The loop on line 12 performs the binary search using the two templated procedures. Line 18 uses the
procedure q̃ to scan through at most F bin endpoints after the binary search finishes early.

The depth of segment tree TI,F is log⌈I/F ⌉. As a result, the runtime of the sampling procedure is
dominated by log⌈I/F ⌉ evaluations of m̃ and a single evaluation of q̃ during the binary search. Each
execution of procedure m̃ requires time O(R2), relying on the partial Gram matrices Gv computed
during the construction phase. When Y is a general p.s.d. matrix, the runtime of q̃ is O(FR2). This
complexity is dominated by the matrix multiplication W · (hh⊤ ⊛ Y ) on line 5. In this case, the
runtime of the “RowSampler" procedure to draw one sample is O(R2 log⌈I/F ⌉+ FR2), satisfying
the complexity claims in point 2 of the lemma.

Now supppose Y is a rank-1 matrix with Y = uu⊤ for some vector u. We have hh⊤ ⊛ Y =
(h⊛ u)(h⊛ u)⊤. This gives

q̃p(h,C, v) = diag(W · (hh⊤ ⊛ uu⊤) ·W ) = (W · (h⊛ u))2

where the square is elementwise. The runtime of the procedure q̃ is now dominated by a matrix-vector
multiplication that costs time O(FR). In this case, we have per-sample complexity O(R2 log⌈I/F ⌉+
FR), matching the complexity claim in point 3 of the lemma.

Correctness: Recall that the inversion sampling procedure partitions the interval [0, 1] into I bins,
the i-th bin having width qh,U,Y [i]. The goal of our procedure is to find the bin that contains the
uniform random draw d. Since procedure m̃ correctly returns the branching threshold (up to the
offset “low”) given by Equation (7), the loop on line 12 correctly implements a binary search on
the list of bin endpoints specified by the vector qh,U,Y . At the end of the loop, c is a leaf node that

17



Algorithm 4 Row Sampling Procedure

Require: Matrices U, Y saved from construction, partial Gram matrices {Gv | v ∈ TI,F }.
1: procedure mp(h,C, v)
2: return C−1⟨hh⊤, Gv, Y ⟩
3: procedure qp(h,C, v)
4: W := U [S(v), :]
5: return C−1diag(W · (hh⊤ ⊛ Y ) ·W⊤)
6: procedure RowSample(h)
7: C := ⟨hh⊤, Groot(TI,F ), Y ⟩
8: m̃(·) := mp(h,C, ·)
9: q̃(·) := qp(h,C, ·)

10: c := root(TI,F ), low = 0.0, high = 1.0
11: Sample d ∼ Uniform(0.0, 1.0)
12: while c /∈ leaves(TI,F ) do
13: cutoff := low + m̃(L(c))
14: if cutoff ≥ d then
15: c := L(c), high := cutoff
16: else
17: c := R(c), low := cutoff
18: return S0(v) + argmini≥0

(
low +

∑i
j=1 q̃(c) [j] < d

)

maintains a collection S(c) of bins, one of which contains the random draw d. Since the procedure
q̃ correctly returns probabilities qh,U,Y [i] for i ∈ S(c) for leaf node c, (see Equation (18)), line 18
finds the bin that contains the random draw d. The correctness of the procedure follows from the
correctness of inversion sampling [22].

A.6 Cohesive Proof of Theorem 1.1

In this proof, we fully explain Algorithms 1 and 2 in the context of the sampling procedure outlined
in section 3.2. We verify the complexity claims first and then prove correctness.

Construction and Update: For each matrix Uj , Algorithm 1 builds an efficient row sampling data
structure Zj as specified by Lemma 3.2. We let the p.s.d. matrix Y that parameterizes each sampler
be a matrix of ones, and we set F = R. From Lemma 3.2, the time to construct sampler Zj is
O(IjR

2). The space used by sampler Zj is O(⌈Ij/F ⌉R2) = O(IjR), since F = R. In case Ij < R,
we use the special case described in Appendix A.5 to get a space overhead O(1), avoiding a term
O(R2) in the space complexity.

Summing the time and space complexities over all j proves part 1 of the theorem. To update the
data structure if matrix Uj changes, we only need to rebuild sampler Zj for a cost of O(IjR

2). The
construction phase also computes and stores the Gram matrix Gj for each matrix Uj . We defer the
update procedure in case a single entry of matrix Uj changes to Appendix A.7.

Sampling: For all indices k (except possibly j), lines 1-5 from Algorithm 2 compute G>k and
its eigendecomposition. Only a single pass over the Gram matrices Gk is needed, so these steps
cost O(R3) for each index k. Line 5 builds an efficient row sampler Ek for the matrix of scaled
eigenvectors

√
Λk · Vk. For sampler k, we set Y = Gk with cutoff parameter F = 1. From Lemma

3.2, the construction cost is O(R3) for each index k, and the space required by each sampler is
O(R3). Summing these quantities over all k ̸= j gives asymptotic runtime O(NR3) for lines 2-5.

The loop spanning lines 6-12 draws J row indices from the Khatri-Rao product U ̸=j . For each
sample, we maintain a “history vector” h to write the variables h<k from Equation (3). For each
index k ̸= j, we draw random variable ûk using the row sampler Ek. This random draw indexes a
scaled eigenvector of G>k. We then use the history vector h multiplied by the eigenvector to sample
a row index t̂k using data structure Zk. The history vector h is updated, and we proceed to draw the
next index t̂k.

18



As written, lines 2-5 also incur scratch space usage O(NR3). The scratch space can be reduced to
O(R3) by exchanging the order of loops on line 6 and line 8 and allocating J separate history vectors
h, once for each draw. Under this reordering, we perform all J draws for each variable ûk and t̂k
before moving to ûk+1 and t̂k+1. In this case, only a single data structure Ek is required at each
iteration of the outer loop, and we can avoid building all the structures in advance on line 5. We keep
the algorithm in the form written for simplicity, but we implemented the memory-saving approach in
our code.

From Lemma 3.2, lines 9 and 10 cost O(R2 logR) and O
(
R2 log⌈Ik/R⌉

)
, respectively. Line 11

costs O(R) and contributes a lower-order term. Summing over all k ̸= j, the runtime to draw a single
sample is

O

∑
k ̸=j

(R2 log⌈Ik/R⌉+R2 logR)

 = O

∑
k ̸=j

R2 logmax (Ik, R)

 .

Adding the runtime for all J samples to the runtime of the loop spanning lines 2-6 gives runtime
O
(
NR3 + J

∑
k ̸=j R

2 logmax (Ik, R)
)

, and the complexity claims have been proven.

Correctness: We show correctness for the case where j = −1 and we sample from the Khatri-Rao
product of all matrices Uk, since the proof for any other value of j requires a simple reindexing of
matrices. To show that our sampler is correct, it is enough to prove the condition that for 1 ≤ k ≤ N ,

p(t̂k = tk | h<k) = qh<k,Uk,G>k
[tk] , (19)

since, by Theorem 3.1, p(ŝk = sk | ŝ<k = s<k) = qh<k,Uk,G>k
[sk]. This would imply that the joint

random variable (t̂1, ..., t̂N ) has the same probability distribution as (ŝ1, ..., ŝN ), which by definition
follows the leverage score distribution on U1 ⊙ ...⊙ UN . To prove the condition in Equation (19),
we apply Equations (9) and (11) derived earlier:

p(t̂k = tk | h<k)

=

R∑
uk=1

p(t̂k = tk | ûk = uk, h<k)p(ûk = uk | h<k) (Bayes’ Rule)

=

R∑
uk=1

w [uk]
W [tk, uk]

∥W [:, uk]∥1
(Equations (9) and (11), in reverse)

= qh<k,Uk,G>k
[tk] .

(20)

A.7 Efficient Single-Element Updates

Applications such as CP decomposition typically change all entries of a single matrix Uj between
iterations, incurring an update cost O(IjR

2) for our data structure from Theorem 1.1. In case only a
single element of Uj changes, our data structure can be updated in time O (R log Ij).

Proof. Algorithm 5 gives the procedure when the update Uj [r, c] := û is performed. The matrices
Gv refer to the partial Gram matrices maintained by each node v of the segment trees in our data
structure, and the matrix Ũj refers to the matrix Uj before the update operation.

Let TIj ,R be the segment tree corresponding to matrix Uj in the data structure, and let v ∈ TIj ,R be
the leaf whose segment contains r. Lines 3-5 of the algorithm update the row and column indexed by
c in the partial Gram matrix held by the leaf node.

The only other nodes requiring an update are ancestors of v, each holding a partial Gram matrix
that is the sum of its two children. Starting from the direct parent A(v), the loop on line 6 performs
these ancestor updates. The addition on line 8 only requires time O(R), since only row and column c
change between the old value of Gv and its updated version. Thus, the runtime of this procedure is
O(R log⌈Ij/R⌉) from multiplying the cost to update a single node by the depth of the tree.

19



Algorithm 5 UpdateSampler(j, r, c, û)

1: Let u = Ũj [r, c]
2: Locate v such that r ∈ S(v)

3: Update Gv [c, :] += (û− u)Ũj [r, :]

4: Update Gv [:, c] += (û− u)Ũj [r, :]
⊤

5: Update Gv [c, c] += (û− u)2

6: while v ̸= root(TIj ,R) do
7: vprev := v, v := A(v)

8: Update Gv := Gsibling(vprev) +Gvprev

A.8 Extension to Sparse Input Matrices

Our data structure is designed to sample from Khatri-Rao products U1 ⊙ ...⊙ UN where the input
matrices U1, ..., UN are dense, a typical situation in tensor decomposition. Slight modifications to
the construction procedure permit our data structure to handle sparse matrices efficiently as well. The
following corollary states the result as a modification to Theorem 1.1.

Corollary A.1 (Sparse Input Modification). When input matrices U1, ..., UN are sparse, point 1
of Theorem 1.1 can be modified so that the proposed data structure has O

(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space. The sampling time and scratch space
usage in point 2 of Theorem 1.1 does not change. The single-element update time in point 1 is likewise
unchanged.

Proof. We will modify the data structure in Lemma 3.2. The changes to its construction and storage
costs will propagate to our Khatri-Rao product sampler, which maintains one of these data structures
for each input matrix.

Let us restrict ourselves to the case F = R, Y = [1] in relation to the data structure in Lemma
3.2. These choices for F and Y are used in the construction phase given by Algorithm 1. The
proof in Appendix A.5 constrains each leaf v of a segment tree TI,F to hold a contiguous segment
S(v) ⊆ [I] of cardinality at most F . Instead, choose each segment S(v) = {S0(v)..S1(v)} so that
U [S0(v) : S1(v), :] has at most R2 nonzeros, and the leaf count of the tree is at most ⌈nnz(U)/R2⌉+1
for input matrix U ∈ RI×R. Assuming the nonzeros of U are sorted in row-major order, we can
construct such a partition of [I] into segments in time O(nnz(U)) by iterating in order through the
nonzero rows and adding each of them to a “current” segment. We shift to a new segment when the
current segment cannot hold any more nonzeros.

This completes the modification to the data structure in Lemma 3.2, and we now analyze its updated
time / space complexity.

Updated Construction / Update Complexity of Lemma 3.2, F = R, Y = [1]: Algorithm 3
constructs the partial Gram matrix for each leaf node v in the segment tree. Each nonzero in the
segment U [S0(v) : S1(v), :] contributes time O(R) during line 3 of Algorithm 3 to update a single
row and column of Gv. Summed over all leaves, the cost of line 3 is O(nnz(U)R). The remainder
of the construction procedure updates the partial Gram matrices of all internal nodes. Since there
are at most O

(
⌈nnz(U)/R2⌉

)
internal nodes and the addition on line 6 costs O(R2) per node, the

remaining steps of the construction procedure cost O(nnz(U)), a lower-order term. The construction
time is therefore O(nnz(U)R).

Since we store a single partial Gram matrix of size R2 at each of O
(
⌈nnz(U)/R2⌉

)
internal nodes,

the space complexity of our modified data structure is O(nnz(U)).

Finally, the data structure update time in case a single element of U is modified does not change from
Theorem 1.1. Since the depth of the segment tree ⌈nnz(U)/R2⌉+1 is upper-bounded by ⌈I/R⌉+1,
the runtime of the update procedure in Algorithm 5 stays the same.

Updated Sampling Complexity of Lemma 3.2, F = R, Y = [1]: The procedure “RowSample”
in Algorithm 4 now conducts a traversal of a tree of depth O(⌈nnz(U)/R2⌉). As a result, we

20



can still upper-bound the number of calls to procedure m̃ as ⌈I/F ⌉. The runtime of procedure
m̃ is unchanged. The runtime of procedure q̃ for leaf node c is dominated by the matrix-vector
multiplication U [S0(c) : S1(c), :] · h. This runtime is O (nnz (U [S0(c) : S1(c), :])) ≤ O

(
R2
)
.

Putting these facts together, the sampling complexity of the data structure in Lemma 3.2 does not
change under our proposed modifications for F = R, Y = [1].

Updated Construction Complexity of Theorem 1.1: Algorithm 1 now requires
O
(
R
∑N

j=1 nnz(Uj)
)

construction time and O
(∑N

j=1 nnz(Uj)
)

storage space, summing
the costs for the updated structure from Lemma 3.2 over all matrices U1, ..., UN . The sampling
complexity of these data structures is unaffected by the modifications, which completes the proof of
the corollary.

A.9 Alternating Least Squares CP Decomposition

CP Decomposition. CP decomposition represents an N -dimensional tensor T̃ ∈ RI1×...×In as a
weighted sum of generalized outer products. Formally, let U1, ..., UN with Uj ∈ RIj×R be factor
matrices with each column having unit norm, and let σ ∈ RR be a nonnegative coefficient vector.
We call R the rank of the decomposition. The tensor T̃ that the decomposition represents is given
elementwise by

T̃ [i1, ..., iN ] := ⟨σ⊤, U1 [i1, :] , ..., UN [iN , :]⟩ =
R∑

r=1

σ [r]U1[i1, r] · · ·UN [iN , r],

which is a generalized inner product between σ⊤ and rows Uj [ij , :] for 1 ≤ j ≤ N . Given an
input tensor T and a target rank R, the goal of approximate CP decomposition is to find a rank-R
representation T̃ that minimizes the Frobenius norm

∥∥∥T − T̃
∥∥∥
F

.

Definition of Matricization. The matricization mat(T , j) flattens tensor T ∈ RI1×...×IN into
a matrix and isolates mode j along the row axis of the output. The output of matricization has
dimensions Ij ×

∏
k ̸=j Ik. We take the formal definition below from a survey by Kolda and Bader

[13]. The tensor entry T [i1, ..., iN ] is equal to the matricization entry mat(T , j) [iN , u], where

u = 1 +

N∑
k=1
k ̸=j

(ik − 1)

k−1∏
m=1
m ̸=j

Im.

Details about Alternating Least Squares. Let U1, ..., UN be factor matrices of a low-rank CP
decomposition, Uk ∈ RIk×R. We use U̸=j to denote

⊙k=1
k=N,k ̸=j Uk. Note the inversion of order here

to match indexing in the definition of matricization above. Algorithm 6 gives the non-randomized
alternating least squares algorithm CP-ALS that produces a decomposition of target rank R given
input tensor T ∈ RI1×...×IN in general format. The random initialization on line 1 of the algorithm
can be implemented by drawing each entry of the factor matrices Uj according to a standard normal
distribution, or via a randomized range finder [11]. The vector σ stores the generalized singular
values of the decomposition. At iteration j within a round, ALS holds all factor matrices except Uj

constant and solves a linear-least squares problem on line 6 for a new value for Uj . In between least
squares solves, the algorithm renormalizes the columns of each matrix Uj to unit norm and stores
their original norms in the vector σ. Appendix A.11 contains more details about the randomized
range finder and the convergence criteria used to halt iteration.

We obtain a randomized algorithm for sparse tensor CP decomposition by replacing the exact least
squares solve on line 6 with a randomized method according to Theorem 2.1. Below, we prove
Corollary 3.3, which derives the complexity of the randomized CP decomposition algorithm.

Proof of Corollary 3.3. The design matrix U̸=j for optimization problem j within a round of ALS
has dimensions

∏
k ̸=j Ik ×R. The observation matrix mat(T , j)⊤ has dimensions

∏
k ̸=j Ik × Ij . To

achieve error threshold 1 + ε with probability 1− δ on each solve, we draw J = Õ (R/(εδ)) rows
from both the design and observation matrices and solve the downsampled problem (Theorem 2.1).

21



Algorithm 6 CP-ALS(T , R)

1: Initialize Uj ∈ RIj×R randomly for 1 ≤ j ≤ N .
2: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ j ≤ N, 1 ≤ i ≤ R.
3: Initialize σ ∈ RR to [1].
4: while not converged do
5: for j = 1...N do
6: Uj := argminX

∥∥U̸=j ·X⊤ − mat(T , j)⊤
∥∥
F

7: σ [i] = ∥Uj [:, i]∥2, 1 ≤ i ≤ R
8: Renormalize Uj [:, i] /= ∥Uj [:, i]∥2, 1 ≤ i ≤ R.
9: return [σ;U1, ..., UN ].

These rows are sampled according to the leverage score distribution on the rows of U̸=j , for which
we use the data structure in Theorem 1.1. After a one-time initialization cost O(

∑N
j=1 IjR

2)) before
the ALS iteration begins, the complexity to draw J samples (assuming Ij ≥ R) is

O

NR3 + J
∑
k ̸=j

R2 log Ik

 = Õ

NR3 +
R

εδ

∑
k ̸=j

R2 log Ik

 .

The cost to assemble the corresponding subset of the observation matrix is O(JIj) = Õ(RIj/(εδ)).
The cost to solve the downsampled least squares problem is O(JR2) = Õ(IjR

2/(εδ)), which
dominates the cost of forming the subset of the observation matrix. Finally, we require additional time
O(IjR

2) to update the sampling data structure (Theorem 1.1 part 1). Adding these terms together
and summing over 1 ≤ j ≤ N gives

Õ

 1

εδ
·

N∑
j=1

IjR2 +
∑
k ̸=j

R3 log Ik


= Õ

 1

εδ
·

N∑
j=1

[
IjR

2 + (N − 1)R3 log Ij
] .

(21)

Rounding N−1 to N and multiplying by the number of iterations gives the desired complexity. When
Ij < R for any j, the complexity changes in Theorem 1.1 propagate to the equation above. The col-

umn renormalization on line 8 of the CP-ALS algorithm contributes additional time O
(∑N

j=1 IjR
)

per round, a lower-order term.

A.10 Experimental Platform and Sampler Parallelism

We provide two implementations of our sampler. The first is a slow reference implementation written
entirely in Python, which closely mimics our pseudocode and can be used to test correctness. The
second is an efficient implementation written in C++, parallelized in shared memory with OpenMP
and Intel Thread Building Blocks.

Each Perlmutter CPU node (our experimental platform) is equipped with two sockets, each containing
an AMD EPYC 7763 processor with 64 cores. All benchmarks were conducted with our efficient
C++ implementation using 128 OpenMP threads. We link our code against Intel Thread Building
blocks to call a multithreaded sort function when decomposing sparse tensors. We use OpenBLAS
0.3.21 to handle linear algebra with OpenMP parallelism enabled, but our code links against any
linear algebra library implementing the CBLAS and LAPACKE interfaces.

Our proposed data structure samples from the exact distribution of leverage scores of the Khatri-Rao
product, thereby enjoying better sample efficiency than alternative approaches such as CP-ARLS-LEV
[15]. The cost to draw each sample, however, is O(R2 logH), where H is the number of rows in the
Khatri-Rao product. Methods such as row-norm-squared sampling or CP-ARLS-LEV can draw each

22



sample in time O(logH) after appropriate preprocessing. Therefore, efficient parallelization of our
sampling procedure is required for competitive performance, and we present two strategies below.

1. Asynchronous Thread Parallelism: The KRPSampleDraw procedure in Algorithm 2 can
be called by multiple threads concurrently without data races. The simplest parallelization
strategy divides the J samples equally among the threads in a team, each of which makes
calls to KRPSampleDraw asynchronously. This strategy works well on a CPU, but is less
attractive on a SIMT processor like a GPU where instruction streams cannot diverge without
significant performance penalties.

2. Synchronous Batch Parallelism As an alternative to the asynchronous strategy, suppose
for the moment that all leaves have the same depth in each segment tree. Then for every
sample, STSample makes a sequence of calls to m̃, each updating the current node by
branching left or right in the tree. The length of this sequence is the depth of the tree, and it
is followed by a single call to the function q̃. Observe that procedure m̃ in Algorithm 4 can
be computed with a matrix-vector multiplication followed by a dot product. The procedure
q̃ of Algorithm 4 requires the same two operations if F = 1 or Y = [1]. Thus, we can
create a batched version of our sampling procedure that makes a fixed length sequence of
calls to batched gemv and dot routines. All processors march in lock-step down the levels
of each segment tree, each tracking the branching paths of a distinct set of samples. The
MAGMA linear algebra library provides a batched version of gemv [10], while a batched
dot product can be implemented with an ad hoc kernel. MAGMA also offers a batched
version of the symmetric rank-k update routine syrk, which is helpful to parallelize row
sampler construction (Algorithm 3). When all leaves in the tree are not at the same level, the
the bottom level of the tree can be handled with a special sequence of instructions making
the required additional calls to m̃.

Our CPU code follows the batch synchronous design pattern. To avoid dependency on GPU-based
MAGMA routines in our CPU prototype, portions of the code that should be batched BLAS calls
are standard BLAS calls wrapped in a for loop. These sections can be easily replaced when the
appropriate batched routines are available.

A.11 Sparse Tensor CP Experimental Configuration

Table 3: Sparse Tensors from FROSTT collection.

TENSOR DIMENSIONS NONZEROS PREP. INIT.

UBER PICKUPS 183 × 24 × 1,140 × 1,717 3,309,490 NONE IID
ENRON EMAILS 6,066 × 5,699 × 244,268 × 1,176 54,202,099 LOG RRF
NELL-2 12,092 × 9,184 × 28,818 76,879,419 LOG IID
AMAZON REVIEWS 4,821,207 × 1,774,269 × 1,805,187 1,741,809,018 NONE IID
REDDIT-2015 8,211,298 × 176,962 × 8,116,559 4,687,474,081 LOG IID

Table 3 lists the nonzero counts and dimensions of sparse tensors in our experiments [25]. We took
the log of all values in the Enron, NELL-2, and Reddit-2015 tensors. Consistent with established
practice, this operation damps the effect of a few high magnitude tensor entries on the fit metric [15].

The factor matrices for the Uber, Amazon, NELL-2, and Reddit experiments were initialized with
i.i.d. entries from the standard normal distribution. As suggested by Larsen and Kolda [15], the Enron
tensor’s factors were initialized with a randomized range finder [11]. The range finder algorithm
initializes each factor matrix Uj as mat(T , j)S, a sketch applied to the mode-j matricization of T
with S ∈ R

∏
k ̸=j Ik×R. Larsen and Kolda chose S as a sparse sampling matrix to select a random

subset of fibers along each mode. We instead used an i.i.d. Gaussian sketching matrix that was
not materialized explicitly. Instead, we exploited the sparsity of T and noted that at most nnz (T )
columns of mat(T , j) were nonzero. Thus, we computed at most nnz (T ) rows of the random
sketching matrix S, which were lazily generated and discarded during the matrix multiplication
without incurring excessive memory overhead.

ALS was run for a maximum of 40 rounds on all tensors except for Reddit, which was run for 80
rounds. The exact fit was computed every 5 rounds (defined as 1 epoch), and we used an early

23



stopping condition to terminate runs before the maximum round count. The algorithm was terminated
at epoch T if the maximum fit in the last 3 epochs did not exceed the maximum fit from epoch 1
through epoch T − 3 by tolerance 10−4.

Hybrid CP-ARLS-LEV deterministically includes rows from the Khatri-Rao product whose probabil-
ities exceed a threshold τ . The ostensible goal of this procedure is to improve diversity in sample
selection, as CP-ARLS-LEV may suffer from many repeat draws of high probability rows. We
replicated the conditions proposed in the original work by selecting τ = 1/J [15].

Individual trials of non-randomized (exact) ALS on the Amazon and Reddit tensors required several
hours on a single Perlmutter CPU node. To speed up our experiments, accuracy measurements for
exact ALS in Figure 3 were carried out using multi-node SPLATT, The Surprisingly ParalleL spArse
Tensor Toolkit [24], on four Perlmutter CPU nodes. The fits computed by SPLATT agree with those
computed by our own non-randomized ALS implementation. As a result, Figure 3 verifies that our
randomized algorithm STS-CP produces tensor decompositions with accuracy comparable to those
by highly-optimized, state-of-the-art CP decomposition software. We leave a distributed-memory
implementation of our randomized algorithms to future work.

A.12 Efficient Computation of Sketch Distortion

The definition of σ in this section is different from its definition in the rest of this work. The condition
number κ of a matrix M is defined as

κ(M) :=
σmax(M)

σmin(M)

where σmin(M) and σmax(M) denote the minimum and maximum nonzero singular values of M .
Let A be a Khatri-Rao product of N matrices U1, ..., UN with

∏N
j=1 Ij rows, R columns, and rank

r ≤ R. Let A = QΣV ⊤ be its reduced singular value decomposition with Q ∈ R
∏

j Ij×r,Σ ∈ Rr×r,
and V ∈ Rr×R. Finally, let S ∈ RJ×

∏
j Ij be a leverage score sampling matrix for A. Our goal is to

compute κ(SQ) without fully materializing either A or its QR decomposition. We derive

κ(SQ) = κ(SQΣV ⊤V Σ−1)

= κ(SAV Σ−1)
(22)

The matrix SA ∈ RJ×R is efficiently computable using our leverage score sampling data structure.
We require time O(JR2) to multiply it by V Σ−1 and compute the singular value decomposition of
the product to get the condition number. Next observe that A⊤A = V Σ2V ⊤, so we can recover V
and Σ−1 by eigendecomposition of A⊤A ∈ RR×R in time O(R3). Finally, recall the formula

A⊤A =

N

⊛
j=1

U⊤
j Uj

used at the beginning of Section 3 that enables computation of A⊤A in time O
(∑N

j=1 IjR
2
)

without
materializing the full Khatri-Rao product. Excluding the time to form SA (which is given by Theorem
1.1), κ(SQ) is computable in time

O

JR2 +R3 +

N∑
j=1

IjR
2

 .

Plugging κ(SQ) into Equation (12) gives an efficient method to compute the distortion.

A.13 Supplementary Results

A.13.1 Comparison Against Standard CP Decomposition Packages

Table 4 compares the runtime per ALS round for our algorithm against existing common software
packages for sparse tensor CP decomposition. We compared our algorithm against Tensorly version
0.81 [14] and Matlab Tensor Toolbox version 3.5 [3]. We compared our algorithm against both
non-randomized ALS and a version of CP-ARLS-LEV in Tensor Toolbox.

24



Table 4: Average time (seconds) per ALS round for our method vs. standard CP decomposition
packages. OOM indicates an out-of-memory error. All experiments were conducted on a single
LBNL Perlmutter CPU node. Randomized algorithms were benchmarked with 216 samples per
least-squares solve.

METHOD UBER ENRON NELL-2 AMAZON REDDIT

TENSORLY, SPARSE BACKEND 64.2 OOM 759.6 OOM OOM
MATLAB TTOOLBOX STANDARD 11.6 294.4 177.4 >3600 OOM
MATLAB TTOOLBOX CP-ARLS-LEV 0.5 1.4 1.9 34.2 OOM
STS-CP (ours) 0.2 0.5 0.6 3.4 26.0

As demonstrated by Table 4, our implementation exhibits more than 1000x speedup over Tensorly
and 295x over Tensor Toolbox (non-randomized) for the NELL-2 tensor. STS-CP enjoys a dramatic
speedup over Tensorly because the latter explicitly materializes the Khatri-Rao product, which is
prohibitively expensive given the large tensor dimensions (see Table 3).

STS-CP consistently exhibits at least 2.5x speedup over the version of CP-ARLS-LEV in Tensor
Toolbox, with more than 10x speedup on the Amazon tensor. To ensure a fair comparison with CP-
ARLS-LEV, we wrote an improved implementation in C++ that was used for all other experiments.

A.13.2 Probability Distribution Comparison

Figure 7 provides confirmation on a small test problem that our sampler works as expected. For the
Khatri-Rao product of three matrices A = U1 ⊙ U2 ⊙ U3, it plots the true distribution of leverage
scores against a normalized histogram of 50,000 draws from the data structure in Theorem 1.1. We
choose U1, U2, U3 ∈ R8×8 initialized i.i.d. from a standard normal distribution with 1% of all entries
multiplied by 10. We observe excellent agreement between the histogram and the true distribution.

0 100 200 300 400 500
Row Index from KRP

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

True Leverage Score Distribution
Histogram of Draws from Our Sampler

Figure 7: Comparison of true leverage score distribution with histogram of 50,000 samples drawn
from U1 ⊙ U2 ⊙ U3.

A.13.3 Fits Achieved for J = 216

Table 5 gives the fits achieved for sparse tensor decomposition for varying rank and algorithm
(presented graphically in Figure 4). Uncertainties are one standard deviation across 8 runs of ALS.

A.13.4 Fit as a Function of Time

Figures 8a and 8b shows the fit as a function of time for the Amazon Reviews and NELL2 tensors.
The hybrid version of CP-ARLS-LEV was used for comparison in both experiments. As in section
4.3, thick lines are averages of the running max fit across 4 ALS trials, shown by the thin dotted lines.
For Amazon, the STS-CP algorithm makes faster progress than CP-ARLS-LEV at all tested sample
counts.

For the NELL-2 tensor, STS-CP makes slower progress than CP-ARLS-LEV for sample counts
up to J = 163, 840. On average, these trials with CP-ARLS-LEV do not achieve the same final
fit as STS-CP. CP-ARLS-LEV finally achieves a comparable fit to STS-CP when the former uses
J = 196, 608 samples, compared to J = 65, 536 for our method.

25



Table 5: Fits Achieved by Randomized Algorithms for Sparse Tensor Decomposition, J = 216, and
non-randomized ALS. The best result among randomized algorithms is bolded. “CP-ARLS-LEV-H”
refers to the hybrid version of CP-ARLS-LEV and “Exact” refers to non-randomized ALS.

TENSOR R CP-ARLS-LEV CP-ARLS-LEV-H STS-CP (OURS) EXACT

UBER

25 .187 ± 2.30E-03 .188 ± 2.11E-03 .189 ± 1.52E-03 .190 ± 1.41E-03
50 .211 ± 1.72E-03 .212 ± 1.27E-03 .216 ± 1.18E-03 .218 ± 1.61E-03
75 .218 ± 1.76E-03 .218 ± 2.05E-03 .230 ± 9.24E-04 .232 ± 9.29E-04
100 .217 ± 3.15E-03 .217 ± 1.69E-03 .237 ± 2.12E-03 .241 ± 1.00E-03
125 .213 ± 1.96E-03 .213 ± 2.47E-03 .243 ± 1.78E-03 .247 ± 1.52E-03

ENRON

25 .0881 ± 1.02E-02 .0882 ± 9.01E-03 .0955 ± 1.19E-02 .0978 ± 8.50E-03
50 .0883 ± 1.72E-02 .0920 ± 6.32E-03 .125 ± 1.03E-02 .132 ± 1.51E-02
75 .0899 ± 6.10E-03 .0885 ± 6.39E-03 .149 ± 1.25E-02 .157 ± 4.87E-03
100 .0809 ± 1.26E-02 .0787 ± 1.00E-02 .164 ± 5.90E-03 .176 ± 4.12E-03
125 .0625 ± 1.52E-02 .0652 ± 1.00E-02 .182 ± 1.04E-02 .190 ± 4.35E-03

NELL-2

25 .0465 ± 9.52E-04 .0467 ± 4.61E-04 .0470 ± 4.69E-04 .0478 ± 7.20E-04
50 .0590 ± 5.33E-04 .0593 ± 4.34E-04 .0608 ± 5.44E-04 .0618 ± 4.21E-04
75 .0658 ± 6.84E-04 .0660 ± 3.95E-04 .0694 ± 2.96E-04 .0708 ± 3.11E-04
100 .0700 ± 4.91E-04 .0704 ± 4.48E-04 .0760 ± 6.52E-04 .0779 ± 5.09E-04
125 .0729 ± 8.56E-04 .0733 ± 7.22E-04 .0814 ± 5.03E-04 .0839 ± 8.47E-04

AMAZON

25 .338 ± 6.63E-04 .339 ± 6.99E-04 .340 ± 6.61E-04 .340 ± 5.78E-04
50 .359 ± 1.09E-03 .360 ± 8.04E-04 .366 ± 7.22E-04 .366 ± 1.01E-03
75 .367 ± 1.82E-03 .370 ± 1.74E-03 .382 ± 9.13E-04 .382 ± 5.90E-04
100 .366 ± 3.05E-03 .371 ± 2.53E-03 .392 ± 6.67E-04 .393 ± 5.62E-04
125 .358 ± 6.51E-03 .364 ± 4.22E-03 .400 ± 3.67E-04 .401 ± 3.58E-04

REDDIT

25 .0581 ± 1.02E-03 .0583 ± 2.78E-04 .0592 ± 3.07E-04 .0596 ± 4.27E-04
50 .0746 ± 1.03E-03 .0738 ± 4.85E-03 .0774 ± 7.88E-04 .0783 ± 2.60E-04
75 .0845 ± 1.64E-03 .0849 ± 8.96E-04 .0909 ± 5.49E-04 .0922 ± 3.69E-04
100 .0904 ± 1.35E-03 .0911 ± 1.59E-03 .101 ± 6.25E-04 .103 ± 7.14E-04
125 .0946 ± 2.13E-03 .0945 ± 3.17E-03 .109 ± 7.71E-04 .111 ± 7.98E-04

0 200 400 600 800
Time (s)

0.365

0.370

0.375

0.380

0.385

0.390

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

(a) Amazon

0 20 40 60 80 100 120
Time (s)

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

Fi
t

STS-CP (ours), J=65,536
CP-ARLS-LEV, J=196,608
CP-ARLS-LEV, J=163,840
CP-ARLS-LEV, J=131,072
CP-ARLS-LEV, J=98,304
CP-ARLS-LEV, J=65,536

(b) NELL-2

Figure 8: Fit as a function of time, R = 100.

A.13.5 Speedup of STS-CP and Practical Usage Guide

Timing Comparisons. For each tensor, we now compare hybrid CP-ARLS-LEV and STS-CP on
the time required to achieve a fixed fraction of the fit achieved by non-randomized ALS. For each
tensor and rank in the set {25, 50, 75, 100, 125}, we ran both algorithms using a range of sample
counts. We tested STS-CP on values of J from the set {215x | 1 ≤ x ≤ 4} for all tensors. CP-
ARLS-LEV required a sample count that varied significantly between datasets to hit the required
thresholds, and we report the sample counts that we tested in Table 6. Because CP-ARLS-LEV has
poorer sample complexity than STS-CP, we tested a wider range of sample counts for the former
algorithm.

26



Table 6: Tested Sample Counts for hybrid CP-ARLS-LEV

TENSOR VALUES OF J TESTED

UBER {215x | x ∈ {1..13}}
ENRON {215x | x ∈ {1..7} ∪ {10, 12, 14, 16, 18, 20, 22, 26, 30, 34, 38, 42, 46, 50, 54}}
NELL-2 {215x | x ∈ {1..7}}
AMAZON {215x | x ∈ {1..7}}
REDDIT {215x | x ∈ {1..12}}

For each configuration of tensor, target rank R, sampling algorithm, and sample count J , we ran 4
trials using the configuration and stopping criteria in Appendix A.11. The result of each trial was a
set of (time,fit) pairs. For each configuration, we linearly interpolated the pairs for each trial and
averaged the resulting continuous functions over all trials. The result for each configuration was
a function fT ,R,A,J : R+ → [0, 1]. The value fT ,R,A,J(t) is the average fit at time t achieved by
algorithm A to decompose tensor T with target rank R using J samples per least squares solve.
Finally, let

SpeedupT ,R,M :=
minJ argmint≥0 [fT ,R,CP-ARLS-LEV-H,J(t) > P ]

minJ argmint≥0 [fT ,R,STS-CP,J(t) > P ]

be the speedup of STS-CP to over CP-ARLS-LEV (hybrid) to achieve a threshold fit P on tensor T
with target rank R. We let the threshold P for each tensor T be a fixed fraction of the fit achieved by
non-randomized ALS (see Table 5).

Figure 9 reports the speedup of STS-CP over hybrid CP-ARLS-LEV for P = 0.95 on all tensors
except Enron. For large tensors with over one billion nonzeros, we report a significant speedup
anywhere from 1.4x to 2.0x for all tested ranks. For smaller tensors with less than 100 million
nonzeros, the lower cost of each least squares solve lessens the impact of the expensive, more accurate
sample selection phase of STS-CP. Despite this, STS-CP performs comparably to CP-ARLS-LEV at
most ranks, with significant slowdown only at rank 25 on the smallest tensor Uber.

25 50 75 100 125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 

ov
er

 L
K

 to
 a

tt
ai

n 
95

%
 o

f E
xa

ct

Amazon

25 50 75 100 125

Reddit

(a) Large Tensors

25 50 75 100 125
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p 

ov
er

 L
K

 to
 a

tt
ai

n 
95

%
 o

f E
xa

ct

Uber

25 50 75 100 125

NELL-2

(b) Small Tensors

Figure 9: Speedup of STS-CP over CP-ARLS-LEV hybrid (LK) to reach 95% of the fit achieved by
non-randomized ALS. Large tensors have more than 1 billion nonzero entries.

On the Enron tensor, hybrid CP-ARLS-LEV could not achieve the 95% accuracy threshold for any
rank above 25 for the sample counts tested in Table 6. STS-CP achieved the threshold accuracy for
all ranks tested. Instead, Figure 10 reports the speedup to achieve 85% of the fit of non-randomized
ALS on the Enron. Beyond rank 25, our method consistently exhibits more than 2x speedup to reach
the threshold.

Guide to Sampler Selection. Based on the performance comparisons in this section, we offer the
following guide to CP decomposition algorithm selection. Our experiments demonstrate that STS-CP
offers the most benefit on sparse tensors with billions of nonzeros (Amazon and Reddit) at
high target decomposition rank. Here, the runtime of our more expensive sampling procedure is
offset by reductions in the least squares solve time. For smaller tensors, our sampler may still offer
significant performance benefits (Enron). In other cases (Uber, NELL-2), CP-ARLS-LEV exhibits
better performance, but by small margins for rank beyond 50.

27



25 50 75 100 125
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p 

ov
er

 L
K

 to
 a

tt
ai

n 
85

%
 o

f E
xa

ct

Enron

Figure 10: Speedup of STS-CP over CP-ARLS-LEV hybrid (LK) to reach 85% of the fit achieved by
non-randomized ALS on the Enron Tensor.

STS-CP reduces the cost of each least squares solve through a sample selection process that relies on
dense linear algebra primitives (see Algorithms 3 and 4). Because these operations can be expressed
as standard BLAS calls and can be carried out in parallel (see Appendix A.10, we hypothesize that
STS-CP is favorable when GPUs or other dense linear algebra accelerators are available.

Because our target tensor is sparse, the least squares solve during each ALS iteration requires a sparse
matricized-tensor times Khatri-Rao product (spMTTKRP) operation. After sampling, this primitive
can reduced to sparse-matrix dense-matrix multiplication (SpMM). Development of accelerators
for these primitives is an active area of research [28, 26]. When such accelerators are available, the
lower cost of the spMTTKRP operation reduces the relative benefit provided by the STS-CP sample
selection method. We hypothesize that CP-ARLS-LEV, with its faster sample selection process
but lower sample efficiency, may retain its benefit in this case. We leave verification of these two
hypotheses as future work.

28


	Introduction
	Preliminaries and Related Work
	Sketched Linear Least Squares
	Prior Work

	An Efficient Khatri-Rao Leverage Sampler
	Efficient Sampling from qh, U, Y
	Sampling from the Khatri-Rao Product
	Application to Tensor Decomposition

	Experiments
	Runtime Benchmark
	Least Squares Accuracy Comparison
	Sparse Tensor Decomposition

	Discussion and Future Work
	Appendix
	Details about Table 1
	Definitions of Matrix Products
	Further Comparison to Prior Work
	Proof of Theorem 3.1
	Proof of Lemma 3.2
	Cohesive Proof of Theorem 1.1
	Efficient Single-Element Updates
	Extension to Sparse Input Matrices
	Alternating Least Squares CP Decomposition
	Experimental Platform and Sampler Parallelism
	Sparse Tensor CP Experimental Configuration
	Efficient Computation of Sketch Distortion
	Supplementary Results
	Comparison Against Standard CP Decomposition Packages
	Probability Distribution Comparison
	Fits Achieved for J=216
	Fit as a Function of Time
	Speedup of STS-CP and Practical Usage Guide



