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Abstract

A common concern when a policymaker draws causal inferences from and makes
decisions based on observational data is that the measured covariates are insuffi-
ciently rich to account for all sources of confounding, i.e., the standard no con-
foundedness assumption fails to hold. The recently proposed proximal causal
inference framework shows that proxy variables that abound in real-life scenar-
ios can be leveraged to identify causal effects and therefore facilitate decision-
making. Building upon this line of work, we propose a novel optimal individu-
alized treatment regime based on so-called outcome and treatment confounding
bridges. We then show that the value function of this new optimal treatment
regime is superior to that of existing ones in the literature. Theoretical guaran-
tees, including identification, superiority, excess value bound, and consistency of
the estimated regime, are established. Furthermore, we demonstrate the proposed
optimal regime via numerical experiments and a real data application.

1 Introduction

Data-driven individualized decision-making has received tremendous attention nowadays due to its
applications in healthcare, economics, marketing, etc. A large branch of work has focused on max-
imizing the expected utility of implementing the estimated optimal policy over a target popula-
tion based on randomized controlled trials or observational studies, e.g., Athey and Wager (2021);
Chakraborty and Moodie (2013); Jiang et al. (2019); Kitagawa and Tetenov (2018); Kosorok and
Laber (2019); Murphy (2003); Qian and Murphy (2011); Robins (1986, 1994, 1997); Tsiatis et al.
(2019); Wu et al. (2019); Zhao et al. (2012, 2019).

A critical assumption commonly made in these studies, known as unconfoundedness or exchange-
ability, precludes the existence of unmeasured confounding. Relying on an assumed ability of the
decision-maker to accurately measure covariates relevant to a variety of confounding mechanisms
present in a given observational study, causal effects, value functions, and other relevant quantities
can be nonparametrically identified. However, such an assumption might not always be realistic in
observational studies or randomized trials subject to non-compliance (Robins, 1994, 1997). There-
fore, it is of great interest in recovering confounding mechanisms from measured covariates to infer
causal effects and facilitate decision-making. A prevailing strand of work has been devoted to us-
ing instrumental variable (Angrist et al., 1996; Imbens and Angrist, 1994) as a proxy variable in
dynamic treatment regimes and reinforcement learning settings (Cui, 2021; Cui and Tchetgen Tch-
etgen, 2021b,a; Han, 2023; Liao et al., 2021; Pu and Zhang, 2021; Qiu et al., 2021; Stensrud and
Sarvet, 2022).

Recently, Tchetgen Tchetgen et al. proposed the so-called proximal causal inference framework, a
formal potential outcome framework for proximal causal learning, which while explicitly acknowl-
edging covariate measurements as imperfect proxies of confounding mechanisms, establishes causal
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identification in settings where exchangeability on the basis of measured covariates fails. Rather than
as current practice dictates, assuming that adjusting for all measured covariates, unconfoundedness
can be attained, proximal causal inference essentially requires that the investigator can correctly
classify a subset of measured covariates L ∈ L into three types: i) variables X ∈ X that may be
common causes of the treatment and outcome variables; ii) treatment-inducing confounding proxies
Z ∈ Z; and iii) outcome-inducing confounding proxies W ∈ W .

There is a fast-growing literature on proximal causal inference since it has been proposed (Cui et al.,
2023; Dukes et al., 2023; Ghassami et al., 2023; Kompa et al., 2022; Li et al., 2023; Mastouri et al.,
2021; Miao et al., 2018b; Shi et al., 2020b, 2021; Shpitser et al., 2023; Singh, 2020; Tchetgen Tch-
etgen et al., 2020; Ying et al., 2023, 2022 and many others). In particular, Miao et al. (2018a);
Tchetgen Tchetgen et al. (2020) propose identification of causal effects through an outcome con-
founding bridge and Cui et al. (2023) propose identification through a treatment confounding bridge.
A doubly robust estimation strategy (Chernozhukov et al., 2018; Robins et al., 1994; Rotnitzky et al.,
1998; Scharfstein et al., 1999) is further proposed in Cui et al. (2023). In addition, Ghassami et al.
(2022) and Kallus et al. (2021) propose a nonparametric estimation of causal effects through a min-
max approach. Moreover, by adopting the proximal causal inference framework, Qi et al. (2023)
consider optimal individualized treatment regimes (ITRs) estimation, Sverdrup and Cui (2023) con-
sider learning heterogeneous treatment effects, and Bennett and Kallus (2023) consider off-policy
evaluation in partially observed Markov decision processes.

In this paper, we aim to estimate optimal ITRs under the framework of proximal causal inference.
We start with reviewing two in-class ITRs that map from X ×W to A and X ×Z to A, respectively,
where A denotes the binary treatment space. The identification of value function and the learning
strategy for these two optimal in-class ITRs are proposed in Qi et al. (2023). In addition, Qi et al.
(2023) also consider a maximum proximal learning optimal ITR that maps from X ×W ×Z to A
with the ITRs being restricted to either X ×W → A or X ×Z → A. In contrast to their maximum
proximal learning ITR, in this paper, we propose a brand new policy class whose ITRs map from
measured covariates X ×W × Z to A, which incorporates the predilection between these two in-
class ITRs. Identification and superiority of the proposed optimal ITRs compared to existing ones
are further established.

The main contributions of our work are four-fold. Firstly, by leveraging treatment and outcome
confounding bridges under the recently proposed proximal causal inference framework, identifica-
tion results regarding the proposed class DΠ

ZW of ITRs that map X ×W ×Z to A are established.
The proposed ITR class can be viewed as a generalization of existing ITR classes proposed in the
literature. Secondly, an optimal subclass of DΠ

ZW is further introduced. Learning optimal treat-
ment regimes within this subclass leads to a superior value function. Thirdly, we propose a learning
approach to estimating the proposed optimal ITR. Our learning pipeline begins with the estima-
tion of confounding bridges adopting the deep neural network method proposed by Kompa et al.
(2022). Then we use optimal treatment regimes proposed in Qi et al. (2023) as preliminary regimes
to estimate our optimal ITR. Lastly, we establish an excess value bound for the value difference
between the estimated treatment regime and existing ones in the literature, and the consistency of
the estimated regime is also demonstrated.

2 Methodology

2.1 Optimal individualized treatment regimes

We briefly introduce some conventional notation for learning optimal ITRs. Suppose A is a binary
variable representing a treatment option that takes values in the treatment space A = {−1, 1}. Let
L ∈ L be a vector of observed covariates, and Y be the outcome of interest. Let Y (1) and Y (−1) be
the potential outcomes under an intervention that sets the treatment to values 1 and −1, respectively.
Without loss of generality, we assume that larger values of Y are preferred.

Suppose the following standard causal assumptions hold: (1) Consistency: Y = Y (A). That is,
the observed outcome matches the potential outcome under the realized treatment. (2) Positivity:
P(A = a|L) > 0 for a ∈ A almost surely, i.e., both treatments are possible to be assigned.

We consider an ITR class D containing ITRs that are measurable functions mapping from the covari-
ate space L onto the treatment space A. For any d ∈ D, the potential outcome under a hypothetical
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intervention that assigns treatment according to d is defined as

Y (d(L))
△
= Y (1)I{d(L) = 1}+ Y (−1)I{d(L) = −1},

where I{·} denotes the indicator function. The value function of ITR d is defined as the expectation
of the potential outcome, i.e.,

V (d)
△
= E[Y (d(L))].

It can be easily seen that an optimal ITR can be expressed as

d∗(L) = sign{E(Y (1)− Y (−1)|L)}

or

d∗ = argmax
d∈D

E[Y (d(L))].

There are many ways to identify optimal ITRs under different sets of assumptions. The most com-
monly seen assumption is the unconfoundedness: Y (a) ⊥ A|L for a = ±1, i.e., upon conditioning
on L, there is no unmeasured confounder affecting both A and Y . Under this unconfoundedness
assumption, the value function of a given regime d can be identified by (Qian and Murphy, 2011)

V (d) = E
[
Y I{A = d(L)}

f(A|L)

]
,

where f(A|L) denotes the propensity score (Rosenbaum and Rubin, 1983), and the optimal ITR is
identified by

d∗ = argmax
d∈D

V (d) = argmax
d∈D

E
[
Y I{A = d(L)}

f(A|L)

]
.

We refer to Qian and Murphy (2011); Zhang et al. (2012); Zhao et al. (2012) for more details of
learning optimal ITRs in this unconfounded setting.

Because confounding by unmeasured factors cannot generally be ruled out with certainty in obser-
vational studies or randomized experiments subject to non-compliance, skepticism about the uncon-
foundedness assumption in observational studies is often warranted. To estimate optimal ITRs sub-
ject to potential unmeasured confounding, Cui and Tchetgen Tchetgen (2021b) propose instrumental
variable approaches to learning optimal ITRs. Under certain instrumental variable assumptions, the
optimal ITR can be identified by

argmax
d∈D

E
[

MAY I{A = d(L)}
{P(A = 1|M = 1, L)− P(A = 1|M = −1, L)}f(M |L)

]
,

where M denotes a valid binary instrumental variable. Other works including Cui (2021); Cui and
Tchetgen Tchetgen (2021a); Han (2023); Pu and Zhang (2021) consider a sign or partial identifica-
tion of causal effects to estimate suboptimal ITRs using instrumental variables.

2.2 Existing optimal ITRs for proximal causal inference

Another line of research in causal inference considers negative control variables as proxies to miti-
gate confounding bias (Kuroki and Pearl, 2014; Miao et al., 2018a; Shi et al., 2020a; Tchetgen Tch-
etgen, 2014). Recently, a formal potential outcome framework, namely proximal causal inference,
has been developed by Tchetgen Tchetgen et al. (2020), which has attracted tremendous attention
since proposed.

Following the proximal causal inference framework proposed in Tchetgen Tchetgen et al. (2020),
suppose that the measured covariate L can be decomposed into three buckets L = (X,W,Z),
where X ∈ X affects both A and Y , W ∈ W denotes an outcome-inducing confounding proxy
that is a potential cause of the outcome which is related with the treatment only through (U,X), and
Z ∈ Z is a treatment-inducing confounding proxy that is a potential cause of the treatment which
is related with the outcome Y through (U,X,A). We now summarize several basic assumptions of
the proximal causal inference framework.
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Assumption 1. We make the following assumptions:
(1) Consistency: Y = Y (A,Z), W = W (A,Z).
(2) Positivity: P(A = a | U,X) > 0, ∀a ∈ A.
(3) Latent unconfoundedness:
(Z,A) ⊥ (Y (a),W ) | U,X, ∀a ∈ A.

The consistency and positivity assumptions are conventional in the causal inference literature. The
latent unconfoundedness essentially states that Z cannot directly affect the outcome Y , and W is not
directly affected by either A or Z. Figure 1 depicts a classical setting that satisfies Assumption 1. We
refer to Shi et al. (2020b); Tchetgen Tchetgen et al. (2020) for other realistic settings for proximal
causal inference.

XZ W

U

A Y

Figure 1: A causal DAG under the proximal causal inference framework.

We first consider two in-class optimal ITRs that map from X×Z to A and X×W to A, respectively.
To identify optimal ITRs that map from X × Z to A, we make the following assumptions.
Assumption 2. Completeness: For any a ∈ A, x ∈ X and square-integrable function g,
E[g(U) | Z,A = a,X = x] = 0 almost surely if and only if g(U) = 0 almost surely.
Assumption 3. Existence of outcome confounding bridge: There exists an outcome confounding
bridge function h(w, a, x) that solves the following equation

E[Y |Z,A,X] = E[h(W,A,X)|Z,A,X],

almost surely.

The completeness Assumption 2 is a technical condition central to the study of sufficiency in foun-
dational theory of statistical inference. It essentially assumes that Z has sufficient variability with
respect to the variability of U . We refer to Tchetgen Tchetgen et al. (2020) and Miao et al. (2022) for
further discussions regarding the completeness condition. Assumption 3 defines a so-called inverse
problem known as a Fredholm integral equation of the first kind through an outcome confounding
bridge. The technical conditions for the existence of a solution to a Fredholm integral equation can
be found in Kress et al. (1989).

Let DZ be an ITR class that includes all measurable functions mapping from X ×Z to A. As shown
in Qi et al. (2023), under Assumptions 1, 2 and 3, for any dz ∈ DZ , the value function V (dz) can
be nonparametrically identified by

V (dz) = E[h(W,dz(X,Z), X)]. (1)
Furthermore, the in-class optimal treatment regime d∗z ∈ argmaxdz∈DZ V (dz) is given by

d∗z(X,Z) = sign{E[h(W, 1, X)− h(W,−1, X)|X,Z]}.

On the other hand, to identify optimal ITRs that map from X × W to A, we make the following
assumptions.
Assumption 4. Completeness: For any a ∈ A, x ∈ X and square-integrable function g,
E[g(U) |W,A = a,X = x] = 0 almost surely if and only if g(U) = 0 almost surely.
Assumption 5. Existence of treatment confounding bridge: There exists a treatment confounding
bridge function q(z, a, x) that solves the following equation

1

P(A = a|W,X)
= E[q(Z, a,X)|W,A = a,X],

almost surely.
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Similar to Assumptions 2 and 3, Assumption 4 assumes that W has sufficient variability relative to
the variability of U , and Assumption 5 defines another Fredholm integral equation of the first kind
through a treatment confounding bridge q.

Let DW be another ITR class that includes all measurable functions mapping from X × W to A.
As shown in Qi et al. (2023), under Assumptions 1, 4 and 5, for any dw ∈ DW , the value function
V (dw) can be nonparametrically identified by

V (dw) = E[Y q(Z,A,X)I{dw(X,W ) = A}]. (2)

The in-class optimal treatment regime d∗w ∈ argmaxdw∈DW V (dw) is given by

d∗w(X,W ) = sign{E[Y q(Z, 1, X)I{A = 1} − Y q(Z,−1, X)I{A = −1}|X,W ]}.

Moreover, Qi et al. (2023) consider the ITR class DZ ∪ DW and propose a maximum proximal
learning optimal regime based on this ITR class. For any dz∪w ∈ DZ ∪DW , under Assumptions 1-
5, the value function V (dz∪w) for any dz∪w ∈ DZ ∪ DW can be identified by

V (dz∪w) = I{dz∪w ∈ DZ}E[h(W,dz∪w(X,Z), X)] + I{dz∪w ∈ DW}E[Y q(Z,A,X)I{dz∪w(X,W ) = A}].
(3)

The optimal ITR within this class is given by d∗z∪w ∈ argmaxdz∪w∈DZ∪DW V (dz∪w), and they
show that the corresponding optimal value function takes the maximum value between two optimal
in-class ITRs, i.e.,

V (d∗z∪w) = max{V (d∗z), V (d∗w)}.

2.3 Optimal decision-making based on two confounding bridges

As discussed in the previous section, given that neither E[Y (a)|X,U ] nor E[Y (a)|X,W,Z] for any
a ∈ A may be identifiable under the proximal causal inference setting, one might nevertheless
consider ITRs mapping from X ×W to A, from X ×Z to A, from X ×W×Z to A as well as from
X to A. Intuitively, policy-makers might want to use as much information as they can to facilitate
their decision-making. Therefore, ITRs mapping from X × W × Z to A are of great interest if
information regarding (X,W,Z) is available.

As a result, a natural question arises: is there an ITR mapping from X × W × Z to A which
dominates existing ITRs proposed in the literature? In this section, we answer this question by
proposing a novel optimal ITR and showing its superiority in terms of global welfare.

We first consider the following class of ITRs that map from X ×W ×Z to A,

DΠ
ZW

△
= {dπzw : dπzw(X,W,Z) = π(X)dz(X,Z) + (1− π(X))dw(X,W ), dz ∈ DZ , dw ∈ DW , π ∈ Π},

where Π is the policy class containing all measurable functions π : X → {0, 1} that indicate the
individualized predilection between dz and dw.
Remark 1. Note that DZ ,DW and DZ∪DW are subsets of DΠ

ZW with a particular choice of π. For
example, DZ is DΠ

ZW with restriction on π(X) = 1; DW is DΠ
ZW with restriction on π(X) = 0;

DZ ∪ DW is DΠ
ZW with restriction on π(X) = 1 or π(X) = 0.

In the following theorem, we demonstrate that by leveraging the treatment and outcome confounding
bridge functions, we can nonparametrically identify the value function over the policy class DΠ

ZW ,
i.e., V (dπzw) for dπzw ∈ DΠ

ZW .

Theorem 1. Under Assumptions 1-5, for any dπzw ∈ DΠ
ZW , the value function V (dπzw) can be

nonparametrically identified by

V (dπzw) = E[π(X)h(W,dz(X,Z), X) + (1− π(X))Y q(Z,A,X)I{dw(X,W ) = A}]. (4)

One of the key ingredients of our constructed new policy class DΠ
ZW is the choice of π(·). It suggests

an individualized strategy for treatment decisions between the two given treatment regimes. Because
we are interested in policy learning, a suitable choice of π(·) that leads to a larger value function is
more desirable. Therefore, we construct the following π̄(X; dz, dw),

π̄(X; dz, dw)
△
= I{E[h(W,dz(X,Z), X)|X] ≥ E[Y q(Z,A,X)I{dw(X,W ) = A}|X]}. (5)
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In addition, given any dz ∈ DZ and dw ∈ DW , we define

dπ̄zw(X,W,Z)
△
= π̄(X; dz, dw)dz(X,Z) + (1− π̄(X; dz, dw))dw(X,W ).

We then obtain the following result which justifies the superiority of π̄.

Theorem 2. Under Assumptions 1-5, for any dz ∈ DZ and dw ∈ DW ,

V (dπ̄zw) ≥ max{V (dz), V (dw)}.

Theorem 2 establishes that for the particular choice of π̄ given in (5), the value function of dπ̄zw is
no smaller than that of dz and dw for any dz ∈ DZ , and dw ∈ DW . Consequently, Theorem 2 holds
for d∗z and d∗w. Hence, we propose the following optimal ITR dπ̄∗zw,

dπ̄∗zw(X,W,Z)
△
= π̄(X; d∗z, d

∗
w)d

∗
z(X,Z) + (1− π̄(X; d∗z, d

∗
w))d

∗
w(X,W ),

and we have the following corollary.

Corollary 1. Under Assumptions 1-5, we have that

V (dπ̄∗zw) ≥ max{V (d∗z), V (d∗w), V (d∗z∪w)}.

Corollary 1 essentially states that the value of dπ̄∗zw dominates that of d∗z , d∗w, as well as d∗z∪w.
Moreover, the proposition below demonstrates the optimality of dπ̄∗zw within the proposed class.

Proposition 1. Under Assumptions 1-5, we have that

dπ̄∗zw ∈ arg max
dπ
zw∈DΠ

ZW

V (dπzw).

Therefore, dπ̄∗zw is an optimal ITR of policymakers’ interest.

3 Statistical Learning and Optimization

3.1 Estimation of the optimal ITR dπ̄∗zw

The estimation of dπ̄∗zw consists of four steps: (i) estimation of confounding bridges h and q; (ii)
estimation of preliminary ITRs d∗z and d∗w; (iii) estimation of π̄(X; d∗z, d

∗
w); and (iv) learning dπ̄∗zw

based on (ii) and (iii). The estimation problem (i) has been developed by Cui et al. (2023); Miao
et al. (2018b) using the generalized method of moments, Ghassami et al. (2022); Kallus et al. (2021)
by a min-max estimation (Dikkala et al., 2020) using kernels, and Kompa et al. (2022) using deep
learning; and (ii) has been developed by Qi et al. (2023). We restate estimation of (i) and (ii) for
completeness. With regard to (i), recall that Assumptions 3 and 5 imply the following conditional
moment restrictions

E[Y − h(W,A,X)|Z,A,X] =0,

E [1− I{A = a}q(Z, a,X)|W,X] =0,∀a ∈ A.

respectively. Kompa et al. (2022) propose a deep neural network approach to estimating bridge
functions which avoids the reliance on kernel methods. We adopt this approach in our simulation
and details can be found in the Appendix.

To estimate d∗z , we consider classification-based approaches according to Zhang et al. (2012); Zhao
et al. (2012). Under Assumptions 1, 2 and 3, maximizing the value function in (1) is equivalent to
minimizing the following classification error

E[{h(W, 1, X)− h(W,−1, X)}I{dz(X,Z) ̸= 1}] (6)

over dz ∈ DZ . By choosing some measurable decision function gz ∈ GZ : X × Z → R, we let
dz(X,Z) = sign(gz(X,Z)). We consider the following empirical version of (6),

min
gz∈Gz

Pn[{ĥ(W, 1, X)− ĥ(W,−1, X)}I{gz(X,Z) < 0}].
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Due to the non-convexity and non-smoothness of the sign operator, we replace the sign operator
with a smooth surrogate function and adopt the hinge loss ϕ(x) = max{1 − x, 0}. By adding a
penalty term ρz||gz||2GZ

to avoid overfitting, we solve

ĝz ∈ arg min
gz∈Gz

Pn[{ĥ(W, 1, X)− ĥ(W,−1, X)}ϕ(gz(X,Z))] + ρz||gz||2GZ
, (7)

where ρz > 0 is a tuning parameter. The estimated ITR then follows d̂z(X,Z) = sign(ĝz(X,Z)).
Similarly, under Assumptions 1, 4 and 5, maximizing the value function in (2) is equivalent to
minimizing the following classification error

E[{Y q(Z, 1, X)I{A = 1} − Y q(Z,−1, X)I{A = −1}}I{dw(X,W ) ̸= 1}]

over dw ∈ DW . By the same token, the problem is transformed into minimizing the following
empirical error

ĝw ∈ arg min
gw∈GW

Pn[{Y q̂(Z, 1, X)I{A = 1} − Y q̂(Z,−1, X)I{A = −1}}ϕ(gw(X,W ))] + ρw||gw||2GW
.

(8)

The estimated ITR is obtained via d̂w(X,W ) = sign(ĝw(X,W )).

For problem (iii), given two preliminary ITRs, we construct an estimator π̂(X; d̂z, d̂w), that is, for
x ∈ X ,

π̂(x; d̂z, d̂w) = I{δ̂(x; d̂z, d̂w) ≥ 0},

where δ̂(x; d̂z, d̂w) denotes a generic estimator of

δ(x; d̂z, d̂w)
△
= E[h(W, d̂z(X,Z), X)− Y q(Z,A,X)I{d̂w(X,W ) = A}|X = x],

where the expectation is taken with respect to everything except d̂z and d̂w. For example, the
Nadaraya-Watson kernel regression estimator (Nadaraya, 1964) can be used, i.e., δ̂(x; d̂z, d̂w) is
expressed as∑n

i=1{ĥ(Wi, d̂z(x, Zi), x)− Yiq̂(Zi, Ai, x)I{d̂w(x,Wi) = Ai}}K( ||x−Xi||2
γ )∑n

i=1 K( ||x−Xi||2
γ )

,

where K : R → R is a kernel function such as Gaussian kernel, || · ||2 denotes the L2-norm, and γ
denotes the bandwidth.

Finally, given d̂z, d̂w and π̂(X; d̂z, d̂w), d̂π̂zw is estimated by the following plug-in regime,

d̂π̂zw(X,W,Z) = π̂(X; d̂z, d̂w)d̂z(X,Z) + (1− π̂(X; d̂z, d̂w))d̂w(X,W ). (9)

3.2 Theoretical guarantees for d̂π̂zw

In this subsection, we first present an optimality guarantee for the estimated ITR d̂π̂zw in terms of its
value function

V (d̂π̂zw) = E[π̂(X; d̂z, d̂w)h(W, d̂z(X,Z), X) + (1− π̂(X; d̂z, d̂w))Y q(Z,A,X)I{d̂w(X,W ) = A}],

where the expectation is taken with respect to everything except π̂, d̂z and d̂w.

We define an oracle optimal ITR which assumes π̄(X; d̂z, d̂w) is known,

d̂π̄zw(X,W,Z)
△
= π̄(X; d̂z, d̂w)d̂z(X,Z) + (1− π̄(X; d̂z, d̂w))d̂w(X,W ).

The corresponding value function of this oracle optimal ITR is given by

V (d̂π̄zw) = E[π̄(X; d̂z, d̂w)h(W, d̂z(X,Z), X) + (1− π̄(X; d̂z, d̂w))Y q(Z,A,X)I{d̂w(X,W ) = A}],

where the expectation is taken with respect to everything except d̂z and d̂w.
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Then the approximation error incurred by estimating π̂(X; d̂z, d̂w) is given by

K(π̂)
△
= V (d̂π̄zw)− V (d̂π̂zw).

Moreover, we define the following gain

G(π̄)
△
= min{V (d̂π̄zw)− V (d̂z), V (d̂π̄zw)− V (d̂w)}.

It is clear that this gain G(π̄) by introducing π̄ is always non-negative as indicated by Theorem 2.
Then we have the following excess value bound for the value of d̂π̂zw compared to existing ones in
the literature.

Proposition 2. Under Assumptions 1-5,

V (d̂π̂zw) = max{V (d̂z), V (d̂w)} −K(π̂) +G(π̄) = V (d̂z∪w)−K(π̂) +G(π̄).

Proposition 2 establishes a link between the value function of the estimated ITR d̂π̂zw, and that of d̂z ,
d̂w, and d̂z∪w. As shown in Appendix G, K(π̂) diminishes as the sample size increases, therefore,
d̂π̂zw has a significant improvement compared to other optimal ITRs depending on the magnitude of
G(π̄).

Furthermore, we establish the consistency of the proposed regime based on the following assump-
tion, which holds for example when d̂z and d̂w are estimated using indirect methods.

Assumption 6. For d̂z, d̂w, E[h(W, d̂z(X,Z), X)|X] − E[h(W,d∗z(X,Z), X)|X] = op(n
−ξ) al-

most surely and E[Y q(Z,A,X)I{d̂w(X,W ) = A}|X]−E[Y q(Z,A,X)I{d∗w(X,W ) = A}|X] =
op(n

−φ) almost surely.

Proposition 3. Under Assumptions 1-6, we have V (d̂π̂zw)
p−→ V (dπ̄∗zw).

4 Numerical Experiments

The data generating mechanism for (X,A,Z,W,U) follows the setup proposed in Cui et al. (2023)
and is summarized in Appendix I. To evaluate the performance of the proposed framework, we vary
b1(X), b2(X), b3(X), ba and bw in E[Y |X,A,Z,W,U ] to incorporate heterogeneous treatment
effects including the settings considered in Qi et al. (2023). The adopted data generating mechanism
is compatible with the following h and q,

h(W,A,X) = b0 + {b1(X) + baW + b3(X)W} 1 +A

2
+ bwW + b2(X)X,

q(Z,A,X) = 1 + exp

{
At0 +AtzZ + ta

1 +A

2
+AtxX

}
,

where t0 = 0.25, tz = −0.5, ta = −0.125, and tx = (0.25, 0.25)T . We derive preliminary optimal
ITRs d∗z and d∗w in Appendix J, from which we can see that X,Z,W are relevant variables for
individualized decision-making.

We consider six scenarios in total, and the setups of varying parameters are deferred to Appendix I.
For each scenario, training datasets {Yi, Ai, Xi, Zi,Wi}ni=1 are generated following the above
mechanism with a sample size n = 1000. For each training dataset, we then apply the aforemen-
tioned methods to learn the optimal ITR. In particular, the preliminary ITRs d̂z and d̂w are estimated
using a linear decision rule, and π̂(x; d̂z, d̂w) is estimated using a Gaussian kernel. More details can
be found in the Appendix K.

To evaluate the estimated treatment regimes, we consider the following generating mechanism for
testing datasets: X ∼ N (Γx,Σx),

(Z,W,U)|X ∼ N

{(
α0 + αapa + αxX
µ0 + µapa + µxX
κ0 + κapa + κxX

)
, Σ =

 σ2
z σzw σzu

σzw σ2
w σwu

σzu σwu σ2
u

},
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where the parameter settings can be found in Appendix I. The testing dataset is generated with a size
10000, and the empirical value function for the estimated ITR is used as a performance measure. The
simulations are replicated 200 times. To validate our approach and demonstrate its superiority, we
have also computed empirical values for other optimal policies, including existing optimal ITRs for
proximal causal inference, as discussed in Section 2.2, along with optimal ITRs generated through
causal forest (Athey and Wager, 2019) and outcome weighted learning (Zhao et al., 2012).

Figure 2: Boxplots of the empirical value functions (d̂cf and d̂owl denote estimated ITRs using
causal forest and outcome weighted learning respectively).

Figure 2 presents the empirical value functions of different optimal ITRs for the six scenarios. As
expected, d̂z, d̂w, d̂z∪w, and d̂π̂zw consistently outperform d̂cf and d̂owl, which highlights their ef-
fectiveness in addressing unmeasured confounding. Meanwhile, across all scenarios, d̂π̂zw yields
superior or comparable performance compared to the other estimated treatment regimes, which jus-
tifies the statements made in Sections 2 and 3. In addition, as can be seen in Scenario 5, all ITRs
relying on the proximal causal inference framework perform similarly, which is not surprising as
d̂z(X,Z) and d̂w(X,W ) agree for most subjects. To further underscore the robust performance of
our proposed approach, we include additional results with a changed sample size and a modified
behavior policy in Appendix L.

5 Real Data Application

In this section, we demonstrate the proposed optimal ITR via a real dataset originally designed to
measure the effectiveness of right heart catheterization (RHC) for ill patients in intensive care units
(ICU), under the Study to Understand Prognoses and Preferences for Outcomes and Risks of Treat-
ments (SUPPORT, Connors et al. (1996)). These data have been re-analyzed in a number of papers
in both causal inference and survival analysis literature with assuming unconfoundednss (Cui and
Tchetgen Tchetgen, 2023; Tan, 2006, 2020, 2019; Vermeulen and Vansteelandt, 2015) or accounting
for unmeasured confounding (Cui et al., 2023; Lin et al., 1998; Qi et al., 2023; Tchetgen Tchetgen
et al., 2020; Ying et al., 2022).

There are 5735 subjects included in the dataset, in which 2184 were treated (with A = 1) and 3551
were untreated (with A = −1). The outcome Y is the duration from admission to death or censor-
ing. Overall, 3817 patients survived and 1918 died within 30 days. Following Tchetgen Tchetgen
et al. (2020), we collect 71 covariates including demographic factors, diagnostic information, esti-
mated survival probability, comorbidity, vital signs, physiological status, and functional status (see

9



Hirano and Imbens (2001) for additional discussion on covariates). Confounding in this study stems
from the fact that ten physiological status measures obtained from blood tests conducted at the ini-
tial phase of admission may be susceptible to significant measurement errors. Furthermore, besides
the lab measurement errors, whether other unmeasured confounding factors exist is unknown to the
data analyst. Because variables measured from these tests offer only a single snapshot of the under-
lying physiological condition, they have the potential to act as confounding proxies. We consider
a total of four settings, varying the number of selected proxies from 4 to 10. Within each setting,
treatment-inducing proxies are first selected based on their strength of association with the treatment
(determined through logistic regression of A on L), and outcome-inducing proxies are then chosen
based on their association with the outcome (determined through linear regression of Y on A and
L). Excluding the selected proxy variables, other measured covariates are included in X . We then
estimate d̂z, d̂w, d̂z∪w, and d̂π̂zw using the SUPPORT dataset in a manner similar to that described in
Section 4, with the goal optimizing the patients’ 30-day survival after their entrance into the ICU.

Figure 3: Graphical representation of concordance between estimated ITRs.

The estimated value functions of our proposed ITR, alongside existing ones, are summarized in
Appendix M. As can be seen, our proposed regime has the largest value among all settings. For a
visual representation of the concordance between the estimated optimal ITRs, we refer to Figure 3
(results from Setting 1). The horizontal ordinate represents the 50 selected subjects and the vertical
axis denotes the decisions made from corresponding ITRs. The purple and yellow blocks stand
for being recommended treatment values of -1 and 1 respectively. For the subjects with purple or
yellow columns, d̂z(X,Z) = d̂w(X,W ), which leads to the same treatment decision for the other
two ITRs. For columns with mixed colors, d̂z(X,Z) and d̂w(X,W ) disagree. We see that in this
case d̂z∪w(X,W,Z) always agree with d̂z(X,Z), while d̂π̂zw(X,W,Z) take values from d̂z(X,Z)

or d̂w(X,W ) depending on the individual criteria of the subjects as indicated by π̂. In addition to
the quantitative analysis, we have also conducted a qualitative assessment of the estimated regime
to validate its performance. For further details, please refer to Appendix M.

6 Discussion

We acknowledge several limitations of our work. Firstly, the proximal causal inference framework
relies on the validity of treatment- and outcome-inducing confounding proxies. When the assump-
tions are violated, the proximal causal inference estimators can be biased even if unconfoundedness
on the basis of measured covariates in fact holds. Therefore, one needs to carefully sort out proxies
especially when domain knowledge is lacking. Secondly, while the proposed regime significantly
improves upon existing methods both theoretically and numerically, it is not yet shown to be the
sharpest under our considered model. It is still an open question to figure out if a more general pol-
icy class could be considered. Thirdly, our established theory provides consistency and superiority
of our estimated regime. It is of great interest to derive convergence rates for Propositions 2 and 3
following Jiang (2017). In addition, it may be challenging to develop inference results for the value
function of the estimated optimal treatment regimes, and further studies are warranted.
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