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Abstract

It is extremely difficult to train a superhuman Artificial Intelligence (AI) for games
of similar size to StarCraft II. AlphaStar is the first AI that beat human professionals
in the full game of StarCraft II, using a league training framework that is inspired by
a game-theoretic approach. In this paper, we improve AlphaStar’s league training
in two significant aspects. We train goal-conditioned exploiters, whose abilities of
spotting weaknesses in the main agent and the entire league are greatly improved
compared to the unconditioned exploiters in AlphaStar. In addition, we endow
the agents in the league with the new ability of opponent modeling, which makes
the agent more responsive to the opponent’s real-time strategy. Based on these
improvements, we train a better and superhuman AI with orders of magnitude
less resources than AlphaStar (see Table 1 for a full comparison). Considering
the iconic role of StarCraft II in game AI research, we believe our method and
results on StarCraft II provide valuable design principles on how one would utilize
the general league training framework for obtaining a least-exploitable strategy in
various, large-scale, real-world games.

1 Introduction

As one of the most famous real-time strategy games, StarCraft II poses great challenges, in terms
of developing a superhuman Artificial Intelligence (AI), to existing Reinforcement Learning (RL)
techniques [Vinyals et al., 2017, 2019, Han et al., 2020, Wang et al., 2021], which mainly come in
two-folds. The first challenge is the enormous space of strategies. There are approximately 1026

possible choices of actions at each time step, and each game normally consists of tens of thousands
of time steps. The second challenge is the non-transitive strategy space with hidden information.
Non-transitive strategies mean strategy A winning against B and strategy B winning against C does
not necessarily mean strategy A winning against C. This implies simple self-play RL algorithms
may exhibit strategic cycles Lanctot et al. [2017], Fu et al. [2021], making little progress in terms of
the strength of the trained agent. For the hidden information, opponent entities are observable only
when they are currently seen by the agent’s own entities, and the information of opponent entities is
extremely important in StarCraft II: it reveals the opponent strategy. Yet, it is worth-mentioning that
the agent is allowed to actively demystify (known as scouting) the hidden information in StarCraft II,
which is in contrast to other games with hidden information, such as poker.

As the first AI that defeated top humans in the full game of StarCraft II, AlphaStar [Vinyals et al.,
2019] copes with the challenge of enormous strategy space by using human data. The RL agents in
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Table 1: A full comparison between AlphaStar and our method ROA-Star. The computational cost is
for a single training agent in the league, and the evaluation results are based on Protoss vs. Protoss
matches. ROA-Star uses significantly less computational resources than AlphaStar, and the evaluation
against top humans is more comprehensive in ROA-Star than AlphaStar.

AlphaStar ROA-Star

computational cost

TPU or GPU 256 3rd-generation TPU cores 64 NVIDIA V100 GPUs
CPU 4100 preemptible CPU cores 4600 standard CPU cores
actor 16000 concurrent games 2400 concurrent games

learner 50000 steps per second 11000 steps per second

human evaluation

amateur 11 wins and 3 losses 20 wins and 0 losses

professional 5 wins 0 losses (vs TLO 2)
5 wins 1 losses (vs MaNa3)

3 wins 2 losses (vs herO3)
10 wins 10 losses (vs Jieshi3)
12 wins 8 losses (vs Cyan3)
10 wins 10 losses (vs MacSed3)

AlphaStar are all initialized by Supervised Learning (SL) on human replays. Also, a KL-divergence
(from human replays) regularization is imposed during RL in AlphaStar. To deal with the non-
transitive strategy space with hidden information, AlphaStar employs a league training framework
that is inspired by game-theoretic approaches [Heinrich et al., 2015, Lanctot et al., 2017] with
convergence guarantees to Nash Equilibrium (NE), which is an optimal solution concept AlphaStar
aims for. The AlphaStar league consists of four (yet three types) constantly-learning agents: one
main agent, one main exploiter, and two league exploiters. The main agent is the one output for
evaluation after training. The main exploiter aims to find weaknesses in the main agent, while the
league exploiters aim to find weaknesses in the entire league.

Despite achieving a Grandmaster level on Battle.net and defeating several top humans, AlphaStar
is computationally prohibitive (see Table 1), and its main agent was later found fragile to some
uncommon counter-strategies 4. This implies the inefficiency of the AlphaStar league training
framework in terms of approximating a NE strategy in large-scale games such as StarCraft II. In
this paper, we improve the AlphaStar league training framework in two substantial ways. We found
that (as shown in Figure 6), in the later training iterations of AlphaStar, the exploiters tend to lose
the ability to identify the weaknesses in the main agent and the entire league. To alleviate this
problem, we train goal-conditioned (as opposed to unconditioned exploiters in AlphaStar) exploiters
that exploit the weaknesses in certain directions. To alleviate the problem that AlphaStar does not
respond to the opponent real-time strategy effectively, we introduce a novel opponent modeling
auxiliary training task, which conveys an explicit training signal for the feature extraction process to
focus on the area of observation that reveals the opponent strategy most. In addition, we construct a
novel “scouting” reward based on the prediction of the opponent strategy, which greatly encourages
the scouting behaviors and thus helps the agent respond to the opponent real-time strategy more
effectively. We term our new method as robust and opponent-aware learning training method for
StarCraft II (ROA-Star).

We validate our improvements by comparing ROA-Star to AlphaStar. Extensive experiments demon-
strate that the exploiters in ROA-Star are more effective in detecting the weaknesses of the main
agent and the entire league; that the main agent in ROA-Star responds to the opponent strategy more
effectively; and overall that the main agent in ROA-Star is significantly stronger. We also conducted
by far the most comprehensive AI vs. top human evaluations in StarCraft II, where our agent trained
by ROA-Star achieved a winning rate above 50% in repeated games. A detailed comparison, in
terms of the computational cost and human evaluation, between AlphaStar and ROA-Star is given in
Table 1. In light of the significant improvement of ROA-Star over AlphaStar, we believe ROA-Star
provides two insightful design principles, i.e., the goal-conditioned exploiters and the opponent
modeling auxiliary task, on how one would utilize a league style training framework for obtaining a
least-exploitable strategy in various, large-scale, real-world games.

2TLO is a professional player majored in Zerg not Protoss.
3The rankings of herO, MaNa, Jieshi, Cyan and MacSed among all professional players of Protoss are 2, 13,

19, 25 and 39 according to http://aligulac.com/periods/343/?page=1&race=p&nats=all&sort=vp
4In their released human evaluation replays (https://www.nature.com/articles/s41586-019-1724-z#Sec32),

AlphaStar was easily defeated by Grandmaster players using some uncommon strategies, such as Cannon Rush.
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2 Preliminary on StarCraft II and AlphaStar

2.1 StarCraft II

In StarCraft II [Vinyals et al., 2017], players act as battlefield commanders and start with a few
workers who can gather resources. As resources accumulate, players need to allocate them to build
buildings, train military units, and research new technologies. StarCraft II offers players the choice
of dozens of unit types, each with different spells and abilities. It requires players to construct their
armies strategically and assign different real-time tasks to these military units, which can be roughly
divided into scout, defense, and attack. When the offensive units of two players meet, each player
must quickly direct their units to engage in combat and effectively control them. To win the game,
players require to control units at the micro level while making strategic choices at the macro level.
Another fundamental setting in StarCraft II is the “fog of war”, which limits a player’s vision of the
map to only those areas that are within the visual range of their entities (buildings and armies).

2.2 Supervised Learning in AlphaStar

Each agent in AlphaStar is firstly trained through supervised learning on human replays. Formally, an
agent’s policy is denoted by π(at|o1:t, a1:t−1, z), where π is represented by a deep neural network.
At each time step t, the agent receives a partial observation ot of the complete game state st and
selects an action at. ot consists of its own entities, visible enemy entities, and a mini-map depicting
the terrain of the battlefield. at includes the choice of action type, the action executors, and the
targets. The policy conditions on an extra statistic z, which is a vectorized description of a strategy.
z encodes the first 20 build order (buildings or units) and some cumulative statistics present in a
game. In supervised learning, AlphaStar minimizes the KL divergence between human actions and
the conditioned policy π on human data.

2.3 RL and League Training in AlphaStar

To address the game-theoretic challenges, AlphaStar proposes a multi-agent RL algorithm, named
league training. It assigns the learning agents three distinct types (main agent, main exploiters, and
league exploiters), each corresponding to different training and opponent selection mechanisms. All
agents are initialized with the parameters of the supervised learning agents and trained with RL.
During the league training, these agents periodically add their checkpoints into the league.

The Main Agent (MA) takes the whole league as opponents, with a Prioritized Fictitious Self-Play
(PFSP) mechanism that selects the opponent for RL training with probabilities in proportion to the
opponent’s win rate against MA. Also, the MA is trained by randomly conditioned on either zero or a
statistic z sampled from D, where D = {z1, z2, . . . , zm} is a set of strategy statistics extracted from
human data. Similar to goal-conditioned RL [Schaul et al., 2015, Veeriah et al., 2018], the agent,
when conditioned on z, would receive pseudo-rewards that measure the edit distance between the
target build orders in z and the executed ones.

There are two types of exploiters that are designed to identify the weaknesses of their opponents.
The Main Exploiter (ME) trains against the MA. The League Exploiter (LE) trains against the whole
league. Both exploiters are unconditionally trained. Exploiters add a checkpoint to the league when
they achieve a sufficiently high win rate or reach a timeout threshold. At that point, there is a certain
probability that exploiters are reset to the supervised agent.

3 ROA-Star

In this section, we present the technique details of ROA-Star. As we discussed before, the purpose of
the exploiters in AlphaStar is to find weaknesses of the MA and the entire league. Yet, as we found
in the experiments, exploiters in AlphaStar (we re-implement AlphaStar ourselves) gradually lose
the ability to counter the MA or the entire league as the training proceeds. This may be because
it is increasingly difficult for the exploiters to counter strong agents in later training iterations via
exploring the whole strategy space freely (other than initialized from the SL agents). Hence, we
propose to alleviate this problem by training exploiters that exploit in certain directions with goal-
conditioned RL. In real-time games like StarCraft II, the opponent’s strategy, involving both the
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Figure 1: a. The design of goal-conditioned exploiters in ROA-Star. Blue rectangles highlight the
original unconditioned exploiters in AlphaStar. Small circles are the agent models. Green histograms
display the win rate and the execution deviation of z in MA during a specific time slice in training. b.
Opponent Modeling in ROA-Star. Left is the overview of the architecture of the agent in ROA-Star,
which combine the embedding of opponent strategy. Right is the overview of the opponent prediction
model.

composition of the entity and the technological development, can change rapidly. AlphaStar exhibits
a somewhat slow response to these dynamic changes, resulting in the decrease in the playing strength.
Our straightforward solution is introducing an opponent modeling training task. Also, based on the
opponent modeling prediction, we construct a novel “scouting” reward to encourage efficient scouting
behaviors, which helps respond to the opponent real-time strategy more effectively.

3.1 Goal-conditioned RL for the Exploiters

The exploiters (either the main exploiter or the league exploiter) in AlphaStar are trained uncondi-
tionally, i.e., the policy π(at|o1:t, a1:t−1) depending on only previous observations and actions. In
addition to the unconditioned exploiters in AlphaStar, we introduce another two ways of training
the exploiters π(at|o1:t, a1:t−1, z) that are extra conditioned on the statistic z. More specifically, we
train Exploitative Exploiters (EIE) that are conditioned on those z, which are associated with high
win-rate in the MA. In other words, EIE try to find the weaknesses of either the main or the league
based on “good” z known so far. Also, we train Explorative Exploiters (ERE) that are conditioned on
those z, which are under-explored so far in the MA. In other words, ERE try to find the weaknesses
of either the main or the league based on “under-explored” z so far. Both the EIE or ERE are trained
with goal-conditioned RL, the details of which are described below.

The MA in ROA-Star is trained the same way as that in AlphaStar, where the MA is trained either
unconditionally or conditioned on a statistic z randomly selected from the set D. In our case, we
maintain a moving average of win rate of the MA for each sampled z during the training process.
This gives us an estimation of the “performance” of different z. Yet, it is worth mentioning that
a MA conditioned on a certain z is not guaranteed to generate plays that are consistent with the
corresponding z. In other words, a z with bad performance could be due to the fact that the MA
is unable to execute the z successfully. For this reason, we calculate the edit distance between the
actual executed z and the target z as the execution deviation, and we maintain a moving average of
the execution deviation for each z in D as well.

We only sample from those z with the Top-N win rate of the MA for EIE to learn. Similar to the
training of MA in AlphaStar, EIE are rewarded by the z-related pseudo-reward measuring the edit
distance between the target and executed z. Different from the exploiters in AlphaStar, EIE are always
reset to the latest MA parameters whenever a reset occurs. As a result, EIE inherit the strongest
strategies in MA. Also, once a z is sampled, it is fixed till the next reset of EIE, which is in contrast
to the MA training setting that samples z for each game. Instead of evenly distributing computing
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resources among all z with the Top-N win rate, training with a fixed z for each reset allows EIE to
concentrate all its computational resources to refine the micro-level operations on that z and uncover
potential weaknesses at the micro level.

In comparison to EIE, ERE are conditioned on those z that are currently under-explored according to
the moving average execution deviation statistics of MA. We initialize ERE with the SL agents when
reset occurs. We notice that the z-related pseudo-reward measured by the edit distance would be easily
hacked [Ecoffet et al., 2021] on those z with high execution deviation. For instance, the agent tends
to produce the common military entities in target z to gain reward but skip the critical ones. To reduce
the execution deviation on these z, we design a reward that is similar to the trajectory-conditioned
learning algorithm [Guo et al., 2020], which formulates a curriculum on how to imitate the target
z. More specifically, ERE are rewarded for each correctly built entity in the target z till the first
mistaken entity happens, where we ignore the left entities in the target z. For the first mistaken entity
(say em) in the target z, we additionally apply a strategy-guided loss:

Lsg = −
d∑

i=1

e(i)m log π(a
(i)
t |o1:t, a1:t−1, z),

where em ∈ {0, 1}d, at ∈ Rd. d is the dimension of action space, which encompasses all the actions
related to entity construction. The strategy-guided loss is disabled for production-irrelevant actions,
therefore it won’t harm the learning of micro-operation.

We use both the curricular reward and strategy-guided loss in ERE training, which is similar to the
idea of Go-Explore [Ecoffet et al., 2021]: the agent can always return to the promising state with the
curricular reward and then explore the intended direction guided by the strategy-guided loss. Again,
we only sample from those z with the Top-N execution deviation of the MA. Once a z is sampled,
it is fixed till the next reset of ERE. Also, as ERE are conditioned on the z with high execution
deviation, ERE aim to uncover potential weaknesses at the strategy (macro) level. An illustration of
our exploiters in comparison to AlphaStar is given in Figure 1(a).

3.2 Opponent Modeling for the Entire League

Knowing the opponent strategy gives the agent a huge advantage in Starcraft II. Yet, with the
basic setting “fog of war” in StarCraft II, it is difficult for agents to predict the opponent strategy.
Nonetheless, it is possible to infer the opponent strategy to some extent based on the observed
opponent entities. More importantly, because of the “scouting” mechanism in StarCraft II, the
agent can actively send units to gather more information about the opponent. AlphaStar does not
explicitly predict the opponent strategy, and there has been evidence 5 showing that AlphaStar
does not respond to the opponent real-time strategy effectively, which greatly affect the agent’s
performance as demonstrated in our experiments.

In order to improve an agent’s ability of responding to the opponent strategy promptly and effectively,
we introduce an opponent modeling auxiliary task to infer the opponent strategy. In particular, during
the supervised learning of human data, we train a probabilistic encoder to obtain a latent opponent
strategy embedding h, which serves as input to a probabilistic decoder that explicitly predicts the
opponent strategy. The encoder and the decoder are trained by maximizing the Evidence Lower
Bound (ELBO) used in β-Variational Autoencoders (β-VAE) [Kingma and Welling, 2014, Higgins
et al., 2014]. Afterwards, in our league training, the probabilistic encoder is fixed and serves as
a special feature extractor that focuses the parts of observation that mostly reflects the opponent
strategy.

To construct the input features for the encoder qϕ(ht|o≤t) of our opponent modeling task, we filter out
opponent irrelevant information (e.g., own entities) in ot and focus on visible opponent information,
which includes opponent armies, buildings, and technologies. The encoder qϕ(ht|o≤t) predicts a
Gaussian distribution of ht with mean µt and variance σt. A KL divergence term is optimized
between the predicted Gaussian and the standard Normal distribution. The decoder pθ(yt|ht) predicts
(a classification problem) the opponent invisible information at each time step, which includes the

5From their released human evaluation replays (https://www.nature.com/articles/s41586-019-1724-z#Sec32),
it’s relatively easy to observe that AlphaStar rarely conducts effective scouting and lacks knowledge of the
opponent’s real-time strategy, making it fragile to uncommon strategies like the Cannon Rush strategy in Protoss
vs. Protoss matches.
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quantity of each entity, the technologies being researched, and the location of important tech buildings
(e.g., near the player’s base or near the opponent). To summarize, we use the reparametrization trick
[Kingma and Welling, 2014] to optimize the following loss:

Lom(yt, o0, . . . , ot; θ, ϕ)

= −Eqϕ(ht|o≤t)[log pθ(yt|ht)] + βKL(qϕ(ht|o≤t)∥N (0, 1)),

where in practice the negative log likelihood in the left term is replaced with the focal loss [Lin
et al., 2017] in our case to alleviate the class imbalance problem in StarCraft II. An illustration of the
opponent prediction model is given in Figure 1(b).

In addition, we construct a novel “scouting” reward based on the change in the cross-entropy of the
opponent strategy prediction. Other than predicting the opponent strategy behind the fog, another
way to “defog” is to drive military units to periodically scout the area outside the vision. Given that
the full map is too vast to scout entirely, it is crucial for the agent to determine when and where to
scout. As a result, good “scouting” behavior should improve the prediction accuracy of the opponent
strategy. We thus use the opponent prediction model to obtain such a “scouting” reward. At each
step of the RL process, we calculate the cross-entropy between the true opponent strategy and the
predicted probabilities of the classifiers in the opponent prediction model:

H(t) = −
N∑
i=1

y
(i)
t logP

(i)
t

We reward the agent every 30 seconds with the decrease in cross-entropy to encourage scouting
behaviors. Note that the agent will not be punished for the increase in cross-entropy, as there is a
sustained growth of cross-entropy as the game progresses (prediction in later stage is much harder).

rtscout = max(H(t)−H(tmin), 0),

where tmin = argmin
t′

H(t′), t′ ∈ (t, t+ 30s).

As demonstrated in our experiments, the “scouting” reward greatly encourages the effective “scouting”
behavior and improves the overall performance.

4 Related Work

There is enormous literature on either goal-conditioned RL [Andrychowicz et al., 2017, Florensa
et al., 2018, Ghosh et al., 2019, Chane-Sane et al., 2021, Liu et al., 2022a] or opponent modeling [He
et al., 2016, Albrecht and Stone, 2018, Zheng et al., 2018, Raileanu et al., 2018, Willi et al., 2022, Fu
et al., 2022]. As in this paper we are focused on how goal-conditioned RL and opponent modeling
would improve the league training efficiency of AlphaStar, we will describe related work only in the
realm of AI for StarCraft, with more emphasis on literature that comes after AlphaStar.

Before AlphaStar, early research on StarCraft focus on traditional methods, such as planning methods
associated with heuristic rules [Weber, 2010, Ontanón et al., 2013, Ontañón et al., 2008, Weber et al.,
2011, Ontanon et al., 2013]. Later, there have been RL methods for micro-management in mini-games
[Usunier et al., 2016, Vinyals et al., 2017, Du et al., 2019, Han et al., 2019]. Most recently, RL were
applied to the full game with the help of some handcraft rules [Lee et al., 2018, Sun et al., 2018, Pang
et al., 2019]. However, none of these works achieves a competitive human level in the full game of
StarCraft II.

AlphaStar [Vinyals et al., 2019] became the first StarCraft II AI that achieves the GrandMaster level
performance. After that, to enhance the strategy diversity in the league of AlphaStar, TStarBot-X
[Han et al., 2020] leverages various human replays to create diverse initialization checkpoints for the
exploiters to reset. Handcraft rules were also employed to help the MA explore the strategy space.
Another work after AlphaStar is StarCraft Commander (SCC) [Wang et al., 2021], which makes great
efforts to optimize the training efficiency by filtering the human data used in imitation learning and
compressing the network structure. They branch off new main agents learning specified strategies.
SCC displayed comparable performance to professional players in human evaluations, but its APM
surpasses humans by a large margin due to the lack of APM limits. Recently, A hierarchical RL
method has been proposed to train a StarCraft II AI that can defeat the built-in AI using very few
computational resources [Liu et al., 2022b]. To summarize, none of these StarCraft II AIs is able
to achieve the level of professional players while adhering to the APM limits and utilizing fewer
computational resources than AlphaStar.
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5 Experiments

After 50 days of league training, ROA-star generates a total of 768 models, of which 221 are MA
models. We evaluate the robustness of the 50-day MA model under the condition of no z through
human evaluation. As a comparison, we replicated AlphaStar and trained it for 10 days. We compared
the first 10 days of training of ROA-Star and AlphaStar from multiple dimensions. As ROA-Star
contains improvement in both exploiters’ training method and opponent modeling, we conduct the
ablation experiments to demonstrate the effectiveness of each component. Each ablation experiment
was trained for 5 days. Notably, all the comparative experiment and ablation experiments use the
same computational resources as ROA-Star, as shown in the Appendix A.5.

5.1 The Effectiveness of Goal-conditioned Exploiters in ROA-Star
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Based on the foundation experimental setup of AlphaStar, we modify the original unconditioned
exploiters and design the following two experiments to test the effect of goal-conditioned exploiters.

AlphaStar+exploiters with random z: We make exploiters learn z in D with uniform probability.
For each reset, the exploiter randomly selects one z from D to learn with an 80% probability and
learns unconditionally with a 20% probability. When learning a selected strategy, the exploiter would
be rewarded by the z-related pseudo-rewards measuring edit distance between the target and executed
build orders.

AlphaStar+EIE+ERE: On the basic setting of AlphaStar, we utilize our goal-conditioned exploiters
in Section 3.1, the details of the experimental setup are in the Appendix A.3.

To examine the relative strength of the MA models in different ablation experiments, we consider the
rating metric Elo score. Elo scores reflect the relative skill levels of the players based on the win rates
between them. We play 100 matches between any two of the first 5-day models of each MA and plot
the Elo curves in Figure 2. Besides, we calculate the worst-case win rate of each 5-day MA model
defending against all other MA models as a metric of robustness, the result is shown in Figure 3. As
we can see, the exploiters that learn random strategies contribute to the robustness of MA, but our
goal-conditioned exploiters obviously outperform random selection on D.

Additionally, we demonstrate the capability of ERE to learn the precise build orders of target strategies
through the use of curricular reward and strategy-guided loss. Our supplementary video and Appendix
C.2 showcase the remarkable performance of ERE in imitating non-mainstream strategies.

5.2 The Effectiveness of Opponent Modeling in ROA-Star

Table 2: Win rate against different opponents.
model win rate vs AlphaStar +opponent modeling

Void Ray push 54% 60%
Proxy VD 50% 56%
VC Stalker Play 22% 52%
Disruptor push 48% 58%

Table 3: Comparison with AlphaStar

AlphaStar ROA-Star

worst win rate 1% 44%
avg win rate 70.2% 84.1%
RPP score 0.2157 0.7843

We conduct an ablation study to validate the effectiveness of opponent modeling.
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Figure 4: Distribution of tech-building routes against specific opponents. Building acronyms: VR
(Robotics Facility), VS (Stargate), BF (Forge), VC (Twilight Council), VD(Dark Shrine).

AlphaStar+opponent modeling: With the aid of the opponent prediction model, we incorporate
opponent strategy embedding for the original AlphaStar agents, as well as add scouting rewards. The
worst-case robustness is in Figure 3 and the Elo curve is in Figure 2.

To better demonstrate the impact of opponent modeling, we test two 5-day MA models, one trained
with opponent modeling and one without, against opponents with specific strategies. We generated
these opponents by training MA only on the fixed z we selected, without using exploiters. Figure
4 displays the distribution of tech-building routes when the models encounter various opponents.
Although both models employ a similar dominant strategy, namely VS-VR, the model trained with
opponent modeling demonstrates greater flexibility and has prompt responses even on its first tech-
building when encountering different opponents, thereby exhibiting superior robustness compared to
the original AlphaStar. For example, it increases the probability of VR opening to defend against the
Blink Stalkers and build more BF and Photon Cannon to defend the cloaked Dark Templars. The
models’ win rates against these opponents are shown in Table 2.

In the Appendix C.6, we present visualizations of the latent space of the opponent prediction model,
showcasing ROA-Star’s “awareness” of the opponent’s strategy when facing various opponents. We
also compare the time consumed for the agent to discover the newly-built buildings in Appendix C.3.
Figure 12 shows that scout reward remarkably reduces the time to discover the opponents’ building
under the fog.

5.3 Overall Comparison between ROA-Star and AlphaStar
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Figure 6: Payoff matrix calculated in (a). our
ROA-Star and (b). AlphaStar. Blue means a
row agent wins and red loses. The exploiters
in AlphaStar lose efficacy in the later stage of
training.

The primary objective of ROA-Star is the improvement in robustness. However, it’s scarcely possible
to precisely measure the robustness of the agent due to the enormous strategy space. Similar to the
evaluation method in Section 5.1, we count the win rates by a Round Robin tournament on models of
two leagues, with each pair of models playing 100 matches. Based on those matches, we introduce
quantitative evaluation indexes to score the robustness of the MA and the whole league for AlphaStar
and ROA-Star.
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We calculate the win rate in the worst case and average case that two 10-day MA models defend against
all models in two leagues. Results are shown in Table 3 that ROA-Star significantly outperforms
AlphaStar in the MA’s robustness. Relative population performance (RPP) is a measure of the
expected outcome of the game between two populations. It is calculated based on their meta-game
mixture strategies after they have reached Nash equilibrium [Balduzzi et al., 2019]. Given the payoff
matrix MAB ∈ [0, 1]N×M between all the models in league A and league B with two mixture
strategies probabilities PA,PB in the Nash equilibrium, the RPP of league A is:

RPP (A) = PT
AMABPB

As shown in Table 3, a higher RPP of ROA-Star demonstrates it constructs a mixture strategy that
could counter any mixed strategy from AlphaStar.

As a by-product of the above matches, we evaluate the relative strength of all the players in the league
of AlphaStar and our ROA-Star with the Elo rating system. The Elo score curves of the two main
agents as well as points indicating the models from exploiters are plotted in Figure 5. As we can
see, the strength of MA in ROA-Star is superior to AlphaStar throughout the training procedure, and
ROA-Star can always generate more effective opponents for the MA.

Additionally, we evaluate the internal payoff estimation for each of the two leagues, giving the agents’
relative performance against all the players in the same league. As shown in Figure 6, the exploiters
of AlphaStar seem to have gradually weakened dominance to the MA in the later stage. Meanwhile,
there always exist evenly matched opponents for MA in the ROA-Star league, which benefits from its
goal-conditioned exploiters.

5.4 Top Human Evaluation of ROA-Star

Figure 7: Trend of ROA-Star’s win rate when fighting with professional players. ROA-Star won BO3
and BO5 matches against all the players and maintained final win rates no less than 50%.
To make a comprehensive evaluation of ROA-Star without access to the official Battle.net, we invite
three top professional players: Cyan, Macsed and Jieshi to play against our agent on the Kairos
Junction map. Although most of the current AI trained in the full games of StarCraft II are evaluated
with human players in best-of-three (BO3) or best-of-five (BO5) matches [Vinyals et al., 2019, Wang
et al., 2021], we realize that human has the ability to identify the weaknesses of an opponent in
repeated competitions. Therefore, we ask each professional player to play 20 matches with ROA-Star
to validate its robustness. We didn’t make any demands on the strategies they use except encourage
them to try more methods to find the weakness of our agent (Appendix B.1).

Figure 7 shows the trend of ROA-star’s win rates as the games proceeds. ROA-star gains the upper
hand over all the opponents at the beginning, but its win rate drops as the professional players learn
more about it and test more strategies. Finally, as a mixed strategy, ROA-star maintains a win rate of
no less than 50%, which means human players didn’t find a winning strategy that can continuously
defeat it, indicating the robustness of the agent.

We submit a comparison video with AlphaStar as supplementary material, showing how AlphaStar
was defeated by the Cannon Rush strategy in Battle.net evaluation and how we defend against the
same strategy played by the professional player through effective scout and prompt response.
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6 Conclusions and Limitations

In this paper, we develop a new league training method, i.e., ROA-Star, for approximating a NE in
very large-scale games such as StarCraft II. ROA-Star improves the influential AlphaStar league
training in two significant aspects. ROA-Star trains goal-conditioned exploiters (as opposed to
unconditioned exploiters in AlphaStar), which greatly improves the exploiters’ ability in identifying
weaknesses at both the micro and macro level for the MA and the entire league. In addition, a novel
opponent modeling task is introduced in ROA-Star, which helps the agent respond to the opponent’s
real-time strategy more effectively. Meanwhile, a novel “scouting” reward is constructed based on
the prediction of the opponent strategy. Extensive experiments demonstrate the effectiveness of
ROA-Star over AlphaStar. Overall, ROA-Star produced a better and superhuman AI with orders of
magnitude less resources than AlphaStar on StarCraft II.

There are several future directions of this work. During league training, we kept the parameters of
the opponent prediction model fixed to retain the prior knowledge of game strategies in the human
data. This approach proved effective in our experiments, yet it is worth investigating the impact of
the diversity of strategies in the human data. Also, the policy diversity [Wu et al., 2022, Yao et al.,
2023] during league training is worth pursuing as well. In this paper, we only tested ROA-Star on
StarCraft II, and future experiments on other large scale games with hidden information are needed
to further validate the effectiveness and generalization of ROA-Star. Finally, even though ROA-Star
provides a general guideline that goal-conditioned exploiters and opponent modeling help in terms of
approximating a NE in very large-scale games, recent research advances on both goal-conditioned
RL and opponent modeling in general are definitely worth exploiting to further improve ROA-Star’s
performance.
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A Experiment Setup

The training procedure of ROA-Star includes a supervised learning stage and a 50-day multi-agent
reinforcement learning stage. We also implement an experiment with AlphaStar’s setup for compari-
son and trains with the same computation resources. Due to the limitation of budget, the comparison
experiment lasts for 10 days which is still a valid baseline as the main agents always get transitive
improvement [Vinyals et al., 2019]. Besides, we conduct a few ablation experiments to evaluate
the impact of each component in ROA-Star, which are enumerated in Appendix B.2. Each ablation
experiment was trained for 5 days. All these experiments are applied in the race Protoss and all
the training of reinforcement learning is restricted on the Kairos Junction map. In this section, we
introduce the basic settings of ROA-Star.

A.1 Human Dataset

Blizzard is releasing a large number of 1v1 replays played on the ladder. The instructions for how to
download the replay files can be found at https://github.com/Blizzard/s2client-proto. We extracted
a dataset from these replays which contains 120,938 Protoss vs. Protoss replays from StarCraft II
versions 4.8.2 to 4.9.3. These replays were played by human players with MMR scores greater than
4100.

We utilize the dataset of human replays to learn a good initiation checkpoint for reinforcement
learning. After 5 days of supervised learning, the model trained on the full game of StarCraft II can
defeat the built-in elite AI with a win rate of 90%. We also train an opponent prediction model on
this dataset. The opponent prediction model converges after half-day training, its performance on the
test set will be exhibited in Appendix C.4.

Human replays are also used to construct the strategy set D for the league training. In order to select
a set that can cover the effective strategies, we extract strategy statistic z from each human replay
in the dataset and cluster all z using the edit distance between their build orders. We sample from
each cluster equally to ensure the diversity of selected z. Finally, we obtain 193 different z which
constitute the strategy set D.

A.2 Reinforcement Learning

In the reinforcement learning stage, we reward the agents with the win-loss outcome, z-related
pseudo-rewards and scouting reward. Similar to AlphaStar’s configuration, the z-related pseudo-
rewards measure the edit distance between executed and target build orders, as well as the Hamming
distance between executed and target cumulative statistics on the units, buildings, and technologies.
When agents condition on no extra z, we disable all z-related pseudo-rewards. It’s worth noting that
ERE replace the edit distance reward with the curricular reward on the build orders.

We apply RL techniques similar to those used in AlphaStar. To perform asynchronous and off-policy
updates, we use V-trace algorithm [Espeholt et al., 2018], as well as the self-imitation algorithm
(UPGO, Oh et al. 2018). We also apply a standard entropy regularization loss and a policy distillation
loss distilling from the last reset target, i.e. the historical MA model for EIE, and the supervised model
for other agents. We apply an additional strategy-guided loss for ERE to help learn under-explored
strategies. The overall loss we used in the reinforcement learning stage is shown below.

LRL = LV -trace + LUPGO + Lentropy + Ldistill + L∗
ERE

A.3 League Setting

ROA-Star consists of four simultaneously training agents in its league: one MA, one ME, and two
LEs, where the exploiters are categorized into ME and LE by the different ways of getting opponents.
The MA trains with strategy statistic z sampled from our strategy set D, and we set z to zero 10% of
the time. A frozen copy of MA is added as a new player to the league with a period of every 2× 108

steps. The LE fights with the whole league and adds a frozen copy into the league when it defeats all
the players in the league with a win rate above 70% or reaches the timeout threshold of 2× 108 steps.
At this point, its parameters will be reset with a 25% probability. ME aims to find the weakness of
MA, it adds the frozen copy in the league and reset parameters when defeating MA in more than 70%
of games or after a timeout of 4× 108 steps.
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So far, the league setting is almost the same with AlphaStar. In ROA-Star, we reform both ME
and LE to goal-conditioned exploiters. During the training, each exploiter will be reset to various
configurations with a proportion of 20% origin unconditional exploiter, 30% EIE, and 50% ERE. EIE
reset to the current MA model. It samples from the z set with the top 10% win rate. ERE reset to the
supervised model and condition on top 15% z in execution deviation. All the MA and the exploiters
combine the opponent strategy embedding into their observations and get rewards from the scouting
behaviors.

A.4 APM Limits

There exists a physical limit for human players on the actions per minute (APM) they can execute. To
ensure fairness, we set limitations on the operating frequency for AI that the agent should successively
execute actions with a minimum decision interval of 3 frames (around 130 milliseconds). The average
APM of any of our final agents’ models is less than 240 (with a peak APM below 800), which is
close to the human players on Battle.net according to AlphaStar [Vinyals et al., 2019].

A.5 Infrastructure

To scale up league training, we utilize a distributed learner-actor framework depicted in Figure 14.
Actors are deployed on CPU machines to interact with the StarCraft II environments, perform action
inference and generate training samples. Meanwhile, learners are deployed on GPU machines to
update the model parameters using these samples. League Manager is distributed across both the
GPU and CPU, maintains the win rates of all historical models, and allocates training tasks to learners
and actors, including the agent’s own model, the opponent’s model, and z of both sides.

For each agent, the full scale of computational resources contains 64 NVIDIA v100 GPUs and 4600
CPU cores. Each actor worker occupies two CPU cores. About 2400 StarCraft II environments
are used simultaneously to provide training samples for an agent. An agent processes about 11000
environment steps per second.

Figure 8: The framework of league training in ROA-Star.

A.6 Summary of ROA-Star’s Training Process

Here we present the summary of the 50-day training process of our agents, where the basic settings
of each agent can be found in Appendix A.3. With the scale of our computational resources, an
agent can process about 11,000 environment steps per second. Our MA was continuously trained
for 50 days, which consumed about 4.42 ∗ 1010 steps. During training, MA added a frozen copy to
the league every 2 ∗ 108 steps, resulting in a total of 221 models. Our ME reset its parameters after
4 ∗ 108 steps at most, which generated 113 models in total. Our LE reset its parameters after 2 ∗ 108
steps at most, and the two concurrent-training LEs generated 216 and 218 models respectively.

In comparison, AlphaStar’s MA was continuously trained for 44 days and consumed around 1.9∗1011
steps (around 50,000 environment steps per second) [Vinyals et al., 2019].
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B Evaluation Details

B.1 Human Evaluation

To evaluate the robustness of ROA-Star, we invite three top professional players: Jieshi, Cyan and
Macsed to play 20 matches each with ROA-Star. The matches take place on the Kairos Junction
map, with both sides using the race Protoss. All of these professional players major in Protoss, and
according to Aligulac6, their world rankings in Protoss are 19, 25, and 39, respectively. They are
champions of many StarCraft II professional competitions, including Dreamhack StarCraft II Masters
China and StarCraft II World Championship Series China.

The 20 matches against every professional player were divided into 2 times, with an interval of one
week in between. 10 matches were played at a time, with a 3-minute break between matches and
a 20-minute break after 5 consecutive matches. Professional players could watch replays against
ROA-Star and think about their strategy during each break. The average duration of each game was
approximately 10 minutes, with the shortest being 3 minutes and the longest being 18 minutes.

To express our gratitude towards the professional players and motivate them to win, we offered them
two options for calculating test fees before the test and allowed them to choose the one that suited
them best. The first method is that the test fee for each match is 100 RMB, and the second method is
based on the result of each match: professional players receive 150 RMB when they win the game,
otherwise, they will only receive 50 RMB. Finally, Cyan chose the first method, while Macsed and
Jieshi chose the second method.

In the end, we invited herO, the champion of DreamHack SC2 Masters 2022 Atlanta and the second-
ranked professional player in Protoss according to Aligulac6, to play two best-of-three (BO3) matches
against our agent as the final benchmark. Prior to the competition, we made an agreement that herO
would be rewarded with 100 dollars for every BO3 victory, and no payment would be made if he
loses. In the end, we won the first BO3 with a score of 2:0, and lost the second BO3 with a score of
1:2, showing ROA-Star is competitive with the best human player in the world.

B.2 Robustness Evaluation between AIs

It’s hard to directly measure the models’ robustness because of the vast space of cyclic, non-transitive
strategies in StarCraft II. Instead, we apply the Round Robin tournament on the set of models to be
evaluated, with any two models in the set playing 100 matches. Based on the performance of the
models in these matches, we conducted robustness evaluations on different models and populations.

We conducted tournaments on two model sets. The first set includes the first 5 days’ MA models of
all the ablation experiments, including:

• AlphaStar: The original AlphaStar we replicated.
• AlphaStar+exploiters with random z: Reform the unconditional exploiters in AlphaStar

to learn random strategies sampled from strategy set D.
• AlphaStar+EIE+ERE: Reform the unconditional exploiters in AlphaStar to EIE and ERE.
• AlphaStar+ERE: Reform the unconditional exploiters in AlphaStar to ERE.
• AlphaStar+opponent modeling: AlphaStar add opponent modeling.
• Roa-Star

We demonstrate the robustness evaluations on the first set in Section 5.1, Section 5.2, and Appendix
C.1.

The second model set contains all the first 10 days’ models in the league of AlphaStar and our
ROA-Star, including the models generated by MA and exploiters. The robustness evaluations on the
second set are shown in Section 5.3.

6http://aligulac.com/periods/343/?page=1&race=p&nats=all&sort=vp
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C Supplementary Experimental Results

C.1 The Ablation Study about EIE and ERE

We conduct an ablation experiment to verify both EIE and ERE could contribute to the robustness of
MA.

AlphaStar+ERE: During the training, we reset the exploiters to the configuration of ERE with a
probability of 80%, and to the original unconditional exploiters with a probability of 20%.

We exhibit the Elo curves of each MA with different exploiters in Figure 9, ERE is superior to random
selection in strategy but MA can still benefit from EIE to get further improvement.

0 1 2 3 4 5
Training days

0

200

400

600

800

1000

1200

El
o 

Sc
or

e

AlphaStar+exploiters with random z
AlphaStar+ERE
AlphaStar+EIE+ERE

Figure 9: Comparison of the different settings of exploiters.

C.2 Learning Process of Explorative Exploiters

Explorative Exploiters are designed to learn the strict build orders in z, which is especially useful for
z that are currently under-explored. In this section, we select a set of z with high execution deviation
and compare the learning efficiency of exploiters on these z with various settings. For a specific z, we
exhibit the learning process of each entity in the sequence by showing the increase in their execution
precision. The execution precision of the n-th entity refers to the ratio of successful executions of
the n-th entity after the successful execution of the first n− 1 entities. We represent each entity in a
different color in sequence in the following figures in this section.

Take the strategy Proxy Stargate for example, with its build order as "Gateway->Assimilator-
>Assimilator->Gateway->Cyberneticscore->Stargate->Adept->Adept->Gateway->Voidray-
>Shieldbattery->Shieldbattery->Shieldbattery->Voidray->Voidray->Nexus->Voidray". Figure 10
compare the learning efficiency of the exploiter on this strategy with different learning settings.
With the help of z-related curricular reward and strategy-guided loss, the agent learns to execute the
strategy defined by z effectively and accurately.

In Figure11, we provide the learning process of the build orders on another six z as shown in Table 4
under the setting of Explorative Exploiters. Within 4 ∗ 108 steps, which is consistent with the training
steps of ME, all the entities specified by target z achieve an execution precision above 50%. In
Table 4, we also provide a specific comparison of the last entity execution precision of the AlphaStar
z-related pseudo-rewards setting and the ERE setting.
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Figure 10: Comparison of the learning process on an under-explored strategy (Proxy Stargate) with
different exploiter settings. The top one is the exploiter with the original z-related pseudo-rewards in
AlphaStar. The middle one is the exploiter equipped with the z-related curricular reward. The bottom
one is the final Explorative Exploiter with the z-related curricular reward and strategy-guided loss.

Table 4: The execution precision of the last entity in target build order after training of 4 ∗ 108 steps.
AlphaStar refers to training the exploiter with z-related pseudo-rewards as in AlphaStar. ERE refers
to the exploiter settings in ERE, including the z-related curricular reward and strategy-guided loss.

index target build order
last entity

execution precison
AlphaStar ERE

0

Forge->Assimilator->Gateway->Assimilator->Gateway
->Cyberneticscore->photoncannon->Gateway->Stalker->Stalker
->Stargate->Shieldbattery->Shieldbattery->Shieldbattery
->photoncannon->Stargate->Voidray->Shieldbattery
->Shieldbattery->Voidray

0 0.69

1

Gateway->Assimilator->Assimilator->Gateway->Cyberneticscore
->Roboticsfacility->Stalker->Stalker->Warpprism->Roboticsbay
->Stalker->Stalker->Shieldbattery->Nexus->Disruptor->Stalker
->Stalker->Shieldbattery->Disruptor->Stalker

0 0.69

2

Gateway->Assimilator->Assimilator->Gateway->Cyberneticscore
->Adept->Adept->Adept->Adept->Nexus->Adept->Adept
->Shieldbattery->Adept->Adept->Roboticsfacility->Sentry
->Sentry->Sentry->Sentry

0 0.80

3

Gateway->Assimilator->Assimilator->Gateway->Cyberneticscore
->Twilightcouncil->Adept->Adept->Adept->Adept->Darkshrine
->Gateway->Nexus->Shieldbattery->Darktemplar->Darktemplar
->Roboticsfacility->Stalker->Stalker->Stalker

0 0.50

4
Gateway->Assimilator->Assimilator->Gateway->Cyberneticscore
->Adept->Adept->Stargate->Stalker->Stalker->Shieldbattery
->Stalker->Oracle->Stalker->Stalker->Shieldbattery

0 0.60

5

Gateway->Assimilator->Assimilator->Gateway->Cyberneticscore
->Adept->Adept->Stargate->Stalker->Stalker->Oracle->Nexus
->Oracle->Roboticsfacility->Twilightcouncil->Stalker->Stalker
->immortal->Stalker->Stalker

0 0.67
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Figure 11: 6 cases of the Explorative Exploiters’ learning process on under-explored strategies.

C.3 The Impact of Opponent Modeling on Scouting Ability

We measure the effectiveness of each scouting behavior with the opponent prediction model and
reward the agent accordingly. To show the impact of scouting rewards, we compare the time consumed
for the agents to discover the opponent’s newly-built buildings. We made two 5-day MA models
trained with/without opponent modeling play against each other for 2000 matches. To encounter
diverse opponents, both two models randomly pick z from set D to execute. Then we calculate
the average interval from the opponent constructing a new building until the agent discovers it. As
shown in Figure 12, the scouting reward remarkably reduces the time for discovering the building of
opponent under the fog.
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Figure 12: The consumed time to discover opponent’s newly-built buildings.
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C.4 Opponent Prediction Model Performance

In this section, we exhibit the performance of opponent prediction model on the test set of 3000
human replays.

We make quantity predictions for the current opponent’s entities, including those in production. We
categorize the quantity of each entity type into buckets, where buildings are grouped into 0, 1, 2, and
greater than 2 categories, and military units are divided into 0, 1, 2, 3-4, and greater than 4 categories.
We use multi-classification heads to predict these categories and calculate the macro f1-score of these
tasks on the test set, as shown in Figure 13.

Another critical piece of the opponent’s strategy is its technical route. Once the performance of the
opponent military unit is observed, it is possible to directly infer whether the opponent has upgraded
a certain technology, such as "Charge" which can increase the attack speed of Zealots. However, at
this time the optimal timing to respond is often missed. Instead, it is more meaningful to predict the
technologies under research. As they are binary classification tasks with extremely imbalanced data,
we measure the ability of the opponent prediction model with average precision (AP), as shown in
Figure 13. The mean average precision (mAP) of prediction on all technologies is 0.73.

The construction location of key buildings, specifically whether they are constructed outside of the
base, determines if the opponent is using proxy strategies. Therefore, we utilize binary classification
to predict whether the opponent is constructing or has already constructed proxy buildings. The AP
of each type is shown in Figure 13 and the mAP of all proxy building types is 0.75.

Figure 13: The performance of opponent prediction model on the test set.

C.5 Strategy Diversity in Exploiters

Intuitively, the robustness of MA would benefit from the strategy diversity in exploiters. In this
section, we evaluate the strategy diversity in exploiters of two leagues, ROA-Star and AlphaStar, in
terms of both qualitative and quantitative measures.

To get a vectorized description of each model generated by the exploiters during the first 10 days,
we can have them play 100 matches against a common opponent, such as the 3-day MA model in

19



AlphaStar. For each model, we calculate the average statistics of entities and technologies on the
matches to generate a vectorized description. Then we analyze their strategies by applying k-means
clustering to these vectors. The clustering result, shown in Figure 14, displays each model as a
point in the 2d space after their vector dimensions have been reduced using t-SNE. The exploiters in
ROA-Star can explore more strategies than AlphaStar within the same training time and resources,
e.g. the proxy strategies.

We also quantitatively analyze the diversity in exploiters like Determinantal Point Process (DPP,
Kulesza and Taskar 2012) dose. DPP measures the diversity of a candidate set by calculating the
determinant of a kernel matrix that describes the similarity between each item pair in the candidate
set. To get the similarity matrix, we calculate an L2-distance d, then use the kernel function exp(− d

T )
to transform the distance into similarity, T is a scale factor which we set to 3 here. The final DPP
scores of ROA-Star and AlphaStar are shown in Table 5. The numerical comparison of the DPP
support that exploiters in ROA-star are more diverse than AlphaStar.

Figure 14: Left visualizes the models in exploiters of AlphaStar and ROA-Star in the 2d space with
t-SNE. Right colors the left points with the result of K-means clustering on the models.

Table 5: Diversity in Exploiters

AlphaStar ROA-Star

DPP score 0.002 0.229

C.6 Latent Space of Opponent Prediction Model

In this section, we visualize the latent space of the opponent prediction model when the agent fights
against four different opponents, as shown in Figure 15(b). From top to bottom, we present the
distribution of ht (the latent opponent strategy embedding) at different game stages: at the 30th second
of the game, all the opponents only produce some Probes (the workers) and can’t be distinguished. In
the 3rd minute, the opponents build the first tech building and choose different tech routes, but they
still have similar early military units (like Stalkers), so there are overlaps in the hidden space. In the
6th minute, the opponents produced different units and developed different technologies, resulting
in a distinct distribution in the hidden space. As a comparison, Figure 15(a) visualizes the latent
space of the policy network in AlphaStar. When facing different opponents, there is no obvious
distinguishability in the distribution of hidden states.
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Figure 15: Let AlphaStar and ROA-Star fight against four specific opponents, each for 150 matches,
and visualize (a). the hidden states of the LSTM layer in AlphaStar’s policy network (b). the
latent opponent strategy embedding ht generated by ROA-Star’s opponent prediction model. From
top to bottom, we collect the corresponding hidden states at different game stages and show their
distributions in the 2d space using t-SNE. We color each sub-figure according to the agent’s opponents,
which includes 150 points for each opponent.

21


	Introduction
	Preliminary on StarCraft II and AlphaStar
	StarCraft II
	Supervised Learning in AlphaStar
	RL and League Training in AlphaStar

	ROA-Star
	Goal-conditioned RL for the Exploiters
	Opponent Modeling for the Entire League

	Related Work
	Experiments
	The Effectiveness of Goal-conditioned Exploiters in ROA-Star
	The Effectiveness of Opponent Modeling in ROA-Star
	Overall Comparison between ROA-Star and AlphaStar
	Top Human Evaluation of ROA-Star

	Conclusions and Limitations
	Experiment Setup
	Human Dataset
	Reinforcement Learning
	League Setting
	APM Limits
	Infrastructure
	Summary of ROA-Star's Training Process

	Evaluation Details
	Human Evaluation
	Robustness Evaluation between AIs

	Supplementary Experimental Results
	The Ablation Study about EIE and ERE
	Learning Process of Explorative Exploiters
	The Impact of Opponent Modeling on Scouting Ability
	Opponent Prediction Model Performance
	Strategy Diversity in Exploiters
	Latent Space of Opponent Prediction Model


