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Abstract

We tackle the task of conditional music generation. We introduce MUSICGEN, a sin-
gle Language Model (LM) that operates over several streams of compressed discrete
music representation, i.e., tokens. Unlike prior work, MUSICGEN is comprised of
a single-stage transformer LM together with efficient token interleaving patterns,
which eliminates the need for cascading several models, e.g., hierarchically or up-
sampling. Following this approach, we demonstrate how MUSICGEN can generate
high-quality samples, both mono and stereo, while being conditioned on textual
description or melodic features, allowing better controls over the generated output.
We conduct extensive empirical evaluation, considering both automatic and human
studies, showing the proposed approach is superior to the evaluated baselines on a
standard text-to-music benchmark. Through ablation studies, we shed light over
the importance of each of the components comprising MUSICGEN. Music samples,
code, and models are available at github.com/facebookresearch/audiocraft.

1 Introduction

Text-to-music is the task of generating musical pieces given text descriptions, e.g., “90s rock song with
a guitar riff”. Generating music is a challenging task as it requires modeling long range sequences.
Unlike speech, music requires the use of the full frequency spectrum [Müller, 2015]. That means
sampling the signal at a higher rate, i.e., the standard sampling rates of music recordings are 44.1
kHz or 48 kHz vs. 16 kHz for speech. Moreover, music contains harmonies and melodies from
different instruments, which create complex structures. Human listeners are highly sensitive to
disharmony [Fedorenko et al., 2012, Norman-Haignere et al., 2019], hence generating music does not
leave a lot of room for making melodic errors. Lastly, the ability to control the generation process in
a diverse set of methods, e.g., key, instruments, melody, genre, etc. is essential for music creators.

Recent advances in self-supervised audio representation learning [Balestriero et al., 2023], sequential
modeling [Touvron et al., 2023], and audio synthesis [Tan et al., 2021] provide the conditions to
develop such models. To make audio modeling more tractable, recent studies proposed representing
audio signals as multiple streams of discrete tokens representing the same signal [Défossez et al.,
2022]. This allows both high-quality audio generation and effective audio modeling. However, this
comes at the cost of jointly modeling several parallel dependent streams.

Kharitonov et al. [2022], Kreuk et al. [2022] proposed modeling multi-streams of speech tokens in
parallel following a delay approach, i.e., introduce offsets between the different streams. Agostinelli
et al. [2023] proposed representing musical segments using multiple sequences of discrete tokens at
different granularity and model them using a hierarchy of autoregressive models. In parallel, Donahue
et al. [2023] follows a similar approach but for the task of singing to accompaniment generation.
Recently, Wang et al. [2023] proposed tackling this problem in two stages: (i) modeling the first
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Figure 1: Codebook interleaving patterns presented in Section 2.2. Each time step t1, t2, . . . , tn is
composed of 4 quantized values (corresponding to k1, . . . , k4). When doing autoregressive modelling,
we can flatten or interleave them in various ways, resulting in a new sequence with 4 parallel streams
and steps s1, s2, . . . , sm. The total number of sequence steps S depends on the pattern and original
number of steps T . 0 is a special token indicating empty positions in the pattern.

stream of tokens only; (ii) then, apply a post-network to jointly model the rest of the streams in a
non-autoregressive manner.

In this work, we introduce MUSICGEN, a simple and controllable music generation model, which
is able to generate high-quality music given textual description. We propose a general framework for
modeling multiple parallel streams of acoustic tokens, which serves as a generalization of previous
studies (see Figure 1). We show how this framework allows to extend generation to stereo audio at
no extra computational cost. To improve controllability of the generated samples, we additionally
introduce unsupervised melody conditioning, which allows the model to generate music that matches
a given harmonic and melodic structure. We conduct an extensive evaluation of MUSICGEN and
show the proposed method is superior to the evaluated baselines by a large margin, with a subjective
rating of 84.8 out of 100 for MUSICGEN against 80.5 for the best baseline. We additionally provide
an ablation study which sheds light on the importance of each of the components on the overall model
performance. Lastly, human evaluation suggests that MUSICGEN yields high quality samples which
are better melodically aligned with a given harmonic structure, while adhering to a textual description.

Our contribution: (i) We introduce a simple and efficient model to generate high quality music at
32 kHz. We show that MUSICGEN can generate consistent music with a single-stage language model
through an efficient codebook interleaving strategy. (ii) We present a single model to perform both
text and melody-conditioned generation and demonstrate that the generated audio is coherent with
the provided melody and faithful to the text conditioning information. (iii) We provide extensive
objective and human evaluations on the key design choices behind our method.

2 Method

MUSICGEN consists in an autoregressive transformer-based decoder [Vaswani et al., 2017], condi-
tioned on a text or melody representation. The (language) model is over the quantized units from
an EnCodec [Défossez et al., 2022] audio tokenizer, which provides high fidelity reconstruction
from a low frame rate discrete representation. Compression models such as [Défossez et al., 2022,
Zeghidour et al., 2021] employ Residual Vector Quantization (RVQ) which results in several parallel
streams. Under this setting, each stream is comprised of discrete tokens originating from different
learned codebooks. Prior work, proposed several modeling strategies to handle this issue [Kharitonov
et al., 2022, Agostinelli et al., 2023, Wang et al., 2023]. In this work, we introduce a novel modeling
framework, which generalizes to various codebook interleaving patterns, and we explore several
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variants. Through patterns, we can leverage the internal structure of the quantized audio tokens.
Finally, MUSICGEN supports conditional generation based on either text or melody.

2.1 Audio tokenization

We use EnCodec [Défossez et al., 2022], a convolutional auto-encoder with a latent space quantized
using Residual Vector Quantization (RVQ) [Zeghidour et al., 2021], and an adversarial reconstruction
loss. Given a reference audio random variable X ∈ Rd·fs with d the audio duration and fs the sample
rate, EnCodec encodes it into a continuous tensor with a frame rate fr ≪ fs. This representation is
then quantized into Q ∈ {1, . . . ,M}d·fr×K , with K being the number of codebooks used in RVQ
and M being the codebook size. Notice, after quantization we are left with K parallel discrete tokens
sequences, each of length T = d · fr, representing the audio sample. In RVQ, each quantizer encodes
the quantization error left by the previous quantizer, thus quantized values for different codebooks
are in general not independent, and the first codebook is the most important one.

2.2 Codebook interleaving patterns (see Figure 1)

Exact flattened autoregressive decomposition. An autoregressive model requires a discrete random
sequence U ∈ {1, . . . , N}S with S the sequence length. By convention, we will take U0 = 0,
a deterministic special token indicating the beginning of the sequence. We can then model the
distribution

∀t > 0, pt (Ut−1, . . . , U0) ≜ P [Ut|Ut−1, . . . , U0] . (1)

Let us build a second sequence of random variables Ũ using the auto-regressive density p, e.g. we
define recursively Ũ0 = 0, and for all t > 0,

∀t > 0,P
[
Ũt|Ũt−1 . . . , Ũ0

]
= pt

(
Ũt−1, . . . , Ũ0

)
. (2)

Then, we immediately have that U and Ũ follow the same distribution. This means that if we can fit a
perfect estimate p̂ of p with a deep learning model, then we can fit exactly the distribution of U .

As stated before, the main issue with the representation Q we obtained from the EnCodec model is
that there are K codebooks for each time step. One solution would be to flatten out Q, thus taking
S = d · fr ·K, e.g. first predicting the first codebook of the first time step, then the second codebook
of the first time step, etc. Then, using eq. (1) and eq. (2), we could theoretically fit an exact model
of the distribution of Q. The downside however is the increased complexity, with part of the gain
coming from the lowest sample rate fr being lost.

More than one possible flattening exists, and not all the p̂t functions need to be estimated through a
single model. For instance, MusicLM [Agostinelli et al., 2023] uses two models, one modeling the
flattened first K/2 codebooks, and a second one the other K/2 flattened codebooks, conditioned on
the decision of the first model. In that case, the number of autoregressive steps is still dfr ·K.

Inexact autoregressive decomposition. Another possibility is to consider an autoregressive de-
composition, where some codebooks are predicted in parallel. For instance, let us define another
sequence with V0 = 0 and for all t ∈ {1, . . . , T}, k ∈ {1, . . . ,K}, Vt,k = Qt,k. When dropping the
codebook index k, e.g. Vt, we mean the concatenation of all the codebooks at time t.

pt,k (Vt−1, . . . , V0) ≜ P [Vt,k|Vt−1, ·, . . . , V0] . (3)

Let’s define again recursively Ṽ0 = 0 and for all t > 0,

∀t > 0,∀k,P
[
Ṽt,k

]
= pt,k

(
Ṽt−1, . . . , Ṽ0

)
. (4)

Unlike in (2), we no longer have in the general case that Ṽ follows the same distribution as V ,
even assuming we have access to the exact distribution pt,k. In fact, we would only have a proper
generative model if for all t, (Vt,k)k are independent conditionally on Vt−1, . . . , V0. As t increases,
the errors will compound and the two distributions can grow further apart. Such a decomposition
is inexact, but allows to keep the original frame rate which can considerably speed up training and
inference, especially for long sequences.

3



Arbitrary codebook interleaving patterns. In order to experiment with various such decompositions,
and measure exactly the impact of using an inexact decomposition, we introduce codebook interleav-
ing patterns. Let us consider Ω = {(t, k) : {1, . . . , d · fr}, k ∈ {1, . . . ,K}} be the set of all pairs of
time steps and codebook indexes. A codebook pattern is a sequence P = (P0, P1, P2, . . . , PS), with
P0 = ∅, and for all 0 < s ≤ S, Ps ⊂ Ω, such that P is partition of Ω. We model Q by predicting in
parallel all the positions in Ps, conditionally on all the positions in P0, P1, . . . , Ps−1. Pragmatically,
we restrict ourselves to patterns where each codebook index appears at most once in any of the Ps.

We can now easily define a number of decompositions, for instance the “parallel” pattern given by
Ps = {(s, k) : k ∈ {1, . . . ,K}}. (5)

It is also possible to introduce a “delay” between the codebooks, as in Kharitonov et al. [2022], e.g.,
Ps = {(s− k + 1, k) : k ∈ {1, . . . ,K}, s− k ≥ 0}. (6)

Through empirical evaluations, we show the benefits and drawbacks of various codebook patterns,
shedding light on the importance of exact modeling of the parallel codebook sequences.

2.3 Model conditioning

Text conditioning. Given a textual description matching the input audio X , we compute a condi-
tioning tensor C ∈ RTC×D with D being the inner dimension used in the autoregressive model.
Generally, there are three main approaches for representing text for conditional audio generation.
Kreuk et al. [2022] proposed using a pretrained text encoder, specifically T5 [Raffel et al., 2020].
Chung et al. [2022] show that using instruct-based language models provide superior performance.
Lastly, Agostinelli et al. [2023], Liu et al. [2023], Huang et al. [2023a], Sheffer and Adi [2023]
claimed that joint text-audio representation, such as CLAP [Wu* et al., 2023], provides better-quality
generations. We experiment with all of the above, respectively: T5 encoder, FLAN-T5, and CLAP.

Melody conditioning. While text is the prominent approach in conditional generative models
nowadays, a more natural approach for music is conditioning on a melodic structure from another
audio track or even whistling or humming. Such an approach also allows for an iterative refinement
of the model’s output. To support that, we experiment with controlling the melodic structure via
jointly conditioning on the input’s chromagram and text description. In preliminary experiments, we
observed that conditioning on the raw chromagram often led to reconstructing the original sample,
resulting in overfitting. To reduce it, we introduce an information bottleneck by choosing the dominant
time-frequency bin in each time step. While a similar capability was shown in Agostinelli et al.
[2023], the authors used supervised proprietary data, which is tedious and costly to collect. In this
work, we take an unsupervised approach, eliminating the requirement for supervised data.

2.4 Model architecture

Codebook projection and positional embedding. Given a codebook pattern, only some codebooks
are present at each pattern step Ps. We retrieve from Q the values corresponding to the indices in Ps.
As noted in Section 2.2, each codebook is present at most once in Ps or not at all. If it is present,
we use a learned embedding table with N entries and dimension D to represent the associated value
from Q. Otherwise, we use a special token indicating its absence. We sum the contribution from each
codebook after this transformation. As P0 = ∅, the first input is always the sum of all the special
tokens. Finally, we sum a sinusoidal embedding to encode the current step s [Vaswani et al., 2017].

Transformer decoder. The input is fed into a transformer with L layers and a dimension D. Each
layer consists of a causal self-attention block. We then use a cross-attention block that is fed with the
conditioning signal C. When using melody conditioning, we instead provide the conditioning tensor
C as a prefix to the transformer input. The layer ends with a fully connected block consisting of a
linear layer from D to 4·D channels, a ReLU, and a linear layer back to D channels. The attention and
fully connected blocks are wrapped with a residual skip connection. Layer normalization [Ba et al.,
2016] is applied to each block before being summed with the residual skip connection (“pre-norm”).

Logits prediction. The output from the transformer decoder at pattern step Ps is transformed into
logits prediction for the values of Q taken at the indices given by Ps+1. Each codebook is present at
most once in Ps+1. If a codebook is present, the logits prediction is obtained by applying a codebook
specific linear layer from D channels to N .
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3 Experimental setup

3.1 Models and hyperparameters

Audio tokenization model. We use a non-causal five layers EnCodec model for 32 kHz monophonic
audio with a stride of 640, resulting in a frame rate of 50 Hz, and an initial hidden size of 64, doubling
at each of the model’s five layers. The embeddings are quantized with a RVQ with four quantizers,
each with a codebook size of 2048. We follow Défossez et al. [2022] to train the model on one-second
audio segments cropped at random in the audio sequence.

Transformer model. We train autoregressive transformer models at different sizes: 300M, 1.5B,
3.3B parameters. We use a memory efficient Flash attention [Dao et al., 2022] from the xFormers
package [Lefaudeux et al., 2022] to improve both speed and memory usage with long sequences. We
study the impact of the size of the model in Section 4. We use the 300M-parameter model for all of
our ablations. We train on 30-second audio crops sampled at random from the full track. We train
the models for 1M steps with the AdamW optimizer [Loshchilov and Hutter, 2017], a batch size of
192 examples, β1 = 0.9, β2 = 0.95, a decoupled weight decay of 0.1 and gradient clipping of 1.0.
We further rely on D-Adaptation based automatic step-sizes [Defazio and Mishchenko, 2023] for the
300M model as it improves model convergence but showed no gain for the bigger models. We use
a cosine learning rate schedule with a warmup of 4000 steps. Additionally, we use an exponential
moving average with a decay of 0.99. We train the 300M, 1.5B and 3.3B parameter models, using
respectively 32, 64 and 96 GPUs, with mixed precision. More specifically, we use float16 as bfloat16
was leading to instabilities in our setup. Finally, for sampling, we employ top-k sampling [Fan et al.,
2018] with keeping the top 250 tokens and a temperature of 1.0.

Text preprocessing. Kreuk et al. [2022] proposed a text normalization scheme, in which stop words
are omitted and the remaining text is lemmatized. We denote this method by text-normalization.
When considering musical datasets, additional annotations tags such as musical key, tempo, type
of instruments, etc. are often available. We also experiment with concatenating such annotations
to the text description. We denote this approach by condition-merging. Finally, we explored using
word dropout as another text augmentation strategy. For the final models, we used condition-merging
with a probability of 0.25. Upon merging, we apply a text description dropout with a probability of
0.5. We use a word dropout with a probability of 0.3 on the resulting text. A full comparison of the
different text preprocessing strategies can be found in Appendix A.2.

Codebook patterns and conditioning. We use the “delay” interleaving pattern from Section 2.2,
This translates 30 seconds of audio into 1500 autoregressive steps. For text conditioning, we use
the T5 [Raffel et al., 2020] text encoder, optionally with the addition of the melody conditioning
presented in Section 2.3. We also experiment with FLAN-T5 [Chung et al., 2022], and CLAP [Wu*
et al., 2023] and compare the performance of MUSICGEN using each of these text encoders in the
Appendix A.2. For melody conditioning, we compute the chromagrams with a window size of 214
and a hop size of 212. Using a large window prevents the model from recovering fine temporal
details. We further quantize the chromagram by taking the argmax at each time step. We follow a
similar approach to Kreuk et al. [2022] and implement classifier-free guidance when sampling from
the model’s logits. Specifically, during training we drop the condition with a probability of 0.2 and
during inference we use a guidance scale of 3.0.

3.2 Datasets

Training datasets. We use 20K hours of licensed music to train MUSICGEN. Specifically, we rely on
an internal dataset of 10K high-quality music tracks, and on the ShutterStock and Pond5 music data
collections2 with respectively 25K and 365K instrument-only music tracks. All datasets consist of
full-length music sampled at 32 kHz with metadata composed of a textual description and information
such as the genre, BPM, and tags. We downmix the audio to mono unless stated otherwise.

Evaluation datasets. For the main results and comparison with prior work, we evaluate the proposed
method on the MusicCaps benchmark [Agostinelli et al., 2023]. MusicCaps is composed of 5.5K
samples (ten-second long) prepared by expert musicians and a 1K subset balanced across genres. We
report objective metrics on the unbalanced set, while we sample examples from the genre-balanced

2www.shutterstock.com/music and www.pond5.com
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Table 1: Text-to-Music generation. We compare objective and subjective metrics for MUSICGEN
against a number of baselines. We report both mean and CI95 scores. The Mousai model is retrained
on the same dataset, while for MusicLM we use the public API for human studies. We report the
original FAD on MusicCaps for Noise2Music and MusicLM. “MUSICGEN w. random melody” refers
to MUSICGEN trained with chromagram and text. At evaluation time, we sample the chromagrams at
random from a held-out set.

MUSICCAPS Test Set

MODEL FADvgg ↓ KL ↓ CLAPscr ↑ OVL. ↑ REL. ↑
Riffusion 14.8 2.06 0.19 79.31±1.37 74.20±2.17

Mousai 7.5 1.59 0.23 76.11±1.56 77.35±1.72

MusicLM 4.0 - - 80.51±1.07 82.35±1.36

Noise2Music 2.1 - - - -

MUSICGEN w.o melody (300M) 3.1 1.28 0.31 78.43±1.30 81.11±1.31

MUSICGEN w.o melody (1.5B) 3.4 1.23 0.32 80.74±1.17 83.70±1.21

MUSICGEN w.o melody (3.3B) 3.8 1.22 0.31 84.81±0.95 82.47±1.25

MUSICGEN w. random melody (1.5B) 5.0 1.31 0.28 81.30±1.29 81.98±1.79

set for qualitative evaluations. For melody evaluation and the ablation studies, we use samples from
an in-domain held out evaluation set of 528 music tracks, with no artist overlap with the training set.

3.3 Evaluation

Baselines. We compare MUSICGEN to two baselines for text-to-music generation: Riffusion [Fors-
gren and Martiros] and Mousai [Schneider et al., 2023]. We use the open source Riffusion model
to run inference 3. For Mousai, we train a model using our dataset for a fair comparison, using the
open source implementation provided by the authors4. Additionally, when possible, we compare to
MusicLM [Agostinelli et al., 2023] and Noise2Music [Huang et al., 2023b].

Evaluation metrics. We evaluate the proposed method using objective and subjective metrics. For
the objective methods, we use three metrics: the Fréchet Audio Distance (FAD), the Kullback-Leiber
Divergence (KL) and the CLAP score (CLAP). We report the FAD [Kilgour et al., 2018] using the
official implementation in Tensorflow with the VGGish model 5. A low FAD score indicates the
generated audio is plausible. Following Kreuk et al. [2022], we use a state-of-the-art audio classifier
trained for classification on AudioSet [Koutini et al., 2021] to compute the KL-divergence over the
probabilities of the labels between the original and the generated music. The generated music is
expected to share similar concepts with the reference music when the KL is low. Last, the CLAP
score [Wu* et al., 2023, Huang et al., 2023a] is computed between the track description and the
generated audio to quantify audio-text alignment, using the official pretrained CLAP model 6.

For the human studies, we follow the same setup as in Kreuk et al. [2022]. We ask human raters to
evaluate two aspects of the audio samples (i) overall quality (OVL), and (ii) relevance to the text input
(REL). For the overall quality test, raters were asked to rate the perceptual quality of the provided
samples in a range of 1 to 100. For the text relevance test, raters were asked to rate the match between
audio and text on a scale of 1 to 100. Raters were recruited using the Amazon Mechanical Turk
platform. We evaluate randomly sampled files, where each sample was evaluated by at least 5 raters.
We use the CrowdMOS package7 to filter noisy annotations and outliers. We remove annotators who
did not listen to the full recordings, annotators who rate the reference recordings less than 85, and the
rest of the recommended recipes from CrowdMOS [Ribeiro et al., 2011]. For fairness, all samples
are normalized at −14dB LUFS [ITU-R, 2017].

3Using riffusion-model-v1 from github.com/riffusion/riffusion-app (on May 10, 2023)
4Implementation from github.com/archinetai/audio-diffusion-pytorch (March 2023)
5github.com/google-research/google-research/tree/master/frechet_audio_distance
6https://github.com/LAION-AI/CLAP
7http://www.crowdmos.org/download/
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Table 2: We report cosine similarity between reference and generated melody (SIM.) and subjective
metrics including alignment with the melody (MEL.). All results are reported for MUSICGEN 1.5B.

In Domain Test Set

TRAIN CONDITION TEST CONDITION SIM. ↑ MEL. ↑ OVL. ↑ REL. ↑
Text Text 0.10 64.44±0.83 82.18±1.21 81.54±1.22

Text+Chroma Text 0.10 61.89±0.96 81.65±1.13 82.50±0.98

Text+Chroma Text+Chroma 0.66 72.87±0.93 83.94±1.99 80.28±1.06

4 Results

We start by presenting results of the proposed method on the task of text-to-music generation and
compare MUSICGEN to prior work in the field. Next, we evaluate the ability of the proposed method
to generate music conditioned on melodic features. We further show how to simply extend our
codebook patterns for stereo audio generation. We conclude with an ablation study. Music samples,
code, and models are available at github.com/facebookresearch/audiocraft.

4.1 Comparison with the baselines

Table 1 presents the comparison of the proposed method against Mousai, Riffusion, MusicLM,
and Noise2Music. As there is no official implementation of Noise2Music, nor pre-trained model,
we report only FAD on MusicCaps, which is reported in the Noise2Music manuscript. Similarly,
MusicLM implementation is not public. We use the MusicLM public demo8 for our subjective tests
while reporting the FAD as reported by the authors. While the original MusicLM model is trained
on data with vocals, the model behind the API is instrument-only. For the human study, we restrict
ourselves to 40 instrument-only samples from MusicCaps. To prevent leakage in MUSICGEN trained
with chromagram, we sample chromagrams at random from a held-out set during test time.

Results suggest that MUSICGEN performs better than the evaluated baselines as evaluated by human
listeners, both in terms of audio quality and adherence to the provided text description. Noise2Music
performs the best in terms of FAD on MusicCaps, followed by MUSICGEN trained with text condi-
tioning. Interestingly, adding a melody conditioning degrades the objective metrics, however, it does
not significantly affect human ratings, while still being superior to the evaluated baselines.

We notice that for the worst rated model, the FAD is correlated with the overall subjective rating,
but it is not the case for the best rated models. We noticed that a large number of samples in
MusicCaps [Agostinelli et al., 2023] contains a description stating that the recording is "noisy". It is
possible that due to those noisy samples, improvements in the quality of the generated audio might
deteriorate the FAD on MusicCaps once a certain quality threshold is achieved.

4.2 Melody evaluation

We evaluate MUSICGEN, conditioned jointly on textual and melodic representations, using objective
and subjective metric on the held out evaluation set. For the objective evaluation, we introduce a
new metric: chroma cosine-similarity, which measures the average cosine-similarity between frames
corresponding to the same time steps, taken from the quantized chroma of the reference and the
generated samples. We evaluate using 1000 randomly sampled files from a held-out set. To better
evaluate the relation between the conditioned melody to the generated music, we introduce another
human study. To that end, we present human raters with a reference musical piece, followed by a set
of generated pieces. For each generated sample, the listeners are asked to rate how well the melody
of the generated piece matches that of the reference on a scale of 1 to 100. We use 40 samples of
10 seconds at random from the held-out set. Results are reported in Table 2. Results suggest that
MUSICGEN trained with chromagram conditioning successfully generates music that follows a given
melody. Thus, allowing for better control over the generated output. Interestingly, MUSICGEN is
robust to dropping the chroma at inference time with both OVL. and REL. staying roughly the same.

8https://blog.google/technology/ai/musiclm-google-ai-test-kitchen/
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(a) Visualizing codebook patterns for stereo models with two pos-
sible interleaving of the left (blue) and right (red) codebooks. For
a given codebook index, the “stereo delay” pattern uses different
delays for the left and right channels, while the “stereo partial
delay” predicts the two channels in parallel.

(b) Memorization results for the first
codebook tokens on 5-second audio
generations, considering exact (solid
line) and 80% partial (dashed line)
matches when prompted with extracts
of varying duration from the train set.

Figure 2: Stereo codebooks (left) and memorization results (right)

Table 3: Stereophonic Text-to-Music generation. EnCodec processes separately the left and right
channels, giving us 8 codebooks instead of 4. We experiment with two codebook patterns, depicted
in Figure 2a. We also measure one of the stereo model after being downmixed to mono. We use a
1.5B MUSICGEN model conditioned only on text.

MUSICCAPS Test Set

CB. PATTERN STEREO? OVL. ↑ REL. ↑
Mono Delay ✗ 84.95±1.60 80.61±1.22]

Stereo Partial Delay ✗* 84.49±1.80 79.39±1.16

Stereo Partial Delay ✓ 86.73±1.06 80.41±1.15

Stereo Delay ✓ 85.51±1.21 78.32 ±1.21

*: downmixed to mono after generation.

4.3 Fine-tuning for stereophonic generation

We experiment with for extending generation to stereophonic data. We use the same EnCodec
tokenizer, which we applied independently to the left and right channels, providing 2 · K = 8
codebooks per frame. Starting from a pre-trained monophonic MUSICGEN model, we fine tune
it for 200K batches the same dataset with stereo audio. We reuse the “delay” pattern, with two
possible variations: (i) “stereo delay” introduces a delay between the left and right channels for
the same codebook level, while (ii) “stereo partial delay” apply the same delay to the left and right
channel codebooks for a given level, as depicted in Figure 2a. Note that using this simple strategy,
we can generate stereo audio at no extra computational cost. We provide in Table 3 the subjective
evaluations for those models. We notice that when downmixing the stereo output to mono, we are
almost equivalent in perceived quality to a mono model. Stereo audio was overall rated higher than
the mono counterpart, and the “stereo partial delay” benefits from a small boost both in overall quality
and text relevance compared with the “stereo delay” pattern.

4.4 Ablation

This section provides an ablation study for the different codebook patterns, together with results
for model scales and a memorization study. Additionally, we present results for different text
augmentation strategies, text encoders, and audio tokenization models in Appendix A.2. All ablations
are performed using 1K samples of 30 seconds, randomly sampled from the held-out evaluation set.

The effect of the codebook interleaving patterns. We evaluate various codebook patterns using the
framework from Section 2.2, with K = 4, given by the audio tokenization model. Table 1 reports
results with the “delay” pattern. The “partial delay” consists in delaying by the same amount the
codebooks 2, 3, and 4. The “parallel” pattern predicts all the codebooks from the same time step in
parallel. The “coarse first” pattern first predicts codebook 1 for all steps, then predicts in parallel
codebooks 2, 3, and 4. Thus, this pattern has twice the steps compared to other patterns. “Partial
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Table 4: Codebook patterns. We compare different codebook interleaving patterns on 30-seconds,
audio sequences. The “flattening” pattern achieves the best scores. The “delay” and “partial flattening”
patterns achieve similar scores, while “parallel” obtains worse scores.

In Domain Test Set

CONFIGURATION Nb. steps FADvgg ↓ KL ↓ CLAPscr ↑ OVL. ↑ REL. ↑
Delay 1500 0.96 0.52 0.35 79.69±1.46 79.67±1.41

Partial delay 1500 1.51 0.54 0.32 79.13±1.56 79.67±1.46

Parallel 1500 2.58 0.62 0.27 72.21±2.49 80.30±1.43

Partial flattening 3000 1.32 0.54 0.34 78.56±1.86 79.18±1.49

Coarse first 3000 1.98 0.56 0.30 74.42±2.28 76.55±1.67

Flattening 6000 0.86 0.51 0.37 79.71±1.58 82.03±1.1

Table 5: Model scale. We compare 3 scales for our method, and evaluate it on an internal test set to
limit the impact of the out of domain prediction issues we observed with MusicCaps. In terms of
objective metrics we observe a continuous improvement of the metrics, although subjective quality
stop improving at 1.5B parameters. A 3.3B model however seems to better fit the text prompt.

In Domain Test Set

Dim. Heads Depth # Param. PPL↓ FADvgg ↓ KL ↓ CLAPscr ↑ OVL. ↑ REL. ↑
1024 16 24 300M 56.1 0.96 0.52 0.35 78.3±1.4 82.5 ±1.6

1536 24 48 1.5B 48.4 0.86 0.50 0.35 81.9±1.4 82.9±1.5

2048 32 48 3.3B 46.1 0.82 0.50 0.36 79.2±1.3 83.5±1.3

flattening” is similar, but instead of sampling first codebook 1 for all steps, it interleaves them with
the parallel sampling of codebooks 2, 3, and 4. Finally, the “flattening” pattern consists in flattening
all the codebooks, similar to MusicLM [Agostinelli et al., 2023]. We report objective and subjective
evaluations in Table 4. While flattening improves generation, it comes at a high computational cost
and similar performance can be reached for a fraction of this cost using a simple delay approach.

The effect of model size. In Table 5 we report results for different model sizes, namely 300M, 1.5B,
and 3.3B parameter models. As expected, scaling the model size results in better scores, however this
comes at the expense of longer training and inference time. Regarding subjective evaluations, the
overall quality is optimal at 1.5B, but a larger model can better understand the text prompt.

Memorization experiment. Following [Agostinelli et al., 2023], we analyze the memorization
abilities of MUSICGEN. We only consider the first stream of codebooks from MUSICGEN as it
contains the coarser-grain information. We randomly select N = 20, 000 examples from our training
set and for each one we feed the model with a prompt of EnCodec codebooks corresponding to the
original audio and the conditioning information. We generate a continuation of 250 audio tokens (5
second-long audio) using greedy decoding. We report exact matches as the fraction of examples for
which the generated audio tokens and source audio tokens are identical over the whole sequence. In
addition, we report partial matches as the fraction of the training examples for which the generated
and source sequences have at least 80% of the audio tokens matching. We present the memorization
results for the different model sizes when varying the length of the audio prompt in Figure 2b.

5 Related work

Audio representation. In recent years, the prominent approach is to represent the music signals in a
compressed representation, discrete or continuous, and apply a generative model on top of it. Lakhotia
et al. [2021] proposed quantizing speech representation using k-means to construct speech language
models. Recently, Défossez et al. [2022], Zeghidour et al. [2021] proposed to apply a VQ-VAE
directly on the raw waveform using residual vector quantization. Later, several studies used such
representation for text-to-audio generation. Next, we discuss the recent research in audio generation.

Music generation. Music generation has been long studied under various setups. Dong et al. [2018]
proposed a GAN-based approach for symbolic music generation. Bassan et al. [2022] proposed an
unsupervised segmentation for symbolic music which can be later used for generation. Ycart et al.
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[2017] proposed modeling polyphonic music modeling using recurrent neural networks. Ji et al.
[2020] conducted a comprehensive survey therein for deep learning methods for music generation.

Dhariwal et al. [2020] proposed representing music samples in multiple streams of discrete represen-
tations using a hierarchical VQ-VAE. Next, two sparse transformers applied over the sequences to
generate music. Gan et al. [2020] proposed generating music for a given video, while predicting its
midi notes. Recently, Agostinelli et al. [2023] proposed representing music using multiple streams
of “semantic tokens” and “acoustic tokens”. Then, they applied a cascade of transformer decoders
conditioned on a textual-music joint representation [Huang et al., 2022]. Donahue et al. [2023]
followed a similar modeling approach, but for the task of singing-to-accompaniment generation.

An alternative approach is using diffusion models. Schneider et al. [2023], Huang et al. [2023b],
Maina [2023], Forsgren and Martiros proposed using a latent diffusion model for the task of
text-to-music. Schneider et al. [2023] proposed using diffusion models for both audio encoder-decoder
and latent generation. Huang et al. [2023b] proposed a cascade of diffusion model to generate
audio and gradually increase its sampling rate. Forsgren and Martiros proposed fine-tuning Stable
Diffusion Rombach et al. [2022] using spectrograms to generate five-second segments, then, using
image-to-image mapping and latent interpolation to generate long sequences.

Audio generation. Several studies were proposed for text-to-audio (environmental sounds) genera-
tion. Yang et al. [2022] proposed representing audio spectrograms using a VQ-VAE, then applying a
discrete diffusion model conditioned on textual CLIP embeddings for the generation part [Radford
et al., 2021]. Kreuk et al. [2022] proposed applying a transformer language model over discrete audio
representation, obtained by quantizing directly time-domain signals using EnCodec [Défossez et al.,
2022]. Sheffer and Adi [2023] followed a similar approach to Kreuk et al. [2022] for image-to-audio
generation. Huang et al. [2023a], Liu et al. [2023] proposed using latent diffusion models for the task
of text-to-audio, while extending it to various other tasks such as inpainting, image-to-audio, etc.

6 Discussion

We introduced MUSICGEN, a state-of-the-art single stage controllable music generation model that
can be conditioned on text and melody. We demonstrated that simple codebook interleaving strategies
can be used to achieve high quality generation, even in stereo, while reducing the number of autore-
gressive time steps compared to the flattening approach. We provided a comprehensive study of the
impact of model sizes, conditioning methods, and text pre-processing techniques. We also introduced
a simple chromagram-based conditioning for controlling the melody of the generated audio.

Limitations Our simple generation method does not allow us to have fine-grained control over
adherence of the generation to the conditioning, we rely mostly on CF guidance. Also, while it
is relatively straightforward to do data augmentation for text conditioning, conditioning on audio
warrants further research on data augmentation, types and amount of guidance.

Broader impact. Large scale generative models present ethical challenges. We first ensured that
all the data we trained on was covered by legal agreements with the right holders, in particular
through an agreement with ShutterStock. A second aspect is the potential lack of diversity in the
dataset we used, which contains a larger proportion of western-style music. However, we believe
the simplification we operate in this work, e.g., using a single stage language model and a reduced
number of auto-regressive steps, can help broaden the applications to new datasets. Generative
models can represent an unfair competition for artists, which is an open problem. Open research can
ensure that all actors have equal access to these models. Through the development of more advanced
controls, such as the melody conditioning we introduced, we hope that such models can become
useful both to music amateurs and professionals.

Ethical statement. This paper is finalized in the wake of a tragic terrorist attack perpetrated by
Hamas, which has left the Israeli nation profoundly devastated. On Oct. 7, 2023, thousands of Hamas
terrorists infiltrated the Israeli border, launching a ferocious assault on 22 Israeli villages, brutally
murdering more than a thousand innocent lives, and kidnapping more than two hundred civilians.

While we grieve and mourn our friends and family, we call all the academic community to unite in
condemnation of these unspeakable atrocities committed by Hamas, and to advocate for the prompt
and safe return of the abductees, as we stand together in the pursuit of peace.

In memory of the countless lives shattered by the Hamas actions.
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Figure A.1: Visualizing partial flattening and partial delays codebook patterns applied on a sequence
with 4 parallel streams of quantized values (corresponding to k1, . . . , k4) and N time steps (t1, . . . ,
kn). “Partial flattening” separates the first codebook in dedicated steps and interleaves them with the
parallel sampling of codebooks 2, 3, and 4, leading the number of interleaved sequences steps M to
be twice the number of original steps N . The “partial delay” pattern consists in delaying by the same
amount the codebooks 2, 3, and 4, in our case we use a delay of 1. The total number of steps of the
interleave sequences is N (excluding the last step for simplicity).

A.1 Experimental details

Codebook interleaving patterns. Figure A.1 provides a visual description of the additional codebook
patterns introduced for the ablation in Section 4, namely “partial flattening” and “partial delay”
patterns. The intuition behind such patterns is driven by the fact that the first codebook from RVQ is
the most important one and predicting the rest of the codebooks in parallel would allow to limit the
introduced flattening or delay while maintaining good modeling performance.

Melody conditioning. In this work, we provide an unsupervised approach for melody conditioning
through conditioning on the chromagram representation. As shown in Figure A.2, chromagram-based
conditioning successfully preserves the melodic structure when generating novel music samples.
In preliminary experiments, we noticed that the chromagram tends to be dominated by the lower
frequency instruments, mainly by the drums and bass. To mitigate that, we used Demucs [Défossez
et al., 2019] to first decompose the reference track into four components: drums, bass, vocals, and
other. Next, we omit the drums and bass to recover the melodic structure of the residual waveform.
Finally, we extract the quantized chromagram to create the conditioning that is later fed to the model.

Distribution of genres. We provide in Figure A.3 a histogram of the top 50 musical genres present
in the dataset. We notice a clear dominance of the Dance/EDM genre, which in our experience is
also one of the genres that is best generated by MUSICGEN. While we tried to explore a number
of resampling scheme to boost the importance of other genres, we observed that oversampling less
represented genres would often lead to a worse model overall.

A.2 Additional experimental results

We provide further ablation studies on the core components of MUSICGEN, namely the text encoder
used for text conditioning described in Section 2.3, text augmentation strategies presented in Sec-
tion 3.1, and the used audio tokenization model. We report results on the MusicCaps dataset to
better understand out-of-domain generalization abilities of the different approaches. Finally, we share
additional experimental results on optimization methods.

The effect of text encoder. We investigate the impact of the text encoder, comparing three different
encoders: T5 [Raffel et al., 2020] 9, Flan-T5 [Chung et al., 2022]10 and CLAP [Wu* et al., 2023] 11

with a quantization bottleneck. For the CLAP-based encoder, similarly to Agostinelli et al. [2023]
we rely on the music embeddings during training and the text embeddings at inference time and

9https://huggingface.co/t5-base
10https://huggingface.co/google/flan-t5-base
11https://huggingface.co/lukewys/laion_clap/blob/main/music_audioset_epoch_15_esc_

90.14.pt
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Table A.1: Text encoder results. We report results for T5, Flan-T5, and CLAP as text encoders.
We observe similar results for T5 and Flan-T5 on all the objective metrics. Note that T5 is the text
encoder used for the main MUSICGEN models. CLAP encoder performs consistently worse on all
the metrics but CLAP score. All comparisons are done with a 300M MUSICGEN model using text
conditioning only.

MUSICCAPS Test Set

MODEL FADvgg ↓ KL ↓ CLAPscr ↑ OVL. ↑ REL. ↑
T5 3.12 1.29 0.31 85.04±1.23 87.33±1.9
Flan-T5 3.36 1.30 0.32 85.54±1.01 85.00±1.63

CLAP 4.16 1.36 0.35 82.13±1.29 83.56±1.54

CLAP (no normalization) 4.14 1.38 0.35 84.87±1.25 85.06±1.72

CLAP (no quantization) 5.07 1.37 0.37 84.13±1.02 84.67±1.42

Table A.2: Text augmentations strategies results. We report objective metrics using only the original
text description (no augmentation) and for different text augmentation strategies: using condition
merging to augment the text description with metadata, using text-normalization (text-norm.) and
applying word dropout on the resulting text. We use 300M MUSICGEN models trained for 500K
steps. Condition merging improves the result over training only over the original text description.
Other augmentations perform worst on all metrics. We use the Condition Merging with Word dropout,
showing the best text relevance, in our main models.

MUSICCAPS Test Set

CONFIGURATION FADvgg ↓ KL ↓ CLAPscr OVL. ↑ REL. ↑
No augmentation 3.68 1.28 0.31 83.40±1.44 81.16±1.29

Condition Merging (CM) 3.28 1.26 0.31 82.60±1.41 84.45 ±1.16

CM + Text-norm. (TN) 3.78 1.30 0.29 80.57±2.14 82.40±1.09

CM+ Word dropout (WD) 3.31 1.31 0.30 82.52±1.55 85.27±0.97

CM + TN + WD 3.41 1.39 0.30 81.18±1.91 84.32 ±1.59

we train a RVQ layer on top of the extracted embeddings. More specifically, we first normalize the
embeddings and use RVQ with 12 quantizers, each with a codebook size of 1024. Quantizing the
CLAP embeddings leads to a homogeneous representation with the discrete tokens further reducing
the gap between the audio encoding used at train time and text encoding at test time. We report
results for the different text encoders in Table A.1. Both T5 and Flan-T5 perform similarly in terms
of objective metrics, the overall quality being slighly better for T5. The CLAP-based model however
suffers worse objective and subjective metrics, with the exception of the CLAP score which rely on
the same underlying audio and text encoder.

The effect of text augmentations. We examine the impact of text augmentation strategies for the
proposed method. In particular, we study the use of condition merging (i.e. concatenating additional
metadata to the text description), text normalization (text-norm.) and word dropout. We report
objective metrics for the different augmentation strategies in Table A.2. We observe a gain in FAD
and KL when leveraging the additional metadata with condition merging. However, neither text
normalization or word dropout improves the results in terms of objective metrics.

The effect of the audio tokenizer. We experiment with replacing EnCodec with Descript Audio
Codec (DAC) [Kumar et al., 2023]12, a similar audio compression models, that uses a different
training set, a similar adversarial loss enhanced with multiband discriminators, but performs
quantization in a lower dimension space to improve codebook usage. DAC compresses audio at
44.1 kHz with 9 codebooks, and a framerate of 86 Hz. We trained a small (300M parameters) and
a medium (1.5B parameters) MUSICGEN model using both DAC and EnCodec as an audio tokenizer,
on a vocal-free version of our dataset. The results provided in Table A.3 show a worse FAD and
KL on our in domain test set. On MusicCaps, the FAD is improved by using DAC, although the KL
is worse, as well as the subjective evaluations. The EnCodec model used in this work was specifically

12Using the public implementation github.com/descriptinc/descript-audio-codec.
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Table A.3: We test replacing EnCodec with DAC [Kumar et al., 2023] using their implementation.
DAC is a 44.1 kHz model with 9 codebooks and a frame rate of 86 Hz. Those models are trained on
a vocal-free version of our dataset, hence the objective metrics will not match those reported in the
other tables. We report objective metrics both on our in domain test set and MusicCaps [Agostinelli
et al., 2023], and subjective metrics only on MusicCaps.

In Domain Test Set MUSICCAPS Test Set

MODEL FADvgg ↓ KL ↓ FADvgg ↓ KL ↓ OVL. ↑
MUSICGEN + DAC small 3.45 0.58 4.46 1.35 83.32±0.95

MUSICGEN + DAC medium 2.42 0.57 4.32 1.30 84.46±0.97

MUSICGEN + EnCodec small 0.67 0.54 5.26 1.27 84.69±0.90

MUSICGEN + EnCodec medium 0.49 0.52 5.05 1.23 86.09±0.88

designed to operate at a lower frame rate (50 Hz) than DAC (86 Hz), thus reducing by 40% the
inference runtime for producing the same audio. Note finally that DAC was trained on a different
dataset than EnCodec, and further experiments would be required to understand exactly what
influences the fitness of such compression models to be used with auto-regressive language models.

Effect of D-Adaptation.

D-Adaptation is a novel automated way of selecting the overall learning rate of the Adam optimizer,
i.e. its α parameter, dynamically throughout the training, introduced by Defazio and Mishchenko
[2023]. We observed improved convergence for the 300M parameter model, although for larger
models, e.g. 1.5B and 3.3B, we observed the automated rule led to deteriorated performance, both
on the train and validation set. Further investigation is required to better understand the effect of
D-Adaptation, and whether it can scale to the largest model. The convergence for both methods can
be observed on the train and validation set in Figure A.4.
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Figure A.2: Visualization of quantized chromagram bins over time from reference melody (left),
generated music conditioned on chroma and text (middle) and generated music with text-only
conditioning (right). Each row is generated using a different chroma condition, all rows share the
same text condition: “90s rock song with electric guitar and heavy drums”. We observe strong
adherence to the input melody for the music samples generated with chroma conditioning while
rendering novel styles guided by the input text.

Figure A.3: Histogram of the top 50 musical genres in the training dataset.
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Figure A.4: Comparison of Adam and Adam with D-Adaptation [Defazio and Mishchenko, 2023].
While D-Adaptation provided consistent gains for the 300M parameters model, we observed worse
convergence both on the train (left) and validation (right) set for the 1.5B parameters model.
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