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Abstract

As society transitions towards an AI-based decision-making infrastructure, an ever-
increasing number of decisions once under control of humans are now delegated to
automated systems. Even though such developments make various parts of society
more efficient, a large body of evidence suggests that a great deal of care needs
to be taken to make such automated decision-making systems fair and equitable,
namely, taking into account sensitive attributes such as gender, race, and religion.
In this paper, we study a specific decision-making task called outcome control
in which an automated system aims to optimize an outcome variable Y while
being fair and equitable. The interest in such a setting ranges from interventions
related to criminal justice and welfare, all the way to clinical decision-making
and public health. In this paper, we first analyze through causal lenses the notion
of benefit, which captures how much a specific individual would benefit from a
positive decision, counterfactually speaking, when contrasted with an alternative,
negative one. We introduce the notion of benefit fairness, which can be seen as the
minimal fairness requirement in decision-making, and develop an algorithm for
satisfying it. We then note that the benefit itself may be influenced by the protected
attribute, and propose causal tools which can be used to analyze this. Finally, if
some of the variations of the protected attribute in the benefit are considered as
discriminatory, the notion of benefit fairness may need to be strengthened, which
leads us to articulating a notion of causal benefit fairness. Using this notion, we
develop a new optimization procedure capable of maximizing Y while ascertaining
causal fairness in the decision process.

1 Introduction

Decision-making systems based on artificial intelligence and machine learning are being increasingly
deployed in real-world settings where they have life-changing consequences on individuals and on
society more broadly, including hiring decisions, university admissions, law enforcement, credit
lending, health care access, and finance [19, 26, 6]. Issues of unfairness and discrimination are
pervasive in those settings when decisions are being made by humans, and remain (or are potentially
amplified) when decisions are made using machines with little transparency or accountability. Exam-
ples include reports on such biases in decision support systems for sentencing [1], face-detection [7],
online advertising [37, 10], and authentication [35]. A large part of the underlying issue is that AI
systems designed to make decisions are trained with data that contains various historical biases and
past discriminatory decisions against certain protected groups, and such systems may potentially lead
to an even more discriminatory process, unless they have a degree of fairness and transparency.

In this paper, we focus on the specific task of outcome control, characterized by a decision D which
precedes the outcome of interest Y . The setting of outcome control appears across a broad range
of applications, from clinical decision-making [13] and public health [15], to criminal justice [23]
and various welfare interventions [9]. In general, outcome control will cover settings in which an
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institution (such as a hospital or a social service) may attempt to maximize an outcome (such as
survival or well-being) using a known control (such as surgery or a welfare intervention)1. Importantly,
due to historical biases, certain demographic groups may differ in their distribution of covariates and
therefore their benefit from treatment (e.g., from surgery or intervention) may be lower than expected,
leading to a lower allocation of overall resources. We next discuss two lines of related literature.

Firstly, a large body of literature in reinforcement learning [36, 38] and policy learning [11, 33, 21, 18,
2] analyzes the task of optimal decision-making. Often, these works consider the conditional average
treatment effect (CATE) that measures how much probabilistic gain there is from a positive versus a
negative decision for a specific group of individuals when experimental data is available. Subsequent
policy decisions are then based on the CATE, a quantity that will be important in our approach as
well. The focus of this literature is often on developing efficient procedures with desirable statistical
properties, and issues of fairness have not traditionally been explored in this context.

On the other hand, there is also a growing literature in fair machine learning, that includes various
different settings. One can distinguish three specific and different tasks, namely (1) bias detection
and quantification for currently deployed policies; (2) construction of fair predictions of an outcome;
(3) construction of fair decision-making policies. Most of the work in fair ML falls under tasks
(1) and (2), whereas our setting of outcome control falls under (3). Our work also falls under
the growing literature that explores fairness through a causal lens [22, 20, 28, 44, 43, 41, 8, 32].
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Figure 1: Standard Fairness
Model (SFM) [31] extended
for outcome control.

For concreteness, consider the causal diagram in Fig. 1 that represents
the setting of outcome control, with X the protected attribute, Z a
possibly multidimensional set of confounders, W a set of mediators.
Decision D is based on the variables X,Z, and W , and the outcome
Y depends on all other variables in the model. In this setting, we also
assume that the decision-maker is operating under budget constraints.

Previous work introduces a fairness definition that conditions on the
potential outcomes of the decision D, written Yd0

, Yd1
, and ensures

that the decision D is independent of the protected attribute X for
any fixed value of Yd0

, Yd1
[14]. Another related work, in a slightly

different setting of risk assessment [9], proposes conditioning on the potential outcome under a
negative decision, Yd0 , and focuses on equalizing counterfactual error rates. Finally, the work [25] is
also related to our setting, and proposes that fairness should be assessed with respect to three causal
effects of interest: (i) total effect X → Y ; (ii) total effect D → Y ; and (iii) total effect X → D.
Our framework, however, integrates considerations of the above effects more coherently, and brings
forward a new definition of fairness based on first principles.

However, the causal approaches mentioned above take a different perspective from the policy learning
literature, in which policies are built based on the CATE of the decision D, written E[Yd1

− Yd0
|

x, z, w], which we will refer to as benefit2. Focusing exclusively on the benefit, though, will provide
no fairness guarantees apriori. In particular, as can be seen from Fig. 1, the protected attribute X may
influence the effect of D on Y in three very different ways: (i) along the direct pathway X → Y ; (ii)
along the indirect pathway X →W → Y ; (iii) along the spurious pathway X L9999K Z → Y . Often,
the decision-maker may view these causal effects differently, and may consider only some of them as
discriminatory. Currently, no approach in the literature allows for a principled way of detecting and
removing discrimination based on the notion of benefit, while accounting for different underlying
causal mechanisms that may lead to disparities.

In light of the above, the goal of this paper is to analyze the foundations of outcome control from a
causal perspective of the decision-maker. Specifically, we develop a causal-based decision-making
framework for modeling fairness with the following contributions:

(i) We introduce Benefit Fairness (BF, Def. 2) to ensure that at equal levels of the benefit, the
protected attribute X is independent of the decision D. We then develop an algorithm for
achieving BF (Alg. 1) and prove optimality guarantees (Thm. 2),

(ii) We develop Alg. 2 that determines which causal mechanisms from X to the benefit (direct,
indirect, spurious) explain the difference in the benefit between groups. The decision-maker
can then decide which causal pathways are considered as discriminatory.

1Our setting is not related to the concept of outcome control in the procedural justice literature [24].
2We remark that the notion of benefit discussed in this work is different from that in [34].
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(iii) We define the notion of causal benefit fairness (CBF, Def. 3), which models discriminatory
pathways in a fine-grained way. We further develop an algorithm (Alg. 3) that ensures the
removal of such discriminatory effects, and show some theoretical guarantees (Thm. 4).

1.1 Preliminaries

We use the language of structural causal models (SCMs) as our basic semantical framework [30]. A
structural causal model (SCM) is a tupleM := ⟨V,U,F , P (u)⟩ , where V , U are sets of endogenous
(observable) and exogenous (latent) variables respectively, F is a set of functions fVi , one for each
Vi ∈ V , where Vi ← fVi(pa(Vi), UVi) for some pa(Vi) ⊆ V and UVi ⊆ U . P (u) is a strictly
positive probability measure over U . Each SCMM is associated to a causal diagram G over the node
set V , where Vi → Vj if Vi is an argument of fVj

, and Vi L9999K Vj if the corresponding UVi
, UVj

are
not independent. Throughout, our discussion will be based on the specific causal diagram known as
the standard fairness model (SFM, see Fig. 1). Further, an instantiation of the exogenous variables
U = u is called a unit. By Yx(u) we denote the potential response of Y when setting X = x for the
unit u, which is the solution for Y (u) to the set of equations obtained by evaluating the unit u in the
submodelMx, in which all equations in F associated with X are replaced by X = x.

2 Foundations of Outcome Control

In the setting of outcome control, we are interested in the following decision-making task:
Definition 1 (Decision-Making Optimization). LetM be an SCM compatible with the SFM. We
define the optimal decision problem as finding the (possibly stochastic) solution to the following
optimization problem given a fixed budget b:

D∗ =argmax
D(x,z,w)

E[YD] (1)

subject to P (d) ≤ b. (2)

The budget b constraint is relevant for scenarios when resources are scarce, in which not all patients
possibly requiring treatment can be given treatment. In such a setting, the goal is to treat patients
who are most likely to benefit from the treatment, as formalized later in the text. We next discuss two
different perspectives on solving the above problem. First, we discuss the problem solution under
perfect knowledge, assuming that the underlying SCM and the unobserved variables are available to
us (we call this the oracle’s perspective). Then, we move on to solving the problem from the point of
view of the decision-maker, who only has access to the observed variables in the model and a dataset
generated from the true SCM.

2.1 Oracle’s Perspective

The following example, which will be used throughout the paper, is accompanied by a vignette that
performs inference using finite sample data for the different computations described in the sequel.
We introduce the example by illustrating the intuition of outcome control through the perspective of
an all-knowing oracle:
Example (Cancer Surgery - continued). A clinical team has access to information about the sex
of cancer patients (X = x0 male, X = x1 female) and their degree of illness severity determined
from tissue biopsy (W ∈ [0, 1]). They wish to optimize the 2-year survival of each patient (Y ), and
the decision D = 1 indicates whether to perform surgery. The following SCMM∗ describes the
data-generating mechanisms (unknown to the team):

F∗, P ∗(U) :



X ← UX

W ←
{√

UW if X = x0,

1−
√
1− UW if X = x1

D ← fD(X,W )

Y ← 1(UY +
1

3
WD − 1

5
W > 0.5).

UX ∈ {0, 1}, P (UX = 1) = 0.5,

UW , UY ∼ Unif[0, 1],

(3)

(4)

(5)

(6)

(7)
(8)
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(a) Units in the oracle example.
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(b) Causal diagram for the running example.

Figure 2: (a) Units in the Oracle example; (b) Standard Fairness Model (SFM) for the cancer surgery
example, corresponding to W = {W} and Z = ∅ in the SFM in Fig. 1.

where the fD mechanism is constructed by the team.

The clinical team has access to an oracle that is capable of predicting the future perfectly. In
particular, the oracle tells the team how each individual would respond to surgery. That is, for each
unit U = u (of the 500 units), the oracle returns the values of

Yd0
(u), Yd1

(u). (9)

Having access to this information, the clinicians quickly realize how to use their resources. In
particular, they notice that for units for whom (Yd0

(u), Yd1
(u)) equals (0, 0) or (1, 1), there is no

effect of surgery, since they will (or will not) survive regardless of the decision. They also notice that
surgery is harmful for individuals for whom (Yd0

(u), Yd1
(u)) = (1, 0). These individuals would not

survive if given surgery, but would survive otherwise. Therefore, they ultimately decide to treat 100
individuals who satisfy

(Yd0(u), Yd1(u)) = (0, 1), (10)

since these individuals are precisely those whose death can be prevented by surgery. They learn there
are 100 males and 100 females in the (0, 1)-group, and thus, to be fair with respect to sex, they decide
to treat 50 males and 50 females. □

The space of units corresponding to the above example is represented in Fig. 2a. The groups described
by different values of Yd0

(u), Yd1
(u) in the example are known as canonical types [3] or principal

strata [12]. Two groups cannot be influenced by the treatment decision (which will be called “Safe”
and “Doomed”, see Fig. 2a). The third group represents those who are harmed by treatment (called
“Harmed”). In fact, the decision to perform surgery for this subset of individuals is harmful. Finally,
the last group represents exactly those for whom the surgery is life-saving, which is the main goal of
the clinicians (this group is called “Helped”).

This example illustrates how, in presence of perfect knowledge, the team can allocate resources
efficiently. In particular, the consideration of fairness comes into play when deciding which of the
individuals corresponding to the (0, 1) principal stratum will be treated. Since the number of males
and females in this group is equal, the team decides that half of those treated should be female.
The approach described above can be seen as appealing in many applications unrelated to to the
medical setting, and motivated the definition of principal fairness [14]. As we show next, however,
this viewpoint is often incompatible with the decision-maker’s perspective.

2.2 Decision-Maker’s Perspective

We next discuss the policy construction from the perspective of the decision-maker:

Example (Cancer Surgery - continued). The team of clinicians constructs the causal diagram
associated with the decision-making process, shown in Fig. 2b. Using data from their electronic
health records (EHR), they estimate the benefit of the treatment based on x,w:

E[Yd1
− Yd0

| w, x1] = E[Yd1
− Yd0

| w, x0] =
w

3
. (11)

In words, at each level of illness severity W = w, the proportion of patients who benefit from the
surgery is the same, regardless of sex. In light of this information, the clinicians decide to construct
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Figure 3: Difference in perspective between perfect knowledge of an oracle (left) and imperfect
knowledge of a decision-maker in a practical application (right).

the decision policy fD such that fD(W ) = 1(W > 1
2 ). In words, if a patient’s illness severity W is

above 1
2 , the patient will receive treatment.

After implementing the policy and waiting for the 2-year follow-up period, clinicians estimate the
probabilities of treatment within the stratum of those helped by surgery, and compute that

P (d | yd0 = 0, yd1 = 1, x0) =
7

8
, (12)

P (d | yd0 = 0, yd1 = 1, x1) =
1

2
, (13)

indicating that the allocation of the decision is not independent of sex. That is, within the group of
those who are helped by surgery, males are more likely to be selected for treatment than females. □

The decision-making policy introduced by the clinicians, somewhat counter-intuitively, does not
allocate the treatment equally within the principal stratum of those who are helped, even though
at each level of illness severity, the proportion of patients who benefit from the treatment is equal
between the sexes. What is the issue at hand here?

To answer this question, the perspective under perfect knowledge is shown in Fig. 3a. In particular,
on the horizontal axis the noise variable uy is available, which summarizes the patients’ unobserved
resilience. Together with the value of illness severity (on the vertical axis) and the knowledge of
the structural causal model, we can perfectly pick apart the different groups (i.e., principal strata)
according to their potential outcomes (groups are indicated by color). In this case, it is clear that our
policy should treat patients in the green area since those are the ones who benefit from treatment.

In Fig. 3b, however, we see the perspective of the decision-makers under imperfect knowledge.
Firstly, the decision-makers have no knowledge about the values on the horizontal axis, since this
represents variables that are outside their model. From their point of view, the key quantity of interest
is the conditional average treatment effect (CATE), which we call benefit in this context3, defined as

∆(x, z, w) = P (yd1
| x, z, w)− P (yd0

| x, z, w). (14)

Importantly, in our setting, the benefit ∆ can be uniquely computed (identified) from observational
data, implying that we may use the notion of benefit for practical data analyses:
Proposition 1 (Benefit Identifiability). LetM be an SCM compatible with the SFM in Fig. 1. Then
the benefit ∆(x, z, w) is identifiable from observational data and equals:

∆(x, z, w) = P (y | d1, x, z, w)− P (y | d0, x, z, w) (15)

for any choice of x, z, w.

3In practice, however, clinical decision-making may not be based on the actual value of the benefit ∆ but a
biased, imperfect version of it, corresponding to the intuition of the clinician.
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Algorithm 1 Decision-Making with Benefit Fairness

• Inputs: Distribution P (V ), Budget b
1: Compute ∆(x, z, w) = E[Yd1 − Yd0 | x, z, w] for all (x, z, w).
2: If P (∆ > 0) ≤ b, set D∗ = 1(∆(x, z, w) > 0) and RETURN(D∗).
3: Find δb > 0 such that

P (∆ > δb) ≤ b, P (∆ ≥ δb) > b. (17)

4: Otherwise, define

I :={(x, z, w) : ∆(x, z, w) > δb}, (18)
B :={(x, z, w) : ∆(x, z, w) = δb} (19)

5: Construct the policy D∗ such that:

D∗ :=


1 for (x, z, w) ∈ I,
1 with prob. b−P (I)

P (B) for (x0, z, w) ∈ B,
1 with prob. b−P (I)

P (B) for (x1, z, w) ∈ B.
(20)

The benefit is simply the increase in survival associated with treatment. After computing the benefit
(shown in Eq. 11), the decision-makers visualize the male and female groups (lighter color indicates
a larger increase in survival associated with surgery) according to it. It is visible from the figure that
the estimated benefit from surgery is higher for the x0 group than for x1. Therefore, to the best of
their knowledge, the decision-makers decide to treat more patients from the x0 group.

The example illustrates why the oracle’s perspective may be misleading for the decision-makers. The
clinicians can never determine exactly which patients belong to the group

Yd0
(u) = 0, Yd1

(u) = 1,

that is, who benefits from the treatment. Instead, they have to rely on illness severity (W ) as a proxy
for treatment benefit (∆). In other words, our understanding of treatment benefit will always be
probabilistic, and we need to account for this when considering the decision-maker’s task. A further
discussion on the relation to principal fairness [14] is given in Appendix A.

2.3 Benefit Fairness

To remedy the above issue, we propose an alternative definition, which takes the viewpoint of the
decision-maker:
Definition 2 (Benefit Fairness). Let ∆ denote the benefit of treatment in Eq. 14 and let δ be a fixed
value of ∆. We say that the pair (Y,D) satisfies benefit fairness (BF, for short) if

P (d | ∆ = δ, x0) = P (d | ∆ = δ, x1) ∀δ. (16)

The above definition pertains to the population-level setting, but without oracle knowledge. In this
setting, the objective function in Eq. 1 is expected to be lower than in the oracle case. Further, in
finite samples, the constraint from Def. 2 is expected to hold approximately. Notice that BF takes the
perspective of the decision-maker who only has access to the unit’s attributes (x, z, w), as opposed to
the exogenous U = u4. In particular, the benefit ∆(x, z, w) is estimable from the data, i.e., attainable
by the decision-maker. BF then requires that at each level of the benefit, ∆(x, z, w) = δ, the rate
of the decision does not depend on the protected attribute. The benefit ∆ is closely related to the
canonical types discussed earlier, namely

∆(x, z, w) = c(x, z, w)− d(x, z, w). (21)

The values of c, d in Eq. 21 are covariate-specific, and indicate the proportions of patients helped and
harmed by the treatment, respectively, among all patients coinciding with covariate values x, z, w (i.e.,

4Formally, having access to the exogenous instantiation of U = u implies knowing which principal stratum
from Fig. 2a the unit belongs to, since U = u determines all of the variations of the model.
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Algorithm 2 Benefit Fairness Causal Explanation

• Inputs: Distribution P (V ), Benefit ∆(x, z, w), Decision policy D
1: Compute the causal decomposition of the resource allocation disparity into its direct, indirect,

and spurious contributions [44, 31]

P (d | x1)− P (d | x0) = DE + IE + SE. (22)

2: Compare the distributions P (∆ | x1) and P (∆ | x0).
3: Compute the causal decomposition of the benefit disparity

E(∆ | x1)−E(∆ | x0) = DE + IE + SE. (23)

4: Compute the counterfactual distribution P (∆C | x) for specific interventions C that remove the
direct, indirect, or total effect of X on the benefit ∆.

all u ∈ U s.t. (X,Z,W )(u) = (x, z, w)). The proof of the claim in Eq. 21 is given in Appendix B.
Using this connection of canonical types and the notion of benefit, we can formulate a solution to the
problem in Def. 1, given in Alg. 1. In particular, Alg. 1 takes as input the observational distribution
P (V ), but its adaptation to inference from finite samples follows easily. In Step 2, we check whether
we are operating under resource scarcity, and if not, the optimal policy simply treats everyone who
stands to benefit from the treatment. Otherwise, we find the δb > 0 which uses the entire budget
(Step 3) and separate the interior I of those with the highest benefit (all of whom are treated), and
the boundary B (those who are to be randomized) in Step 4. The budget remaining to be spent on
the boundary is b− P (I), and thus individuals on the boundary are treated with probability b−P (I)

P (B) .
Importantly, male and female groups are treated separately in this random selection process (Eq. 20),
reflecting BF. The BF criterion can be seen as a minimal fairness requirement in decision-making,
and is often aligned with maximizing utility, as seen from the following theorem:

Theorem 2 (Alg. 1 Optimality). Among all feasible policies D for the optimization problem in
Eqs. 1-2, the result of Alg. 1 is optimal and satisfies benefit fairness.

A key extension we discuss next relates to the cases in which the benefit itself may be deemed as
discriminatory towards a protected group.

3 Fairness of the Benefit

As discussed above, benefit fairness guarantees that at each fixed level of the benefit ∆ = δ, the
protected attribute plays no role in the treatment assignment. However, benefit fairness does not
guarantee that treatment probability is equal between groups, i.e., that P (d | x1) = P (d | x0). In
fact, benefit fairness implies equal treatment allocation in cases where the distribution of the benefit
∆ is equal across groups (shown formally in Appendix F), which may not always be the case:

Example (Cancer Surgery - continued). After applying benefit fairness and implementing the optimal
policy D∗ = 1

(
W > 1

2

)
, the clinicians compute that P (d | x1) − P (d | x0) = −50%, that is,

females are 50% less likely to be treated than males. □

In our example benefit fairness results in a disparity in resource allocation. Whenever this is the
case, it implies that the benefit ∆ differs between groups. In Alg. 2 we describe a formal procedure
that helps the decision-maker to obtain a causal understanding of why that is, i.e., which underlying
causal mechanisms (direct, indirect, spurious) lead to the difference in the benefit. In Appendix G
we discuss in detail how the terms appearing in the decompositions in Eqs. 22 and 23 are defined.
The key subtlety here is how to define counterfactuals with respect to the random variable ∆. In the
appendix we define this formally and show that the variable ∆ can be considered as an auxillary
variable in the structural causal model. Furthermore, we show that the notions of direct, indirect, and
spurious effects are identifiable under the SFM in Fig. 1 and provide the identification expressions for
them, allowing the data analyst to compute the decompositions in Alg. 2 in practice (see Appendix G).
We next ground the idea behind Alg. 2 in our example:
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(a) Density of benefit ∆ by group. (b) Density of counterfactual benefit ∆C .

Figure 4: Elements of analytical tools from Alg. 2 in Ex. 3.

Example (Decomposing the disparity). Following Alg. 2, the clinicians first decompose the observed
disparities into their direct, indirect, and spurious components:

P (d | x1)− P (d | x0) = 0%︸︷︷︸
DE

+−50%︸ ︷︷ ︸
IE

+ 0%︸︷︷︸
SE

, (24)

E(∆ | x1)−E(∆ | x0) = 0︸︷︷︸
DE

+ −1

9︸︷︷︸
IE

+ 0︸︷︷︸
SE

, (25)

showing that the difference between groups is entirely explained by the levels of illness severity, that
is, male patients are on average more severely ill than female patients (see Fig. 4a). Direct and
spurious effects, in this example, do not explain the difference in benefit between the groups.

Based on these findings, the clinicians realize that the main driver of the disparity in the benefit ∆
is the indirect effect. Thus, they decide to compute the distribution of the benefit P (∆x1,Wx0

| x1),
which corresponds to the distribution of the benefit had X been equal to x0 along the indirect effect.
The comparison of this distribution, with the distribution P (∆ | x0) is shown in Fig. 4b, indicating
that the two distributions are in fact equal. □

In the above example, the difference between groups is driven by the indirect effect, although generally,
the situation may be more complex, with a combination of effects driving the disparity. Still, the tools
of Alg. 2 equip the reader for analyzing such more complex cases. The key takeaway here is that the
first step in analyzing a disparity in treatment allocation is to obtain a causal understanding of why
the benefit differs between groups. Based on this understanding, the decision-maker may decide that
the benefit ∆ is unfair, which is what we discuss next.

3.1 Controlling the Gap

A causal approach. The first approach for controlling the gap in resource allocation takes a
counterfactual perspective. We first define what it means for the benefit ∆ to be causally fair:
Definition 3 (Causal Benefit Fairness). Suppose C = (C0, C1) describes a causal pathway from X
to Y which is deemed unfair, with C0, C1 representing possibly counterfactual interventions. The
pair (Y,D) satisfies counterfactual benefit fairness (CBF) if

E(yC1,d1 − yC1,d0 | x, z, w) = E(yC0,d1 − yC0,d0 | x, z, w) ∀x, z, w (26)
P (d | ∆, x0) = P (d | ∆, x1). (27)

To account for discrimination along a specific causal pathway (after using Alg. 2), the decision-maker
needs to compute an adjusted version of the benefit ∆, such that the protected attribute has no effect
along the intended causal pathway C. For instance, C = ({x0}, {x1}) describes the total causal effect,
whereas C = ({x0}, {x1,Wx0}) describes the direct effect. In words, CBF requires that treatment
benefit ∆ should not depend on the effect of X on Y along the causal pathway C, and this condition
is covariate-specific, i.e., holds for any choice of covariates x, z, w. Additionally, the decision policy
D should satisfy BF, meaning that at each degree of benefit ∆ = δ, the protected attribute plays no
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role in deciding whether the individual is treated or not. This statement is for fixed value of ∆ = δ,
and possibly considers individuals with different values of x, z, w. CBF can be satisfied using Alg. 3.
In Step 1, the factual benefit values ∆, together with the adjusted, counterfactual benefit values ∆C

(that satisfy Def. 3) are computed. Then, δCF is chosen to match the budget b, and all patients with a
counterfactual benefit above δCF are treated5, as demonstrated in the following example:
Example (Cancer Surgery - Counterfactual Approach). The clinicians realize that the difference in
illness severity comes from the fact that female patients are subject to regular screening tests, and are
therefore diagnosed earlier. The clinicians want to compute the adjusted benefit, by computing the
counterfactual values of the benefit ∆x1,Wx0

(u) for all u such that X(u) = x1. For the computation,
they assume that the relative order of the illness severity for females in the counterfactual world
would have stayed the same (which holds true in the underlying SCM). Therefore, they compute that

∆x1,Wx0
(u) =

1

3

√
1− (1−W (u))2, (28)

for each unit u with X(u) = x1. After applying Alg. 1 with the counterfactual benefit values ∆C , the
resulting policy DCF = 1(∆C > 1

4 ) has a resource allocation disparity of 0. □

The above example illustrates the core of the causal counterfactual approach to discrimination removal.
BF was not appropriate in itself, since the clinicians are aware that the benefit of the treatment depends
on sex in a way they deemed unfair. Therefore, to solve the problem, they first remove the undesired
effect from the benefit ∆, by computing the counterfactual benefit ∆C . After this, they apply Alg. 3
with the counterfactual method (CF) to construct a fair decision policy. Notably, the causal approach
to reducing the disparity relies on the counterfactual values of the benefit ∆C(u), as opposed to the
factual benefit values ∆(u). As it turns out, measuring (or removing) the covariate-specific direct
effect of X on the benefit ∆ is relatively simple in general, while the indirect effect may be more
challenging to handle:
Remark 3 (Covariate-Specific Direct Effect of X on Benefit ∆ is Computable). Under the assump-
tions of the SFM, the potential outcome ∆x1,Wx0

(u) is identifiable for any unit u with X(u) = x0

for which the attributes Z(u) = z,W (u) = w are observed. However, the same is not true for
the indirect effect. While the counterfactual distribution of the benefit when the indirect effect is
manipulated, written P (∆x0,Wx1

| x0), is identifiable under the SFM, the covariate-level values
∆x0,Wx1

(x0, z, w) are not identifiable without further assumptions.

A utilitarian/factual approach. An alternative, utilitarian (or factual) approach to reduce the
disparity in resource allocation uses the factual benefit ∆(u), instead of the counterfactual benefit
∆C(u) used in the causal approach. This approach is also described in Alg. 3, with the utilitarian
(UT) method. Firstly, in Step 5, the counterfactual values ∆C are used to compute the disparity that
would arise from the optimal policy in the hypothetical, counterfactual world:

M := |P (∆C ≥ δCF | x1)− P (∆C ≥ δCF | x0)|. (29)

The idea then is to introduce different thresholds δ(x0), δ(x1) for x0 and x1 groups, such that they
introduce a disparity of at most M . In Step 6 we check whether the optimal policy introduces a
disparity bounded by M . If the disparity is larger than M by an ϵ, in Step 7 we determine how
much slack the disadvantaged group requires, by finding thresholds δ(x0), δ(x1) that either treat
everyone in the disadvantaged group, or achieve a disparity bounded by M . The counterfactual (CF)
approach focused on the counterfactual benefit values ∆C and used a single threshold. The utilitarian
(UT) approach focuses on the factual benefit values ∆, but uses different thresholds within groups.
However, the utilitarian approach uses the counterfactual values ∆C to determine the maximum
allowed disparity. Alternatively, this disparity can be pre-specified, as shown in the following example:

Example (Cancer Surgery - Utilitarian Approach). Due to regulatory purposes, clinicians decide
that M = 20% is the maximum allowed disparity that can be introduced by the new policy D. Using
Alg. 3, they construct DUT and find that for δ(x0) = 0.21, δ(x1) = 0.12,

P (∆ > δ(x0) | x0) ≈ 60%, P (∆ > δ(x1) | x1) ≈ 40%, (33)

which yields P (dUT ) ≈ 50%, and P (dUT | x1) − P (dUT | x0) ≈ 20%, which is in line with the
hospital resources and the maximum disparity allowed by the regulators. □

5In this section, for clarity of exposition we assume that distribution of the benefit admits a density, although
the methods are easily adapted to the case when this does not hold.
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Algorithm 3 Causal Discrimination Removal for Outcome Control

• Inputs: Distribution P (V ), Budget b, Intervention C, Max. Disparity M , Method ∈ {CF,UT}
1: Compute ∆(x, z, w),∆C(x, z, w) for all (x, z, w).
2: If P (∆ > 0) ≤ b, set D = 1(∆(x, z, w) > 0) and RETURN(D).
3: Find δCF > 0 such that

P (∆C ≥ δCF ) = b. (30)

4: If Method is CF, set DCF = 1(∆C(x, z, w) ≥ δCF ) and RETURN(DCF ).
5: If M not pre-specified, compute the disparity

M := P (∆C ≥ δCF | x1)− P (∆C ≥ δCF | x0). (31)

6: Find δUT such that P (∆ ≥ δUT ) = b. If

|P (∆ ≥ δUT | x1)− P (∆ ≥ δUT | x0)| ≤M,

set DUT = 1(∆(x, z, w) ≥ δUT ) and RETURN(DUT ).
7: Otherwise, suppose w.l.o.g. that P (∆ ≥ δb | x1)− P (∆ ≥ δb | x0) = M + ϵ for ϵ > 0. Define

l := P (x1)
P (x0)

, and let δ(x0)
lb be such that

P (∆ ≥ δ
(x0)
lb | x0) = P (∆ ≥ δb | x0) + ϵ

l

1 + l
.

Set δ(x0) = max(δ
(x0)
lb , 0), and δ(x1) s.t. P (∆ ≥ δ(x1) | x1) =

b
P (x1)

− 1
l P (∆ ≥ δ(x0) | x0).

8: Construct and RETURN the policy DUT :

DUT :=


1 for (x1, z, w) s.t. ∆(x1, z, w) ≥ δ(x1),

1 for (x0, z, w) s.t. ∆(x0, z, w) ≥ δ(x0),

0 otherwise.
(32)

Finally, we describe the theoretical guarantees for the methods in Alg. 3 (proof given in Appendix C):

Theorem 4 (Alg. 3 Guarantees). The policy DCF is optimal among all policies with a budget ≤ b
that in the counterfactual world described by intervention C. The policy DUT is optimal among
all policies with a budget ≤ b that either introduce a bounded disparity in resource allocation
|P (d | x1)− P (d | x0)| ≤M or treat everyone with a positive benefit in the disadvantaged group.

We remark that policies DCF and DUT do not necessarily treat the same individuals in general. In
Appendix D, we discuss a formal condition called counterfactual crossing that ensures that DCF

and DUT treat the same individuals, therefore explaining when the causal and utilitarian approaches
are equivalent [29]. In Appendix E we provide an additional application of our outcome control
framework to the problem of allocating respirators [5] in intensive care units (ICUs), using the
MIMIC-IV dataset [17].

4 Conclusion

In this paper we developed causal tools for understanding fairness in the task of outcome control. We
introduced the notion of benefit fairness (Def. 2), and developed a procedure for achieving it (Alg. 1).
Further, we develop a procedure for determining which causal mechanisms (direct, indirect, spurious)
explain the difference in benefit between groups (Alg. 2). Finally, we developed two approaches
that allow the removal of discrimination from the decision process along undesired causal pathways
(Alg. 3). The proposed framework was demonstrated through a hypothetical cancer surgery example
(see vignette) and a real-world respirator allocation example (see Appendix E). We leave for future
work the extensions of the methods to the setting of continuous decisions D, and the setting of
performing decision-making under uncertainty or imperfect causal knowledge.
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Supplementary Material for Causal Fairness for Outcome Control

The source code for reproducing all the experiments can be found in our code repository. Furthermore,
the vignette accompanying the main text can be found here.

A Principal Fairness

We start with the definition of principal fairness:
Definition 4 (Principal Fairness [14]). Let D be a decision that possibly affects the outcome Y . The
pair (Y,D) is said to satisfy principal fairness if

P (d | yd0
, yd1

, x1) = P (d | yd0
, yd1

, x0), (34)

for each principal stratum (yd0 , yd1), which can also be written as D⊥⊥X | Yd0 , Yd1 . Furthermore,
define the principal fairness measure (PFM) as:

PFMx0,x1(d | yd0 , yd1) = P (d | yd0 , yd1 , x1)− P (d | yd0 , yd1 , x0). (35)

The above notion of principal fairness aims to capture the intuition described in oracle example
in Sec. 2.1. However, unlike in the example, the definition needs to be evaluated under imperfect
knowledge, when only the collected data is available6. An immediate cause for concern, in this
context, is the joint appearance of the potential outcomes Yd0

, Yd1
in the definition of principal

fairness. As is well-known in the literature, the joint distribution of the potential outcomes Yd0
, Yd1

is in general impossible to obtain, which leads to the lack of identifiability of the principal fairness
criterion:
Proposition 5 (Principal Fairness is Not Identifiable). The Principal Fairness (PF) criterion from
Eq. 34 is not identifiable from observational or experimental data.

The implication of the proposition is that principal fairness, in general, cannot be evaluated, even if
an unlimited amount of data was available. One way to see why PF is not identifiable is the following
construction. Consider an SCM consisting of two binary variables D,Y ∈ {0, 1} and the simple
graph D → Y . Suppose that we observe P (d) = pd, and P (y | d1) = m1, P (y | d0) = m0 for
some constants pd,m1,m0 (additionally assume m0 ≤ m1 w.l.o.g.). It is easy to show that these
three values determine all of the observational and interventional distributions of the SCM. However,
notice that for any λ ∈ [0, 1−m1] the SCM given by

D ← UD (36)
Y ← 1(UY ∈ [0,m0 − λ]) +D1(UY ∈ [m0 − λ,m1])+ (37)

(1−D)1(UY ∈ [m1,m1 + λ]),

UY ∼ Unif[0, 1], UD ∼ Bernoulli(pd), (38)

satisfies P (d) = pd, P (y | d1) = m1, and P (y | d0) = m0, but the joint distribution P (yd0 =
0, yd1 = 1) = m1 −m0 + λ depends on the λ parameter and is therefore non-identifiable.

A.1 Monotonicity Assumption

To remedy the problem of non-identifiability of principal fairness, [14] proposes the monotonicity
assumption:
Definition 5 (Monotonicity). We say that an outcome Y satisfies monotonicity with respect to a
decision D if

Yd1
(u) ≥ Yd0

(u). (39)

In words, monotonicity says that for every unit, the outcome with the positive decision (D = 1)
would not be worse than with the negative decision (D = 0). We now demonstrate how monotonicity
aids the identifiability of principal fairness.

6As implied by the definition of the SCM, we almost never have access to the unobserved sources of variation
(u) that determine the identity of each unit.
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Proposition 6. Under the monotonicity assumption (Eq. 39), the principal fairness criterion is
identifiable under the Standard Fairness Model (SFM).

Proof. The main challenge in PF is to obtain the joint distribution P (yd0
, yd1

), which is non-
identifiable in general. Under monotonicity, however, we have that

Yd0
(u) = 0 ∧ Yd1

(u) = 0 ⇐⇒ Yd1
(u) = 0, (40)

Yd0
(u) = 1 ∧ Yd1

(u) = 1 ⇐⇒ Yd0
(u) = 1. (41)

Therefore, it follows from monotonicity that

P (yd0
= 1, yd1

= 0) = 0, (42)
P (yd0

= 0, yd1
= 0) = P (yd1

= 0), (43)
P (yd0

= 1, yd1
= 1) = P (yd0

= 1), (44)
P (yd0 = 0, yd1 = 1) = 1− P (yd1 = 0)− P (yd0 = 1), (45)

thereby identifying the joint distribution whenever the interventional distributions P (yd0
), P (yd1

)
are identifiable.

In the cancer surgery example, the monotonicity assumption would require that the patients have
strictly better survival outcomes when the surgery is performed, compared to when it is not. Given
the known risks of surgical procedures, the assumption may be rightfully challenged in such a setting.
In the sequel, we argue that the assumption of monotonicity is not really necessary, and often does
not help the decision-maker, even if it holds true. To fix this issue, in the main text we discuss a
relaxation of the PF criterion that suffers from neither of the above two problems but still captures
the essential intuition that motivated PF.

B Canonical Types & Bounds

Definition 6 (Canonical Types for Decision-Making). Let Y be the outcome of interest, and D a
binary decision. We then consider four canonical types of units:

(i) units u such that Yd0
(u) = 1, Yd1

(u) = 1, called safe,

(ii) units u such that Yd0(u) = 1, Yd1(u) = 0, called harmed,

(iii) units u such that Yd0
(u) = 0, Yd1

(u) = 1, called helped,

(iv) units u such that Yd0
(u) = 0, Yd1

(u) = 0, called doomed.

In decision-making, the goal is to treat as many units who are helped by the treatment, and as few who
are harmed by it. As we demonstrate next, the potential outcomes Yd0

(u), Yd1
(u) depend precisely

on the canonical types described above.
Proposition 7 (Canonical Types Decomposition). Let M be an SCM compatible with the SFM.
Let D be a binary decision that possibly affects the outcome Y . Denote by (s, d, c, u)(x, z, w) the
proportion of each of the canonical types from Def. 6, respectively, for a fixed set of covariates
(x, z, w). It then holds that

P (yd1
| x, z, w) = c(x, z, w) + s(x, z, w), (46)

P (yd0
| x, z, w) = d(x, z, w) + s(x, z, w). (47)

Therefore, we have that

∆(x, z, w) := P (yd1
| x, z, w)− P (yd0

| x, z, w) (48)
= c(x, z, w)− d(x, z, w). (49)

Proof. Notice that we can write:

P (yd1
| x, z, w) = P (yd1

= 1, yd0
= 1 | x, z, w) + P (yd1

= 1, yd0
= 0 | x, z, w) (50)

= s(x, z, w) + c(x, z, w). (51)
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where the first line follows from the law of total probability, and the second by definition. Similarly,
we have that

P (yd0 | x, z, w) = P (yd0 = 1, yd1 = 1 | x, z, w) + P (yd0 = 1, yd1 = 0 | x, z, w) (52)
= s(x, z, w) + d(x, z, w), (53)

thereby completing the proof.

The proposition shows us that the degree of benefit ∆(x, z, w) captures exactly the difference between
the proportion of those helped by the treatment, versus those who are harmed by it. From the point of
view of the decision-maker, this is very valuable information since higher ∆(x, z, w) values indicate
a higher utility of treating the group corresponding to covariates (x, z, w). This insight can be used
to prove Thm. 2, which states that the policy D∗ obtained by Alg. 1 is optimal:

Proof. Note that the objective in Eq. 1 can be written as:

E[YD] = P (YD = 1) (54)

=
∑
x,z,w

P (YD = 1 | x, z, w)P (x, z, w) (55)

=
∑
x,z,w

[
P (Yd1

= 1, D = 1 | x, z, w) + P (Yd0
= 1, D = 0 | x, z, w)

]
P (x, z, w). (56)

Eq. 55 follows from the law of total probability, and Eq. 56 from the consistency axiom. Now, note
that Yd0 , Yd1⊥⊥D | X,Z,W , from which it follows that

E[YD] =
∑
x,z,w

[
P (yd1 | x, z, w)P (D = 1 | x, z, w) + P (yd0 | x, z, w)P (D = 0 | x, z, w)

]
(57)

∗ P (x, z, w).

By noting that P (D = 0 | x, z, w) = 1− P (D = 1 | x, z, w), we can rewrite the objective as∑
x,z,w

[
(s(x, z, w) + c(x, z, w))P (d | x, z, w) (58)

+ (s(x, z, w) + d(x, z, w))(1− P (d | x, z, w))
]
P (x, z, w)

=
∑
x,z,w

[
s(x, z, w) + P (d | x, z, w)[c(x, z, w)− d(x, z, w)]

]
P (x, z, w) (59)

= P (yd0
= 1, yd1

= 1) +
∑
x,z,w

P (d | x, z, w)P (x, z, w)∆(x, z, w). (60)

Only the second term in Eq. 60 can be influenced by the decision-maker, and optimizing the term is
subject to the budget constraint: ∑

x,z,w

P (d | x, z, w)P (x, z, w) ≤ b. (61)

Such an optimization problem is a simple linear programming exercise, for which the policy D∗ from
Alg. 1 is a (possibly non-unique) optimal solution.

Finally, as the next proposition shows, the values of P (yd1
| x, z, w), P (yd0

| x, z, w) can be used to
bound the proportion of different canonical types:
Proposition 8 (Canonical Types Bounds and Tightness). Let (s, d, c, u)(x, z, w) denote the propor-
tion of each of the canonical types from Def. 6 for a fixed set of covariates (x, z, w). Let m1(x, z, w) =
P (yd1 | x, z, w) and m0(x, z, w) = P (yd0 | x, z, w) and suppose that m1(x, z, w) ≥ m0(x, z, w).
We then have that (dropping (x, z, w) from the notation):

d ∈ [0,min(m0, 1−m1)], (62)
c ∈ [m1 −m0,m1]. (63)

In particular, the above bounds are tight, meaning that there exists an SCMM, compatible with the
observed data, that attains each of the values within the interval. Under monotonicity, the bounds
collapse to single points, with d = 0 and c = m1 −m0.
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Figure 5: Canonical types solution space. The unit simplex is shown in yellow, the s + c = m1

plane in blue, and the s + d = m0 plane in red. The solution space for the possible values of
(s(x, z, w), c(x, z, w), d(x, z, w)) lies at the intersection of the red and blue planes, indicated by the
dashed black line.

Proof. There are three linear relations that the values s, d, c, u obey:

s+ c = m1, (64)
s+ d = m0, (65)
s+ u+ d+ c = 1. (66)

On top of this, we know that s, d, c, u are all non-negative. Based on the linear relations, we know
that the following parametrization of the vector (s, d, c, u) holds

(s, d, c, u) = (m0 − d, d, d+m1 −m0, 1−m1 − d), (67)

which represents a line in the 3-dimensional space (s, d, c). In particular, we know that the values
of (s, d, c) have to lie below the unit simplex in Fig. 5 (in yellow). In particular, the red and the
blue planes represent the linear constraints from Eq. 64-65. The line parametrized in Eq. 67 lies at
the intersection of the red and blue planes. Notice that d ∈ [0,min(m0, 1−m1)] since each of the
elements in Eq. 67 is positive. This bound on d also implies that c ∈ [m1 −m0,m1]. Finally, we
need to construct an fY mechanism that achieves any value within the bounds. To this end, define

fY (x, z, w, d, uy) =1(uy ∈ [0, s]) + d ∗ 1(uy ∈ [s, s+ c])+ (68)
(1− d) ∗ 1(uy ∈ [s+ c, s+ c+ d]), (69)

uy ∼ Unif[0, 1]. (70)

which is both feasible and satisfies the proportion of canonical types to be (s, d, c, u).

C Proof of Thm. 4

Proof. The first part of the theorem states the optimality of the DCF policy in the counterfactual
world. Given that the policy uses the true benefit values from the counterfactual world, we apply the
argument of Thm. 2 to prove its optimality.

We next prove the optimality of the DUT policy from Alg. 3. In Step 2 we check whether all
individuals with a positive benefit can be treated. If yes, then the policy DUT is the overall optimal
policy. If not, in Step 6 we check whether the overall optimal policy has a disparity bounded by M . If
this is the case, DUT is the overall optimal policy for a budget ≤ b, and cannot be strictly improved.
For the remainder of the proof, we may suppose that DUT uses the entire budget b (since we are
operating under scarcity), and that DUT has introduces a disparity ≥M . We also assume that the
benefit ∆ admits a density, and that probability P (∆ ∈ [a, b] | x) > 0 for any [a, b] ⊂ [0, 1] and x.

17



Let δ(x0), δ(x1) be the two thresholds used by the DUT policy. Suppose that D̃UT is a policy that
has a higher expected utility and introduces a disparity bounded by M , or treats everyone in the
disadvantaged group. Then there exists an alternative policy D

UT
with a higher or equal utility that

takes the form

D
UT

=


1 if ∆(x1, z, w) > δ(x1)

′
,

1 if ∆(x0, z, w) > δ(x0)
′
,

0 otherwise.
(71)

with δ(x0)
′
, δ(x1)

′
non-negative (otherwise, the policy can be trivially improved). In words, for any

policy D
UT

there is a threshold based policy that is no worse. The policy DUT is also a threshold
based policy. Now, if we had

δ(x1)
′
< δ(x1) (72)

δ(x0)
′
< δ(x0) (73)

it would mean policy D
UT

is using a larger budget than DUT . However, DUT uses a budget of b,
making D

UT
infeasible. Therefore, we must have that

δ(x1)
′
< δ(x1), δ(x0)

′
> δ(x0) or (74)

δ(x1)
′
> δ(x1), δ(x0)

′
< δ(x0). (75)

We first handle the case in Eq. 74. In this case, the policy D
UT

introduces a larger disparity than
DUT . Since the disparity of DUT is at least M , the disparity of D

UT
is strictly greater than M .

Further, note that δ(x0)
′
> δ(x0) ≥ 0, showing that D

UT
does not treat all individuals with a positive

benefit in the disadvantaged group. Combined with a disparity of > M , this makes the policy D
UT

infeasible.

For the second case in Eq. 75, let U(δ0, δ1) denote the utility of a threshold based policy:
U(δ0, δ1) = E[∆1(∆ > δ0)1(X = x0)] +E[∆1(∆ > δ1)1(X = x1)]. (76)

Thus, we have that

U(δ(x0), δ(x1))− U(δ(x0)
′
, δ(x1)

′
) =E[∆1(∆ ∈ [δ(x1), δ(x1)

′
])1(X = x1)] (77)

−E[∆1(∆ ∈ [δ(x0)
′
, δ(x0)])1(X = x0)] (78)

≥δ(x1)E[1(∆ ∈ [δ(x1), δ(x1)
′
])1(X = x1)] (79)

− δ(x0)E[1(∆ ∈ [δ(x0)
′
, δ(x0)])1(X = x0)] (80)

≥δ(x0)
(
E[1(∆ ∈ [δ(x1), δ(x1)

′
])1(X = x1)] (81)

−E[1(∆ ∈ [δ(x0)
′
, δ(x0)])1(X = x0)]

)
(82)

=δ(x0)
(
P (∆ ∈ [δ(x1), δ(x1)

′
], x1) (83)

− P (∆ ∈ [δ(x0)
′
, δ(x0)], x0)

)
(84)

≥0, (85)

where the last line follows from the fact that D
UT

has a budget no higher than DUT . Thus, this case
also gives a contradiction.

Therefore, we conclude that policy DUT is optimal among all policies with a budget ≤ b that either
introduce a bounded disparity in resource allocation |P (d | x1)− P (d | x0)| ≤M or treat everyone
with a positive benefit in the disadvantaged group.

D Equivalence of CF and UT Methods in Alg. 3

A natural question to ask is whether the two methods in Alg. 3 yield the same decision policy in terms
of the individuals that are selected for treatment. To examine this issue, we first define the notion of
counterfactual crossing:
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Definition 7 (Counterfactual crossing). We say that two units of the population u1, u2 satisfy
counterfactual crossing with respect to an intervention C if

(i) u1, u2 belong to the same protected group, X(u1) = X(u2).

(ii) unit u1 has a higher factual benefit than u2, ∆(u1) > ∆(u2),

(iii) unit u1 has a lower counterfactual benefit than u2 under the intervention C, ∆C(u1) <
∆C(u2).

In words, two units satisfy counterfactual crossing if u1 has a higher benefit than u2 in the factual
world, while in the counterfactual world the benefit is larger for the unit u2. Based on this notion, we
can give a condition under which the causal and utilitarian approaches are equivalent:

Proposition 9 (Causal and Utilitarian Equivalence). Suppose that no two units of the population
satisfy counterfactual crossing with respect to an intervention C, and suppose that the distribution of
the benefit ∆ admits a density. Then, the causal approach based on applying Alg. 1 with counterfactual
benefit ∆C , and the utilitarian approach based on factual benefit ∆ and the disparity M defined in
Eq. 29, will select the same set of units for treatment.

Proof. The policy DUT treats individuals who have the highest benefit ∆ in each group. The DCF

policy treats individuals with the highest counterfactual benefit ∆C . Importantly, the policies treat
the same number of individuals in the x0 and x1 groups. Note that, in the absence of counterfactual
crossing, the relative ordering of the values of ∆,∆C does not change, since

∆(u1) > ∆(u2) ⇐⇒ ∆C(u1) > ∆C(u2). (86)

Thus, since both policies pick the same number of individuals, and the relative order of ∆,∆C is the
same, DUT and DCF will treat the same individuals.

E Experiment

We apply the causal framework of outcome control to the problem of allocating mechanical ventilation
in intensive care units (ICUs), which is recognized as an important task when resources are scarce
[5], such as during the COVID-19 pandemic [40, 42]. An increasing amount of evidence indicates
that a sex-specific bias in the process of allocating mechanical ventilation may exist [27], and thus
the protected attribute X will be sex (x0 for females, x1 for males).

To investigate this issue using the tools developed in this paper, we use the data from the MIMIC-IV
dataset [17, 16] that originates from the Beth Israel Deaconess Medical Center in Boston, Mas-
sachusetts. In particular, we consider the cohort of all patients in the database admitted to the ICU.
Patients who are mechanically ventilated immediately upon entering the ICU are subsequently re-
moved. By focusing on the time window of the first 48 hours from admission to ICU, for each patient
we determine the earliest time of mechanical ventilation, labeled tMV . Since mechanical ventilation
is used to stabilize the respiratory profile of patients, for each patient we determine the average
oxygen saturation in the three-hour period [tMV − 3, tMV ] prior to mechanical ventilation, labeled
O2-pre. We also determine the oxygen saturation in the three-hour period following ventilation
[tMV , tMV + 3], labeled O2-post. For controls (patient not ventilated at any point in the first 48
hours), we take the reference point as 12 hours after ICU admission, and calculate the values in
three hours before and after this time. Patients’ respiratory stability, which represents the outcome of
interest Y , is measured as follows:

Y :=

{
0 if O2-post ≥ 97,

−(O2-post− 97)2 otherwise.
(87)

Values of oxygen saturation above 97 are considered stable, and the larger the distance from this
stability value, the higher the risk for the patient. We also collect other important patient characteristics
before intervention that are the key predictors of outcome, including the SOFA score [39], respiratory
rate, and partial oxygen pressure (PaO2). The data loading is performed using the ricu R-package
[4], and the source code for reproducing the entire experiment can be found here.

19

https://github.com/dplecko/outcome-control/blob/main/respirators.R


(a) Disparity in Dcurr decomposed. (b) Benefit fairness criterion on Dcurr .

Figure 6: Analyzing the existing policy Dcurr.

Step 1: Obtain the SFM. After obtaining the data, the first step of the modeling is to obtain the
standard fairness model (SFM). The SFM specification is the following:

X = sex, (88)
Z = age, (89)
W = {SOFA score, respiratory rate, PaO2}, (90)
D = mechanical ventilation, (91)
Y = respiratory stability. (92)

Step 2: Analyze the current policy using Alg. 2. Then, we perform an analysis of the currently
implemented policy Dcurr, by computing the disparity in resource allocation, P (dcurr | x1) −
P (dcurr | x0), and also the causal decomposition of the disparity into its direct, indirect, and spurious
contributions:

P (dcurr | x1)− P (dcurr | x0) = 1.6%︸ ︷︷ ︸
DE

+0.3%︸ ︷︷ ︸
IE

+0.3%︸ ︷︷ ︸
SE

. (93)

The results are shown in Fig. 6a, with vertical bars indicating 95% confidence intervals obtained
using bootstrap. The decomposition demonstrates that the decision to mechanically ventilate a patient
has a large direct effect of the protected attribute X , while the indirect and spurious effects explain a
smaller portion of the disparity in resource allocation. We then compute

P (dcurr | ∆ = δ, x1)− P (dcurr | ∆ = δ, x0), (94)

across the deciles of the benefit ∆. In order to do so, we need to estimate the conditional potential
outcomes Yd0

, Yd1
, and in particular their difference E[Yd1

− Yd0
| x, z, w]. We fit an xgboost

model which regresses Y on D,X,Z, and W , to obtain the fit Ŷ . The learning rate was fixed at
η = 0.1, and the optimal number of rounds was chosen via 10-fold cross-validation. We then use the
obtained model to generate predictions

Ŷd1
(x, z, w), Ŷd0

(x, z, w), (95)

from which we can estimate the benefit ∆. The results for the probability of treatment given a fixed
decile are shown in Fig. 6b. Interestingly, at each decile, women are less likely to be mechanically
ventilated, indicating a possible bias.

Step 3: Apply Alg. 1 to obtain D∗. Our next step is to introduce an optimal policy that satisfies
benefit fairness. To do so, we make use of the benefit values. In our cohort of 50,827 patients, a total
of 5,404 (10.6%) are mechanically ventilated. We assume that the new policy D∗ needs to achieve
the same budget. Therefore, we bin patients according to the percentile of their estimated benefit ∆.
For the percentiles [90%, 100%], all of the patients are treated. In the 89-90 percentile, only 60% of
the patients can be treated. We thus make sure that

P (d∗ | ∆ ∈ [δ89%, δ90%], x1) = P (d∗ | ∆ ∈ [δ89%, δ90%], x0) = 0.6. (96)

Due to the construction, the policy D∗ satisfies the benefit fairness criterion from Def. 2.
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(a) Disparity in D∗ decomposed. (b) Benefit ∆ disparity decomposition.

Figure 7: Causal analysis of D∗ and ∆ using Alg. 2.

Step 4: Apply Alg. 2 to analyze D∗. We next decompose the disparity of the new policy D∗, and
also decompose the disparity in the benefit ∆. We obtain the following results:

P (d∗ | x1)− P (d∗ | x0) = 0.1%︸ ︷︷ ︸
DE

+0.6%︸ ︷︷ ︸
IE

+0.2%︸ ︷︷ ︸
SE

, (97)

E(∆ | x1)−E(∆ | x0) = 0.08︸︷︷︸
DE

+0.21︸︷︷︸
IE

+0.04︸︷︷︸
SE

. (98)

The two decompositions are also visualized in Fig. 7. Therefore, even after applying benefit fairness,
some disparity between the sexes remains. The causal analysis reveals that males require more
mechanical ventilation because they are more severely ill (indirect effect). They also require more
mechanical ventilation since they are older (spurious effect), although this effect is not significant.
Finally, males also seem to benefit more from treatment when all other variables are kept the same
(direct effect, see Fig. 7b). We note that using Alg. 1 has reduced the disparity in resource allocation,
with a substantial reduction of the direct effect (see Eq. 93 vs. Eq. 97).

Step 5: Apply Alg. 3 to create DCF . In the final step, we wish to remove the direct effect of sex
on the benefit ∆. To construct the new policy DCF we will make use of Alg. 3. Firstly, we need
to compute the counterfactual benefit values, in the world where X = x1 along the direct pathway,
while W attains its natural value WX(u)(u). That is, we wish to estimate ∆x1,WX(u)

for all patients
in the cohort. For the computation of the counterfactual values, we make use of the xgboost model
developed above. In particular, we use the fitted model to estimate the potential outcomes

Ŷd0,x1,WX(u)
, Ŷd1,x1,WX(u)

. (99)

The adjusted potential outcomes allow us to estimate ∆x1,WX(u)
, after which we obtain the policy

DCF that satisfies the CBF criterion from Def. 3.

Figure 8: Causal comparison of policies
Dcurr, D∗, and DCF .

After constructing DCF , we have a final look at the dis-
parity introduced by this policy. By another application
of Alg. 2, we obtain that

P (dCF | x1)− P (dCF | x0) = 0%︸︷︷︸
DE

+0.5%︸ ︷︷ ︸
IE

+0.2%︸ ︷︷ ︸
SE

.

Therefore, we can see that the removal of the direct
effect from the benefit ∆ resulted in a further decrease
in the overall disparity. The comparison of the causal
decompositions for the original policy Dcurr, optimal
policy D∗ obtained from Alg. 1, and the causally fair
policy DCF is shown in Fig. 8.

F Connection of Benefit Fairness and Demographic Parity

In this appendix, we discuss the connection of the benefit fairness (BF) criterion with demographic
parity (DP). The connection is given in the following formal result.
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Proposition 10 (Benefit Fairness & Demographic Parity). Suppose that the distribution of the benefit
∆ is equal between the groups x0, x1, that is

∆ | x1
d
= ∆ | x0 (100)

Then any decision policy D satisfying benefit fairness also satisfies demographic parity.

Proof.

P (d | x1) =
∑
δ

P (d | x1,∆ = δ)P (∆ | x1) (101)

=
∑
δ

P (d | x0,∆ = δ)P (∆ = δ | x1) using BF (102)

=
∑
δ

P (d | x0,∆ = δ)P (∆ = δ | x0) using ∆ | x1
d
= ∆ | x0 (103)

= P (d | x0), (104)

implying demographic parity.

G Practical Considerations for Decompositions in Alg. 2

In this appendix, we discuss some practical details about how to perform the decompositions of the
treatment disparity and benefit disparity as described in Alg. 2. In particular, we begin by showing
that the benefit ∆ can be considered as variable in the causal diagram.

Proposition 11 (Connection of Benefit with Structural Causal Models). LetM be an SCM compatible
with the SFM in Fig. 1. Let the benefit ∆ be defined as in Eq. 14. Let fY be the structural mechanism
of the outcome Y , taking X,Z,W,D as inputs, together with the noise variable UY . The structural
mechanism fo the benefit ∆ is then given by:

f∆(x, z, w) = Euy
[fY (x, z, w, d1, uy)]−Euy

[fY (x, z, w, d0, uy)] , (105)

where Euy integrates over the randomness in UY . Therefore, the benefit ∆ is a deterministic function
of X,Z,W , and we can add it to the causal diagram as follows:

Z

X

W

∆

.

Therefore, after adding ∆ to the causal diagram as in the above proposition, we can view it as another
outcome variable. In particular, it also allows us to define various counterfactuals with respect to it,
via the standard definitions for counterfactuals used in structural causal models. For instance, the
potential outcome ∆x0

(which is a random variable) is simply given by f∆(x0, Z,W ), where Z,W
are random variables but X = x0 is fixed. Other, possibly nested counterfactuals are also defined
analogously.

Equipped with a structural understanding of how benefit relates to the original causal model, we
can now explain in more detail how the decompositions in Alg. 2 are performed. In particular, the
decompositions follow the previously proposed approaches of [44, 31]:

Proposition 12 (Computing Decompositions in Alg. 2). LetM be an SCM compatible with the SFM
in Fig. 1. Let the benefit ∆ be defined as in Eq. 14 and suppose it is added to the causal diagram as in
Prop. 11. The decompositions of the disparity in treatment allocation, and the disparity in expected
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benefit, can be computed as follows:

P (d | x1)− P (d | x0) =
(
P (dx1,Wx0

| x0)− P (dx0
| x0)︸ ︷︷ ︸

direct effect DE(X→D)

)
(106)

−
(
P (dx1,Wx0

| x0)− P (dx1 | x0)︸ ︷︷ ︸
indirect effect IE(X→D)

)
(107)

−
(
P (dx1

| x0)− P (dx1
| x1)︸ ︷︷ ︸

spurious effect SE(XL9999KD)

)
. (108)

E(∆ | x1)−E(∆ | x0) =
(
E(∆x1,Wx0

| x0)−E(∆x0
| x0)︸ ︷︷ ︸

direct effect DE(X→∆)

)
(109)

−
(
E(∆x1,Wx0

| x0)−E(∆x1
| x0)︸ ︷︷ ︸

indirect effect IE(X→∆)

)
(110)

−
(
E(∆x1 | x0)−E(∆x1 | x1)︸ ︷︷ ︸

spurious effect SE(XL9999K∆)

)
. (111)

Furthermore, under the assumptions of the SFM in Fig. 1 both of the decompositions are identifiable
and their identification expressions are given by

DE(X → F ) =
∑
z,w

[
E(F | x1, z, w)−E(F | x0, z, w)

]
P (w | x0, z)P (z | x0), (112)

IE(X → F ) =
∑
z,w

E(F | x1, z, w)
[
P (w | x0, z)− P (w | x1, z)

]
P (z | x0), (113)

SE(X L9999K F ) =
∑
z

E(F | x1, z)
[
P (z | x0)− P (z | x1)

]
, (114)

where the random variable F is either replaced by the treatment decision D to obtain the direct,
indirect, and spurious terms in Eqs. 106-108 or by the benefit ∆ to obtain the terms in Eqs. 109-111.
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