
A Constrained sampling via post-processed denoiser

In this section, we provide more details on the apparatus necessary to perform a posteriori conditional
sampling in the presence of a linear constraint.

Eq. (6) suggests that the SDE drift corresponding to the score may be broken down into 3 steps:

1. The denoiser output Dθ(x̂t, σt) provides a target sample that is estimated to be a member
of the true data distribution;

2. The current state x̂t is nudged towards this target5;
3. Appropriate rescaling is applied based on the scale and noise levels (st and σt) prescribed

for the current diffusion time t.

For conditional sampling, consider imposing a linear constraint Cx0 = y, where C ∈ Rd×dc and
y ∈ Rdc . Decomposing C in terms of its singular value decomposition (SVD), C = UΣV T , leads to

V Tx0 = Σ−1UT y := ỹ. (14)

Note that this constraint can be easily embedded in the target by replacing the corresponding
components of Dθ(x̂t, σt) in this subspace with the constrained value, yielding a post-processed
target

Dθ,cons(x̂t, σt) = V ỹ + (I − V V T )Dθ(x̂t, σt). (15)

This modification alone guarantees that the sample x0 produced by the SDE satisfies the required
constraint (up to solver errors), while components in the orthogonal complement of the constraint are
guided by the denoiser just as in the unconstrained case.

However, in practice this modification creates a "discontinuity" between the constrained and uncon-
strained components, leading to erroneous correlations between them in the generated samples. As a
remedy, we introduce an additional correction in the unconstrained subspace:

D̃θ,cons(x̂t, σt) = Dθ,cons(x̂t, σt)− α(I − V V T )∇x̂tL(Dθ(x̂t, σt)), (16)

where
L(x̂t) = ∥CDθ(x̂t, σt)− y∥2 (17)

is a loss function measuring how well the denoiser output conforms to the imposed constraint. This is
the post-processed denoiser function Eq. (7) in the main text. The extra correction term effectively
induces a gradient descent roughly in the form

˙̂xt = −α̂∇x̂t
L(Dθ(x̂t, σt)) (18)

with respect to loss function L in the dynamics of the unconstrained components. α̂ is a positive
"learning rate" that is determined empirically such that the loss value reduces adequately close to zero
by the conclusion of the denoising process. Besides the 1/stσ

2
t scaling bestowed by the diffusion

process, it also depends on the scaling of the constraint matrix C, and in turn directly influences the
permissible solver discretization during sampling. Thus it needs to be tuned empirically.

Substituting D̃θ,cons for Dθ(x̂t, σt) in Eq. (6) results in the conditional score

∇xt
log pt(xt|Ey) =

D̃θ,cons(x̂t, σt)− x̂t

stσ2
t

. (19)

Note that the same re-scale 1/stσ
2
t is applied as before.

Remark 1. The correction in Eq. (16) is equivalent to imposing a Gaussian likelihood on x0 (and
thus the linearly transformed Cx0) given xt. To see this, first note that that applying Bayes’ rule to
the conditional score function results in

∇xt log pt(xt|Ey) = ∇xt log pt(xt) +∇xt log p(Cx0 = y|xt), (20)

where the probability in the second term may be viewed as a likelihood function for Cx0.

5In the same way that ȧ = −β(a0 − a) results in a → a0 as t → −∞ for any β > 0
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Next, substituting Eq. (16) into Eq. (19) yields

∇xt log pt(xt|Ey) =
Dθ,cons(x̂t, σt)− x̂t

stσ2
t

+ (I − V V T )
−α

stσ2
t

∇x̂t∥CDθ(x̂t, σt)− y∥2 (21)

where the second term (without the projection) may be further rewritten as

− α

stσ2
t

∇x̂t
∥CDθ(x̂t, σt)− y∥2 = − α

σ2
t

∇xt
∥CDθ(x̂t, σt)− y∥2 (22)

= ∇xt log

(
exp

(
− 2α

2σ2
t

∥CDθ(x̂t, σt)− y∥2
))

(23)

= ∇xt
logN

(
y;CDθ(x̂t, σt),

σ2
t

2α
I

)
. (24)

In other words, the correction is equivalent to imposing an isotropic Gaussian likelihood model for y
with mean CDθ(x̂t, σt) and variance σ2

t /2α. It is worth noting that both the mean and variance here
have direct correspondence to estimations of statistical moments using Tweedie’s formulas [29]:

E[x0|xt] = Dθ(x̂t, σt) and Cov[x0|xt] = σ2
t∇x̂t

Dθ(x̂t, t), (25)

with an additional approximation for the (linearly transformed) covariance

C∇x̂tDθ(x̂t, t)C
T ≈ 1

2α
I, (26)

which is expensive to evaluate in practice.

Lastly, it is important to note that the true likelihood p(x0|xt) ∝ p(xt|x0)p(x0) is in general
not Gaussian unless the target data distribution p(x0) is itself Gaussian. However, the Gaussian
assumption is good at early stages of denoising (t ≫ 0) when the signal-to-noise ratio (SNR) is low.
Later on, the true likelihood becomes closer to a δ-distribution as σt → 0, and the denoising is in
turn dictated by the mean.

Remark 2. The post-processing presented in this section is similar to [17], who propose to apply a
correction proportional to ∇x̂t

∥CDθ(x̂t, σt)−y∥2 directly to the score function. The main difference
is the lack of the additional scaling σ2

t that adapts to the changing noise levels in the denoise process.
In practice, we found that including this scaling contributes greatly to the numerical stability and
efficiency of continuous-time sampling.

B Diffusion model details

B.1 Training

The training of our denoiser-based diffusion models largely follows the methodology proposed in [45].
In this section, we present the most relevant components for completeness and better reproducibility.

The variance-preserving (VP) schedule sets the forward SDE parameters:

σt =

√
e

1
2βdt2+βmint − 1, st = 1/

√
e

1
2βdt2+βmint = 1/

√
σ2
t + 1, (27)

with βb = 19.9, βmin = 0.1 and time t going from 0 to 1.

The loss function for training the denoiser Dθ reads as

L(θ) =
∑
i

λ(σti)∥Dθ(x0,i + σtiε, σti)− x0,i∥2 (28)

over a batch {x0,i, ti} of size Nbatch indexed by i, with x0,i ∼ pdata and ε ∼ N (0, I). The times {ti}
are selected such that

ti+1 − ti = ∆t, t0 ∼ U [ϵt, ϵt +∆t], ∆t =
1− ϵt
Nbatch

. (29)
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That is, the times are evenly spaced out in [ϵt, 1] with interval ∆t given a random starting point t0.
ϵt = 10−3 is the minimum time set to prevent numerical blow-up. λ is the weight assigned to the
loss at noise level σti , which is given by

λ(σti) = (σ2
ti + σ2

data)/(σtiσdata)
2, (30)

where σ2
data is the data variance.

We further adopt the preconditioned denoiser ansatz

Dθ(x, σ) =
σ2

data

σ2
data + σ2

x+
σdataσ√
σ2

data + σ2
Fθ

(
x√

σ2
data + σ2

,
1

4
log(σ)

)
, (31)

where Fθ is the raw U-Net model. This ansatz ensures that the training inputs and targets of Fθ both
roughly have unit variance, and the approximation errors in Fθ are minimally amplified in Dθ across
all noise levels (see Appendix B.6 in [45]).

Data augmentation Both KS and NS exhibit translation symmetry (only in the x-direction for
NS due to the y-dependence of the Kolmogorov forcing, see section F), meaning that u(x+ a) (or
u(x+ a, y) for NS) is automatically a valid sample for any constant scalar a provided that u(x) (or
u(x, y) for NS) is a valid sample. We leverage this property, as well as the fact that both systems are
subject to periodic boundary conditions, to augment our dataset by applying a numpy.roll operation
with a random shift.

B.2 Sampling

The reverse SDE in Eq. (5) used for sampling may be rewritten in terms of denoiser Dθ as

dxt =

[(
σ̇t

σt
+

2ṡt
st

)
xt −

2stσ̇t

σt
Dθ

(
xt

st
, σt

)]
dt+ st

√
2σ̇tσt dWt. (32)

Parts of the drift term inside the squared brackets are inversely proportional to σt and hence quickly
rises in magnitude as σt → 0. This means that the dynamics becomes stiffer as t → 0, necessitating
the use of progressively finer time steps during denoising. As stated in §4.1 of the main text, for this
very reason, we employ an exponential profile with non-uniform time steps proportional to σt.

Similarly, the stiffness of the dynamics also increases with the conditioning strength α in the post-
processed denoiser D̃θ in Eq. (7). Therefore, for each conditional sampling setting (downscaling
factor and C ′ map), we use an ad hoc number of steps, as determined empirically from a grid search
(section E.1).

C Metrics

C.1 Definitions

In this section, we present the definitions of additional metrics that are used for the comparisons in
§4.2. The energy-based metrics are already defined in Eq. (12) and Eq. (13) of the main text.

Relative root mean squared error (RMSE) is defined as

RMSE =
1

N

N∑
n=1

∥zpred,n − zref,n∥2
∥zpred,n∥2

, (33)

where the predicted and reference quantities zpred,n and zref,n are computed over an evaluation
batch (of size N , indexed by n). The constraint RMSE corresponds to this metric evaluated on the
conditioned pixels of the generated samples (predicted) and the conditioned values ȳ′ (reference). It
provides a measure for how well the generated conditional samples satisfy the imposed constraint.

Covariance RMSE (covRMSE) referenced in Table 1 corresponds to computing Eq. (33) between
the (empirical) covariance matrices of the generated and reference samples given by

Cov(u) =
1

N

N∑
n=1

(un − ū)(un − ū)T , ū =
1

N

N∑
n=1

un, (34)
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Table 3: Number of samples used for evaluation. For sampling runs which are deterministic or
unconditional in nature, the number of evaluation samples is equal to the number of OT samples
(rather than the number of conditions) to ensure convergence in statistics.

OT Conditional sampling
System samples conditions samples per condition
KS 15360 512 128
NS 10240 128 128

where un are realizations of the multi-dimensional random variable U . For KS, we compute the
covariance along the full domain by treating each pixel as a distinct dimension of the random variable.
For NS, we leverage the translation invariance in the system to compute the covariance on slices with
fixed x-coordinate (i.e., dimensions are indexed by the y-coordinate). Lastly, since we are dealing
with matrices, the norm involved in Eq. (33) is taken to be the Frobenious norm.

Kernel-density-estimated Kullback-Leibler divergence (KLD) computes the KL divergence using
1-dimensional marginal kernel density estimations (KDEs, with the bandwidths selected based on
Scott’s rule [70]). That is,

KLD =

d∑
m=1

∫ ∞

−∞
p̃d,ref(υ) log

(
p̃d,ref(υ)

p̃d,pred(υ)

)
dυ, (35)

where p̃m are empirical probability density functions (PDFs) obtained with KDE for a particular
dimension m of the samples. The integral is approximated using the trapezoidal rule, and summed
over all dimensions for an aggregated measure, as if they were independent.

Sample variability (Var) refers to the mean pixel-wise standard deviation in the generated conditional
samples given by

Var =

√√√√ 1

Nd

N∑
n

d∑
m

(unm − ūm)2, ūm =
1

N

N∑
n=1

unm, (36)

where ūm is obtained by averaging the values of dimension m over samples with the same condition.

Mean Maximum Discrepancy (MMD) is computed using the following empirical estimation

MMD2 =
1

Np(Np − 1)

∑
i,j ̸=i

k(zpred,i, zpred,j)−
2

NpNr

∑
i,j

k(zpred,i, zref,j)

+
1

Nr(Nr − 1)

∑
i,j ̸=i

k(zref,i, zref,j),

(37)

between generated and reference samples {zpred} and {zref}. For k we use a multi-scale Gaussian
kernel with bandwidths [2, 4, 6, 8] × 256, which are tuned empirically to the rough scales of the
reference distribution.

Wasserstein-1 metric (Wass1) is given by

Wass1 =
1

d

d∑
m

∫ ∣∣CDFpred,d(z)− CDFref,d(z)
∣∣ dz, (38)

where the 1-dimensional CDFs are empirically computed with np.histogram and averaged across
all dimensions. The integral is performed over the range [−20, 20].

Evaluation setup. The number of samples used to evaluate the metrics is summarized in Table 3.
MELR and KLD metrics are evaluated marginally, i.e., on all conditional samples pooled together.

C.2 Additional results

Table 4 shows the conditional sampling metrics for KS. Additional energy spectra and log energy
ratio calculations for both systems are displayed in Fig. 4.
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Table 4: Additional KS conditional sampling metrics.

Method Constraint
RMSE

Sample
Variability

MELR
(unweighted)

MELR
(weighted)

KLD

Raw cDfn 0.001 0.044 0.527 0.143 10.37
OT+cDfn 0.001 0.044 0.362 0.044 1.27

Table 5: LR metrics for NS, computed for downsampled outputs of end-to-end baselines (BCSD,
cycGAN and ClimAlign). OT is superior in distributional metrics (covRMSE, MELR, MMD) but
pays a "price" in terms of pixel-wise similarity represented in the sMAPE metric (between corrected
and uncorrected LR snapshots).

OT BCSD cycGAN ClimAlign
8×downscale
covRMSE 0.08 0.31 0.16 2.21
MELRu 0.01 0.95 0.08 0.53
MELRw 0.03 0.13 0.04 0.54
MMD 0.04 0.06 0.06 0.61
sMAPE 0.53 0.25 0.41 0.74
16×downscale
covRMSE 0.08 0.35 0.33 2.50
MELRu 0.02 0.63 0.34 0.67
MELRw 0.03 0.16 0.15 0.58
MMD 0.03 0.34 0.09 0.55
sMAPE 0.54 0.36 0.63 0.76

Table 5 contrasts OT with end-to-end baselines. Since end-to-end baselines directly output HR
samples, they are downsampled to LR to enable apple-to-apple comparison. OT achieves the best
distributional metrics. Note that this comes seemingly "at the price" of decreased pixel-wise similarity,
which may be quantified through the symmetric mean absolute percentage error (sMAPE):

sMAPE =
1

N

N∑
n=1

|yn − y′n|
(|yn|+ |y′n|)/2

, (39)

where yn and y′n denote the LFLR and the downsampled end-to-end baseline outputs. Note that
sMAPE more closely embodies the "visual discrepancy" one observes before and after debiasing.
We reemphasize that this is a feature inherent to distribution-based debiasing and in fact an intended
consequence.

D Baselines

D.1 Cubic interpolation

Cubic interpolation employs a local third-order polynomial for the interpolation process. It builds a
local third order polynomial, or a cubic spline, in the form

u(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj , (40)

where the coefficients aij are usually found using Lagrange polynomials. We use the function
jax.image.resize to perform the interpolation.
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Figure 4: (a) Sample energy spectra (Eq. (12)) comparison in KS, (b) sample energy spectra compari-
son in NS and (c) mode-wise log energy ratios with respect to the true samples (Eq. (13) without
weighted sum) at 16× downscaling for NS.

D.2 BCSD

Bias correction and statistical disaggregation (BCSD) [56] is a two-stage downscaling procedure. It
first implements a cubic interpolation (using jax.image.resize), and then performs pixel-wise
quantile matching.

For quantile matching, we use the tensorflow.probability library. Specifically, for each point
in both the interpolated and reference HRHF snapshots, we compute the segments corresponding
to 1000 quantiles of each distribution using the stats.quantiles() function. At inference time,
for each pixel in the interpolated snapshot, we perform the following steps: (i) find the closest
segment (out of the 1000 quantiles) that contains the value at the given pixel, (ii) identify the quantile
corresponding to that segment, (iii) find the segment corresponding to that quantile in the HRHF data,
and finally, (iv) output the middle point in that quantile.

The number of quantiles was chosen to minimize the Wasserstein norm, while reliably computing the
quantiles from the 90, 000 samples. Finally, we note that quantile matching is indeed the minimizer
of the Wasserstein-1 norm, which in the one dimensional case can be conveniently expressed as the
L1 distance between the cumulative distribution functions of the corresponding measures.

D.3 ViT model

For the deterministic upsampling model, we consider a Vision Transformer (ViT) model similar
to several CNN based super-resolution models [26], but with a Transformer core that significantly
increases the capacity of the model. Our model follows the standard structure of a ViT. However, it
differs in the tokenization step, where instead of using a linear transformation from a patch of the
input to a embedding, we employ a single-pixel embedding combined with a series of downsampling
blocks. Each downsampling block consists of a sequence of ResNet blocks and a coarsening layer
implemented using a strided convolution. This architectural choice draws inspiration from the
hierarchical processing of CNNs [26, 86]. After tokenization, the tokens are processed using self-
attention blocks following [27]. The outputs of the self-attention blocks are then upsampled using
upsampling blocks. Each upsampling block consists of a nearest neighbor upsampling layer, which
combines nearest neighbor interpolation and a convolution layer, followed by a sequence of ResNet
blocks. We provide below more details on the implementation of each block and the core architecture.

Embedding We use a 1× 1 convolution to implement a pixel-wise embedding whose dimension
was tuned in a hyperparameter sweep.

Downsampling blocks The downscaling blocks quadruple the number of channels of the input as
the other dimensions are decimated by a factor two (red blocks in Fig. 5). This is achieved with
a convolutional layer with a (2, 2) stride, a fixed kernel width (hyperparameter) and periodic (i.e.
circular) boundary conditions. After the convolution, we use a sequence of convolutional ResNet
layers, with a GeLU activation function and a layer normalization. These convolutional layers also
use a fixed kernel width and periodic boundary conditions. The number of downsampling blocks and
the number of ResNet blocks inside each layer were empirically tuned.
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Transformer core Then the output of the downsampling blocks is reshaped into a sequence of tokens,
in which a corresponding 2-dimensional embedding is added to account for the underlying geometry
in the self-attention blocks. We then perform a sequence of self-attention blocks following the blocks
introduced in [27] (blue blocks in Fig. 5). The number of attention heads of each self-attention block
is equal to the dimension. The number of transformer blocks is also tuned. The GeLU activation
functions is used for the self-attention layers.

Upsampling blocks The tokens are reshaped back to their original 2-dimensional topology. Then, a
sequence of upsampling layers followed by a handful of ResNet blocks is used to downscale the image
(green blocks in Fig. 5) at its target resolution (purple block in Fig. 5). At each upsampling step,
the spatial resolution is increased by a factor of two in each dimension, while reducing the number
of channel so that the overall information remains constant. As mentioned above, the upsampling
is performed using a nearest neighbor interpolation (we repeat the value of the closest neighbor),
followed by a linear convolutional layer with a (3, 3) kernel size, and subsequently a series of ResNet
blocks similar to those used in the downsampling block.

The number of downsampling and upsampling blocks were chosen to strike a computational balance
between the quadratic complexity of the Transformer core on the number of tokens and the quadratic
complexity on the width of each token.

We use a simple mean squared error loss given that in this case we have paired data. As we seek
to build a upsampling network from Y ′ to X , the inputs y′ ∈ Y ′ are nothing more than the desired
output but downsampled by a factor 8 or 16, or y′ = C ′x for x ∈ X . We observed that the network
in the first runs were not able to faithfully interpolate the input, i.e., if we denote the network by Nθ,
where θ corresponds to the set of parameters, then the interpolation should satisfy C ′Nθ(y

′) = (y′).
Therefore, we added a regularization term in the loss weighted by a tunable parameter λ. In a nutshell,
the loss is given by

L(θ) = 1

N

(∑
x∈X

∥Nθ(C
′x)− x∥2 + λ∥C ′Nθ(C

′x)− C ′x∥2
)
. (41)

For training, we used a regular adam optimizer. Due to the Transformer core we used a small learning
rate of 3 ·10−3 with a gentle decay of 0.97 every 40, 000 iterations, and a batch size of 32. We trained
the network for 800, 000 iterations using the same data used to train our models. We performed
hyperparameter sweeps on the embedding dimension, the number of ResNet blocks, the number
of self-attention layers, kernel sizes and regularization parameter λ. We observed that increasing
λ did not provide much overall performance boost, so the final version was trained with λ equal
to zero. Also, adding more blocks and self-attention layers saturated the performance quickly. For
each combination of hyperparameters, the training took between 14 and 27 hours depending on the
number of trainable parameters. The models used for the comparison in Table 2 have the following
hyperparameters:

• 8× downscaling: dimension embedding in the embedding layer - 16; number of downsam-
pling blocks - 2; number of upsampling blocks - 5; number of ResNet block (in each of
the up-sampling/downsampling) - 4; number of self-attention blocks - 2. Total number of
parameters: 9, 726, 209.

• 16× downscaling: dimension embedding in the embedding layer - 32; number of down-
sampling blocks - 1; number of upsampling blocks - 5; number of ResNet block (in each of
the up-sampling/downsampling) - 4; number of self-attention blocks - 2. Total number of
parameters: 2, 669, 505.

We point out that the network for the example with 8× downscaling factor has more parameters due
to the extra downsampling block which quadruples the number of embedding dimension. We also
considered bigger dimension embedding, but we found no considerable gains in performance.

D.4 cycleGAN

For the cycleGAN we followed closely the implementation in [86].

For the generators, we use the same architecture as in the original paper. The first layer performs
a local embedding, followed by a sequence of downsample blocks, each of which downsamples
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Figure 5: Sketch of the structure of the deterministic upsampling network. In red we have the
downsampling layers, which reduce the spatial resolution in space of the image, while increasing the
number of channels. The first two channels are flattened into a one-dimensional set of tokens, and a
sequence of self-attention blocks are applied afterwards. After the self-attention blocks, the tokens
are reshaped back to it two-dimensional geometry, followed by a cascade of transpose convolutions
to upsample the image.

the geometrical dimensions by a factor two, while increasing the channel dimension. At the lowest
resolution we implement a sequence of ResNet blocks to process the input, immediately followed by
a sequence of upsampling blocks, which upsample the geometrical dimension while reducing the
channel dimension.

Given that the two generators, GX 7→Y (from high-resolution to low-resolution) and GY7→X (from
low-resolution to high-resolution) have different input dimensions, we use a different combination of
downsample/upsample blocks, and they also have different embedding dimensions. We implemented
the different generators (for both the 8× and 16× downscaling factor) with different number of
downsampling versus upsampling layers in the generators, and also different embedding dimensions.

Instead of using one discriminator architecture as in the original paper, we use two of them given that
the input dimensions are different. Below we provide further details on the architecture used.

D.4.1 Generator networks

Embedding We use one convolution layer with a kernel of size (7, 7) and an embedding dimension
that is different for each generator and for each problem.

Downsampling blocks We implement the downscaling blocks following [86]. These blocks
effectively double the number of input channels while reducing the other dimensions by a factor
of two. This downsampling is achieved using a convolutional layer with a (2, 2) stride, a kernel of
fixed width, and periodic boundary conditions. Subsequently, the output is normalized using a group
normalization layer and further processed with a ReLU activation function.

ResNet core At the lowest resolution we use a sequence (whose length was also tuned) of ResNet
blocks, using two convolution layers, with periodic boundary conditions, including a skip connection,
two group normalization layers, and a dropout layer with a tunable dropout rate, following [86].

Upsampling blocks The upsampling blocks are implemented using transpose convolutional layers,
followed by a group normalization layer and a ReLU activation function.

After several sweeps on the number of upsampling/downsampling blocks and other hyper-parameters
we chose the following network configurations.
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Figure 6: Sketch of the structure of the cycleGAN generator GY7→X . In red we have the downsampling
layers, which reduce the spatial resolution in space of the image, while increasing the number of
channels. At the lowest level we have (in blue) the ResNet blocks, followed by a cascade of transpose
convolutions to upsample the image.

8× downscaling factor

• GY7→X : number of downsampling blocks - 2; number of upsampling blocks - 5; embedding
dimension - 32; dropout rate - 0.5; number of ResNet blocks - 6. Number of parameters:
4, 029, 569.

• GX 7→Y : number of downsampling blocks - 5; number of upsampling blocks - 2; embedding
dimension - 6; dropout rate - 0.5; number of ResNet blocks - 6. Number of parameters:
4, 232, 353.

16× downscaling factor

• GY7→X : number of downsampling blocks - 2; number of upsampling blocks - 6; embedding
dimension - 64; dropout rate - 0.5; number of ResNet blocks - 6. Number of parameters:
16, 868, 641,

• GX 7→Y : number of downsampling blocks - 5; number of upsampling blocks - 2; embedding
dimension - 6; dropout rate - 0.5; number of ResNet blocks - 6. Number of parameters:
4, 232, 353.

We point out that in this case the network for the 16× example also requires more parameters: roughly
four times more due to the higher dimension of the upsampling.

D.4.2 Discriminator networks

The discriminator networks are the same as those in the original cycleGAN, with a small difference.
The discriminator for X requires a special structure: instead of discriminating the full snapshot, we
discriminate patches of the snapshot. By employing this trick, we were able to efficiently train the
network, whereas using a global discriminator did not allow us to train the network to generate the
snapshots as shown in §4.2. One simple strategy to implement this patched discriminator was to use
the same architecture for both discriminators. However, we output a tensor of scores in which each
element of the tensor corresponded to the score of one of the patches in the image, rather than a single
score for the entire image. By choosing the patch size to be equal to the size of the lowest resolution
snapshot, we could reuse the same architecture, depending on the problem size and downscaling
factor.

The discriminator network, as described in [86], is composed of the following components: an
embedding layer that applied a convolution with a kernel size of (4, 4), a stride of two, padding of
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one, and a tunable embedding dimension; a leaky ReLU applied with an initial negative slope of
0.2; and a sequence of downsampling blocks similar to the generator network. Finally, a per-channel
bottleneck network with one output channel is used to produce the local score.

The specific architectures used in Table 2 with their corresponding hyperparameters are summarized
below:

• 8× downscaling factor. The discriminators were the same: they had 3 downsampling
blocks, with an embedding dimension of 64. Total number of parameters 2, 763, 589 each.

• 16× downscaling factor. The discriminators were different due to the smaller dimensions
of the snapshots in Y , which would have resulted in very small receptive fields for the
discriminator of X . The discriminator for Y had two downsampling blocks, while the
discriminator for X had six downsampling blocks. However, both discriminators had an
embedding dimension of 64. The total number of parameters was 15, 349, 576 for the
discriminator of X and 661, 316 for the discriminator of Y .

D.4.3 Loss and optimization

We also closely followed the original cycleGAN paper [86], in which we utilize the least-squares
GAN loss in conjunction with the cycle loss. However, we do not employ the identity loss, as the
different dimensions of the spaces make it challenging to impose such a loss naturally.

The optimization was performed by alternating the update of the generators and the discriminators.
We used two adam optimizers: one for the generators and the other for the discriminators. Both
optimizers had a momentum parameter β set to 0.5 and a learning rate of 0.0002. Despite the
continuous decrease in losses, we observed the emergence of several artifacts in the generated images.
To address this issue, we checkpointed the model every two epochs, computed the MELR (see
Equation Eq. (13)), and selected the model with the smallest unweighted error. For the example with
an 8× downscaling factor, this was achieved after just 8 epochs, while for the example with a 16×
downscaling factor, this was achieved after 16 epochs.

The full training loop took around two days to complete. However, due to early stopping, the
checkpoints shown in Table 2 took around 8 hours to produce.

D.5 ClimAlign

For this baseline we follow the original paper ClimAlign [32], in which the authors perform first an
cubic interpolation and then use the AlignFlow framework to perform the debiasing.

For the implementation of the debiasing step we follow closely the implementation of the original
AlignFlow [34] algorithm, which can be found in https://github.com/ermongroup/alignflow.
We considered the same hyper parameters as in the original paper. The main modification we perform
to the codebase was how to feed the data to the model.

E Ablation studies

E.1 Conditioning strengths

As described in section A, the parameter α controls the strength of conditioning in the subspace
orthogonal to the linear constraint. Increasing its value encourages these orthogonal components to
be more coherent with the constrained components, but at the same time makes sampling more costly.
As such, we conduct grid searches to determine its value, along with the number of SDE solver steps,
that strikes a satisfying balance between sample quality and cost.

The grid search setup is as follows: we first normalize α with respect to the dimensionality of C ′

α̃ = α/γC′ , γC′ = dim(ỹ)/dim(x) (42)

such that the same normalized α̃ value does not have drastically different effects for different
downscaling factors. Then we evaluate the unweighted MELR and sample variability for 2500
generated samples (50 conditions, 50 conditional samples each) resulting from combinations of
α̃ ∈ [0.125, 0.25, 0.375, ..., 3] and N ∈ [32, 64, 128, ..., 1024].
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Figure 7: Unweighted MELR (Eq. (13); first row) and sample variability (Eq. (36); second row) vs.
number of SDE steps at different values of α̃. Larger α̃ generally has better MELR but takes more
solver steps to converge and results in lower sample variability.

Table 6: Best conditional sampling configurations and metrics found via grid search. For reference,
the unconditional diffusion samples have variability 1.33 (KS) and 3.67 (NS); reference samples have
variability 1.33 (KS) and 4.39 (NS); unconditional diffusion samples have unweighted MELR 0.27
(KS) and 0.37 (NS).

KS NS
8× 8× 16× 32× 64×

% of conditioned elements (γC′ ) 12.5 1.56 0.39 0.098 0.024
Condition strength (α̃) 1.0 0.625 0.625 0.375 0.125
SDE steps (N ) 256 256 512 1024 1024
Sample variability 0.04 0.36 1.56 3.52 3.67
MELR (unweighted) 0.36 0.06 0.05 0.06 0.21

In Fig. 7, we show MELR and variability plotted against N for different α̃’s. The MELR trends (first
row) confirm our intuition that more steps are required for convergence as α̃ increases. However,
higher α̃ also means lower sample variability (second row). This prompts us to choose an α̃ that is
neither too high nor too low. The selected configurations are listed in rows 2 and 3 of Table 6.

E.2 Downscaling factors

We additionally obtain samples for 32× and 64× downscaling (conditioned values are obtained by
further downsampling the OT corrected LR snapshots), besides the 8× and 16× presented in the
main text, to explore the limits of our methodology. We conduct the same grid search as described
in section E.1 to determine the normalized conditioning strength α̃ and the number of solver steps
N . The resulting configurations and metrics are displayed in Table 6, along with samples from an
example test case in Fig. 8.

We observe that the variability of the generated conditional samples expectedly increases with the
downscaling factor, as sampling process becomes less constrained. At 32× downscaling, the corrected
LR conditioning still plays a significant role in addressing the color shift in the unconditional sampler,
leading to MELR resembling those obtained in the 8× and 16× cases. The same no longer holds true,
however, for the 64× downscaling case, as the MELR performance becomes more similar to that of
the unconditional sampler. This outcome is also not surprising considering that 64× downscaling
corresponds to conditioning on 4× 4 = 16 pixels, accounting for a minuscule 0.02% of the sample
dimensions.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8: Sample comparison across different downscaling factors for NS (8×, 16×, 32× and 64×
for rows 1, 2, 3 and 4 respectively). Column legend: (a) conditioned values; (b-g) 6 samples generated
by diffusion model conditioned on (a); (h) pixel-wise variability of 128 random conditional samples
(same color scale across rows; dark means large and light means small).

Table 7: Metric comparison for conditioning on raw vs. OT-corrected LR snapshots for diffusion-,
interpolation- and ViT-based super-resolution.

Diffusion Cubic ViT
Raw OT Raw OT Raw OT

MELR (unweighted), NS 8× 0.79 0.06 0.93 0.52 1.39 0.38
MELR (unweighted), NS 16× 0.54 0.05 0.83 0.55 1.97 1.38
MELR (weighted), NS 8× 0.37 0.02 0.41 0.06 0.58 0.18
MELR (weighted), NS 16× 0.30 0.02 0.45 0.14 0.32 0.10

E.3 Uncorrected super-resolution

To demonstrate the importance of debiasing the low-resolution data, we contrast the performance
between conditioning on LR data before and after the OT correction in Table 7 for all factorized
baselines considered. We observe that applying the correction universally leads to better samples
regardless of the super-resolution method used.

F Datasets

We consider two dynamical systems with chaotic behavior, which is the core property of atmospheric
models [53]. In particular, we consider the one-dimensional Kuramoto-Sivashinsky (KS) equation
and the Navier-Stokes (NS) equation with Kolmogorov forcing. For each equation we implement two
different discretizations. The different discretizations are used to generate the low- and high-resolution
data.

F.1 Equations

Kuramoto-Sivashinsky (KS) equation We solve the equation given by

∂tu+ u∂xu+ ν∂xxu− ν∂xxxxu = 0 in [0, L]× R+, (43)
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with periodic boundary conditions, and L = 64. Here the domain is rescaled in order to balance the
diffusion and anti-diffusion components so the solutions are chaotic [28].

The initial conditions are given by

u0(x) =

nc∑
j=1

aj sin(ωj ∗ x+ ϕj), (44)

where ωj is chosen randomly from {2π/L, 4π/L, 6π/L}, aj is sampled from a uniform distribution
in [−0.5, 0.5], and phase ϕj follows a uniform distribution in [0, 2π]. We use nc = 30.

Navider-Stokes (NS) equation We also consider the Navier-Stokes equation with Kolmogorov
forcing given by

∂u

∂t
= −∇ · (u⊗ u) + ν∇2 − 1

ρ
∇p+ f in Ω, (45)

∇ · u = 0 in Ω, (46)

where Ω = [0, 2π]2, u(x, y) = (ux,uy) is the field, ρ is the density, p is the pressure, and f is the
forcing term given by

f =

(
0

sin(k0y)

)
+ 0.1u, (47)

where k0 = 4. The forcing only acts in the y coordinate. Following [48], we add a small drag term to
dissipate energy. An equivalent problems is given by its vorticity formulation

∂tω = −u · ∇ω + ν∇2ω − αω + f, (48)

where ω := ∂xuy − ∂yux [6], which we use for spectral method which avoids the need to separately
enforce the incompressibility condition ∇ · v = 0. The initial conditions are the same as the ones
proposed in [48].

F.2 Pseudo-Spectral discretization

To circumvent issues stemming from dispersion errors, we choose a pseudo-spectral discretization,
which is known to be dispersion free, due to the exact evaluation of the derivatives in Fourier space,
while possessing excellent approximation guarantees [76]. Thus, few discretization points are needed
to represent solutions that are smooth.

We used jax-cfd spectral elements tool box which leverages the Fast Fourier Transform (FFT)
[19] to compute the Fourier transform in space of the field u(x, t), denoted by û(t). Besides the
approximation benefits of using this representation, the differentiation in the Fourier domain is a
diagonal operator: it can be calculated by element-wise multiplication according to the identity
∂xûk = ikûk, where k is the wavenumber. This makes applying and inverting linear differential
operators trivial since they are simply element-wise operations [76].

The nonlinear terms in Eq. (43) and Eq. (48) are computed using Plancherel’s theorem to pivot
between real and Fourier space to evaluate these terms in quasilinear time. This procedure transforms
Eq. (43) and Eq. (45) to a system in Fourier domain of the form

∂tû(t) = Dû(t) +N(û(t)), (49)

where D denotes the linear differential operators in the Fourier domain and is often a diagonal matrix
whose entries only depend on the wavenumber k and N denotes the nonlinear part. We used a
4th order implicit-explicit Crack-Nicolson Runge-Kutta scheme [11], where we treat the linear part
implicitly and the nonlinear one explicitly.

F.3 Finite-volumes discretization

We use a simple discretization using finite volumes [51], which was implemented using the finite
volume tool-box in jac-cfd [48]. For the KS equation, we used a Van-Leer scheme to advect the
field in time. This was implemented by applying a total variation diminishing (TVD) limiter to the
Lax-Wendroff scheme [51]. The Laplacian and bi-Laplacian in Eq. (43) were implemented using tri-
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and penta-diagonal matrices. The linear systems induced by the implicit step were solved on-the-fly
at each iteration using fast-diagonalization.

For the NS equation we used a fractional method, which performs an explicit step which relies in the
same Van-Leer scheme for advecting the field together with the diffusion step. We then performed a
pressure correction by solving a Poisson equation, also using fast-diagonalization by leveraging the
tensor structure of the discretized Laplacian.

F.4 Data Generation

For the low-fidelity, low-resolution data (specifically the space Y in Fig. 1), we employed the
finite-volume schemes described above, using either a fractional discretization in time (for NS) or a
implicit-explicit method (for the KS equation). The domains mentioned above were utilized, with a
32× 32 grid and a time step of dt = 0.001 for NS. For KS, we employed a discretization of size 48
points and a time step of dt = 0.02. These resolutions represent the lowest settings that still produced
discernible trajectories.

For the high-fidelity, high-resolution data (namely the space X in Fig. 1), we used the pseudo-spectral
discretization mentioned above with a 256× 256 grid and time step dt = 0.001 for NS (using the
vorticity formulation) and discretization of size 192 and time step dt = 0.0025 for the KS equation.

For the KS equation, we created 512 trajectories in total. Each trajectory was run for 4025 units of
time, of which we dropped the ones generated during an initial ramp-up time of 25 units of time. Of
the remaining 4000 units of time, we sampled each trajectory every 12.5 units of time resulting on
320 snapshots per trajectory.

For NS we also created 512 trajectories in total. We used the same time discretization for both low-
and high-resolution data. Each trajectory was run for 1640 units of time, of which we dropped the
ones generated during an initial ramp-up time of 40 units of time. Of the trajectories spanning the
remaining 1600 units of time, we sampled each them every 4 units of time (or 4000 time steps)
resulting on 400 snapshots per trajectory.

The sampling rate for each trajectory was chosen to minimize the correlation between consecutive
snapshots and therefore, obtain a better coverage of the attractor.

G Hyperparameters

Table 8 shows the set of hyperparameters used to train our diffusion models. Our U-Net model
(parameterizing Fθ in Eq. (31)) closely follows the Efficient U-Net architecture in [67] and apply
self-attention operations at the coarsest resolution only. We employ the standard adam optimizer,
whose learning rate follows a schedule consisting of a linear ramp-up phase of 1K steps and a cosine
decay phase of 990K steps. The maximum learning rate is 10−3 and the terminal learning rate is
10−6. We additionally enable gradient clipping (i.e., forcing ∥dL/dθ∥2 ≤ 1) during optimization.

H Debiasing with optimal transport

We begin this section by giving an overview of computational methods to find optimal transport maps.

For certain measures, the optimal transport plan γ ∈ Π(µY , µY ′) in the Wasserstein-2 distance
W2(µY , µY ′) = infγ

∫
1
2∥y − y′∥2dγ(y, y′) is induced by a transport map T : Y 7→ Y ′ where

T♯µY = µY ′ . In particular for the quadratic cost, Brenier’s theorem guarantees that such a map
exists when µY ′ is atom-less [8] and the plan is concentrated on the graph of a map, i.e., γ(y, y′) =
(Id, T )♯µY ′ . Moreover, the Brenier map T is given by the gradient of a convex potential function.

Recently, several methods have been proposed to approximate the Brenier map given only a collection
of i.i.d. samples from each measure {yi} ∼ µY , {(y′)i} ∼ µY ′ . These include flow-based mod-
els [77], the projection arising from an entropic-regularized OT problem as discussed in Section [65],
and continuous approximations of discrete plans [63]. Another recent approach directly parameterizes
the transport map as the gradient of a convex potential function that is represented using input convex
neural networks [50, 55]. This approach leverages the dual formulation of the OT problem, to express
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Table 8: Hyperparameters for diffusion model architecture and training.

Hyperparameter KS NS
Input dimensions 192× 1 256× 256× 1

Dblock/Ublock resolutions (96, 48, 24) (128, 64, 32, 16)

Resolution channels (32, 64, 128) (32, 64, 128, 256)

Number of ResNetBlocks per resolution 6 6

Noise embedding Fourier Fourier
Noise embedding dimension 128 128

Number of attention heads 8 8

Total number of parameters 4.40M 31.44M
Batch size 512 16

Number of training steps 1M 1M
EMA decay 0.95 0.99

Training duration (approximate) 2 days 4 days

the Wasserstein-2 distance as
W2(p, q)

2 = Cp,q + sup
f∈cvx(p)

{Ep[−f(X)] + Eq[−f∗(Y )]} , (50)

where Cp,q = E[X2]+E[Y 2] is a constant and f∗(y) = infx{xT y−f(x)} is the convex conjugate of
f . Under the conditions of Brenier’s theorem, the optimal map T satisfying T♯µY = µY ′ corresponds
to T = ∇f∗ where f solves Eq. (50). If we replace f∗ with a second network g that is also
parameterized with ICNNs, [55] proposed to find the OT map by solving the min-max problem:

sup
f∈cvx(p)

inf
g∈cvx(q)

{Ep[−f(X)] + Eq[−⟨Y,∇g(Y )⟩ − f(∇g(Y ))]} .

This approach is very sensitive to the network initialization and is challenging to solve in high-
dimensions due to the constraints imposed on the map. Moreover, they are limited to squared-
Euclidean costs, which limits their flexibility in certain applications. As a result, in our numerical
examples we choose to use the entropic OT problem discussed in Section 3.3.

H.1 Additional numerical results

We provide additional numerical results to showcase how the optimal transport (OT) map corrects the
bias in the LFLR snapshots.

Fig. 9 displays how the OT map changes the covariance structure of the snapshots, while Fig. 10
shows the cumulative distribution functions before and after the OT correction for both the 8× and
16× NS downscaling problems. We can observe from the plots that the OT successfully corrects the
distributions.

I Computational resources

The generation of the data was performed using 12 core server with an NVIDIA A100 GPU and 40
GB of VRAM. The training for the diffusion models, and the ViT model were performed in a 16
core server with NVIDIA V100 GPUs with 32 GB of VRAM. The cycle-GAN was trained on a TPU
v4 in Google cloud. The Sinkhorn iteration for computing the OT map was performed in a 80 core
instance with 240GB of RAM, each training loop took roughly a day for 5000 iterations. All the
training was performed in single precision (fp32), while the generation of the data was performed in
double precision (fp64). The data was transferred to single precision at training/inference time.

J Additional samples

We provide additional conditional samples in Figs. 11 and 12 from the NS 8× and 16× downscaling
experiments respectively.
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(a) LFLR (b) OT-corrected (c) HFLR

Figure 9: Covariance structure of LFLR, OT-corrected and HFLR reference samples for KS (top) NS
8× downscaling (middle) and NS 16× downscaling (bottom).
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Figure 10: Cumulative distribution functions (CDFs) at selected locations of the snapshots for the NS
8× (top) and 16× (bottom) examples.

31



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11: Conditional samples for NS 8× downscaling. Column legend: (a) raw LFLR snapshot; (b)
LFLR snapshot corrected by OT; (c-g) 5 samples generated by diffusion model conditioned on (b);
(h) pixel-wise variability of 128 random samples conditioned on (b).

32



(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12: Conditional samples for NS 16× downscaling. Column legend: (a) raw LFLR snapshot;
(b) LFLR snapshot corrected by OT; (c-g) 5 samples generated by diffusion model conditioned on
(b); (h) pixel-wise variability of 128 random samples conditioned on (b).
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