
Transformers over Directed Acyclic Graphs

Yuankai Luo
Beihang University

luoyk@buaa.edu.cn

Veronika Thost∗
MIT-IBM Watson AI Lab, IBM Research

veronika.thost@ibm.com

Lei Shi∗
Beihang University

leishi@buaa.edu.cn

Abstract

Transformer models have recently gained popularity in graph representation learn-
ing as they have the potential to learn complex relationships beyond the ones
captured by regular graph neural networks. The main research question is how to
inject the structural bias of graphs into the transformer architecture, and several
proposals have been made for undirected molecular graphs and, recently, also for
larger network graphs. In this paper, we study transformers over directed acyclic
graphs (DAGs) and propose architecture adaptations tailored to DAGs: (1) An
attention mechanism that is considerably more efficient than the regular quadratic
complexity of transformers and at the same time faithfully captures the DAG struc-
ture, and (2) a positional encoding of the DAG’s partial order, complementing the
former. We rigorously evaluate our approach over various types of tasks, ranging
from classifying source code graphs to nodes in citation networks, and show that
it is effective in two important aspects: in making graph transformers generally
outperform graph neural networks tailored to DAGs and in improving SOTA graph
transformer performance in terms of both quality and efficiency.

1 Introduction

Graph-structured data is ubiquitous in various disciplines [Gilmer et al., 2017, Zitnik et al., 2018,
Sanchez-Gonzalez et al., 2020] and hence graph representation learning has the potential to provide
huge impact. There are various types of graph neural networks (GNNs), the majority of which is
based on a so-called message-passing scheme where node representations are computed iteratively
by aggregating the embeddings of neighbor nodes [Gilmer et al., 2017]. Yet, this mechanism in its
basic form has limited expressivity [Xu et al., 2018] and research is focusing on extensions.

Transformer models have recently gained popularity in graph learning as they have the potential to
learn complex relationships beyond the ones captured by regular GNNs, in a different way [Dwivedi
and Bresson, 2020, Kreuzer et al., 2021]. Technically, they can be considered as graph neural
networks operating on fully-connected computational graphs, decoupled from the input graphs. The
main research question in this context is how to inject the structural bias of the given input graphs
(i.e., which nodes are actually connected) into the transformer architecture by adapting their attention
and positional encoding appropriately. Several promising proposals have been made to encode
undirected molecular graphs [Ying et al., 2021, Ross et al., 2022] and recent works take into account
the scalability challenge [Dwivedi et al., 2022], also over larger network graphs [Rampášek et al.,
2022, Chen et al., 2022b].

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Not to calculate attention

To calculate attention Node Feature
···

		𝑥!

		𝑥"

		𝑥!

		𝑥"

		𝑥##

		𝑥#$

		𝑥#%

		𝑥#

		𝑥$

		𝑥%		𝑥&

		𝑥'

		𝑞𝑢𝑒𝑟𝑦!

𝑞𝑢
𝑒𝑟
𝑦

𝑘𝑒𝑦
𝑥!			𝑥"		𝑥#			𝑥$ 		𝑥% 			𝑥& 		𝑥'			𝑥(𝑥)		𝑥!*	𝑥!!	𝑥!"

𝑥!
𝑥"
𝑥#
𝑥$
𝑥%
𝑥&
𝑥'
𝑥(
𝑥)
𝑥!*
𝑥!!
𝑥!"

Linear

MatMul

Scale

SoftMax

MatMul

𝑄 𝐾 𝑉
Linear Linear

DAG Positional Encoding

···

Figure 1: Overview of our DAG attention. A mask matrix restricts the receptive field of the node under
consideration to nodes that are directly reachable in the DAG. Our positional encoding (right), additionally
captures its position as its depth in the DAG.

We focus on directed acyclic graphs (DAGs), which are of special interest across various domains;
examples include parsing results of source code [Allamanis et al., 2018], logical formulas [Crouse
et al., 2019], and conversational emotion recognition [Shen et al., 2021], as well as probabilistic
graphical models and neural architectures [Zhang et al., 2018, 2019, Knyazev et al., 2021]. In a DAG,
the edges define a partial order over the nodes. This partial order represents an additional strong
inductive bias, which offers itself to be integrated into the models.

In fact, various kinds of neural networks tailored to DAG structures have been proposed over the
years; from early descriptions of recursive neural networks over DAGs [Sperduti and Starita, 1997,
Frasconi et al., 1998], which have pointed out a similarity to sequence learning, to more recent
works, such as DAG-RNN [Shuai et al., 2016], DAG-LSTM [Crouse et al., 2019], D-VAE [Zhang
et al., 2019], and DAGNN [Thost and Chen, 2021]. The latter models focus on encoding the entire
DAG; in a nutshell, they compute the embedding in a message-passing fashion by iterating over the
DAG nodes in an asynchronous way, given by the partial order, and thereafter aggregating the final
node representations into one for the DAG. This procedure yields state-of-the-art performance in
terms of quality, but its asynchronous nature leads to comparatively (to regular GNNs) very slow
runtime performance. The more parallel computation of transformers would seem to make them
more suitable models and [Dong et al., 2022] have recently proposed one such model, PACE, which
shows convincing performance in terms of both quality and efficiency.

In this paper, we focus on transformers over DAGs more generally, motivated by the highly flexible,
parallel, and expressive nature of their computation. In particular, their success in sequence learning
opens up the question how they can be tailored to DAGs, which are essentially sequential graphs.
Based on the above-mentioned insights in DAG learning, we propose a straightforward and efficient
DAG attention framework, which effectively biases any transformer towards DAGs.

• As outlined in Figure 1, we (1) adapt the attention mechanism by restricting the receptive field of
each node to its predecessor and successor nodes so that it faithfully captures the DAG structure -
in terms of its reachability relation - and at the same time gets considerably more efficient than the
regular quadratic complexity; and (2) employ the positional encoding in a complementary way, to
further bias the computation towards the DAG topology, by explicitly encoding the node depth.

• We show that the attention is not restricted effectively, even if it seems so technically. Moreover,
we draw a connection to the random walk theory.

• We rigorously evaluate our proposal in ablation studies and show that it successfully improves
different kinds of baseline transformers, from vanilla transformers [Vaswani et al., 2017] to state-
of-the-art graph transformers [Wu et al., 2021, Chen et al., 2022a, Rampášek et al., 2022, Wu
et al., 2022], over various types of DAG data. Our experiments range from classifying source
code graphs to nodes in citation networks, and even go far beyond related works’ problem scope.
Most importantly, our proposal is proven effective in two important aspects: in making graph

2

transformers generally outperform graph neural networks tailored to DAGs and in improving SOTA
graph transformer performance in terms of both quality and efficiency.

• Finally, our DAG attention framework can be implemented in two possible and rather straightfor-
ward ways, either on top of existing transformer models, or based on message-passing GNNs. Our
implementation is available at https://github.com/LUOyk1999/DAGformer.

2 Background and Related Works

Directed Acyclic Graphs. We refer to a graph as tuple G = (V,E,X), with node set V , edge set
E ⊆ V ×V , and node features X ∈ Rn×d, with each row representing the feature vector of one node,
with number of nodes n and feature dimension d, the features of node v are denoted by xv ∈ Rd.
A directed acyclic graph (DAG) is a directed graph without directed cycles. For a DAG G, we can
define a unique strong partial order ⩽ on the node set V , such that, for all pairs of nodes u, v ∈ V ,
u ⩽ v if and only if there is a directed path from u to v. We define the reachability relation ⩽ over a
DAG based on that partial order. That is, u ⩽ v if and only if v is reachable from u; further, if u ⩽ v,
then u is called a predecessor of v, and v is a successor of u. All nodes without predecessors are
source nodes, and all nodes without successors are sink nodes. We further define a restricted form of
reachability ⩽K with u ⩽k v if and only if there is a directed path of length at most k from u to v.
The depth of a node v ∈ V is defined below. The depth of a DAG is the maximum depth over its
nodes.

depth(v) =

{
0 if v is a source node
1 + max

(u,v)∈E
depth(u) otherwise

Message-Passing Graph Neural Networks. Most modern graph neural networks (GNNs) are or
can be formulated in terms of the message-passing architecture, a framework proposed in [Gilmer
et al., 2017]. In that architecture, node representations are computed iteratively by aggregating the
embeddings of their neighbor nodes (i.e., the messages), and a final graph representation can be
obtained by aggregating the node embeddings. Yet, in its basic form, this mechanism has limited
expressivity [Xu et al., 2018] and graph neural networks remain an active research area. Notable
works we compare to include the graph convolutional network (GCN) [Kipf and Welling, 2017],
a very early, basic architecture; the graph attention network (GAT) [Veličković et al., 2018],
aggregating the neighbor node embeddings using attention; the graph isomorphism network (GIN)
[Xu et al., 2018], which integrates extra MLP layers into message passing for increased expressivity;
and the principal neighbourhood aggregation (PNA) model [Corso et al., 2020], a recent proposal
focusing on adapting the aggregation mechanism to the node under consideration (e.g., scaling based
on its degree). For a broader overview of the field, we refer the reader to [Wu et al., 2020].

Transformers on Graphs. Transformer models [Vaswani et al., 2017] have gained popularity in
graph learning as they have the potential to learn complex relationships beyond the ones captured
by regular GNNs and in a different way. The architecture is composed of two main parts: a self-
attention module and a feed-forward neural network, each followed by a residual connection with
a normalization layer. Formally, the self-attention projects the input node features X using three
matrices WQ ∈ Rd×dK , WK ∈ Rd×dK and WV ∈ Rd×dK to the corresponding representations for
query (Q), key (K), and value (V), and is described as follows :

Q = XWQ, K = XWK, V = XWV,

Attention (X) = softmax

(
QKT

√
dK

)
V. (1)

Over graphs, we focus on computing node instead of token embeddings (recall Figure 1). Technically,
transformers can be considered as message-passing GNNs operating on fully-connected computational
graphs, decoupled from the input graphs. The main research question in the context of graphs is
how to inject the structural bias of the given input graphs by adapting their attention and by adding
extensions to the original features, via so-called positional encodings (PEs). Graph Transformer
[Dwivedi and Bresson, 2020] represents an early work using Laplacian eigenvectors as positional
encodings, and various extensions and other models have been proposed since then [Min et al.,
2022]. For instance, [Mialon et al., 2021] proposed a relative PE [Shaw et al., 2018] by means of
kernels on graphs to bias the self-attention calculation. Notably, GraphTrans [Wu et al., 2021]

3

https://github.com/LUOyk1999/DAGformer

was the first hybrid architecture, using a stack of message-passing GNN layers before the regular
transformer layers. Finally, [Chen et al., 2022a] have reformulated the self-attention mechanism as a
kernel smoother as shown below and incorporated structure information into their structure-aware
transformer (SAT) architecture by extracting a subgraph representation rooted at each node before
attention computation:

Attention (xv) =
∑
u∈V

κ (xv, xu)∑
w∈V κ (xv, xw)

f (xu) ,∀v ∈ V, (2)

with f(x) = WVx, and non-symmetric exp. kernel κ:

κ (x, x′) = exp

(
⟨φ(x)WQ, φ(x′)WK ⟩√

dK

)
, φ(x) =

{
x in vanilla transformer
GNNG(x) in SAT

where ⟨·, ·⟩ is the dot product on Rd and GNNG(x) is an arbitrary GNN model. Most of the
aforementioned works focus on the classification of smaller graphs, such as molecules; yet, recently,
GraphGPS [Rampášek et al., 2022] is also considering larger graphs and the area is focusing on the
development of scalable models; for instance, Nodeformer [Wu et al., 2022] is designed to address
the issue of scalability and expressivity in node classification. Altogether, the transformer architecture
opens new and promising avenues for graph representation learning, beyond message-passing GNNs.

Neural Networks over DAGs. The additional strong inductive bias present in DAGs has motivated
researchers to formulate special neural architectures tailored to this kind of graphs [Sperduti and
Starita, 1997, Frasconi et al., 1998]. Various types of models have been proposed over the years in
many different application areas. There are works in the context of syntactic graphs, [Tai et al., 2015,
Shuai et al., 2016] logical formulas [Crouse et al., 2019], source code representations [Allamanis
et al., 2018] and neural architectures [Zhang et al., 2018, 2019, Knyazev et al., 2021]. We particularly
compare to the most recent proposals S-VAE and D-VAE [Zhang et al., 2019]; and to DAGNN from
[Thost and Chen, 2021], who also showed that using attention for neighbor node aggregation is
beneficial in several DAG tasks.

While the models can be formulated in terms of the message-passing framework [Thost and Chen,
2021], their processing is special for GNNs: they compute a graph embedding by iterating over the
DAG nodes in an asynchronous way, given by the partial order, and starting from the source nodes
(or the other way around, from the sink nodes). That is, the messages are passed along the partial
order of the DAG and, at any point during computation, capture the information of the subgraph
consisting of all the predecessors of the node currently under consideration. Thereafter, a final graph
representations can be obtained by aggregating the embeddings of all sink nodes. In contrast to
regular message-passing GNNs, these customized works for DAGs usually focus on encoding graphs
(i.e., instead of nodes or edges, which are other common GNN targets) and pass messages over
the entire graph, while regular GNNs consider a fixed radius - usually rather small - around each
node and essentially obtain a neighborhood embedding. Furthermore, the nature of the proposed
architectures shows that recurrent techniques have proven especially useful, analogy to learning over
sequences. In summary, these DAG models are elegant and effective, yielding state-of-the-art results,
but their asynchronous nature leads to very slow and practically inhibitive performance compared to
regular GNNs.

Transformers over DAGs. We are aware of only few proposals for transformers tailored to DAGs.
[Huang et al., 2022] developed a Directed Acyclic Transfomer in the context of machine translation
in order to simultaneously capture multiple translations within the decoded DAG, but the model’s
encoder is a vanilla transformer. [Kotnis et al., 2021] proposed BIQE, which leverages the depth of
nodes in DAG paths as positional encodings, with a specific focus on answering complex queries in
knowledge graphs. [Gagrani et al., 2022] proposed Topoformer, which is also an encoder-decoder
model but has been developed for finding optimal topological orders in DAGs. Since the study entirely
focuses on the latter goal (e.g., in terms of training objective and evaluation) it is very specific and
different from our more general study. The DAG encoder itself is also rather different in that it uses a
Laplacian PE, as it is used with regular graph transformers; and a more complex attention mechanism,
which does not only model the reachability but also several other relations over the graph. Closest to
our method is PACE [Dong et al., 2022], which similarly focuses on modeling the sequential nature
of DAGs inside a transformer model and independently of a specific application in mind. However,
(1) it applies a rather complex, node-specific positional encoding, whereas our PE only distinguishes

4

node depth; (2) the attention is based on the directed transitive closure, while we use reachability
and show that this provides better quality; and (3) it’s implemented using regular transformers, with
runtime complexity O(|V |2d), while we propose a much more efficient and scalable implementation
based on message passing. Altogether, our proposal is simpler and considerably more efficient. In
addition, we do not propose a single model but a framework which can be flexibly applied on top of
existing graph transformers and thus complement any custom, graph-specific transformer and adapt
it to DAGs.

3 Transformers for Directed Acyclic Graphs

Transformers have revolutionized deep learning, in particular sequence learning, and yield promising
performance over graphs. Furthermore, we posit that their benefits actually match well the above-
mentioned shortcomings of DAG neural networks. Therefore we developed a graph transformer
framework tailored to DAGs. See Figure 1 for an overview.

3.1 Attention based on DAG Reachability

In contrast to regular graphs, the partial order in DAGs creates particular relations between connected
nodes, in the sense that a given node’s predecessors and successors are most likely more important to
it than other graph nodes. Note that this intuition is also captured in the processing of DAG neural
networks. Hence the reachability relation suggests itself to be exploited in our architecture. We apply
it to restrict the receptive field of nodes during attention to their predecessors and successors in the
graph. [Vaswani et al., 2017] already mentioned the possibility to use restricted attention in order
to reduce complexity and, indeed, our proposal does not only yield an architecture which is biased
towards the DAG structure, but additionally a considerably more efficient model.

While graphs to classify are usually of manageable size, graph learning in general may face much
larger ones. For this reason, we formulate our model in a more general way, based on a bounded
reachability relation, representing the receptive field of each node: Nk(v) = {(u, v) ∈ ⩽k} ∪
{(v, u) ∈ ⩽k}. We adapt Equation (2) for our reachability-based attention (DAGRA):

AttentionDAG (xv) =
∑

u∈Nk(v)

κ (xv, xu)∑
w∈Nk(v)

κ (xv, xw)
f (xu) ,∀v ∈ V.

The number k represents a hyperparameter and can be chosen according to the data. In our ablation
study (see Section 4), k = ∞ yielded best performance consistently. Observe that this choice of
k = ∞ is still very different from both regular GNNs, which usually considerably restrict k, and
regular transformers (Eq. 1), whose receptive field is not restricted at all (i.e., in terms of reachability).

3.2 Positional Encodings based on DAG Depth

As outlined in Section 2, positional encodings have been recognized as important and proven effective
for incorporating graph structure into transformers. Observe that the sequential nature of DAGs
makes them possess special position information, the depth of a node within the DAG. We propose to
include this knowledge in the form of directed acyclic graph positional encodings (DAGPE) as
follows, exactly as suggested for the original transformer architecture [Vaswani et al., 2017]:

PE(v,2i) = sin
(depth(v)
10000

2i
d

)
, PE(v,2i+1) = cos

(depth(v)
10000

2i
d

)
,

where d is the node feature dimension and i the index of the dimension under consideration.

DAG Attention. We obtain the following model, combining DAGRA and DAGPE, for v ∈ V :

Attention (xv) =
∑

u∈Nk(v)

κ (xv + PEv, xu + PEu)∑
w∈Nk(v)

κ (xv + PEv, xw + PEw)
f (xu) . (3)

Our attention incorporates both similarity of node features and of node depths. We argue that
these are the most critical aspects of DAGs and our evaluation will show their impact and general
effectiveness. In particular, note that most kinds of DAG data (e.g., citation networks) do not require
us distinguishing between predecessor or successor nodes of same depth.

5

3.3 Expressive Power of DAG Attention

Technically, we restrict the attention to reachable nodes and, in this way, obtain considerable efficiency
gains. Yet, our architecture is tailored to the special DAG structure, and we can show that this design
offers similar expressivity to regular transformers.

It is important to note that in our framework, all nodes directly communicate with at least one source
node (i.e., node without predecessors) by the DAG structure. This is specifically the case because we
do not restrict the radius k of the receptive field, but consider k = ∞. Hence, 2 layers are always
enough to establish communication beyond any two nodes that have a common source node. Observe
that this is often the case in practice; especially in DAG classification, many kinds of DAGs contain
only a single source node (e.g., ogbg-code2 Hu et al. [2020] and NA Zhang et al. [2019]).

For DAGs with m source nodes we need 2m layers for full communication, if we assume the DAG
to be connected. In the latter case, every pair of source nodes has a common successor through
which communication can happen. Further, connectedness is a reasonable assumption, otherwise
communication is likely not needed in most scenarios.

3.4 Theoretical Intuition

We have shown that our architecture’s bias emphasizes DAG relationships while re-directing the
remaining relationships in the regular transformer’s full attention matrix though the source nodes.
This can also be shown to be in line with random walk theory, we draw a connection to PageRank
[Brin, 1998, Gasteiger et al.]. Specifically, we consider a PageRank variant that takes the root node
into account - personalized PageRank. We define the root node x via the teleport vector ix, which is
a one-hot indicator vector. The personalized PageRank can be obtained for node x using the recurrent
equation πG(ix) = (1−α)ArwπG(ix)+αix, with teleport (or restart) probability α ∈ (0, 1]. Solving
this equation, we obtain: πG(ix) = α(In − (1− α)Arw)

−1ix, where Arw = AD−1, with A and D
being the adjacency and the degree matrix, respectively [Gasteiger et al.]. We invert the directions
of the edges in G to create a reverse DAG G̃. We can show that, for every node x, only nodes y
not reachable from x (i.e., y /∈ N∞(x)) will satisfy that πG(ix)[y] + πG̃(ix)[y] (the y-th element of
πG̃(ix)) equals 0. The proof is provided in Appendix A. This means that for the random walk’s limit
distribution, the probability of nodes that are not reachable from x is 0.

3.5 Implementation

We describe two ways of implementing our model, especially DAGRA, based upon transformers and
message-passing GNNs, respectively.

Masked Attention for Transformers. As shown in Figure 1, we can implement DAG attention in a
very straightforward fashion using a mask that masks out node pairs based on the DAG reachability
relation as follows (compare to Equation (1)), with the attention mask M being defined as a symmetric
matrix over node pairs (v, u) ∈ V × V .

Attention (X) = softmax

(
QKT

√
dK

+M

)
V, M(v, u) =

{
0 if u ∈ Nk(v)

−∞ otherwise.

While this masking represents a simple technique to extend and bias existing transformer models
to DAGs, the resulting architecture does not benefit from the restricted node set to be considered,
leading to unnecessary, costly matrix operations during attention calculation. Moreover, it consumes
O(|V |2) of additional memory to store M. Thus, the runtime complexity per layer is still O(|V |2d)
for the vanilla transformer - and may be even higher, depending on the underlying transformer.

DAG Attention using Message Passing. Based on the formulation in Equation (3), we propose to
follow the message-passing scheme; that is, for a node v, we compute Nk(v) and only aggregate
messages from the nodes in that set to compute the DAG attention. For the latter aggregation, we can
use readily available frameworks, such as PyG [Fey and Lenssen, 2019]. We analyze the complexity
of this proposal.

6

Table 1: Statistics of the datasets we used.

ogbg-code2 NA Self-citation Cora Citeseer Pubmed

graphs 452,741 19,020 1,000 1 1 1
Avg # nodes 125.2 8.0 59.1 2,708 3,327 19717

Avg n∞ 9.78 7.00 4.30 20.88 5.33 60.56

3.6 Computational Complexity

Clearly, the time complexity of the proposed model is lower than that of the standard transformer.
We consider two computation steps:

Computing DAG Reachability. To obtain Nk, we compute the transitive closure of E for each node
in the graph using a breadth-first search starting at the node and iteratively expanding Nk based on
E. Hence, the overall complexity of this step is O(|E||V |). Observe that, during training, we can
consider this step as pre-processing since it only has to be run once, in the very beginning.

DAG Attention. The matrix product QKT of self-attention has a cost O(|V |2d) which is quadratic
in the number of nodes in G, and hence especially critical for large graphs. Yet, for our DAG attention,
we only aggregate messages from reachable nodes. Therefore, the time complexity of reachability
relation attention is O(|V | × nk × d), where nk is the average size of Nk. In the worst case, we
have nk = |V | − 1, but we assume that nk << |V | in general. Especially for sparse graphs, the
complexity gets significantly lower, i.e., O(|V | × deg

k × d), where deg is the average node degree.

Finally, observe that directed rooted trees represent a special kind of DAGs broadly seen across
domains, such as abstract syntax trees of source code [Allamanis et al., 2018]. For them, the runtime
of DAG attention scales almost linearly, as illustrated in the following theorem.
Theorem 1. In a directed rooted tree T , the runtime of DAG attention is O(|V | × k × ∆+ × d),
where ∆+ is the maximal outdegree of T . When k = ∞, the runtime of DAG attention is O(|V | ×
depth(T)×∆+ × d).

The proof is provided in Appendix A. Note that when ∆+ is small, d is a constant and depth(T) is
O(log |V |), the runtime of DAG attention is almost linear in |V |. Indeed, we observed this on the
ogbg-code2 dataset in our experiments.

4 Evaluation

We evaluate our proposed architecture on several datasets, comparing it to competitive baselines.
Ablation studies also provide more insight into the composition of our model. Primarily, the following
questions are investigated:

• Does DAG attention have the expected effects and improves existing graph transformers both
in terms of quality and efficiency?

• Is DAG bias encoded through both DAGRA & DAGPE, and how does DAGPE compare to others?
• How does the size of the receptive field - the main difference between regular GNNs and trans-

formers - affect the performance?

4.1 Experiment Setting

Datasets. Table 1 shows the diversity of the datasets we used; see Appendix B for full details.

• ogbg-code2 [Hu et al., 2020]. A large dataset of ASTs derived from Python methods. The node
features are syntax tokens. The multi-task classification task is to predict the first 5 tokens of the
function name.

• NA [Zhang et al., 2019]. A dataset with much smaller graphs, containing neural architecture
DAGs generated by the ENAS software. Each node’s features represent a certain neural network
component type. The (regression) task is to predict the architecture performance on CIFAR-10.

• Self-citation [ARC, 2021, Luo et al., 2023]. Each DAG in the academic self-citation represents a
scholar’s academic self-citation network [ARC, 2021]. Each paper has two node attributes: the

7

Table 2: Code graph classification on ogbg-code2. The
baseline results were taken from the OGB leaderboard.

Model Valid F1 (%) Test F1 (%) Time(epoch)

GIN 13.7 ± 0.2 14.9 ± 0.2 181s
GCN 14.0 ± 0.2 15.1 ± 0.2 127s

GIN-Virtual 14.4 ± 0.3 15.8 ± 0.2 155s
GCN-Virtual 14.6 ± 0.1 16.0 ± 0.2 198s

GAT 14.4 ± 0.2 15.7 ± 0.2 134s
PNA 14.5 ± 0.3 15.7 ± 0.3 427s

DAGNN 16.1 ± 0.4 17.5 ± 0.5 6018s
PACE 16.3 ± 0.3 17.8 ± 0.2 2410s

Transformer 15.5 ± 0.2 16.7 ± 0.2 1817s
DAG+Transformer 17.4 ± 0.1 18.8 ± 0.2 591s

GraphTrans 16.6 ± 0.1 18.3 ± 0.2 1117s
DAG+GraphTrans 17.0 ± 0.2 18.7 ± 0.2 526s

GraphGPS 17.4 ± 0.2 18.9 ± 0.2 1919s
DAG+GraphGPS 17.6 ± 0.1 19.3 ± 0.2 608s

SAT (SOTA) 17.7 ± 0.2 19.4 ± 0.3 2437s
DAG+SAT 18.5 ± 0.1 20.2 ± 0.2 681s

Table 3: Node classification results for the self-
citation dataset; AP (%) and ROC-AUC (%).

Model AP ↑ ROC-AUC ↑

GIN 57.7 ± 1.8 79.7 ± 0.2
GCN 58.8 ± 0.4 79.9 ± 0.2

GIN-Virtual 57.4 ± 1.2 79.5 ± 0.4
GCN-Virtual 58.9 ± 0.2 80.0 ± 0.1

GAT 55.3 ± 3.7 77.9 ± 1.4
PNA 62.4 ± 0.7 81.0 ± 0.4

DAGNN 61.2 ± 0.6 81.0 ± 0.3
PACE 52.1 ± 1.8 75.9 ± 0.7

Transformer 56.8 ± 1.8 78.7 ± 0.3
DAG+Transformer 63.8 ± 0.8 82.2 ± 0.5

GraphGPS 61.6 ± 2.6 81.3 ± 0.6
DAG+GraphGPS 63.5 ± 1.2 80.8 ± 0.5

SAT 59.8 ± 1.7 79.8 ± 0.7
DAG+SAT 62.7 ± 1.5 80.6 ± 0.7

NodeFormer 39.6 ± 0.6 69.4 ± 0.3
DAG+NodeFormer 64.9 ± 0.8 81.7 ± 0.8

publication year and total citation count (excluding the papers whose citation category is to be
inferred). Here we consider the node-level task of predicting whether a paper is highly-cited or not
- as a proxy for its impact.

• Cora, Citeseer, Pubmed [Sen et al., 2008]. Established, medium-sized citation graphs. Only for
our method, we removed a small number of cyclic citation links to make them DAGs.

Baselines. We chose two basic message-passing GNNs, GCN and GIN; extensions of these models
using a virtual node connected to all other graph nodes; the graph attention network GAT, as it
showed especially good performance in [Thost and Chen, 2021]; MixHop [Abu-El-Haija et al.,
2019], LDS-GNN [Franceschi et al., 2019], IDGL [Chen et al., 2020] and PNA, as more recent
GNN proposals. In terms of transformer models, we considered vanilla Transformer (TF), Graph
Transformer (GT), GraphTrans, SAT, GraphGPS and NodeFormer which achieved state-of-the-
art performance (SOTA). Lastly, we consider neural networks tailored to DAGs: S-VAE, D-VAE,
DAGNN and the current SOTA, PACE. For more detailed descriptions, see Section 2.

DAG+ Models. We implemented our DAG attention on top of vanilla Transformer, GraphTrans, SAT,
GraphGPS and NodeFormer only (1) modifying their self-attention module by restricting attention in
terms of reachability and (2) using DAGPE instead of the original one. We note that there are various
alternatives for the latter (e.g., concatenation etc.), therefore we opted for the most simple solution
which, at the same time, provides a very direct comparison. Moreover, on ogbg-code2 we did not use
any PE since [Chen et al., 2022a] showed that they do not make real impact and we observed the
same in preliminary experiments. For fair comparisons, we use the same hyperparameters (including
the number of layers, batch size, hidden dimension etc.) and readout as baseline transformers. Given
one of the baseline transformers M, we denote the modified model using DAG attention by DAG+M.
Unless explicitly specified otherwise, we chose k = ∞ in all experiments. Full details on the
experimental setup and hyperparameters are provided in the Appendix B.

4.2 Results and Discussion

Overall Performance, Tables 2, 3, 4 and 5. First, observe that the results are very consistent,
although the datasets differ greatly in size, DAG sizes, DAG shape (e.g., in ogbg-code2 we have
trees), and nature of data (e.g., node features). The message-passing GNNs represent standardized
baselines but do not reach the performance of networks tailored to DAGs, such as DAGNN. Note that
the latter is however comparatively bad on the node-level task. This can be explained by its processing.
It computes node representations in the order of the partial order, and hence the representations of
nodes in the beginning of the order contain only few information about the entire graph. Intuitively,
transformers should be able to capture this information, but the transformers we tested do neither
perform better, not even the ones tailored to graphs. This shows that they are missing information
captured by those message-passing neural networks that were tailored to DAGs. The results clearly
show that our DAG attention is successful in providing good improvements, over the best graph

8

Table 4: Node classification accuracy (%).The baseline
results were taken from [Wu et al., 2022].

Model Cora Citeseer Pubmed

GCN 87.06 ± 0.34 75.75 ± 0.37 88.16 ± 0.14
GAT 86.85 ± 0.30 75.92 ± 0.26 86.90 ± 0.22

MixHop 87.59 ± 0.52 73.64 ± 0.73 89.32 ± 0.25
IDGL 87.88 ± 0.34 74.32 ± 0.51 89.22 ± 0.14

LDS-GNN 87.82 ± 0.62 75.22 ± 0.23 OOM
PACE 79.47 ± 0.63 73.65 ± 1.23 OOM

Transformer 75.92 ± 0.86 72.23 ± 1.06 OOM
DAG+Transformer 87.80 ± 0.53 74.42 ± 0.22 89.01 ± 0.13

SAT 75.18 ± 0.62 74.88 ± 0.73 OOM
DAG+SAT 87.48 ± 0.37 76.64 ± 0.26 89.17 ± 0.15

NodeFormer 88.80 ± 0.26 76.33 ± 0.59 89.32 ± 0.25
DAG+NodeFormer 90.49 ± 0.17 78.24 ± 0.33 89.44 ± 0.24

Table 5: Regression. Predictive performance of
latent representations over NA.

Model RMSE ↓ Pearson’s r ↑

GCN 0.482 ± 0.003 0.871 ± 0.001
S-VAE 0.521 ± 0.002 0.847 ± 0.001
D-VAE 0.375 ± 0.003 0.924 ± 0.001

DAGNN 0.264 ± 0.004 0.964 ± 0.001
PACE 0.254 ± 0.002 0.964 ± 0.001

Transformer 0.285 ± 0.004 0.957 ± 0.001
GT 0.275 ± 0.003 0.961 ± 0.001

DAG+Transformer 0.253 ± 0.002 0.966 ± 0.001

GraphGPS 0.306 ± 0.004 0.950 ± 0.001
DAG+GraphGPS 0.267 ± 0.005 0.964 ± 0.001

SAT 0.298 ± 0.003 0.952 ± 0.001
DAG+SAT 0.262 ± 0.004 0.964 ± 0.001

Table 6: Ablation results.

Ablation ogbg-code2 NA Self-citation
Valid F1 Test F1 RMSE ↓ Pearson’s r ↑ AP ↑ ROC-AUC ↑

DAG+TF 0.1731 ± 0.0014 0.1895 ± 0.0014 0.253 ± 0.002 0.966 ± 0.001 0.638 ± 0.008 0.822 ± 0.005
(-) DAGRA 0.1546 ± 0.0018 0.1670 ± 0.0015 0.284 ± 0.003 0.957 ± 0.001 0.573 ± 0.011 0.790 ± 0.003
(-) DAGPE 0.1739 ± 0.0013 0.1879 ± 0.0015 0.263 ± 0.002 0.963 ± 0.001 0.594 ± 0.028 0.782 ± 0.018
(+) RWPE - - 0.267 ± 0.003 0.962 ± 0.001 0.628 ± 0.014 0.819 ± 0.010
(+) LapPE - - 0.271 ± 0.002 0.961 ± 0.001 0.609 ± 0.017 0.786 ± 0.015
(+) SPD Ying et al. [2021] 0.1749 ± 0.0011 0.1881 ± 0.0017 - - 0.639 ± 0.006 0.823 ± 0.004
(+) Edge Direction 0.1751 ± 0.0018 0.1870 ± 0.0021 - - 0.636 ± 0.015 0.817 ± 0.005
TF 0.1546 ± 0.0018 0.1670 ± 0.0015 0.285 ± 0.004 0.957 ± 0.001 0.568 ± 0.018 0.787 ± 0.003

DAG+SAT 0.1821 ± 0.0013 0.1982 ± 0.0010 0.262 ± 0.004 0.964 ± 0.001 0.627 ± 0.015 0.806 ± 0.007
(-) DAGRA 0.1773 ± 0.0023 0.1937 ± 0.0028 0.292 ± 0.003 0.954 ± 0.001 0.598 ± 0.031 0.800 ± 0.012
(-) DAGPE 0.1846 ± 0.0010 0.2018 ± 0.0021 0.282 ± 0.002 0.958 ± 0.001 0.623 ± 0.014 0.806 ± 0.005
(+) SPD Ying et al. [2021] 0.1851 ± 0.0008 0.1991 ± 0.0018 - - 0.627 ± 0.016 0.810 ± 0.006
(+) Edge Direction 0.1839 ± 0.0014 0.1978 ± 0.0028 - - 0.623 ± 0.013 0.804 ± 0.007
SAT 0.1773 ± 0.0023 0.1937 ± 0.0028 0.298 ± 0.003 0.952 ± 0.001 0.598 ± 0.017 0.798 ± 0.007

transformer SAT and even better ones over vanilla Transformer. On ogbg-code2, the improvement
is smaller for GraphTrans and SAT. However, this benchmark task is heavily dependent on other
features (e.g., language understanding) and hence presents a special challenge; in this regard, the NA
and self-citation datasets contain “cleaner” graphs. It is interesting to see that our framework lifts
the transformers from below the level of DAGNN to above, in terms of all metrics, over these two
datasets. Lastly, we observe that the PACE transformer tailored to DAGs is similarly outperformed
by our simpler, but more effective technique. Nevertheless, the overall conclusion holds in general:
Over all datasets, our DAG attention makes the transformers outperform (1) the original transformers
and (2) the neural networks tailored to DAGs. This shows that the DAG-specific bias provided by
DAG attention is the right bias. We investigated this in more detail in our ablation experiments.

Ablation Study, Table 6. Recall that our DAG attention is composed of the reachability-based
attention (DAGRA) and DAGPE modules. To justify this design, (1) our ablation studies removing
DAGRA and DAGPE individually confirm the impact of both modules; (2) we also experimented
with replacing DAGPE with LapPE [Dwivedi and Bresson, 2020] and the random-walk-based RWPE
[Dwivedi et al., 2021] to show that the DAG-specific nature of our PE is of advantage; (3) we experi-
mented with adding attention bias which captures the graph structure more directly (e.g., shortest-path
Ying et al. [2021] and edge directionality), although they are implicit in DAGPE; interestingly, the
more direct representation does not make a noticeable difference. For ease of comparison and inter-
pretation (i.e., in terms of magnitude), we also provide the baseline transformer results. Overall, it
can be observed that our DAG attention yields highly consistent performance improvements, although
occasionally the advantage is less pronounced. This shows that our architecture design provides the
right bias on top of (graph) transformers, which makes the improved models better fit for DAGs.

Impact of Size of Receptive Field Nk.
(1) Average n∞, Table 1. Compared to the often only two to three hops considered in message-
passing GNNs, our k = ∞ might seem unrealistic. However, as we show in the table, for two of our
three and very different datasets, we have that n∞ is much smaller than the worst case size |V |. NA

9

Table 7: Impact of different k on DAG attention, over
ogbg-code2.

k Avg nk
Test F1 score

DAG+TF DAG+SAT

1 1.97 0.1724 ± 0.0022 0.1533 ± 0.0108

2 3.91 0.1800 ± 0.0023 0.1918 ± 0.0010

3 5.69 0.1842 ± 0.0006 0.1934 ± 0.0009

4 7.16 0.1849 ± 0.0021 0.1975 ± 0.0019

5 8.29 0.1856 ± 0.0020 0.2000 ± 0.0005

6 9.01 0.1869 ± 0.0020 0.2000 ± 0.0015

7 9.40 0.1869 ± 0.0019 0.2004 ± 0.0014

8 9.60 0.1875 ± 0.0008 0.2005 ± 0.0010

∞ 9.78 0.1879 ± 0.0015 0.2018 ± 0.0021 Figure 2: Average training time per epoch for various k
over ogbg-code2, log scale.

represents a special case because the graphs are very small so that we can always find a directed path
through them that contains all nodes; however, given that |V | is generally small, the exception of the
rule n∞ << |V | is not critical here.
(2) Performance for Varying k, Table 7, Figure 2. We ran our model for different k on ogbg-code2,
based upon vanilla Transformer and SAT. We find that incorporating reachable node information
leads to small but constant improvements in performance as k increases. This confirms our intuition
about the importance of predecessors and successors in DAGs, and is in line with related works
suggesting to iteratively aggregate the DAGs along the partial order.

Figure 2 depicts the training time per epoch. It is easy to see that our framework reduces computation
time considerably. For example, even the most time-consuming DAG+SAT requires 10 minutes per
epoch, compared to 40 minutes for SAT and 100 minutes for DAGNN on the same GPU type. Since
SAT and DAGNN represent the best-performing models among the transformers and, respectively,
message-passing GNNs, and DAG attention yields qualitative improvements over both.

5 Conclusions

Based on the insights from graph neural networks and models for directed acyclic graphs, we have
developed a transformer model biased towards DAGs, which allows for incorporating the main
characteristic of DAGs - their partial order - into any transformer architecture, by encoding the
reachability relation and positions resulting from it. Our architecture is simple and universal as we
demonstrated in our experiments. Most importantly, it provides an effective extension improving
existing graph transformers over DAGs. While our framework has successfully lifted existing (graph)
transformers to the level of the state-of-the-art neural networks tailored to DAGs, our experiments
show that there is still room for improvement. There is a variety of challenging tasks over many
different kinds of DAGs, which are not fully solved yet; for instance, to tackle the challenge of
reasoning over source code graphs, the models will probably need better language understanding.
Hence DAG representation learning remains interesting for research, and our work provides an
important contribution in closing the gap between transformers and other DAG neural networks.

Limitations. Our study is very general, but we found only a limited number of DAG datasets. We
tried to resolve this by creating new ones (from the established citation datasets), yet we acknowledge
that there is still room for extension. Further, there are likely specific types of DAGs which benefit
from more customized modeling. Yet, our study is intended to address a general adaptivity to DAGs.

Broader Impact. Transformers have been popular in artificial intelligence, and it is expected that
they also gain importance in graph learning. We hope to provide a tiny piece to the advancement
of the area. Our framework is rather abstract, but its simplicity, efficiency, and universality make it
practically usable; and we demonstrate good performance on a variety of data.

10

Acknowledgments

We extend our gratitude to Yicheng Pan for his invaluable assistance with the computational com-
plexity analysis. We also express our appreciation to all the anonymous reviewers for their insightful
and constructive feedback. This work was supported by National Key R&D Program of China
(2021YFB3500700), NSFC Grant 62172026, National Social Science Fund of China 22&ZD153, the
Fundamental Research Funds for the Central Universities and SKLSDE.

References
The acl anthology reference corpus. https://aclanthology.org/, Nov. 2021.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pages 21–29. PMLR, 2019.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1–37, 2018.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Sergey Brin. The pagerank citation ranking: bringing order to the web. Proceedings of ASIS, 1998,
98:161–172, 1998.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: Neighborhood aggregation
graph transformer for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022b.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in neural information processing systems, 33:
19314–19326, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Maxwell Crouse, Ibrahim Abdelaziz, Cristina Cornelio, Veronika Thost, Lingfei Wu, Kenneth Forbus,
and Achille Fokoue. Improving graph neural network representations of logical formulae with
subgraph pooling. arXiv preprint arXiv:1911.06904, 2019.

Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation encoder
for directed acyclic graphs. In International Conference on Machine Learning, pages 5360–5377.
PMLR, 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. arXiv preprint arXiv:2206.08164, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

11

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In International conference on machine learning, pages 1972–1982.
PMLR, 2019.

Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adaptive processing
of data structures. IEEE transactions on Neural Networks, 9(5):768–786, 1998.

Scott Freitas and Yuxiao Dong. A large-scale database for graph representation learning. Advances
in neural information processing systems, 2021.

Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Roberto Bondesan,
Herke van Hoof, Christopher Lott, Weiliang Zeng, and Piero Zappi. Neural topological ordering
for computation graphs. Advances in Neural Information Processing Systems, 35:17327–17339,
2022.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations.

Simon Geisler, Yujia Li, Daniel Mankowitz, Ali Taylan Cemgil, Stephan Günnemann, and Cosmin
Paduraru. Transformers meet directed graphs. arXiv preprint arXiv:2302.00049, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pages
1263–1272. PMLR, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie Huang. On the learning of non-autoregressive
transformers. In International Conference on Machine Learning, pages 9356–9376. PMLR, 2022.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees to
transformers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 150–162. IEEE, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017. URL https://openreview.net/
forum?id=SJU4ayYgl.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter
prediction for unseen deep architectures. Advances in Neural Information Processing Systems, 34:
29433–29448, 2021.

Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex queries in knowledge
graphs with bidirectional sequence encoders. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 4968–4977, 2021.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Yuankai Luo, Lei Shi, Mufan Xu, Yuwen Ji, Fengli Xiao, Chunming Hu, and Zhiguang Shan. Impact-
oriented contextual scholar profiling using self-citation graphs. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 4572–4583, 2023.

Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based graph
convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019.

12

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolutional
network for directed graphs. In 2018 IEEE Data Science Workshop (DSW), pages 225–228. IEEE,
2018.

Han Peng, Ge Li, Yunfei Zhao, and Zhi Jin. Rethinking positional encoding in tree transformer for
code representation. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 3204–3214, 2022.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International conference on machine learning, pages 4095–4104.
PMLR, 2018.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. arXiv preprint
arXiv:2205.12454, 2022.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel
Das. Molformer: Large scale chemical language representations capture molecular structure and
properties. 2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. CoRR, abs/2002.09405,
2020. URL https://arxiv.org/abs/2002.09405.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Weizhou Shen, Siyue Wu, Yunyi Yang, and Xiaojun Quan. Directed acyclic graph network for
conversational emotion recognition. arXiv preprint arXiv:2105.12907, 2021.

Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. Dag-recurrent neural networks for scene
labeling. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3620–3629, 2016.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. Advances
in neural information processing systems, 18, 2005.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-based
transformer architecture for code generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 8984–8991, 2020.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations from
tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 1556–1566, 2015.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=JbuYF437WB6.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. Advances in neural information processing systems,
33:17907–17918, 2020.

13

https://arxiv.org/abs/2002.09405
https://openreview.net/forum?id=JbuYF437WB6

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. Advances in Neural Information Processing
Systems, 35:27387–27401, 2022.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
j6zUzrapY3L.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture search.
arXiv preprint arXiv:1810.05749, 2018.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. Advances in Neural Information Processing Systems, 32,
2019.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems, 34:
27003–27015, 2021.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinform., 34(13):i457–i466, 2018.

Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann.
Language-agnostic representation learning of source code from structure and context. In Interna-
tional Conference on Learning Representations.

14

https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L

A Proofs

Theoretical Intuition of DAG Attention

Proof. Personalized PageRank is defined as πG(ix) = (1 − α)ArwπG(ix) + αix. Through rear-
rangement, we obtain: (In − (1 − α)Arw)πG(ix) = αix. Now we prove that (In − (1 − α)Arw)
is an invertible matrix. The matrix is invertible iff the determinant det(In − (1 − α)Arw) ̸= 0,
which is the case iff det(Arw − 1

1−αIn) ̸= 0, i.e., iff 1
1−α is not an eigenvalue of Arw. This

value is always larger than 1 since the teleport probability α ∈ (0, 1]. However, the largest eigen-
value of the row-stochastic matrix Arw is 1, as can be proven using the Gershgorin circle theorem.
Hence, 1

1−α cannot be an eigenvalue and (In − (1− α)Arw) is an invertible matrix. So we obtain
πG(ix) = α(In − (1 − α)Arw)

−1ix. Because the spectral radius (largest eigenvalue) of matrix
(1− α)Arw is less than 1, from the Neumann series theorem, we obtain

(In − (1− α)Arw)
−1 =

∞∑
m=0

((1− α)Arw)
m

=

∞∑
m=0

(
(1− α)AD−1

)m
.

Because D is a diagonal matrix and 1 − α is a constant, they do not affect whether an element in
the matrix is 0 or not. Therefore, we only need to discuss

∑∞
m=0 A

m. Because A is the adjacency
matrix of the DAG G, in this matrix, iff there is not a directed path from x to y (x ⩽̸ y), we deduce
that (

∑∞
m=0 A

m)[x, y] = 0. This leads us to the conclusion that πG(ix)[y] = 0.

We invert the directions of the edges in G to create a reverse DAG G̃. We can also obtain that, iff
x ⩽̸ y, then πG̃(ix)[y] = 0.

Therefore, for every node x, only nodes y that y /∈ N∞(x) will satisfy that πG(ix)[y] + πG̃(ix)[y]
equals 0.

Theorem 2. In a directed rooted tree T = (V,E) with the number of nodes |V |, the runtime of DAG
attention is O(|V | × k ×∆+ × d), where ∆+ is the maximum out degree of the T and d is feature
dimension. When k = ∞, the runtime of DAG attention is O(|V | × ℓ × ∆+ × d), where ℓ is the
depth of T .

Proof. In DAG attention, for each node v, we need to calculate the attention to Nk(v), whose runtime
is upper bounded by O(|Nk(v)| × d). So the runtime of DAG attention is linear in the sum of the
sizes of receptive fields

∑
v∈V |Nk(v)|. We only need to show that

∑
v∈V |Nk(v)| ⩽ |V | × k×∆+.

When k = ∞,
∑

v∈V |Nk(v)| ⩽ |V | × ℓ×∆+.

Next, we prove this theorem for the case of k = ∞. For bounded k, the proof is similar. We prove by
induction on the depth ℓ of T .

We assume that ∆+ ⩾ 2, since when ∆+ = 1, T is a 1-ary tree,
∑

v∈V |N∞(v)| = |V | × |V | ⩽
|V | × ℓ×∆+.

For the basis step, when ℓ = 0, T only has one node. So
∑

v∈V |N∞(v)| = 0 ⩽ |V | × ℓ×∆+.

For the inductive step, we assume that∑
v∈V |N∞(v)| ⩽ |V | × ℓ×∆+ holds when ℓ ⩾ 0. Consider a tree Tnew of depth ℓ+ 1 whose root

is denoted by r. Then the sub-trees whose roots are the children of r have depth at most ℓ. Let s be
the number of these sub-trees, s ⩽ ∆+, and Vi be the node set of the i-th sub-tree. Since the number
of reachability relations with r involved is 2(|V | − 1), we have

∑
v∈V

|N∞(v)|

=
∑
i∈[s]

∑
v∈Vi

|N∞(v)|+ 2(|V | − 1)

⩽ |V1| × ℓ×∆+ + ...+ |Vs| × ℓ×∆+ + 2(|V | − 1)

⩽ ℓ×∆+ × (|V | − 1) + 2(|V | − 1)

⩽ ℓ×∆+ × (|V | − 1) + ∆+ × (|V | − 1)

⩽ (ℓ+ 1)×∆+ × |V |

15

Table 8: The statistics of academic self-citation dataset.

Min Avg Max

nodes 30 59 296
DAG depth 1 5 21

Node degree 0 1.8 83

This completes the proof of Theorem 2 for the case of k = ∞.

B Experimental Details

B.1 Computing Environment

Our implementation is based on PyG [Fey and Lenssen, 2019]. All reported results are averaged over
10 runs using different random seeds. The experiments are conducted with two RTX 3090 GPUs.

B.2 Dataset Details

We provide details of the datasets used in our experiments, including ogbg-code2 [Hu et al., 2020],
Neural architectures (NA) [Zhang et al., 2019], Self-citation, Cora, Citeseer and Pubmed [Sen et al.,
2008].
ogbg-code2. ogbg-code2 [Hu et al., 2020] is a dataset containing 452,741 Python method definitions
extracted from thousands of popular Github repositories. It is made up of Abstract Syntax Trees as
DAGs where the task is to correctly classify the sub-tokens that comprise the method name. The
min/avg/max numbers of nodes in the graphs are 11/125/36123, respectively. We use the standard
evaluation metric (F1 score) and splits provided by [Hu et al., 2020].
Neural architectures (NA). This dataset is created in the context of neural architecture search. It
contains 19,020 neural architectures generated from the ENAS software [Pham et al., 2018]. Each
neural architecture has 6 layers (i.e., nodes) sampled from 6 different types of components, plus an
input and output layer. The input node vectors are one-hot encodings of the component types. The
weight-sharing accuracy [Pham et al., 2018] (a proxy of the true accuracy) on CIFAR-10 [Krizhevsky
et al., 2009] is taken as performance measure. Since it is a regression task, the metrics are RMSE
and Pearson’s r. We use the splits as is used in [Thost and Chen, 2021]. Details about the generation
process can be found in [Zhang et al., 2019].
Self-citation. The academic self-citation dataset is a directed acyclic graph, representing the scholar’s
academic self-citation network on the natural language processing (NLP) field extracted from ACL
Anthology Reference Corpus [ARC, 2021]. This dataset contains 1000 academic self-citation
networks from scholars ranked top-1000 by number of papers. In a self-citation networks, each node
is a paper of this scholar and each directed edge indicates that one paper is cited by another one. Each
graph node includes two quantitative attributes: the publication year, the paper’s total citation count.
The task is to predict missing citation counts given existing citation counts. Specifically, for each
scholar self-citation network, we randomly select 10% of its papers and drop their citation counts,
and the node-level task is to predict whether a paper which misses its citation count is highly-cited or
not. In Computer Science, Engineering, and Mathematics, for papers in ISI (Web of science database)
listed journals that are 10 years old, around 20 citations gets in the top 10%. So we consider papers
with a citation count greater than or equal to 20 as highly-cited papers. As the class balance is skewed
(only 27.2% of data is positive), we use the Average Precision (AP) and ROC-AUC as the evaluation
metrics. We randomly split the dataset into 80% training, 10% valid and 10% test sets. The statistics
is shown in Table 8.
Cora, Citeseer and Pubmed [Sen et al., 2008]. These three datasets are commonly used citation
networks for evaluating models on node classification tasks. These datasets are medium-scale
networks (with 2K~20K nodes) and the goal is to classify the topics of documents (instances) based
on input features of each instance (bag-of-words representation of documents) and graph structure
(citation links). For the baselines, the citation links are treated as undirected edges [Wu et al., 2022]
and each document has a class label. Only for our method, we treated citation links as directed edges
and removed a small number of cyclic citation links to make them DAGs. We use the same evaluation
metric (classification accuracy) and splits provided by NodeFormer [Wu et al., 2022].

16

Table 9: Hyperparameter search on different datasets.

Hyperparameter NA Self-citation Cora, Citeseer and Pubmed

Layers {2,3} {2, 3, 4, 5} {2, 3, 4, 5}
Hidden dimensions {32,128} {32, 64, 128} {16, 32, 64, 128}

Dropout 0.2 {0.1, 0.2, 0.5} 0.0
Learning rate 1e-3 {1e-4, 5-e4, 1e-3, 5e-3} {1e-3, 1e-2}

Epochs 100 {50, 100} 1000
Weight decay None 1e-6 5e-3

Attention heads {2, 4} {2, 4, 8} {2, 4}

Table 10: Number of parameters for DAG+ models.

Model ogbg-code2 NA Self-citation Cora Citeseer Pubmed

DAG+Transformer 127,06k 399k 478k 291k 404k 14k
DAG+SAT 149,53k 631k 710k 276k 165k 14k

B.3 Hyperparameters and Reproducibility

ogbg-code2. We implemented DAG attention on vanilla Transformer, GraphTrans, GraphGPS and
SAT that we only modify the self-attention module to DAG attention module. And we do not use any
PE as well as baselines because it makes very little performance improvement [Chen et al., 2022a].
For fair comparisons, we use the same hyperparameters (including training schedule, optimizer,
number of layers, batch size, hidden dimension etc.) as baseline models for all of our four versions.
NA. We train the transformer-based baselines (vanilla Transformer, GraphGPS and SAT) in front of
DAGNN [Thost and Chen, 2021]. For SAT, we use the 3-subtree GNN extractor (GIN). For GraphGPS,
we use GatedGCN as GPS-MPNN and vanilla Transformer as GPS-GlobAttn. And we implement
DAG attention on those respectively. We follow the exact training settings of DAGNN [Thost and
Chen, 2021]. Then we also train a sparse Gaussian process (SGP) [Snelson and Ghahramani, 2005]
with a learning rate of 4e-4, a epochs number 200 as the predictive model to evaluate the performance
of the latent representations. The transformer-based hyperparameters are summarized in Table 9. All
other hyperparameters are the same as those of DAGNN [Thost and Chen, 2021].
Self-citation. We implement DAG attention on the vanilla Transformer, GraphGPS, SAT and
NodeFormer. In general, we perform a hyperparameter search to produce the results for our model
and baselines. The hyperparameters on the academic self-citation dataset are summarized in Table
9, where # Attention heads is tuned for transformer-based models. For SAT, we conduct positional
encodings search on LapPE-8, RWPE-20 or None, and we use the 3-subtree GNN extractor (GIN). For
GraphGPS, we use GatedGCN as GPS-MPNN and vanilla Transformer as GPS-GlobAttn. The other
hyper-parameters for NodeFormer are the default parameters in their public code. In all experiments,
we use the validation set to select the best hyperparameters. All our models and baselines are trained
with the AdamW optimizer [Loshchilov and Hutter, 2016] and we use the cross-entropy loss on this
classification task. The learning rate scheduler is the cosine scheduler [Loshchilov and Hutter, 2016].
Cora, Citeseer and Pubmed. We implement DAG attention on the vanilla Transformer, SAT and
NodeFormer. Only for Pubmed, we choose the size of the receptive field k = 2 (otherwise k = ∞).
And we perform a hyperparameter search to produce the results for our model and those transformer-
based baselines in Table 9. We follow all other training setting and hyperparameters of NodeFormer
[Wu et al., 2022]. For SAT, we use the 1-subtree GNN extractor (GCN).

In Table 10, we report the number of parameters for DAG+ models using the hyperparameters selected
from Table 9.

C Model Visualization

Here, we demonstrate that the DAG transformer also provides interpretability compared to the
traditional Transformer model. We trained a DAG+Transformer and a Transformer model on a
self-citation graph, and compared the attention scores between the selected node and other nodes

17

learned by both models. Figure 3 visualizes the results. In the leftmost graph, the darker blue of
the nodes represents a higher number of citations. For the selected node v, DAG attention only
puts attention weights on the nodes that have citation relations with it (Nk(v)), whereas classic
self-attention focuses on nodes that are almost unrelated to v. More focus on these core nodes makes
the DAG model less influenced by other patterns and thus leads to improved performance.

Figure 3: Attention visualization of DAG+Transformer and the Transformer on self-citation. The figure shows
the attention weights of the node in the red box learned by DAG attention and the classic self-attention.

D Additional Results

D.1 Semi-supervised Node Classification

We test our model on three citation networks Cora, Citeseer and Pubmed. We implement DAG
attention on DIFFormer-a Wu et al. [2023]. Table 11 reports the testing accuracy. This show that our
framework likely increases both quality and runtime here as well.

Table 11: Node classification accuracy (%).The baseline results were taken from [Wu et al., 2023].

Model Cora Citeseer Pubmed
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

NodeFormer 83.4 ± 0.2 - 73.0 ± 0.3 - 81.5 ± 0.4 -
DIFFORMER-a 84.1 ± 0.6 14.21 75.7 ± 0.3 8.48 80.5 ± 1.2 1013.31

DAG + DIFFORMER-a 85.1 ± 0.7 10.96 76.2 ± 0.4 7.01 81.6 ± 0.5 84.15

D.2 MalNet-Tiny

Here we consider MalNet-Tiny. MalNet-Tiny [Freitas and Dong, 2021] is a subset of MalNet which
consists of function call graphs (FCGs) obtained from Android APKs. This subset includes 5,000
graphs with a maximum of 5,000 nodes, originating from benign software or 4 malware types. The
FCGs do not have any original node or edge features. The benchmark version of this dataset usually
employs Local Degree Profile as the set of node features. And the objective is to predict the type of
software solely based on the structure.

Note that we did not do any hyperparameter tuning. Further, we implemented DAG attention on
top of GraphGPS by only modifying the self-attention module, switching it to DAG attention. As
shown in Table 12, Our DAG+GraphGPS achieves a test accuracy of 93.45% while only requiring 20
seconds per epoch. This demonstrates the quality and efficiency of DAG attention.

E Further Related Works

Neural Networks on Directed Graphs. Most works we found focus on adapting the Laplacian:
[Ma et al., 2019] construct a directed Laplacian matrix to improve the propagation model by using
identities that involve the random walk matrix and its stationary distribution. [Monti et al., 2018]
consider several different symmetric Laplacian matrices corresponding to local directed graph motifs.

18

Table 12: Graph classification on MalNet-Tiny.

Model Accuracy (%) Time(epoch)

GraphGPS 92.64 ± 0.78 46s
DAG+GraphGPS 93.45 ± 0.41 20s

Moreover, DiGCN [Tong et al., 2020] is based on a directed Laplacian with a PageRank matrix to
learn multi-scale features and [Zhang et al., 2021] proposed MagNet, a GNN for directed graphs
based on the Magnetic Laplacian. The latter has been recently integrated into Transformers in the
form of a positional encoding [Geisler et al., 2023]. Note that this improves predictive performance
in directed graphs, but does impact the (quadratic) complexity of self-attention.

Transformers over Trees. Observe that trees are special in that they are a particular, more restricted
type of DAGs. [Sun et al., 2020] proposed TreeGen, a tree-based Transformer that combines grammar
rules and tree structure using a tree reader. However, it is not directly relevant to our work as it
focuses on program-specific information. In addition, there are some methods of leveraging tree
paths and integrating them into the self-attention module. [Alon et al., 2018] used AST to represent
a source code snippet. They considered pairwise paths between leaf nodes, representing them as
sequences of the leaf and non-leaf nodes in AST. [Kim et al., 2021] used another type of path that
goes from the leaf nodes up to the AST root by traversing its ancestors. [Zügner et al.] presented
Code Transformer, which combines distances computed on ASTs and context of source code in the
self-attention. Specifically, it utilizes four different paths to reason about ASTs relative positions.
Furthermore, [Peng et al., 2022] designed a new directed tree Transformer position encoding for each
node based on a two-dimensional description of tree structures. In contrast to these works, we shift
our focus toward more general DAGs, use a very simple and intuitive PE, and also adapt the receptive
field of the attention.

19

	Introduction
	Background and Related Works
	Transformers for Directed Acyclic Graphs
	Attention based on DAG Reachability
	Positional Encodings based on DAG Depth
	Expressive Power of DAG Attention
	Theoretical Intuition
	Implementation
	Computational Complexity

	Evaluation
	Experiment Setting
	Results and Discussion

	Conclusions
	Proofs
	Experimental Details
	Computing Environment
	Dataset Details
	Hyperparameters and Reproducibility

	Model Visualization
	Additional Results
	Semi-supervised Node Classification
	MalNet-Tiny

	Further Related Works

