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Abstract

Hyperparameter optimization is an important subfield of machine learning that
focuses on tuning the hyperparameters of a chosen algorithm to achieve peak
performance. Recently, there has been a stream of methods that tackle the issue
of hyperparameter optimization, however, most of the methods do not exploit
the dominant power law nature of learning curves for Bayesian optimization. In
this work, we propose Deep Power Laws (DPL), an ensemble of neural network
models conditioned to yield predictions that follow a power-law scaling pattern.
Our method dynamically decides which configurations to pause and train incre-
mentally by making use of gray-box evaluations. We compare our method against
7 state-of-the-art competitors on 3 benchmarks related to tabular, image, and NLP
datasets covering 59 diverse tasks. Our method achieves the best results across all
benchmarks by obtaining the best any-time results compared to all competitors.

1 Introduction

Hyperparameter Optimization (HPO) is a major challenge for the Machine Learning community.
Unfortunately, HPO is not yet feasible for Deep Learning (DL) methods due to the high cost of
evaluating multiple configurations. Recently multi-fidelity HPO (a sub-problem of gray-box HPO) has
emerged as a promising paradigm for HPO in DL, by discarding poorly-performing hyperparameter
configurations after observing the validation error on the low-level fidelities of the optimization
procedure [28, 9, 1, 29]. The advantage of multi-fidelity HPO compared to online HPO [7, 38], or
meta-gradient HPO [32, 10, 31] is the ability to tune all types of hyperparameters.

In recent years, a stream of papers highlights the fact that the performance of DL methods is
predictable [14], concretely, that the validation error rate is a power law function of the model size, or
dataset size [41, 40]. Such a power law relationship has been subsequently validated in the domain of
NLP, too [11]. In this paper, we demonstrate that the power-law principle has the potential to be a
game-changer in HPO, because we can evaluate hyperparameter configurations in low-budget regimes
(e.g. after a few epochs), then estimate the performance on the full budget using dataset-specific
power law models. Concretely, we hypothesize and empirically demonstrate that optimization curves
(training epochs versus accuracy, or loss) can be efficiently modeled as simple power law functions.

As a result, we introduce Deep Power Law (DPL) ensembles, a probabilistic surrogate for Bayesian
optimization (BO) that estimates the performance of a hyperparameter configuration at future budgets
using ensembles of deep power law functions. Subsequently, our novel formulation of BO dynami-
cally decides which configurations to pause and train incrementally by relying on the performance
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estimations of the surrogate. We demonstrate that our method achieves the new state-of-the-art
in HPO for DL by comparing against 7 strong HPO baselines, and 59 datasets of three diverse
modalities (tabular, image, and natural language processing). Our experimental protocol contains
state-of-the-art deep learning architectures such as Transformers [44], XFormer [26], ResNeXt [49]
and large language models like GPT-2 [39]. As a result, we believe the proposed method has the
potential to finally make HPO for DL a feasible reality.

Overall, our contributions can be summarized as follows:

• We introduce a novel probabilistic surrogate for multi-fidelity HPO based on ensembles of
deep power law functions.

• We derive a simple mechanism to combine our surrogate with Bayesian optimization.
• Finally, we demonstrate the empirical superiority of our method against the current state-of-

the-art in HPO for Deep Learning, with a large-scale HPO experimental protocol.

2 Related Work

Multi-fidelity HPO assumes a method has access to the learning curve of a hyperparameter con-
figuration. Such a learning curve is the function that maps either training time or dataset size, to
the validation performance. The early performance of configurations (i.e. first segment of the
learning curve) is used to discard unpromising configurations, before waiting for full convergence.
Successive halving [17] is a widely used multi-fidelity method that randomly samples hyperparameter
configurations, starts evaluating them, and ends a fraction of them upon reaching a predefined budget.
Afterwards, the budget is divided by the fraction of discarded hyperparameter configurations and
the process continues until the maximum budget is reached. Although the method relies only on
the last observed value of the learning curve, it is very efficient. In recent years, various flavors of
successive halving have been suggested, including Hyperband [28], which effectively runs successive
halving in parallel with different settings. A major improvement to Hyperband is replacing random
search with a more efficient sampling strategy [1, 9]. A more efficient approach is to allocate the
budget dynamically to the most promising configurations [47]. However, the only assumption these
methods make about the learning curve is that it will improve over time, while recent work [4]
exploits a power law assumption on the curves. Similarly, we fit surrogates that exploit a power law
assumption, however, our method is able to estimate the performance of unobserved configurations
through probabilistic surrogates learned jointly for all hyperparameter configurations.

Learning curve prediction is a related topic, where the performance of a configuration is predicted
based on a partially observed learning curve [36]. Typically, the assumptions about the learning curve
are much stronger than those described above. The prediction is often based on the assumption that
the performance increases at the beginning and then flattened towards the end. One way to model
this behavior is to define a weighted set of parametric functions [8, 23]. Then, the parameters of all
functions are determined so that the resulting prediction best matches the observed learning curve.
Another approach is to use learning curves from already evaluated configurations and to find an affine
transformation that leads to a well-matched learning curve [6]. A more data-driven approach is to
learn the typical learning curve behaviour directly from learning curves across different datasets [48].
Learning curve prediction algorithms can be combined with successive halving [2]. In contrast to
this research line, we fit ensembles of power law surrogates for conducting multi-fidelity HPO with
Bayesian optimization.

Scaling laws describe the relationship between the performance of deep learning models as a function
of dataset size or model size as a power law [14, 16, 41, 40, 11, 20, 15, 33]. Another work tunes
hyperparameters on a small-scale model and then transfers them to a large-scale version [50]. In
contrast to these papers, we directly use the power law assumption for training surrogates in Bayesian
optimization for HPO.

3 Preliminaries

Hyperparameter Optimization (HPO) demands finding the configurations λ ∈ Λ of a Machine
Learning method that achieve the lowest validation loss L(Val) of a model (e.g. a neural network),
which is parameterized with θ ∈ Θ and learned to minimize the training loss L(Train) as:
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λ∗ := argmin
λ∈Λ

L(V al) (λ, θ∗ (λ)) , s.t. θ∗ (λ) := argmin
θ∈Θ

L(Train) (λ, θ) (1)

For simplicity, we denote the validation loss as our function of interest f(λ) := L(V al) (λ, θ∗ (λ)).
The optimal hyperparameter configurations λ∗ of Equation 1 are found via an HPO policy
A ∈ P (also called an HPO method) that given a history of N evaluated configurations H(N) :=

{λi, f (λi)}Ni=1 suggests the (N + 1)-th configuration to evaluate as λN+1 := A
(
H(N)

)
where

A : [Λ× R+]
N → Λ. The search for an optimal HPO policy is a bi-objective problem in itself,

aiming at (i) finding a configuration out of N evaluations that achieves the smallest validation loss
f(λ), and (ii) ensuring that the costs of evaluating the N configurations do not exceed a total budget
Ω, as shown in Equation 2.

argmin
A∈P

min
i∈{1,...,N}

f
(
λi := A

(
H(i−1)

))
, (2)

where: H(i) :=

{
{(λj , f(λj))}ij=1 i > 0

∅ i = 0
,

subject to: Ω ≥
N∑
i=1

cost (f (λi))

Bayesian optimization (BO) is the most popular type of policy for HPO, due to its ability to balance
the exploration and exploitation aspects of minimizing the validation loss f in terms of hyperparame-
ters λ ∈ Λ. Technically speaking, BO fits a surrogate f̂(λ;ϕ) parametrized with ϕ ∈ Φ to approximate
the observed loss f(λ) using the history H(N), as ϕ∗ := argmaxϕ∈Φ E(λ,f(λ)) ∼p

H(N)
p(f(λ)|λ, ϕ),

where, p represents the probability. Afterwards, BO uses an acquisition/utility function a : Λ→ R+

to recommend the next configuration as λN+1 := A
(
H(N)

)
= argmaxλ∈Λ a

(
f̂(λ;ϕ∗)

)
.

Multi-fidelity HPO refers to the case where an approximation of the validation loss can be measured
at a lower budget b ∈ B, where B := (0, bmax]. For instance, in Deep Learning we can measure
the validation loss after a few epochs (0 < b < ϵ), rather than wait for a full convergence (b =
bmax). Throughout this paper, the term budget refers to a learning curve step. The evaluation of a
configuration λ for a budget b is defined as f (λ, b) : Λ×B → R+.

4 Power Law Surrogates for Bayesian Optimization

Prior work has demonstrated that the performance of Machine Learning methods as a function of
budgets (i.e. dataset size, number of optimization epochs, model size, image resolution) follows a
power law relationship [41, 40, 11, 20, 15]. In this work, we employ this power law dependence
between the validation loss and the number of optimization epochs in Deep Learning. We propose a
novel multi-fidelity Hyperparameter Optimization method which is based on power law surrogates.
We assume that every learning curve f (λ, ·) can be described by a power law function defined by
(α, β, γ). Concretely, we define a power law function for the validation loss of a configuration λ at a
budget b (a.k.a. the number of epochs) as shown in Equation 3.

f̂ (λ, b) := αλ + βλ b−γλ , αλ, βλ, γλ ∈ R (3)

Instead of fitting one separate power law function to each learning curve, we fit a single shared
power law function across all configurations by conditioning the power law coefficients α, β, γ on λ
using a parametric neural network g that maps a configuration to the power law coefficients of its
learning curve as g : Λ→ R3. The network g has three output nodes, corresponding to the power
law coefficients, denoted as g(λ)α, g(λ)β , g(λ)γ , as defined in Equation 4.

f̂ (λ, b) := g(λ)α + g(λ)β b−g(λ)γ , g : Λ→ R3 (4)
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Using a history of learning curve evaluations H(N) := {(λi, bi, f (λi, bi))}Ni=1 we can train the
power law surrogate to minimize the following loss function using stochastic gradient descent:

argmin
f̂

E(λ,b,f(λ,b))∼p
H(N)

∣∣∣f (λi, bi)− f̂ (λi, bi)
∣∣∣ (5)

BO surrogates need to be probabilistic regression models because the acquisition functions require
the posterior variance of the predictions. As a result, we train an ensemble of K diverse surrogates
f̂ (1)(λ, b), . . . , f̂ (K)(λ, b) by initializing each surrogate with different weights and by training with a
different sequence of mini-batches as in prior work [25, 22]. The posterior mean µ and the posterior
variance σ2 of the power law ensemble are trivially computed as:

µf̂ (λ, b) :=
1

K

K∑
k=1

f̂ (k)(λ, b), σ2
f̂
(λ, b) :=

1

K

K∑
k=1

(
f̂ (k)(λ, b)− µf̂ (λ, b)

)2

(6)

A commonly used acquisition function in the domain is Expected Improvement (EI) [35] which
incorporates both the mean and uncertainty of predictions, applying a trade-off between exploration
and exploitation. Consequently, in our work, we use the EI acquisition with the estimated full budget’s
(bmax) posterior mean and variance. We briefly define the acquisition function in Equation 7:

λN+1 := argmax
λ∈Λ

EI
(
λ, bmax|H(N)

)
, (7)

EI(λ, bmax|H) := E
f̂(λ,bmax)∼N

(
µf̂ (λ,bmax),σ2

f̂
(λ,bmax)

) [max
{
f̂(λ, bmax)− f (λbest, bmax) , 0

}]
where, f (λbest, bmax) corresponds to the best observed loss for any budget b′ ≤ bmax from the history
H(N). After selecting a configuration with our variant of the EI acquisition, we do not naively run
it until convergence. Instead, we propose a novel multi-fidelity strategy that advances the selected
λN+1 of Equation 7 by a small budget of bstep, e.g. 1 epoch of training. Therefore, the selected λN+1

will be evaluated at bN+1 as defined in Equation 8. Notice, our proposed strategy also covers new
configurations with no learning curve evaluations in H(N).

bN+1 :=

{
bstep, ∄λN+1 : (λN+1, ·, ·) ∈ H(N)

bstep + max
(λN+1,b,·)∈H(N)

b, otherwise (8)

We provide the detailed pseudocode of our method at Algorithm 1.

5 Experimental Protocol

5.1 Benchmarks

LCBench: A benchmark that features 2,000 hyperparameter configurations that parametrize the archi-
tecture of simple feedforward neural networks, as well as, the training pipeline [51]. The benchmark
features 7 numerical hyperparameters and 35 different datasets from the AutoML benchmark [12].

PD1: A deep learning benchmark [45] that consists of recent DL (including Transformers) architec-
tures run on large vision datasets such as CIFAR-10, CIFAR-100, ImageNet, as well as statistical
modeling corpora and protein sequence datasets from bioinformatics. Every search space includes
varying learning curve lengths, ranging from 5 to 1414, and a different number of evaluated hy-
perparameter configurations ranging from 807 to 2807. The search space includes hyperparameter
configurations that parametrize the learning rate, the learning rate scheduler, and the momentum.

TaskSet: A benchmark that features different optimization tasks evaluated in 5 different search spaces
[34]. For our work, we focus on the Adam8p search space, which is among the largest search spaces
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Algorithm 1: Multi-Fidelity HPO with Deep Power Laws

Input :Search space Λ, initial design H(init), budget increment bstep
Output :Best hyperparameter configuration λ∗

1 Iteration i← 0; Evaluate initial configurations and budgets H(i) := H(init);
2 while still budget do
3 Fit a DPL ensemble f̂ (1)(λ, b), . . . , f̂ (K)(λ, b) from history H(i) using Equation 5;
4 Recommend the next configuration λi+1 and its budget bi+1 using Equation 6, 7 and 8;

5 Train λi+1 until bi+1 and measure the validation loss f (λi+1, bi+1);

6 Append to history Hi+1 ← Hi ∪ {(λi+1, bi+1, f (λi+1, bi+1))};
7 i← i+ 1 ;
8 end
9 return Best configuration λ∗ with the smallest validation loss min

(λ∗,b,f(λ∗,b))∈Hi
f (λ∗, b) ;

in the benchmark with 1000 hyperparameter configurations. Every hyperparameter configuration
features 8 continuous hyperparameters. The hyperparameters control the learning rate, the learning
rate schedulers, and the optimizer. For variety among our benchmarks, we focus on 12 RNN text
classification tasks that feature different RNN cells, embedding sizes, and batch sizes.

For a more detailed explanation of the benchmarks, we refer the reader to Appendix F.

5.2 Baselines

Random Search stochastically samples hyperparameter configurations for the largest possible
budget. Hyperband uses multiple brackets with different trade-offs of the initial budget and number
of epochs to initially train [28]. It then applies Successive Halving (SH) [17] on every bracket. ASHA
is an asynchronous version of SH [27] that does not wait for all configurations to finish in an SH
bracket before starting the next one. Furthermore, BOHB is a follow-up of Hyperband that uses
TPE [3] to sample the initial hyperparameter configurations of a bracket [9]. DEHB, on the other
hand, modifies Hyperband by using evolutionary strategies to sample the initial hyperparameter
configurations [1]. Similarly, multi-fidelity SMAC extends Hyperband but uses random forests to
sample the initial hyperparameter configurations for a bracket [30]. We also use the Dragonfly
Library [19] to compare against BOCA [18], a multi-fidelity method that uses Gaussian Processes to
predict the next hyperparameter to evaluate, as well as the fidelity for which it should be evaluated.
For all the baselines, we use their official public implementations. We provide additional details in
Appendix G.

5.3 Architecture & Training

For our method, we use an ensemble of 5 models, where every model consists of a 2-layer feedforward
neural network with 128 units per layer and Leaky ReLU for the non-linearity. The architecture of
our method is motivated by prior work [25]. Our network has 3 output units, that are then combined
with the budget b to yield the power law output. We apply the GLU non-linearity activation only on
the β and γ output units, allowing α to take any value.

We use the L1 loss to train our network, coupled with Adam featuring an initial learning rate of
10−3. For the first 10 iterations of our multi-fidelity HPO method in Algorithm 1 we train every
network of our ensemble for 250 epochs with randomly sampled initial weights. This choice helps
the convergence of the weights in the early stage of HPO. Next, we continuously refine the model for
20 epochs every HPO iteration. However, if the optimization stagnates (surrogate fitting loss does
not improve) for more than the LC Length + a buffer of 0.2 × LC Length, the training procedure
is restarted with random weights, where every model is trained again for 250 epochs and then only
refined. During the refining phase, the new data point at an HPO iteration (Line 9 at Algorithm 1) is
sampled with repeat on every batch, to learn new data points equally compared to older data points.
Since we are working with discrete search spaces, we evaluate the acquisition function exhaustively
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on every hyperparameter configuration. When dealing with continuous search spaces, the acquisition
function can either be evaluated exhaustively on a discretized version of the search space, or in a
gradient-based way. Our implementation of DPL is publicly available.1

5.4 Protocol

In our experiments, we standardize the hyperparameter values by performing min-max scaling for
our method and every baseline. If a baseline has a specific preprocessing protocol, we do not apply
min-max scaling but we apply the protocol as suggested by the authors.

The benchmarks do not support a common evaluation metric for configurations (i.e. the function
f ). As a consequence, the evaluation metric for LCBench is the balanced accuracy, for TaskSet the
log-likelihood loss, while for PD1 the accuracy. Moreover, the benchmarks do not offer learning
curves with a common step size. For LCBench and PD1, one step size is equivalent to one epoch,
while for TaskSet one step size is 200 batches. The HPO budget is defined as the maximum number
of steps needed to fully evaluate 20 hyperparameter configurations. In that context, one unit step of
the HPO budget signifies training a particular configuration for one more optimization step (e.g. 200
batches in TaskSet or 1 epoch in LCBench).

In the following experiments, for all methods, we report the regret of the best-found configuration as
shown in Equation 9:

R = f (λbest, bmax)− f (λoracle, bmax) (9)

where the oracle is given as f (λoracle, bmax) := min
{
f (λ, b) | (λ, b, f (λ, b)) ∈ H(D) ∧ b ≤ bmax

}
,

and H(D) corresponds to the set of all the exhaustively-evaluated hyperparameter configurations’
performances on a dataset D. If the oracle configuration is not known in advance for the search space,
H(D) can be replaced with the history H(N) at the end of the HPO procedure. The only difference
between f (λbest, bmax) and f (λoracle, bmax) is that the former only considers the history at the HPO
step for which we are reporting the results.

In short, the regret is the difference in the evaluation metric performance from the best-found
hyperparameter configuration during optimization to the best possible hyperparameter configuration
(oracle) on the dataset (in a minimization setting). On a dataset level, we report the average regret
across 10 repetitions with different seeds. To be able to aggregate results over datasets, we report the
averaged normalized regret. As normalization, we divide the regret by the difference between the
performances of the best and the worst hyperparameter configuration on a dataset. Then we compute
the mean of the normalized regrets across all the datasets of a benchmark.

Moreover, in the experiments that report the average normalized regret over time, we provide results
over normalized wall clock time. The wall clock time includes both the method’s overhead (i.e.
training the surrogate f̂ and selecting the next hyperparameter configuration to evaluate) and the time
taken to evaluate the selected hyperparameter configuration (i.e. evaluating f ). Since the methods
have different run times, we normalize the individual times by the time it took Random Search
(the fastest non-model-based method) to complete the HPO optimization process. To provide a
fair any-time comparison, we report results until the time it took Random Search to evaluate 20
hyperparameter configurations.

Furthermore, when reporting the learning curve (LC) length fraction, we imply the fraction of the total
learning curve length. LCBench and TaskSet have LCs of a fixed length for all datasets, corresponding
to 51 epochs for LCBench and 50 epochs for TaskSet. In contrast, PD1 has varying LC lengths for
different datasets.

In our experiments, all methods start with a history H(init) of 1 randomly sampled hyperparameter
configuration evaluated for 1 step/epoch in the case of multi-fidelity techniques (Hyperband, BOHB,
DEHB, SMAC, ASHA, Dragonfly; descriptions in Section 5.2), or for the full budget for the black-
box technique (Random Search). We ran experiments on a CPU cluster, where every node contains
two Intel Xeon E5-2630v4 CPUs with 20 CPU cores running at 2.2 GHz. The total memory of every
node is 120GB, and every experiment is limited to 2 cores which offer 12GB.

1https://github.com/releaunifreiburg/DPL
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6 Research Hypotheses and Experiments
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Figure 1: Rank correlations of learning curve fore-
casting models, which are given a fraction of the
learning curve and estimate the remaining curve
segment. DPL: Deep Power Law, Cond NN: Con-
ditioned neural network, PL: Power Law, NN: Neu-
ral Network, GP: Gaussian processes.

Hypothesis 1: The power law assumption im-
proves the quality of learning curve forecasting.

In this experiment, we evaluate the predictive
performance of forecasting models that given
a fraction of the observed learning curve, esti-
mate the remaining unobserved segment of the
curve, on the LCBench benchmark. The results
of Figure 1 compare three different forecasting
models, concretely, neural networks (NN), Gaus-
sian Processes (GP), and Power Law functions
(PL). For the three variants (PL, NN, GP) we
fitted one model on every learning curve of each
hyperparameter configuration (i.e. given b in the
x-axis estimate one f̂(b) separately for every λ).
For the other two variants (DPL and Cond NN)
we fit a single forecasting model (not an ensem-
ble) for all configurations, by conditioning the
surrogate on the configuration (i.e. given b and λ, estimate f̂ (λ, b)). The purpose of the experiment
is to assess whether a power law function regressor leads to superior predictive accuracy, compared
to generic forecasting models, such as neural networks, or Gaussian processes. The evaluation metric
of the experiment highlighted in Figure 1 is the rank correlation between the estimated performances
at the end of the learning curve and the true performances.

We notice that although a Power Law regressor has significantly fewer parameters than a neural
network (3 to 288 parameters), PL still achieves higher predictive performance than NN. Furthermore,
our conditioning of the power law function to the hyperparameter configuration further improves the
predictive quality, as the difference between DLP and PL demonstrates.

Lastly, we refer the reader to Appendix H, where we provide an analysis of the distributions for the
absolute error rate between the DPL predictions and the ground truth values over the different LC
length fractions, showing that DPL does not only retain the ranks but, it also accurately predicts the
final performance. Based on the results, we consider Hypothesis 1 to be validated and that DPL is
accurate in terms of learning curve forecasting.

What about learning curves that do not follow a power law pattern? Although the provided
empirical evidence in this section strongly suggests that the presented power law model can accurately
forecast learning curves, it is also true that some learning curves have divergent behaviour that does
not follow the power law assumption. As a consequence, we investigate two different ways to handle
curves that do not follow the power law assumption: i) recently-proposed power law functions
that include breaking points [5], or shifts in the curve [8], and ii) min-smoothing the learning
curves to transform them into monotonically decreasing time series. In Appendix A we provide
ample empirical evidence showing that although the alternative formulations achieve comparable
performances, still they do not outperform our simpler power law formulation. The findings indicate
that even though not all learning curves are power laws, most of them are, therefore a power law
surrogate is efficient in forecasting the final performance of a partially-observed learning curve. As
a result, the forthcoming experiments will provide further empirical evidence that our power law
surrogates lead to state-of-the-art HPO results when deployed in the proposed multi-fidelity Bayesian
optimization setup.

Hypothesis 2: Our method DPL achieves state-of-the-art results in HPO.

In Figure 2, we show the performance of the considered methods over the HPO budget, where
DPL manages to outperform all the rival baselines. In the case of LCBench, DPL quickly finds
well-performing hyperparameter configurations compared to the competitor methods and continues
to discover even better configurations until the HPO process ends. Furthermore, we observe the same
trend with TaskSet and PD1, where after ca. 25% of the HPO budget, our method DPL converges to a
better regret compared to the baselines and increases the lead until HPO ends. For a detailed overview
of the performances of all methods on all individual datasets, we point the reader to Appendix H.
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the averaged normalized regret.
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Figure 4: The average normalized regret of DPL
and rival methods over the normalized time for
all the considered benchmarks. Solid curves and
shaded regions represent the mean and standard
average normalized regret.

In addition, Figure 3 provides the critical differ-
ence diagrams of the per-dataset regret ranks at
50% and 100% of the HPO budget. Our method
DPL outperforms all baselines in 5 out of 6 cases
(in 4 of which with a statistically significant mar-
gin), while being second best only at the 50%
of the HPO budget on the PD1 benchmark. We
investigate the lack of statistical significance in
PD1, by analyzing the individual dataset perfor-
mances where DPL performs worse compared
to other baselines. We notice that the datasets
have a skewed distribution of hyperparameter
configuration performances, where, a majority
of the configurations achieve top performance.
Based on the results, we conclude that a lack of
statistical significance is the outcome of a search
space that includes relatively simple optimiza-
tion tasks and not a specific failure state of our
method. We provide the detailed results of our
analysis in Appendix D.

Lastly, we analyse the performance of DPL over
time in Figure 4. As it can be observed, DPL
manages to outperform the competitors even
when the method’s overhead time is included,
showing that the overhead of DPL (i.e. fitting
surrogate and running the acquisition) is negligible in terms of the quality of the HPO results. For a
more detailed information, regarding the DPL overhead time, we point to Appendix E. TaskSet is not
included in Figure 4 since the benchmark does not offer runtimes. Given the results, we conclude
that Hypothesis 2 is validated and that DPL achieves state-of-the-art performance in HPO.
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Figure 5: Post-hoc analysis to study DPL’s efficiency. Left: Share of the best candidates selected
during training. Middle: Average regret of configurations chosen to be trained at each budget. Right:
Share of top third configurations at a given budget which were bottom two third configurations at a
previous budget.

Hypothesis 3: DPL explores the search space more efficiently compared to the baselines.

We conduct further analyses to understand the source of the efficiency of DPL versus the baselines.
As a result, we analyze two important aspects, the quality of the evaluated configurations, as well
as the exploration capability of our multi-fidelity HPO method. Initially, we measure what fraction
of the top 1% configurations (ranked by accuracy) can our method discover. Figure 5 (left) shows
that until convergence our method can discover significantly more top configurations compared
to the baselines. The middle plots of Figure 5, show the average regret for each configuration
promoted to the respective budget. According to the plot, DPL is more efficient and assigns the
budget only to configurations with lower regret compared to the other methods. The precision and
regret plots demonstrate that the quality of the evaluated configurations is largely better than all
baselines, therefore, giving our method a significant lift in the performance rank. Last but not least,
the right plot shows the percentage of configurations that were performing poorly in an earlier epoch
(i.e. accuracy-wise in the bottom 2/3 of configurations up to the epoch indicated at the x-axis) but
performed better at later epochs (i.e. at the top 1/3 of configurations). Furthermore, we added a line
labeled with "Baseline", which represents the fraction of previously poor-performing configurations
of all configurations. This behavior is observed often with learning curves, where for instance,
strongly regularized networks converge slowly. For the same analysis regarding the PD1 benchmark,
we point the reader to Appendix H.

The results indicate that our method explores well the unpromising early configurations, by consider-
ing them through the uncertainty estimation of our ensemble and the respective Bayesian optimization
mechanism. The results validate Hypothesis 3 and confirm that DPL explores the search space
more efficiently.

Hypothesis 4: Our method DPL offers an effective tool for HPO in Large Language Models.

In this experiment, we consider the case of tuning the hyperparameters of transformers in Large
Language Models. To this end, we computed a tabular benchmark by training a smaller GPT-2 [39]
model on the OpenWebText dataset [13] for a series of different hyperparameter configurations. We
tune three learning rate hyperparameters: the fraction of warmup steps, the maximum learning rate at
the end of warmup, and the minimum learning rate at the end of the decay. We repeat the experiments
for seven model sizes ranging from 0.3M to 30M total parameters, ablating the embedding size of the
multi-head attention layers (details in Appendix B).

We follow the common practice of conducting HPO with small transformers and then deploying the
discovered optimal configuration on the full-scale transformers [50]. As a result, we search for the
optimal hyperparameters of small transformers (embedding size of {6, 12, . . . , 96, 192}) and then
evaluate the discovered configurations at a full-scale transformer with an embedding size of 384.
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Figure 6: HPO for Transformer architectures. Top: HPO on small-scale transformers in terms of the
embedding size. Bottom: Error on the full-scale transformer, using the hyperparameter configuration
discovered by conducting HPO using the small transformers. We present three analyses, ablating the
HPO time on the small-scale transformer up to the HPO budget of 2 full function evaluations.

Figure 6 shows the HPO results of DPL against Random Search and BOHB (a rival multi-fidelity
HPO baseline). In the top row of plots, we observe the performance of the discovered configurations
at the small transformers for the indicated embedding size. We observe that our method finds better
configurations than the baselines at any proxy space with small embedding sizes.

On the other hand, the bottom row of plots presents the performance of the discovered configurations
in the small embedding space, by applying such hyperparameter configurations to the full-scale
transformers. We observe that the configurations discovered by DPL on the small search space
achieve very competitive results on the full-scale transformers, finding the oracle configuration of the
full-scale transformers in the majority of cases. It takes DPL 3.6 hours to find the oracle configuration
for the largest model via HPO for the smallest model. In turn, it takes 21.52 hours to train the largest
model only once. For more details, we refer the reader to Appendix B. The results validate Hypothesis
4 and confirm that DPL is an efficient HPO technique for tuning the hyperparameters of large
language models when the HPO is conducted using smaller transformer model sizes.

7 Conclusions

Summary. In this work, we introduce Deep Power Law (DPL), a probabilistic surrogate based on
an ensemble of power law functions. The proposed surrogate is used within a novel multi-fidelity
Hyperparameter Optimization (HPO) method based on Bayesian optimization. In contrast to the
prior work, we exploit scaling laws for estimating the performance of Deep Learning (DL) models.
Through extensive experiments comprising 7 baselines, 59 datasets, and search spaces of diverse
deep learning architectures, we show that DPL outperforms strong HPO baselines for DL by a large
margin. As an overarching contribution, we advance the state-of-the-art in the important field of HPO
for DL.

Limitations and future work. Contrary to the common perception, we experienced that the
uncertainty estimation arising from the Deep Ensemble approach [25] is suboptimal compared to
standard BO surrogates such as Gaussian Processes. In addition, having to train an ensemble has
additional computational costs, due to the necessity of training multiple power law models. In the
future, we plan to investigate the combination of power laws with Gaussian Processes, as well as
investigate additional fidelity types.
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A Modeling
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Figure 7: Left: The performance of different power law formulations, as well as, the baselines on the
LCBench benchmark over the HPO budget. Right: The performance of the power law formulation
when min-smoothing is applied to the learning curve to ensure a monotonically decreasing learning
curve.

Label Formula

DPL α+ β · b−γ

Candidate 1 α− β · (b+ d)−γ

Candidate 2 α− β · (e · b+ d)−γ

Broken Law α+ β · b−γ ·
(
1 +

(
b
d

1
f

))−c·f

Table 1: Alternative power law formulations for
the DPL surrogate.

To inspect the modeling choices of the power
law functions used as our surrogate, we con-
sider different formulations for the ensemble
members of our surrogate as shown in Table 1.
Initially, we consider Candidate 1 which can
handle shifts in the learning curve by introduc-
ing an additional parameter d. Furthermore, we
consider a more complex version, Candidate 2,
that allows us to additionally scale the budget,
by introducing variable e. Lastly, we consider
Broken Laws [5] (BPL), which can handle breaking points in the learning curve. We use a version that
can handle one breaking point since the authors of the method suggest it as a sufficient formulation to
approximate the majority of cases. We run the DPL surrogate with every individual formulation on
the LCBench benchmark to investigate their empirical performance.

Figure 7 presents the results, where, our chosen surrogate formulation (DPL) despite being the
simplest, outperforms all other formulations. The Candidate 2 formulation does not manage to
outperform all competitor methods, the Candidate 1 formulation manages to outperform all rival
methods, however, only with a marginal difference. The Broken Law formulation manages to
outperform all the rival baselines by a considerable margin, however, it still performs worse than the
simple power law formulation used for DPL.

We would like to point out that the alternative power law formulations are more difficult to opti-
mize/run since they are prone to diverge and fall into a dead state given different combinations
of parameter values. The most common is division by zero for e.g. d term in the Broken Law
formulation, taking the root of a negative number b+ d term in Candidate 1, e · b+ d for Candidate 2
and the d term in Broken Law.

We additionally consider min-smoothing the learning curve y, by taking at each step b of the learning
curve the minimal value of the learning curve ysmooth

b where, ysmooth
b = min (y0, y1, ..., yb). The

min-smoothing allows diverging curves to be formulated as power laws since the diverging phase
will be substituted with stagnation. Figure 7 shows that incorporating learning curve min-smoothing
for our surrogate (SPL) performs comparably to DPL without learning curve smoothing and manages
to beat the other HPO baselines.

15



B nanoGPT-Bench

In recent years, deep learning research has increasingly focused on large-scale models, particularly
Large Language Models (LLMs) like the Generative Pre-trained Transformers (GPTs). To evaluate
the effectiveness of search algorithms, we propose a benchmark based on the nanoGPT model [21],
reproducing the performance of the small GPT-2 [39] model trained on the OpenWebText dataset [13].

Our experimental setup is designed with the practicalities of real-world hardware constraints in
mind. The common practice in the field is to perform Hyperparameter Optimization (HPO) on an
informative proxy task that adheres to model size scaling laws [37], and then to apply these optimized
parameters to larger models. This pragmatic approach is necessitated by the fact that training larger
models would require significantly more expensive computational resources and time. Within these
constraints, we focus our experiments on NVIDIA RTX 2080 GPUs.
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Figure 8: nanoGPT-Bench search space parametrization.

Baseline: We train a small nanoGPT model, a scaled-down variant of the small GPT-2, reducing the
parameter count to approximately 30 M from the original 124 M parameters. The model architecture
includes 6 transformer layers and 6 attention heads, and the embedding size is set to 384. The AdamW
optimizer is utilized for training, with the first and second moment estimates configured to 0.9 and
0.98, respectively. The weight decay is set to 10−1, and we apply gradient clipping at a value of 1.0
to prevent large gradients from causing instability in the model training. For the training process, we
optimize the cross-entropy loss for next-token prediction. The process involves 350 steps, with each
step encompassing 1000 random samples, with a batch size of 12. Each data point has a context size
of 512 tokens, encoded using OpenAI’s token embeddings (sized of 50304). This procedure ensures
that even the most resource-intensive experiments stay within the limits of a single GPU day.

HP Values

Max LR [10−5; 10−4; 10−3]
Min LR [1%; 10%] of Max LR

Warmup Steps [10%; 20%] of Budget

Table 2: Search space of nanoGPT-
Bench.

Search Space: Our hyperparameter search space con-
struction involves varying the number of warmup steps,
along with the maximum and minimum learning rates for
the cosine scheduler. The specific parametrization of the
scheduler is illustrated in Figure 8. The discretized choices
are presented in detail in Table 2.

Fidelity Space: To construct the fidelity space, we focus
on two key dimensions: the number of training steps and
the transformer’s embedding size, serving as a proxy for
model size. In this exploration, the natural fidelity of the number of training steps is visualized by
the validation curves during model training as depicted in Figure 9. On the other hand, the end
performance correlation between the different fidelities is reflected by the Pearson correlation in
Table 3. We establish proxy tasks by sampling embedding size from a log scale, {6, 12, . . . , 96, 192},
with the maximum being 384. Consequently, each configuration has 6 proxy and one target task,
leading to a total of 84 unique configurations in our full benchmark. Every configuration is trained
for 350 steps.
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Figure 9: Validation loss curves during model training for all nanoGPT-Bench configurations across
model fidelity values.
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Figure 10: Scaling of model size in relation to bytes, FLOPS, and runtime based on average values
across all nanoGPT-Bench configurations.

Due to the GPU under-utilization of small model sizes, the runtime scales linearly as the model size
scales exponentially. This relationship can be observed in Figure 10 and Figure 11. We expect the
runtime to scale in a linear proportion to the model size when larger models are considered.

Embedding Size Correlation

6 0.951
12 0.880
24 0.971
48 0.955
96 0.987
192 0.994
384 1.000

Table 3: Pearson correlation across 7 fidelities.

Figure 12 illustrates the effectiveness of DPL,
particularly when the number of training steps
is considered as a fidelity dimension. Vertical
dotted lines denote the iteration at which an algo-
rithm identifies the oracle value with an absolute
tolerance of 0.01.

Figure 13 depicts the results over the different
values of the embedding fidelity. We utilized
DPL, BOHB, and random search in proxy tasks,
incrementing the budget allocation over each
run, up to a horizon of 6 full-function evalua-
tions. From these proxy tasks, we extracted the incumbent hyperparameters and evaluated their
performance on the target task, that correponds to the maximum embedding size of 384.

Despite operating within short regimes, DPL consistently outperforms baselines in terms of the mean
incumbent value and the explored regime, as evidenced by error bars indicating the range between
best and worst incumbents across 10 seeds. It should be noted, however, that the correlation between
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Figure 11: Distribution of GPU-hours required for training across different model fidelity values.
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Figure 12: The incumbent performance of DPL and other baselines during the HPO budget of 6 full
function evaluations for different values of the embedding size fidelity. Dashed lines indicate the
point at which the oracle has been evaluated for every algorithm. Solid curves and shaded areas stand
for mean value across runs and standard error.

proxy and target tasks is not always perfect. This can result in a proxy task incumbent that does not
translate to the oracle in the target task, which can be observed particularly at lower fidelity levels.
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budgets ranging from 1− 6 full function evaluations.
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Figure 14: The incumbent error of DPL, as well as, the baselines on the CIFAR10 task over the HPO
budget.

The primary objective of this study is to investigate the efficacy of Deep Power Laws (DPL) in trading
off exploration vs exploitation in a continuous HPO search space. In this study, we do not make use
of pre-computed tabular tables, but instead we optimize the hyperparameters of an EfficientNetV2
model online, by iteratively pausing unpromising configurations and moving forward only promising
hyperparameter configurations during the HPO optimization procedure.

To benchmark our findings, we contrast the results against established baseline algorithms such as
random search, BOHB, and SMAC.

Baseline: We employ EfficientNetV2 [43] as a benchmarking model and train it on the CIFAR10
dataset [24]. Specifically, we train the lightweight variant of EfficientNetV2-b0 from scratch for 50
epochs, using the RMSprop optimizer. The learning rate is initiated at 10−6 and gradually increased
over a span of five warmup epochs to reach the learning rate value of 5 · 10−4. Following the warmup
phase, we employ a cosine learning rate scheduler, with a decay factor of 0.97 applied every 10
epochs. The weight decay is set at 10−5, with no momentum used. Furthermore, the dropout rate is
configured to be 10−6 and the model’s moving average exponential decay is set at 0.9996. During
the training phase, the batch size is set to 64, while for the validation phase, it is reduced to 8. All
experiments are performed using the timm library [46].
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HP Values

LR [10−5, 10−2]
weight decay [0, 10−1]

Table 4: Search space of CIFAR10 task.

Search Space: In our experiment, we concen-
trate on optimizing the two most critical hy-
perparameters, learning rate, and weight decay,
while keeping the remaining hyperparameters
fixed as per the baseline model. We construct
a search space for these two hyperparameters
in accordance with common practices (Table 4).
To emulate a continuous search space for the acquisition function, we generate 100 equally-sized
steps on a logarithmic scale from the lower bound to the upper bound of each dimension. This process
yields a search space comprising 104 potential configurations.

Our method demonstrates a substantial speedup in terms of anytime performance when compared to
baseline algorithms (Figure 14). Acknowledging the practical constraints of evaluating large-scale
models, we pragmatically allocated an HPO budget for a maximum of 3 full-function evaluations,
equivalent to 150 epochs. The results of our exploration underline the compelling potential of the DPL
algorithm to effectively manage HPO tasks within a continuous search space. Exhibiting significant
speedup gains, DPL proves itself to be not only viable but an efficient method for identifying optimal
hyperparameters. The findings further underscore the adaptability and efficacy of DPL in addressing
complex HPO tasks, reinforcing its standing as a valuable tool in the machine learning toolbox.

D PD1 Investigation
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Figure 15: Configuration test performance histograms for datasets where DPL does not outperform
baselines.

We investigate the datasets: fashion_mnist_max_pooling_cnn_tanh_batch_size_256,
cifar100_wide_resnet_batch_size_256, svhn_no_extra_wide_resnet_batch_size_1024,
where DPL does not outperform other methods for the PD1 benchmark as shown in Figure 23. We
analyze the test performance of the individual hyperparameter configurations that belong to the
aforementioned datasets. Figure 15 shows that the search spaces of the datasets have a skewed
distribution of performances, where, there exist a large number of hyperparameter configurations that
achieve top performance. In such datasets, even a non-model based technique will quickly find a
well-performing configuration, since, there is a high chance for a randomly-sampled configuration to
achieve the top performance. For this reason, there is little room for sophisticated HPO techniques in
these datasets.

To further validate our hypothesis, we investigate two additional datasets dionis from the LCBench
benchmark and uniref50_transformer_batch_size_128 from the PD1 benchmark, where DPL
achieves a strong performance compared to baseline HPO methods. The results in Figure 16 show
that DPL excels on tasks that are complex and that require optimizations to find hyperparameter
configurations that achieve top performance.

Based on the results, we conclude that the lack of statistical significance in PD1 is not a specific
failure mode of DPL, but a consequence of multiple PD1 datasets where the majority of configurations
achieve the top performance.
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Figure 16: Histograms of the distribution of performances for datasets where DPL performs strongly.
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Figure 17: The percentage taken by the DPL overhead in the total time per iteration for the different
embedding sizes in nanoGPT-Bench.

E DPL Overhead

To investigate the efficiency of DPL in terms of method runtime, we investigate the percentage of
time that the DPL overhead contributes in the total time taken to perform one HPO iteration in the
nanoGPT-Bench. The total time taken constitutes of the DPL overhead (training the DPL surrogate,
calling the acquisition function to suggest the next hyperparameter configuration) and the time taken
to run the target algorithm for one more step. Figure 17 shows that the impact of the DPL overhead is
negligible in the total time taken. For the smallest embedding of size 6, DPL takes only 10% of the
total time taken to perform one HPO iteration after spending half of the optimization budget. At the
end, after circa 40 hours of HPO optimization, DPL has an impact of 20% in the total time taken
to perform one HPO iteration. The impact is even smaller for the largest embedding of size 384,
where DPL has an impact of only 5% in the total time taken per iteration after spending half of the
optimization budget and it has an impact of only 10% in the total time per iteration after more
than 120 hours of HPO optimization.

The findings validate our claim that DPL has a minor time overhead in performing hyperparameter
optimization, which explains the strong any-time performance of our method.
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F Details of Considered Benchmarks

LCBench: We use the official implementation as the interface for the LCBench benchmark 2. As
suggested by the authors, we use the benchmark information starting from the second step and we
skip the last step of the curve since it is a repeat of the preceding step.

TaskSet: The TaskSet benchmark features 1000 diverse tasks. We decide to focus on only 12 NLP
tasks from the TaskSet benchmark to add variety to our entire collection of datasets. Our limitation
on the number of included tasks is related to the limited compute power, as we are unable to run for
the entire suite of tasks offered in TaskSet. TaskSet features a set of 8 hyperparameters, that consists
of i) optimizer-specific hyperparameters, such as the learning rate, the exponential decay rate, β1 and
β2, and Adam’s constant for numerical stability ε, ii) hyperparameters that control the linear and
exponential decay schedulers for the learning rate decay, and lastly iii) hyperparameters that control
the L1 and L2 regularization terms. Every hyperparameter in TaskSet except β1 and β2 is sampled
logarithmically.

PD1: We use the synetune library [42] for our interface to the PD1 benchmark. From the benchmark,
we only include datasets that have a learning curve of length greater than 10. We furthermore only
include datasets that have a learning curve lower or equal to 50 to have a fair comparison between all
benchmarks by having approximately 20 full-function evaluations. PD1 features 4 numerical hyper-
parameters, lr_initial_value, lr_power, lr_decay_steps_factor and one_minus_momentum,
where lr_initial_value and one_minus_momentum are log sampled. The learning rate decay is
applied based on a polynomial schedule, its hyperparameters taken from the search space.

G Baselines

Random Search: We implemented random search by randomly sampling hyperparameter configura-
tions from the benchmarks with the maximal budget.

Hyperband, BOHB, LCNet: We use version 0.7.4 of the HpBandSter library as a common codebase
for all 3 baselines 3. For the last approach mentioned, despite heavy hyperparameter tuning of the
method, we could not get stable results across all the benchmarks and hence dropped the method
from our comparison.

ASHA: For the implementation of ASHA we use the public implementation from the optuna library,
version 2.10.0.

DEHB: We use the public implementation offered by the authors 4.

MF-DNN: In our experiments we used the official implementation from the authors 5. However, the
method crashes which does not allow for full results on all benchmarks.

SMAC: For our experiment with SMAC we used the official code base from the authors 6.

Dragonfly: We use version 0.1.6 of the publicly available Dragonfly library.

For all the multi-fidelity methods considered in the experiments, we use the same minimal and
maximal fidelities. In more detail, for the LCBench, TaskSet and PD1 benchmarks we use a minimal
fidelity lower bound of 1 and a maximal fidelity lower bound equal to the max budget.

H Plots

In Hypothesis 1, we prove that DPL achieves a better performance in comparison to other models
in estimating the final performance for different hyperparameter configurations based on partial
observations. Our analysis shows that DPL manages to retain the ranks of different hyperparameter

2https://github.com/automl/LCBench
3https://github.com/automl/HpBandSter
4https://github.com/automl/DEHB/
5https://github.com/shib0li/DNN-MFBO
6https://github.com/automl/SMAC3
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Figure 18: The absolute relative error distribution of DPL over the different learning curve fractions
in the LCBench benchmark. The distribution is calculated from the ground truth and prediction
values, averaged over all configurations of a dataset. Every distribution is over the datasets.

configurations. We complement Hypothesis 1 by additionally investigating the absolute relative error.
We measure the difference between the DPL estimation of the final learning curve value for different
fractions of available partial observations vs the actual end performance. Figure 18 shows that DPL
does not only retain the ranks of the final performances of different hyperparameter configurations,
but it also correctly estimates the final performance by attaining a small relative error, where the error
is reduced the more partial observations we have from the learning curve.

In Hypothesis 3, we investigate the efficiency of DPL in exploring more promising configurations
compared to other HPO methods. In Figure 19 we provide the same comparison with regards to the
PD1 benchmark. Based on the results, we conclude that DPL explores more promising configurations
compared to other HPO methods.
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Figure 19: Post-hoc analysis to study DPL’s efficiency. Left: Share of the best candidates selected
during training. Middle: Average regret of configurations chosen to be trained at each budget. Right:
Share of top third configurations at a given budget which were bottom two third configurations at a
previous budget.

Lastly, we provide the per-dataset performances of all methods, where we present the mean regret
of the incumbent trajectory and the standard error over 10 runs in LCBench (Figure 20 and 21),
TaskSet (Figure 22), and PD1 (Figure 23). The results show that DPL consistently outperforms other
methods in the majority of cases achieving strong any-time performance and not only a strong final
performance.
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Figure 20: Performance comparison over the number of epochs on a dataset level for LCBench. We
plot the mean value over 10 runs and the standard error.
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Figure 21: Performance comparison over the number of epochs on a dataset level for LCBench
(cont.). We plot the mean value over 10 runs and the standard error.
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Figure 22: Performance comparison over the number of steps on a dataset level for TaskSet. We plot
the mean value over 10 runs and the standard error.
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Figure 23: Performance comparison over the fraction of the total optimization iterations on a dataset
level for PD1. We plot the mean value over 10 runs and the standard error.
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