
A Notation Table

We summarize the frequently-used notations in this paper in Table 3.

Table 3: Notations used in this paper.
Notation Definition

n Number of nodes
nl Number of labeled nodes
nu Number of unlabeled nodes
k Node index
c Number of classes
d Dimension of node features
b Size of query node set
B Total labeling budget
m Number of smallest eigenvalues of L̃
G Graph
V Node (index) set
E Edge Set
Vl Labeled node (index) set
Vu Unlabeled node (index) set
Vq Query node (index) set

X ∈ Rn×d Node feature matrix
A ∈ Rn×n Unormalized adjacency matrix

Ã ∈ Rn×n Unormalized adjacency matrix
with added self-loop

ˆ̃A ∈ Rn×n Normalized adjacency matrix
with added self-loop

D ∈ Rn×n Degree matrix

D̃ ∈ Rn×n Degree matrix
with added self-loop

L̃ ∈ Rn×n Normalized Laplacian matrix
with added self-loop

L̃λ ∈ Rn×n L̃+ λI
Θ Trainable parameters

U(Θ) ∈ Rn×c Node embedding matrix
(before softmax function)

Ui(Θ) ∈ Rc Node embedding vector for node i

u(Θ) ∈ Rn Node embedding matrix
for binary classification

ui(Θ) ∈ R Node embedding vector for node i
for binary classification

Λλ ∈ Rm×m m smallest eigenvalues of L̃λ

V = [v1, · · · ,vm] ∈ Rn×m vi is the eigenvector
corresponding to λi

α = V⊺u(Θ)Rm Node embeddings projected onto
the truncated spectral subspace

xi ∈ Rd Node feature for node i
yi ∈ {0, 1}c Ground-truth hard label for node i
ŷi ∈ [0, 1]c Predicted soft label for node i

yi ∈ {0, 1}
Groud-truth hard label for node i

for binary classification

ŷi ∈ [0, 1]
Predicted soft label for node i

for binary classification
S(·) Softmax function
σ(·) Sigmoid function
ϕ Activation function

ℓ(·, ·) : Rc × Rc → R+ Loss function

17

B Related Work

B.1 General Active Learning

In numerous fields, acquiring labeled data can be costly. As a result, active learning (AL) [85] has been
introduced to develop a classifier that accurately predicts labels for new instances while minimizing
the number of training labels required. An AL framework typically comprises two main elements:
a query system that selects an instance from the training data to request its label and an oracle that
provides the label for the chosen instance. Various algorithms have been suggested by researchers to
enhance training performance within a set labeling budget. The majority of the work can be grouped
into three categories based on the query strategy [1]: uncertainty-based, representativeness-based,
and performance-based. Table 4 and Table 5 contain a detailed comparison of these categories with
representative methods. Generally, distinct implementations of the three primary AL categories
can be proposed for different classification algorithms. No “optimal” AL solution exists for all
classification tasks.

Table 4: Comparison between different general active learning query strategies.
Categories Representative Methods Query Set Selection Strategies

Uncertainty-based
Uncertainty Sampling

[83, 50] Samples that are most uncertain

Query by Committee (QBC)
[56, 52]

Samples that multiple
classifiers disagree most

Representativeness-based
Density-weighted methods

[14, 46, 15]
Samples with

the most information density
Cluster-based methods

[49, 13, 72]
Samples that are the most
representative of clusters

Performance-based

Expected Error Reduction (EER)
[53]

Samples that lead to the
minimum expected prediction error

Expected Variance Reduction
[54]

Samples that lead to the
minimum expected output variance

Expected Model Change Maximization (EMCM)
[6]

Samples that lead to the
maximum expected model change

Table 5: Comparison between different general active learning query strategies (Cont.).
Categories Strengths Weaknesses

Uncertainty-based Simple and efficient Sensitive to outliers

Representativeness-based Robust to outliers Sensitive to density estimation
or clustering algorithms

Performance-based Directly or closely related to
the model performance Computationally expensive

B.2 Active Learning on Graphs

We give a brief review of recent works that adapt active learning strategies to graph-structured
data. Early works in active learning on graphs [103, 45, 3, 21, 29, 12] are designed specifically
for non-deep-learning models and/or fail to take the node features into consideration. As deep
geometric learning and GNNs become popular, iterative node selection criteria were designed upon
the expressiveness of GNNs. AGE [4] proposes several query node set selection criterion like
the information entropy as the uncertainty measure and the density score as information density.
ANRMAB [18] improves AGE by introducing a multi-armed bandit mechanism for adaptive decision-
making. SEAL [38] devises a novel AL query strategy in an adversarial way. ALG [88] decouples the
GNN model and proposes a new node selection metric that maximizes the effective reception field.
RIM [89] and IGP [90] both consider selecting the nodes that lead to maximum number of influenced
nodes or maximum information gain of all influenced nodes. GRAIN [91] further improves the data
efficiency of GNNs via a diversified Influence maximization principle. GraphPart [41] first splits
the graph into disjoint partitions and then selects representative nodes within each partition to query.
ScatterSample [41] collects nodes with large uncertainty from different regions of the sample space

18

Table 6: Summarization of different active learning methods for graph-structured data.
Categories General Active Learning Strategies Active Learning on Graphs

Non-DL-based DL-based
Uncertainty-based Uncertainty Sampling [103] [4, 37, 41]

Query by Committee (QBC) [3] [86]

Representativeness-based Density-weighted methods [69] [89, 91, 90]
Cluster-based methods [3] [41]

Performance-based
Expected Error Reduction (EER) [45, 21] [51]

Expected Variance Reduction [29] -
Expected Model Change Maximization (EMCM) [47] Ours

1

2
43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2
43

7 8

5
6

𝒱!: 1,2

𝒱":
3,4,5,
6,7,8 𝒱":

3,4,5,
7,8

𝒱!: 1,2,6

Initialize 𝒱!, 𝒱"

Predict if labeling
budget is exhausted

Select if labeling budget
is not exhausted

Query the oracleTrain the GNN model

Update 𝒱!, 𝒱"

𝒜 				 = 29
𝒜 				 = 17
𝒜 				 = 11
𝒜 				 = 76
𝒜 				 = 34
𝒜 				 = 68

3

4

5
6

7
8

Informativeness

Figure 4: The process of pool-based active learning on graphs (Algorithm 1).

for labeling. SmartQuery [37] uses a hybrid uncertainty reduction function. GEEM [50] extends the
Expected Error Reduction method for graphs with a preemptive querying system. Other works also
utilize reinforcement learning for AL on graphs [25, 97] or analyze the theoretical guarantees of AL
algorithms on graphs [70, 66, 65]. Most of these works extend the general active learning strategies
for graph-structured data and we compare some representative methods for active learning on graphs
in Table 6.

There are also some existing works that are closely related to our work but are out of the scope of
this paper. Instead of the common node classification task, other works also explore active learning
strategies for link prediction [30] and graph classification [73]. Some recent works also construct a
graph from the training data like images to improve the general active learning algorithms [8, 87].
These works are not comparable with our work since we only focus on active learning for the
node-level classification task with the given graph data in hand.

We illustrate the general process of pool-based active learning on graphs in Figure 4 and present the
corresponding pseudocode in Algorithm 1. We first initialize a few nodes with the labels and then
we enter the active learning loop with the given labeling budget. In each AL interaction, we first
train the GNN model in a semi-supervised setting with the existing labeled nodes. This training step
is inevitable to obtain meaningful predictions. Next, the most important step is to select the most
informative node(s) from the pool of the remaining unlabeled nodes. To measure informativeness, the
acquisition function A(·) of each candidate unlabeled node is usually designed. The node with the
largest acquisition function value will be used to query the oracle for its label. Different graph active
learning methods reviewed above have different designs of the acquisition function under different
principles like EMCM. Finally, we update the labeled node set and the unlabeled node set for the next
AL iteration. This process will be repeated until the labeling budget is exhausted and the predictions
made by the last trained GNN model are used as the final predictions.

19

1

2
43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

Assume candidate’s label
is revealed.

Infer how the model’s
parameters or predictions
would change.

Compute the informativeness
of the candidate via 𝒜(#).

3

…

…

6

8

… ……

… … …

Select the node with
largest 𝒜 # for query.

Look-ahead model

𝒜 						 = 293

𝒜 						 = 766

…

𝒜 						 = 68

…
8

Figure 5: The high-level design principle of performance-based active learning methods on graphs.

B.3 Expected Model Change Maximization (EMCM)

B.3.1 Look-ahead Model in Performance-based Methods for Active Learning

Before we introduce the idea of Expected Model Change Maximization (EMCM) in AL, we briefly
revisit the design principle of the acquisition function in performance-based methods for active
learning, as shown in Figure 5. The performance-based AL methods choose the most informative
node for query by analyzing the potential influence of the selected node on the model performance if
it is added into the labeled node set for training. More specifically, the performance-based methods
usually consider the look-ahead model. We first hypothetically assume one candidate node x+

k from
the pool of the unlabeled nodes is chosen for query and its label is revealed as y+

k by the oracle. Then
we analyze the potential influence of this candidate node (x+

k ,y
+
k) on the model’s parameters or

predictions if it is added to the labeled node set for the next round of training. The informativeness
measurement of this candidate node can then be computed via the designed acquisition function A(·),
recording the change of the model parameters (EMCM) or the prediction error on the remaining
unlabeled nodes (EEM/EER). We finally iterate all the candidate nodes in the pool and select the
node with the largest acquisition function value as the query node for the oracle.

The major challenge of performance-based methods lies in how to infer the change in the model’s
parameters or predictions after the addition of the labeled candidate node into the training set without
actually re-training the model. Even though we can obtain the exact change of the model parameters or
predictions via re-training the model with the newly added labeled candidate node, the computational
overhead is unbearable for practical use since the number of unlabeled nodes is quite large. The
acquisition function in our proposed method is delicately designed for approximating such change in
GNN parameters or node embeddings if the candidate node is added to the labeled node set.

B.3.2 Expected Model Change Maximization (EMCM) in General Active Learning

As an important subcategory of performance-based methods, the model-change-based idea has been
studied in the general AL literature [6, 5]. We first present the general framework of EMCM. After
that, we give an empirical interpretation of EMCM to motivate this idea.

The objective of transductive semi-supervised learning can be represented as learning a function
f(·) parameterized with Θ, which minimizes the empirical loss L on the given training data D =
{Dl, Du} with the labeled data {(xi,yi)}i∈Dl

and unlabeled data {xi}i∈Du
.

L =
∑
i∈Dl

ℓ(f(xi;Θ),yi) + L′ (14)

Here, the training loss L consists of two terms: the supervised loss term
∑

i∈Dl
ℓ(f(xi;Θ),yi) and

the unsupervised loss term L′ without the use of label information. ℓ(·, ·) can be set as the cross

20

entropy loss in the classification task and squared loss in the regression task. To minimize L in
Eq. (14), we commonly use SGD to search for

Θ∗ = argmin
Θ

L.

In the active learning setting, we consider the influence of a candidate instance (x+
k ,y

+
k) if its label

is revealed to the model. Hence, the empirical training loss on the new training set Dl ∪ (x+
k ,y

+
k)

and Du \ x+
k becomes as

Lk,y+
k = L+ ℓ(f(x+

k ;Θ),y+
k). (15)

Eq. (15) is called the look-ahead model in the active learning literature. Note that in the transductive
setting, the model has access to all samples {xi}i∈D in the training data D and the unsupervised loss
L′ in Eq. (14) does not depend on the label information {yi}i∈Dl

. Therefore, L′ remains the same
when we move the candidate instance from the unlabeled set Du to the labeled set Dl. Similarly, the
updated trained parameters becomes as

Θ̃
∗
= argmin

Θ
Lk,y+

k .

The idea of model change maximization [7] aims to select the sample k∗ that leads to the maximum
model change and we can formulate the corresponding acquisition function as

k∗ = argmax
k∈Du

A(k) = argmax
k∈Du

∥ argmin
Θ

Lk,y+
k − argmin

Θ
L∥2 = argmax

k∈Du

∥Θ̃∗ −Θ∗∥2 (16)

It is also worth noting that in the original paper [7], we can approximate the model change

∥Θ̃∗ −Θ∗∥2 ≈ ∥α
∂Lk,y+

k

∂Θ
∥2

via the SGD update rule Θ̃
∗ ← Θ∗ − α∂Lk,y

+
k

∂Θ with α as the learning rate. However, the learning
rate may not be identical during the training for each candidate sample, we still stick to the exact
measure of ∥Θ̃∗ −Θ∗∥2.

In practical settings, we cannot directly calculate the model change in Eq. (16), since the true label
y+
k of the candidate example x+

k is unknown before querying. Instead, we extend the idea of model
change maximization to the Expected Model Change Maximization (EMCM) [5]. Assume the label
lies in the label space Y . For regression tasks, our EMCM criterion for AL is formulated as

k∗ = argmax
k∈Du

A(k) = argmax
k∈Du

∫
Y
P(y+

k | x
+
k)∥Θ̃

∗ −Θ∗∥2dy+
k .

For the classification task, our EMCM criterion for AL is formulated as

k∗ = argmax
k∈Du

A(k) = argmax
k∈Du

∑
y+
k ∈Y

P(y+
k | x

+
k)∥Θ̃

∗ −Θ∗∥2.

We finally introduce a high-level intuitive interpretation of the EMCM principle in AL. The model
change is a reasonable indicator for reducing the generalization error for the following two major
reasons. First, The generalization capability can be changed if and only if the current model is
changed. As a result, it is useless to query the instance that cannot update the current model in
AL. Second, The data points significantly changing the current model are expected to produce a
faster convergence speed to the true model, and this is the underlying motivation behind the EMCM
framework.

We here note that a big change in the current model does not always lead to better generalization
performance, since an outlier also results in a big model change. However, in AL tasks, unlabeled
examples are repeatedly selected from a given pool set. Once the model has been changed by an
outlier, the EMCM strategy will certainly query a good example in the next data selection iteration
that maximizes the change again, which immediately relieves the negative effect of the outlier. In
practice, because the amount of outliers is usually very restricted in the data, it is reasonable to
believe that the EMCM framework will result in very good generalization performance with more
data instances queried.

21

C More Discussions of the Proposed Method

C.1 The Bayesian Probabilistic Learning Framework for GNNs under SSL

C.1.1 Active Learning and Semi-supervised Learning

The relationship between active learning and semi-supervised learning lies in their common objective
of making the most of limited labeled data. In fact, active learning can be seen as a way to select the
most informative instances from an unlabeled dataset to be labeled under semi-supervised learning.
By actively querying labels for the most informative instances, active learning can help to effectively
utilize the limited labeling resources in a semi-supervised learning setup. Therefore, our starting
point is to revisit the training process of GNNs under the semi-supervised setting. Note that in the
node selection step in graph active learning in Figure 5, we are actually faced with a semi-supervised
node classification task with the current labeled node set and we want to infer what the predictions
would be if we add one candidate node into the labeled node set using the look-ahead model. Our
recap of the GNNs under the semi-supervised learning setting in Sec. 3.1 provides an alternative view
of the model predictions, making it possible to efficiently approximate the expected results without
re-training GNNs in the look-ahead model.

C.1.2 Advantages of Bayesian Interpretation of Backbone GNN Models for Active Learning

Bayesian Interpretations of the backbone GNNs can help to design the acquisition function for active
learning in a more interpretable and principled manner. First, many active learning methods are
uncertainty-based by selecting the most uncertain node in the pool of the unlabeled nodes since we
can assume that the node that the model is most unsure about should reside near the decision boundary.
By selecting such uncertain nodes for query, the model may gain the most valuable information about
the underlying distribution of the input samples. However, many backbone GNN models like GCN
do not possess such Bayesian interpretations in nature so the uncertainty quantification by GNNs
directly is not convincing for the design of the subsequent acquisition function. Therefore, we prefer
the backbone GNN models that could have clear Bayesian interpretations for the uncertainty-based
active learning methods. Second, some performance-based active learning methods by analyzing the
influence of a candidate node could have the model performance or model parameters if its label
is added to the training set by the oracle. The look-ahead model introduced in Appendix B.3.1 is
widely used in performance-based methods and the predictions in the look-ahead model should
be efficiently obtained without re-training after adding the new candidate node. By providing the
Bayesian interpretations of the backbone GNNs, we actually present an alternative view of the
output of the prediction or node embeddings by GNN models from the probabilistic perspective.
Therefore, we can now efficiently update the model predictions after observing the new candidate
node in the labeled set without re-training. In this work, we resort to a Bayesian interpretation of the
GNNs training due to the second reason since our method extends the EMCM method in a general
active learning setting, which is also a performance-based method. We leave the extension of other
uncertainty-based methods with our proposed Bayesian learning framework for future work as it is
out of the scope of this paper.

Some may argue that Bayesian GNNs have well-defined Bayesian interpretations. However, if we use
Bayesian GNNs as the backbone model, its training overhead is too huge to be employed in the active
learning process in Figure 4. Note that the training step in each AL iteration is inevitable in the active
learning setting. Besides, it is extremely difficult to find a good approximation of the predictions
in the look-ahead model for performance-based methods like EMCM since Bayesian GNNs also
treat the training parameters as distributions instead of point estimates, and treat graph structures as
random variables instead of the given fixed input. The resulting computed acquisition function for
each candidate node would also be the distributions instead of a real value. Therefore, we propose
a light Bayesian learning framework for GNNs and give a clear Bayesian interpretation for GNNs
without treating the model parameters as distributions. We leave the investigation of Bayesian GNNs
as the backbone of future work since it is also out of the scope of this paper.

C.1.3 Incorporation of other GNNs

Theorem 3.2 presents an equivalent view of Eq. (5) from the Bayesian perspective. Although it is
derived based on the SGC model, other GNNs can also be incorporated into this Bayesian learning

22

framework Eq. (6) without too many difficulties thanks to the unified optimization framework
regarding the forward pass of GNNs [102]. We list some other GNN models here. To make the
notations more compact, we omit the training parameters here and focus on the node embeddings U
or u instead.

GCN Following Theorem 3.2 in [102], we consider the one-layer GCN without the activation
function.

Theorem C.1 (Theorem 3.2 in [102]). The forward pass of a one-layer GCN, U(Θ) = ˆ̃AXΘ,
optimizes the following problem :

U(Θ) = argmin
U

Tr(U⊺L̃U) + ∥U−XΘ∥2F .

Here, L̃ = I− ˆ̃A is the normalized Laplacian matrix. Then,

U(Θ) = ˆ̃AXΘ.

Then for the binary node classification task, the relaxed single-level optimization problem becomes as

min
u
L =

∑
i∈Vl

ℓ(σ(ui), yi) + Tr
(
u⊺L̃λu

)
+ ∥u−XΘ∥22 (17)

PPNP/APPNP PPNP/APPNP [33] is a graph neural network that utilizes a propagation mechanism
derived from personalized PageRank and separates the feature transformation from the aggregation
process.
Theorem C.2 (Theorem 3.3 in [102]). The forward pass of PPNP/APPNP optimizes the following
problem :

U = argmin
U

Tr(U⊺L̃U) + ξ∥U− MLP(X)∥2F .

Here, L̃ = I− ˆ̃A is the normalized Laplacian matrix and MLP(·) is an MLP model.

Then for the binary node classification task, the relaxed single-level optimization problem becomes as

min
u
L =

∑
i∈Vl

ℓ(σ(ui), yi) + Tr
(
u⊺L̃λu

)
+ ξ∥u− MLP(X)∥2F . (18)

It is easy to see the optimization framework Eq. (18) is quite general and can also admit the GCN
optimization framework in Eq. (17). The optimization interpretation of the forward pass of other
GNNs can be found in Table 1 in [102]. It is also interesting to see that the classic label propagation
algorithm can be recovered if we set ξ = 0 in Eq. (18), where we neglect the node features.

Based on Eq. (18), we can obtain the following theorem similar to Theorem 3.2.
Theorem C.3. Solving Eq. (18) is equivalent to finding the maximum a posteriori (MAP) estimate of
the posterior probability distribution with the density P(u | y) as

P(u | y) ∝ µ(u) exp (−Φℓ(u)) . (19)

Here, the prior µ(u) ∝ exp
(
−Tr(u⊺L̃λu)− ξ∥u− MLP(X)∥2F

)
and the likelihood

exp (−Φℓ(u(Θ)) is defined by the likelihood potential Φℓ(u) :=
∑

i∈Vl
ℓ(σ(ui), yi). y = [yi]i∈Vl

∈
{0, 1}nl .

It is worth noting that now the prior in Theorem C.3 is no longer a Gaussian distribution as in
Theorem 3.2 and we cannot get the closed-form MAP solution as in Theorem 3.3 efficiently. Therefore,
we stick to the result derived from the SGC model from the theoretical perspective and verify the
generalization of the acquisition function to other GNNs from the empirical perspective. More
discussions can be found in Appendix C.2.3. We also leave the investigation of the closed-form
MAP estimator of other GNNs as future work since it is out of the scope of this work. The derived
acquisition function in Eq. (11) has already achieved great performance when it is tested with other
GNNs in the experiments (Sec. 4.2 with the paragraph title Generalization to Other GNNs), it is
fine to skip the more detailed investigation of the corresponding acquisition functions derived from
other GNNs.

23

1

2
43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

Assume candidate’s label
is revealed.

Infer how the model’s
parameters or predictions
would change.

Compute the informativeness
of the candidate via 𝒜(#).

3

…

…

6

8

… ……

… … …

Select the node with
largest 𝒜 # for query.

𝒜 						 = 293

𝒜 						 = 766

…

𝒜 						 = 688

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

𝒜 						 = 806

𝒜 						 = 406ℙ) = 0.16 6

ℙ) = 0.96 6

Θ∗ Θ"∗ Θ"∗ − Θ∗ "

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

…

1

2

43

7 8

5
6

1

2

43

7 8

5
6

1

2

43

7 8

5
6

EMCM

Figure 6: Expected Model Change Maximization (EMCM) for Active Learning on Graphs. The final
acquisition function value for each candidate node is the expected model change ∥Θ̃∗ −Θ∥2 taken
over the prediction probability of the candidate label.

C.1.4 Clarifications on the Size of Node Embeddings

In the literature, we sometimes may interpret the node embeddings as the output by the intermediate
layer of a GNN model and the dimension of the node embedding vector could be arbitrary. But, we
have to add an extra linear layer on top of such node embeddings to align the size of the output with
the number of the classes before the softmax layer for final predictions. However, in the original
papers like GCN [32] and SGC [68], the output dimension of the node embeddings is termed as the
output matrix right before the softmax layer, which exactly n× c, with the number of classes as c.
We stick to this notation in this paper for analysis.

C.1.5 Relationships with other Optimization Frameworks Unifying GNNs

From the discussion of Appendix C.1.3, our Bayesian learning framework for GNNs is based on the
existing optimization framework unifying the forward pass of GNNs [102]. Our Bayesian learning
framework extends the unified optimization framework and incorporates the backward pass of GNN
training for the semi-supervised node classification task as well, bringing new insights into the
interpretations of GNN models from the probabilistic aspect. There are also several recent works that
unify GNNs as well. ADA-UGNN [42] unifies GNNs from the perspective of graph signal denoising
and it also neglects the backward pass of GNN training as [102]. A very recent framework [23]
indeed considers both the forward and backward passes of GNNs and can be viewed as another
extension of Eq. (18) by viewing both the node embeddings and the model parameters as optimization
variables. This framework may admit more existing GNNs but it hinders the incorporation of
Bayesian interpretations and further employment in the look-ahead model for active learning. Our
proposed Bayesian learning framework for GNNs is lightweight and specifically designed for efficient
integration in the look-ahead model for active learning.

24

C.2 Expected Model Change Maximization for Graph Active Learning

C.2.1 Illustrations of EMCM for AL on Graphs

Eq. (7) extends the general EMCM principle to the GNN model, as illustrated in Figure 6. Based
on the discussions of EMCM in general AL (appendix B.3), we know that in practice, due to the
unavailability of the label for the candidate node during node selection, we can use the prediction
probability of the candidate node by the current model to obtain the expected model changes in
terms of model parameters in the EMCM acquisition function. For example, in Figure 6, the current
model makes the following predictions on candidate node 6, with the probability of 0.9 to be blue
and the probability of 0.1 to be red. Then by the look-ahead model, if we query node 6 for its
label and add it to the labeled node set, the model parameters will be updated accordingly from Θ∗

to Θ̃
∗
. We then calculate the change of parameters as ∥Θ̃∗ − Θ∗∥2 under all cases of potential

labels. The final acquisition function is to take the expectation of the model change with respect to
the predicted class probability. In this example, the final acquisition function value is computed as
80× 0.9 + 40× 0.1 = 76.

Eq. (7) actually measures the change of node embeddings directly as ∥u(Θ̃∗
)− u(Θ∗)∥2, instead of

the model parameters as ∥Θ̃∗ −Θ∗∥2. We make this change to obtain a more elegant closed-form
solution for efficiency since the proposed Bayesian learning framework focuses on the distribution of
the node embeddings instead of the model parameters. Moreover, the change in node embeddings is
equivalent to the change in model parameters in the SGC model since we fix u(Θ) = XΘ. The only
assumption is the orthogonality of the node feature matrix X⊺X = I and it generally holds when we
use the node id (basis vector) for the node feature vector. Since the l2 norm is orthogonality invariant,
we know that ∥u(Θ̃∗

)−u(Θ∗)∥2 = ∥XΘ̃
∗−XΘ∗∥2 = ∥Θ̃∗−Θ∗∥2 when we use the SGC model

as the backbone. We leave the more general case without such an orthogonality assumption on the
node feature matrix X as future work and it is out of the scope of this paper by now.

C.2.2 Bayesian Learning Framework via Truncated Spectral Projection

We add more details of Eq. (8) in the look-ahead model. Note that from Eq. (5), we have α = V⊺u(Θ)
and thus Vα = u(Θ).

min
Θ

u(Θ)=XΘ

L =
∑
i∈Vl

ℓ(σ(ui(Θ)), yi) + Tr
(
u(Θ)⊺L̃λu(Θ)

)
⇔min

Vα
L =

∑
i∈Vl

ℓ(σ(e⊺i Vα), yi) + Tr
(
α⊺V⊺L̃λVα

)
⇔min

α
L̃ =

∑
i∈Vl

ℓ(σ(e⊺i Vα), yi) + Tr (α⊺Λλα)

The above derivation holds since V⊺V = I.

C.2.3 Potential Use of other GNNs

Although the acquisition function in Eq. (11) is specifically designed for the SGC model, we can
still use other GNN models as the graph representation modelM in Algorithm 2 without anything
else changed. The resulting method still works because other GNNs only lead to more complex
forms of the optimization framework in Eq. (5) and the corresponding MAP estimator in Eq. (6), but
they are all the same in nature from the Bayesian perspective. The forward pass of any GNN model
defines a prior (not necessarily Gaussian now) over the node embeddings while the corresponding
backward pass specifies the likelihood based on the supervision loss function, working together to
determine the posterior. Therefore, Eq. (11) can be viewed as an approximation of the exact value of
model change if the backbone model is any other GNN model. The derived acquisition function in
Eq. (11) has already achieved great performance when it is tested with other GNNs in the experiments
(Sec. 4.2 with the paragraph title Generalization to Other GNNs). We leave the investigation of the
closed-form MAP estimator of other GNNs as future work since it is out of the scope of this work.

25

C.2.4 Multi-class Classification Extension with Cross-Entropy Loss

In this section, we derive all the necessary formulas when we apply EMCM method on graph active
learning for multi-class classification with the cross-entropy loss. Most of the results are adapted
from [47]. Recall that, the cross-entropy loss function

ℓ(x,y) = −
c∑

i=1

xi ln(yi),

and we want to incorporate it into the multi-class optimization framework Eq. (4) first. The cross-
entropy loss requires that both inputs are probability distribution vectors on the set of possible classes,
{1, · · · , c}. While the observations yi satisfy this property because of their one-hot form, the rows
of arbitrary U(Θ) ∈ Rn×c do not necessarily satisfy this same condition. The entries of U(Θ) are
not even constrained to be non-negative. As such, following the common practice in the field, we
apply the Softmax function S(·) on the rows of U(Θ) to enforce this probability distribution property.
Denoting the (i,c)-th entry of U(Θ) by Ui,c(Θ) and the c-th entry of yi by [yi]c, we have

S(Ui(Θ)) :=
1∑c

j=1 exp(Ui,j(Θ))

(
exp (Ui,1), · · · , exp (Ui,c)

)⊺
.

Therefore, we can rewrite Eq. (4) as

min
Θ

U(Θ)=XΘ

L =
∑
i∈Vl

−y⊺
i U(Θ) + ln

 c∑
j=1

exp (Ui,j(Θ))

+Tr
(
U(Θ)⊺L̃λU(Θ)

)
. (20)

Next, we apply Laplacian approximation and truncated spectral projection for the cross-entropy
model. For ease in calculations, we let the vector u(Θ) ∈ Rnc be the concatenation of the columns
of U(Θ). Likewise, define α ∈ Rmc to be the concatenation of the columns of the matrix A
(A = V⊺U(Θ)). Define

V := diag(V, V, . . . , V) ∈ Rnc×mc,

and
Λ⊗

λ := diag (Λλ,Λλ, . . . ,Λλ) ∈ Rmc×mc.

Define Pi ∈ Rc×nc to be the projection matrix that picks out the indices in u(Θ) ∈ Rnc correspond-
ing to node i; i.e., selecting the i-th row of the matrix U(Θ) ∈ Rn×c. Then u(Θ) = Vα, and with
êj denoting the j-th standard basis vector in Rnc, the truncated spectral projection for cross-entropy
model’s objective (similar to Eq. (8)) can be written as

min
α
L̃ =

∑
i∈Vl

−y⊺
i PiVα+ ln

 c∑
j=1

exp (α⊺V⊺êi+(j−1)n)

+Tr
(
α⊺Λ⊗

λα
)
. (21)

Define

πi
c :=

exp (α⊺V⊺êi+(c−1)n)∑c
j=1 exp (α

⊺VT êi+(j−1)n)
and πi :=

(
πi
1, · · · , πi

c

)T ∈ Rc.

The Laplace approximation for the CE model yields

α | Y ∼ N (α̂, Ĉα̂), α̂ = argmin
α

L̃, Ĉα̂ =
(
Λ⊗

λ + VT
(
DL(α)−ΠL(α)ΠT

L(α)
)
V
)−1

. (22)

Here,

DL (πc(α)) =
∑
i∈L

πi
c(α)eie

T
i , ΠL(α) =

DL (π1(α))
DL (π2(α))

...
DL (πc(α))

 ,

DL(α) =

DL (π1(α)) 0 . . . 0

0 DL (π2(α)) . . .
...

...
...

. . .
...

0 DL (πc(α))

 .

26

The inverse of Ĉα̂ ∈ Rmc×mc is not prohibitively costly to compute because of its restricted size.
The look-ahead MAP estimator is then given as,

α̂k,y+
k = α̂− Cα̂VT

k

(
I − TT

k

(
I + TkGkT

T
k

)−1
TkGk

) (
πk − y+

k

)
.

Here, Gk = VkCα̂VT
k , Vk := PkV , Bk := diag

(
πk
)
− πk

(
πk
)T

and Bk = TT
k Tk. The final

acquisition function is given as

A(k) =
c∑

i=1

P(y+
k = ei|k)

∥∥∥Cα̂VT
k

(
I − TT

k

(
I + TkGkT

T
k

)−1
TkGk

) (
πk − y+

k

)∥∥∥
2
. (23)

This is efficient to compute because calculating Eq. (23) involves only c× c matrices.

D Pseudocodes

D.1 Pool-based Active Learning on Graphs

We introduce the popular pool-based active learning setting for graph-structured data [88], where
a pool of unlabeled nodes is available for selection or query. Algorithm 1 provides a sketch of the
generic pool-based AL for any graph learning modelM.

Without the loss of generality, we consider a batch setting with B/b rounds where b nodes are selected
in each iteration. The target model is initialized and retrained on all of the labeled data from the
previous rounds to avoid any correlation between the selection. In each iteration, we train the model
with label supervision from the current labeled node set (line 4). Next, an active learner selects
the most valuable b nodes based on the acquisition function (lines 5-9). These b nodes constitute
the query node set, and their labels are annotated by the oracle. Finally, we update the labeled and
unlabeled node sets accordingly. The ultimate predictions are given by the model after it is trained on
the augmented labeled node set for the last time (lines 13-21). The core of active learning is to design
the acquisition function A(·).

Algorithm 1: Pool-based Active Learning Setting on Graphs
Input :Graph G = (V, E) with A,X, initial labeled node set Vl, query batch size b, labeling

budget B, acquisition function A(·).
Output :Predictions ŷi for all nodes i ∈ V .

1 V(0)
l ← Vl, V(0)

u ← V \ Vl
2 /* Augment the labeled node set with the oracle labeling budget B. */
3 for t← 0 to B/b− 1 do
4 Train a modelM based on G and V(t)

l // Train the model with current labeled set.
5 Vq = ϕ // Initialize the query node set as empty.
6 for k = 1, 2, · · · , b do
7 k∗ = argmax

k∈V(t)
u
A(k) // Select b most informative nodes based on A(·).

8 Vq ← Vq ∪ {k∗} // Query the oracle for labels.
9 end

10 V(t+1)
l ← V(t)

l ∪ Vq , V(t+1)
u ← V(t)

u \ Vq // Update labeled and unlabeled node sets.
11 end
12 /* Return the predictions for all nodes. */

13 Train the modelM based on V(B
b)

l // Train the model with the latest labeled set.
14 for i ∈ V do
15 if i ∈ V(B

b)

l then
16 ŷi ← yi // Return the ground-truth if the node has been labeled.
17 end
18 else
19 ŷi is set based on the predictions of the latest trained modelM
20 end
21 end
22 return {ŷi}i∈V

27

D.2 DOCTOR Algorithm for Binary Classification under Sequential Active Learning Setting

We first present the basic version of the DOCTOR algorithm with the sequential active learning
setting for binary classification (Algorithm 2). In the sequential active learning setting, we only select
the most informative node for labeling by the oracle one by one, which means that the query batch
size b = 1.

Algorithm 2 strictly follows the procedure in Algorithm 1 with b = 1 and the training modelM as
the SGC. The key step is lines 7-10, where we select the node that leads to the maximum expected
model change as the query node based on Eq. (11).

Algorithm 2: Expected Model Change Maximization on Graphs (DOCTOR) under the Sequential
Active Learning Setting for Binary Node Classification
Input :Graph G = (V, E) with A,X, initial labeled node set Vl, labeling budget B.
Output :Predictions ŷi for all nodes i ∈ V .

1 V(0)
l ← Vl, V(0)

u ← V \ Vl
2 Compute V based on L̃⊺

λ for truncated spectral projection
3 /* Sequential active learning setting. */
4 for t← 0 to B − 1 do
5 Train an SGC model to obtain the node embedding u(Θt) based on G and V(t)

l (Eq. (5) or
Eq. (4))

6 Obtain MAP estimator with mean α̂ = V⊺u(Θt) and covariance Ĉα̂ (Eq. (9))
7 for k ∈ V(t)

u do
8 Record the value of A(k) (Eq. (11)) // Expected model change w/o re-training.
9 end

10 Select k∗ = argmax
k∈V(t)

u
A(k) // Select the query node.

11 V(t+1)
l ← V(t)

l ∪ {k∗}, V
(t+1)
u ← V(t)

u \ {k∗} // Update labeled and unlabeled sets.
12 end
13 /* Return the predictions for all nodes. */

14 Train the SGC model based on V(B)
l

15 for i ∈ V do
16 if i ∈ V(B)

l then
17 ŷi ← yi // Return the ground-truth if the node has been labeled.
18 end
19 else
20 ŷi is set based on the predictions of the latest trained SGC model.
21 end
22 end
23 return {ŷi}i∈V

D.3 DOCTOR Algorithm for Binary Classification under Batch Active Learning Setting

In the batch active learning, the size of the query node set is larger than 1 (b > 1). Therefore, there is
an added difficulty of how to choose this subset in the optimal way. Sub-optimal results could not be
avoided if we directly choose the top b maximizers of the current values of {A(k)}

k∈V(t)
u

, as these
maximizers often are close in the underlying embedding space in a sense wasting the precious query
budget on redundant information.

Following the seminal work [17], we restrict the set of node indices on which the acquisition function
A(·) can evaluate from the whole currently unlabeled set to its smaller subset S ⊂ Vu. In other words,
we now select the batch query set Vq ⊂ S to be the top b maximizers of the designed acquisition
function, where S is chosen uniformly at random from Vu.

This has essentially two important and positive consequences. First, evaluating A(·) only on S is
obviously computationally faster since |S| ≪ |Vu|. Second, by selecting S ⊂ Vu at random, we
partially alleviate the problem of redundant calculations since the maximizers of A(·) over S likely
do not lie all close together. We apply this query set selection method to our batch active learning

28

experiments. The corresponding algorithm is presented in Algorithm 3, a batch query version of
Algorithm 2. The key changes are as follows. Now we generate S ⊂ V(t)

u uniformly at random (line
7) and then select the top b maximizers of the acquisition function (lines 8-11).

Extending sequential active learning methods to the batch active learning setting can pose certain
challenges. Sequential active learning methods often exploit dependencies between labeled and
unlabeled instances. In the batch setting, these dependencies can become more complex and in-
terwoven, especially when considering uncertainty or diversity measures across multiple instances
simultaneously. Designing strategies to capture and leverage these dependencies can be non-trivial.
Determining the appropriate batch size can be challenging. A larger batch size may increase efficiency
but can also introduce more uncertainty or diversity among instances, making it harder to make
confident labeling decisions. Conversely, a smaller batch size may not fully utilize the benefits of
the batch setting. In sequential AL, diversity is naturally preserved as new instances are added one
at a time. However, in the batch setting, there is a risk of losing diversity when selecting instances
collectively. Ensuring that the selected batch covers a diverse range of regions in the feature space
becomes challenging, and specialized sampling strategies are necessary.

In this work, we focus on the design of the acquisition function in the sequential active learning
setting and extend the proposed method in sequential AL to the batch AL with fixed query batch size
via the random sampling of the unlabeled pool. While an interesting question, this work does not
explore varying the batch size nor the candidate set size, we leave a more in-depth investigation of
the batch AL setting for future work as it is currently out of the scope of this paper.

Algorithm 3: Expected Model Change Maximization on Graphs (DOCTOR) under the Batch
Active Learning Setting Binary Node Classification
Input :Graph G = (V, E) with A,X, initial labeled node set Vl, query batch size b, labeling

budget B.
Output :Predictions ŷi for all nodes i ∈ V .

1 V(0)
l ← Vl, V(0)

u ← V \ Vl
2 Compute V based on L̃⊺

λ for truncated spectral projection
3 /* Batch active learning setting. */
4 for t← 0 to B/b− 1 do
5 Train an SGC model to obtain the node embedding u(Θt) based on G and V(t)

l

6 Obtain MAP estimator with mean α̂ = V⊺u(Θt) and covariance Ĉα̂ (Eq. (9))
7 Generate S ⊂ V(t)

u uniformly at random // Generate S with |S| ≪ |Vu|.
8 for k ∈ S do
9 Record the value of A(k) (Eq. (11)) // Expected model change w/o re-training.

10 end
11 Select top b maximizers of {A(k)}k∈S as Vq // Select the query node set.

12 V(t+1)
l ← V(t)

l ∪ Vq , V(t+1)
u ← V(t)

u \ Vq // Update labeled and unlabeled sets.
13 end
14 /* Return the predictions for all nodes. */

15 Train the SGC model based on V(B
b)

l
16 for i ∈ V do
17 if i ∈ V(B

b)

l then
18 ŷi ← yi // Return the ground-truth if the node has been labeled.
19 end
20 else
21 ŷi is set based on the predictions of the latest trained SGC model.
22 end
23 end
24 return {ŷi}i∈V

29

D.4 DOCTOR Algorithm for Multi-class Classification under Batch Active Learning Setting

We finally present the version of the proposed DOCTOR algorithm (Algorithm 4) for multi-class
classification under the batch active learning setting. Algorithm 4 is almost identical to Algorithm 3,
except we now use different formulas to compute the acquisition function.

Algorithm 4: Expected Model Change Maximization on Graphs (DOCTOR) under the Batch
Active Learning Setting Multi-class Node Classification
Input :Graph G = (V, E) with A,X, initial labeled node set Vl, query batch size b, labeling

budget B.
Output :Predictions ŷi for all nodes i ∈ V .

1 V(0)
l ← Vl, V(0)

u ← V \ Vl
2 Compute V based on L̃⊺

λ for truncated spectral projection
3 /* Batch active learning setting. */
4 for t← 0 to B/b− 1 do
5 Train an SGC model to obtain the node embedding U(Θt) based on G and V(t)

l

6 Obtain MAP estimator with mean α̂ and covariance Ĉα̂ (Eq. (22))
7 Generate S ⊂ V(t)

u uniformly at random // Generate S with |S| ≪ |Vu|.
8 for k ∈ S do
9 Record the value of A(k) (Eq. (23)) // Expected model change w/o re-training.

10 end
11 Select top b maximizers of {A(k)}k∈S as Vq // Select the query node set.

12 V(t+1)
l ← V(t)

l ∪ Vq , V(t+1)
u ← V(t)

u \ Vq // Update labeled and unlabeled sets.
13 end
14 /* Return the predictions for all nodes. */

15 Train the SGC model based on V(B
b)

l
16 for i ∈ V do
17 if i ∈ V(B

b)

l then
18 ŷi ← yi // Return the ground-truth if the node has been labeled.
19 end
20 else
21 ŷi is set based on the predictions of the latest trained SGC model.
22 end
23 end
24 return {ŷi}i∈V

E Proofs

We present the detailed proofs in this section and some of them are directly adapted from [47].

E.1 Theorem 3.1

Proof. We will prove Theorem 3.1 by induction. The optimization problem is as follows.

min
Θ̂

O(Θ̂) = Tr(U⊺L̃U), s.t. U = XΘ̂. (24)

Note that we will apply the gradient descent algorithm with the initialization of Θ̂ as Θ̂
(0)

= Θ.
Θ can be viewed as a constant in Problem (24) since Θ is the trainable parameter for SGC model
during the feed-forward propagation and it will only be updated during the back-propagation. We
are only interested in the forward pass in Theorem 3.1 for now and Θ̂ is the optimization variable in
Problem (24) instead of Θ.

The Basis Step. When K = 1, we start from the initialization Θ̂
(0)

= Θ and U(0) = XΘ̂
(0)

= XΘ.
Note that we have,

∂O

∂Θ̂
=

∂O

∂U
· ∂U
∂Θ̂

= 2X⊺L̃U.

30

Therefore, when we apply the gradient descent once to update Θ̂ with the step size α = 1
2 , we have,

Θ̂
∗
= Θ̂

(1)
= Θ̂

(0)
− α · 2X⊺L̃U(0) = Θ−X⊺L̃XΘ = (I−X⊺L̃X)Θ.

The node embedding matrix U is updated accordingly as

U(1) = XΘ̂
(1)

= (X−XX⊺L̃X)Θ = (I−XX⊺L̃)XΘ.

If we assume the node feature matrix is orthogonal (XX⊺ = I), we immediately have,

U(1) = (I− L̃)XΘ = ˆ̃AXΘ.

The last step is based on the definition of the normalized Laplacian matrix L̃ = I − ˆ̃A. We then
obtain that when K = 1, we have

U(Θ) = ˆ̃AXΘ = U(1) = XΘ̂
(1)

= XΘ̂
∗
.

Note that the orthogonal assumption of the node feature matrix X is generally easy to satisfy. If the
graph does not have node features, we can use the one-hot node index vector to construct X, which
trivially makes X an orthogonal matrix. If the graph has node features, then we can normalize the
node feature vector xi and apply the Gram-Schmidt process to generate an orthogonal X as the input.

The Hypothesis Step. When K ≥ 2, meaning that we apply the gradient descent for K times on
Problem (24), we assume that,

Θ̂
∗
= Θ̂

(K)
=

(
I−

K−1∑
k=0

X⊺L̃ ˆ̃AkX

)
Θ.

U(K) = ˆ̃AKXΘ.
Then, we immediately obtain,

U(Θ) = ˆ̃AKXΘ = U(K) = XΘ̂
(K)

= XΘ̂
∗
.

The Inductive Step. Consider the K + 1 case when we apply the gradient descent algorithm again

based on Θ̂
(K)

. Similar to the base case, we now have,

Θ̂
∗
= Θ̂

(K+1)

= Θ̂
(K)
− α · 2X⊺L̃U(K)

=

(
I−

K−1∑
k=0

X⊺L̃ ˆ̃AkX

)
Θ−X⊺L̃ ˆ̃AKXΘ

=

(
I−

K∑
k=0

X⊺L̃ ˆ̃AkX

)
Θ.

The second to last step is based on the hypothesis. Also, for U(K+1), we have,

U(K+1) = XΘ̂
(K+1)

=

(
X−

K∑
k=0

XX⊺L̃ ˆ̃AkX

)
Θ

=

(
I−

K∑
k=0

L̃ ˆ̃Ak

)
XΘ

=
(
I− L̃− L̃ ˆ̃A− L̃ ˆ̃A2 − · · · − L̃ ˆ̃AK

)
XΘ

=
(
ˆ̃A− L̃ ˆ̃A− L̃ ˆ̃A2 − · · · − L̃ ˆ̃AK

)
XΘ

=
(
ˆ̃A2 − L̃ ˆ̃A2 − · · · − L̃ ˆ̃AK

)
XΘ

= · · ·

= ˆ̃AK+1XΘ.

31

Then, we immediately obtain,

U(Θ) = ˆ̃AK+1XΘ = U(K+1) = XΘ̂
(K+1)

= XΘ̂
∗
.

This concludes the proof.

E.2 Theorem 3.2

Proof. In the binary case, Eq. (5) is equivalent to finding the maximum a posteriori (MAP) estimate
of a posterior probability distribution whose density function P(u(Θ) | y) relates to the objective
function via

P(u(Θ) | y) ∝ exp (−L).
Note that, we have,

exp (−L) = exp
(
−Tr

(
u(Θ)⊺L̃λu(Θ)

))
exp

(
−
∑
i∈Vl

ℓ(σ(ui(Θ)), yi)

)

= exp
(
−u(Θ)⊺L̃λu(Θ)

)
exp

(
−
∑
i∈Vl

ℓ(σ(ui(Θ)), yi)

)

∝ (2π)−n/2 det(L̃−1
λ)−1/2 exp

(
−1

2
(u(Θ)− 0)⊺(L̃−1

λ)−1(u(Θ)− 0)

)
exp

(
−
∑
i∈Vl

ℓ(σ(ui(Θ)), yi)

)
= µ(u(Θ)) exp (−Φℓ(u(Θ))) .

Here, the prior µ(u(Θ)) follows a Gaussian priorN (0, L̃−1
λ) and the likelihood exp (−Φℓ(u(Θ)) is

defined by the likelihood potential Φℓ(u(Θ)) :=
∑

i∈Vl
ℓ(σ(ui(Θ)), yi). y = [yi]i∈Vl

∈ {0, 1}nl .

E.3 Theorem 3.3

We first revisit Laplace Approximation. Laplace approximation is a popular technique for approx-
imating non-Gaussian distributions with a Gaussian distribution. A given probability distribution,
identified by its probability density function (PDF) P(x) can be approximated via another Gaussian
distribution as follows.

x ∼ N (x̂, Ĉ), x̂ = argmax
x∈Rn

P(x), Ĉ =
(
−∇2 ln (P(x))|x=x̂

)−1
.

Here, x̂ is the MAP estimator of P(x) and Ĉ is the Hessian matrix of the negative-log density of the
distribution evaluated at the MAP estimator x̂.

Proof. According to the Laplace Approximation, we know

α | y ∼ N (α̂, Ĉα̂), α̂ = argmin
α

L̃.

Then it is easy to verify that

∇αL̃ = Λλα+
∑
i∈Vl

F (σ(e⊺i Vα̂), yi)V
⊺ei = Λλα+V⊺

∑
i∈Vl

F (σ(e⊺i Vα̂), yi)ei.

∇2
αL̃ = Λλ +V⊺(

∑
i∈Vl

F ′(σ(e⊺i Vα̂), yi)eie
⊺
i)V = Λλ +V⊺

(∑
i∈Vl

F ′(σ(e⊺i Vα̂), yi)eie
⊺
i

)
V.

Therefore, we have,

Ĉα̂ = (Λλ +V⊺

(∑
i∈Vl

F ′(σ(e⊺i Vα̂), yi)eie
⊺
i

)
V)−1.

We define F (x, y) := ∂ℓ
∂x (x, y), F

′(x, y) := ∂2ℓ
∂x2 (x, y). ei represents the i-th standard basis vector.

32

By applying the Laplace approximation to the non-Gaussian posterior distributions of P(u(Θ) | y),
we can approximate look-ahead updates for calculating the designed acquisition function.

E.4 Theorem 3.4

Proof. Starting with the current MAP estimator α̂, we have,

α̂k,y+
k = α̂−

(
∇2Lk,y+

k

)−1 (
∇Lk,y+

k

)
= α̂−

(
Ĉ−1

α̂ + F ′(σ(e⊺kVα̂), y+k)v
kvk⊺

)−1 (
∇L+ F (σ(e⊺kVα̂), y+k)(e

⊺
kV)⊺

)
= α̂−

(
Cα̂ −Cα̂(e

⊺
kV)⊺

(
1

F ′(σ(e⊺kVα̂), y+k)
+ (e⊺kV)Cα̂(e

⊺
kV)⊺

)−1

(vk)⊺Cα̂

)
F (σ(e⊺kVα̂), y+k)(e

⊺
kV)⊺

= α̂−
F (σ(e⊺kVα̂), y+k)

1 + F ′(σ(e⊺kVα̂), y+k)(e
⊺
kV)Ĉα̂(e

⊺
kV)⊺

Ĉα̂(e
⊺
kV)⊺

Note that we define F (x, y) := ∂ℓ
∂x (x, y), F

′(x, y) := ∂2ℓ
∂x2 (x, y). ei represents the i-th standard basis

vector.

E.5 Theorem 3.5

Proof. We focus on the regression task in this theorem. The non-linear activation functions can
now be removed and the node embedding u(Θ) can directly be used as the output prediction
ŷ = u(Θ) ∈ Rn and compared with the ground-truth label y ∈ Rn.

Since the squared loss ℓ(x, y) = 1
2 (x− y)2 is used, we can easily verify that,

F (x, y) =
∂ℓ

∂x
(x, y) = x− y (25)

F ′(x, y) =
∂2ℓ

∂2x
(x, y) = 1. (26)

Since the task is changed into the regression task, the acquisition function Eq. (11) is now changed as
follows.

A(k) =
∫ +∞

−∞
P(y+k |k)

∣∣∣∣∣ v⊺
kα̂− y+k

1 + v⊺
kĈα̂vk

∣∣∣∣∣ ∥Ĉα̂vk∥2dy+k

=
1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥2
∫ +∞

−∞
P(y+k |k)|v

⊺
kα̂− y+k |dy

+
k .

Note that we use the prediction by the current model to approximate P(y+k |k) = e⊺ku(Θ) = v⊺
kα̂.

Hence, we have,

A(k) = 1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥2
∫ +∞

−∞
v⊺
kα̂|v

⊺
kα̂− y+k |dy

+
k

=
1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥2

{∫ v⊺
kα̂

−∞
v⊺
kα̂(v⊺

kα̂− y+k)dy
+
k +

∫ +∞

v⊺
kα̂

v⊺
kα̂(y+k − v⊺

kα̂)dy+k

}

=
1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥2∥Ĉα̂vk∥2

=
1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥22.

This completes the proof of Eq. (12).

33

Table 7: Summary of five datasets used in the experiments.
Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Setting Type

Cora 2,708 1,433 5,429 7 1,208/500/1,000 Transductive Citation Network
Citeseer 3,327 3,703 4,732 6 1,827/500/1,000 Transductive Citation Network
PubMed 19,717 600 44,338 3 18,217/500/1,000 Transductive Citation Network
Reddit 232,965 602 11,606,919 41 155,310/23,297/54,358 Inductive Social Network

ogbn-arxiv 169,343 128 1,166,243 40 90,941/29,799/48,603 Transductive Citation Network

Next, we have,

E
i∈V(t)

u \{k}[ℓ(ŷi, yi)]

= E

 ∑
i∈V(t)

u \{k}

ℓ(ŷi, yi)

= E

(
(uk,y+

k (Θ)− y)⊺(uk,y+
k (Θ)− y)

)
= E

(
Tr
(
(uk,y+

k (Θ)− y)(uk,y+
k (Θ)− y)⊺

))
= Tr

(
E
(
(uk,y+

k (Θ)− y)(uk,y+
k (Θ)− y)⊺

))
= Tr(var(uk,y+

k (Θ))).

When the loss is set as squared loss, we can modify the functions regarding the truncated spectral
projection. Recall that α|y ∼ N (α̂, Ĉα̂) with Ĉα̂ = (Λλ +V⊺P⊺PV)

−1 and α̂ = Ĉα̂V
⊺P⊺y

so that we have u(Θ) ∼ N (Vα̂,VĈα̂V
⊺). Therefore, we know,

E
i∈V(t)

u \{k}[ℓ(ŷi, yi)]

= Tr
(
var(uk,y+

k (Θ))
)

= Tr
(
VĈ

k,y+
k

α̂ V⊺
)

= Tr

(
V

(
Ĉα̂ −

1

1 + v⊺
kĈα̂vk

Ĉα̂vkv
⊺
kĈα̂

)
V⊺

)

= C − 1

1 + v⊺
kĈα̂vk

∥Ĉα̂vk∥22.

Here, C is some constant irrelevant to k. Hence, we immediately know,

argmin
k∈V(t)

u

E
i∈V(t)

u \{k}[ℓ(ŷi, yi)] = argmax
k∈V(t)

u

1

1 + v⊺
kĈα̂

∥Ĉα̂vk∥22. (27)

F Experimental Setup

Most of the experimental settings follow the existing work [90] for graph active learning.

F.1 Datasets Description

We summarize the statistics of five datasets in Table 7. The detailed introductions of each dataset are
presented as follows.

Cora, Citeseer, PubMed Cora, Citeseer, and PubMed 1 are three popular citation network datasets
and we follow the train/validation/test split in the original GCN paper [32]. In these three datasets,

1https://github.com/tkipf/gcn/tree/master/gcn/data

34

papers from different topics are considered nodes, and the edges are citation relationships among the
papers. The node attributes are binary word vectors, and class labels are the topics that papers belong
to.

Reddit Reddit is a social network dataset obtained from the community structure of online Reddit
posts. Reddit is a large online discussion forum where users post and comment on content in different
topical communities. We predict which community different Reddit posts belong to. In total, this
dataset contains 232,965 posts with an average degree of 492.

ogbn-arxiv ogbn-arxiv 2 is a directed graph, representing the citation network between all Computer
Science (CS) arXiv papers. Each node is an arXiv paper and each directed edge indicates that one
paper cites another one. Each paper comes with a 128-dimensional feature vector obtained by
averaging the embeddings of words in its title and abstract. The embeddings of individual words are
computed by running the skip-gram model. The task is to predict the 40 subject areas of arXiv CS
papers, e.g., cs.AI, cs.LG, and cs.OS, which are manually determined (i.e., labeled) by the paper’s
authors and arXiv moderators.

F.2 Implementation Details

All the experiments are conducted in the batch active learning setting unless otherwise specified. For
simplicity, we select the size of the query node set as b = 5 in one active learning iteration for all
baseline models by default. In Algorithm 3, we reduce the pool of the unlabeled nodes from V(t)

u

to S ⊂ V(t)
u . To be more specific, we sample 10% of the nodes in the current pool of unlabeled

nodes V(t)
u uniformly at random so that |S| = 0.1|V(t)

u |. The query set comprises the top b = 5
maximizers of the designed acquisition function on all nodes in S . Note that our experiments have a
simple assumption about an error-less oracle (e.g., by human experts) since our main contributions
focus on effectiveness measurement and node selection. In all the experiments in this work, we
simulate this perfect oracle by recording all the ground-truth labels for all the unlabeled nodes into
the database. This database serves as the error-less oracle and handles the query requests made by
the active learning model. Therefore, no real human annotators are involved in our experiments
without leading to any ethical concerns. However, in real-world applications, either domain experts
or crowd-sourcing services are allowed in the active learning process, making the existence of an
error-less oracle almost impossible. Handling noisy oracles is orthogonal to our work, we leave it for
future work.

The hardware configurations are four GeForce RTX 2080 Ti GPUs and SuperServer Dual Intel Xeon
CPU (Ten-core 2.20GHz) Processor. All the implementation details of the baselines and the proposed
method are discussed below.

For AGE [4], to procure well-trained models and guarantee that their model-based selection criteria
work well, GCN is trained for 50 epochs in each node selection iteration. AGE is implemented with
its open-source version.

For ALG [88], we follow the public code with the original paper. More specifically, we choose the
ALG with approximate QBC, where we use an MLP operating on the K-hop averaged features to
approximate a K-layer GCN. We also adjust the training budget for the AL iterations accordingly.

For RIM [89], we fix the threshold as 0.01 and keep all the other settings unchanged in the original
RIM implementation.

For IGP [90], we fix the key hyperparameter α as 2 and set the degree for dismissing uninfluential
nodes as 11. Other hyper-parameters are all identical to the open-source code.

For GraphPart [41], we stick to the original version of GraphPart with the K-Medoids algorithm as
the clustering method. All the hyperparameters are set as default in the provided implementation.

For GEEM [51] in the efficiency comparison, we choose the proposed GEEM model based on SGC
and expected error minimization without the preemptive for a fair comparison.

For our proposed DOCTOR method, we set the backbone GNN model as the SGC [68]. We tune
all the hyperparameters via grid search. The best model for each combination is saved based on

2https://ogb.stanford.edu/docs/nodeprop/\#ogbn-arxiv

35

Table 8: Search space for the main hyperparameters used in the proposed DOCTOR method.
Hyperparameters Search Range
Number of layers {1,2,3,4}

Hidden dimensions {64,128,256,512}
Dropout rate {0.4,0.5,0.6}

Training epochs {50,100,200}
Weight decay {1e-7,1e-6,1e-5,5e-4,1e-4,5e-3}
Learning rate {0.001,0.01,0.1}

m {10,20,50,100,200}
λ {1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1}

validation performance and is applied to the test set. For the hyperparameters in the backbone SGC
model, the default hyperparameter settings are as follows. The number of layers is set as 2. We use
128 hidden dimensions in the intermediate layer. The SGC layers are equipped with skip connection,
sum aggregation, batch normalization, and a dropout rate of 0.5. The default learning rate is 0.01 and
we train the model for 200 epochs. The optimizer is set as Adam with a weight decay of 5e-4. For the
acquisition function proposed in the DOCTOR algorithm, we have two key hyperparameters. One is
the number of the smallest eigenvalues m of the graphs’ normalized Laplacian matrix and the other is
the balancing factor λ in Λλ. Due to the sparse nature of the graphs, we choose to consider m = 50
smallest eigenvalues of L̃λ in the default setting. We exploit the Lanczos algorithm 3 with the help of
the existing implementation 4 to obtain the lowest eigenvalues and corresponding eigenvectors in
good precision. For the balancing factor in L̃λ, we set λ = 5e− 3 by default. The search ranges of
the hyperparameters are reported in Table 8.

G Experimental Results

G.1 Efficiency

We first present a formal analysis of the time complexity of our proposed DOCTOR method. For
simplicity, we analyze Algorithm 3 with the batch AL setting for the binary node classification task.
Then we compare DOCTOR with another performance-based method called GEEM [51], which
extends the expected error minimization principle for graph AL. We investigate the trade-off between
prediction accuracy and running time through empirical experiments.

G.1.1 Time Complexity Analysis

We focus on Algorithm 3 for time complexity analysis. More specifically, we only need to consider
the time complexity of one AL iteration (lines 5-12), which is the main overhead of the AL methods.
Note that, like many other AL methods, DOCTOR also uses the backbone model for training, whose
complexity is irrelevant to the design of the acquisition function. We let the complexity of training
the backbone model or the SGC model in Algorithm 3, as O(M) (line 5). For a fair comparison, we
will also use the same backbone model for training in other baselines when conducting empirical
experiments. This portion of the computational overhead due to the training of the backbone model
is fixed in each AL loop. Note that DOCTOR has some preprocessing steps in line 2 before the
actual AL iterations. Thanks to some existing techniques, the computational overhead regarding
the truncated spectral projection will not affect the total cost too much. Since the Laplacian matrix
is symmetric L̃λ = L̃⊺

λ, we can apply the famous Lanczos algorithm on this Hermitian matrix to
find the m-lowest eigenvalues and corresponding eigenvectors so that V and Λλ can be composited
accordingly. It is well known that the Lanczos algorithm requires roughly O(mn) time to evaluate
the extreme eigenvalues and eigenvectors (line 2). We will see that this extra computational cost is
negligible when compared to the overhead in one AL iteration.

We focus on one AL iteration (lines 5-12) in Algorithm 3. Training an SGC model takes O(M) time
(line 5). To compute α̂, it costs O(mn) through the matrix-vector multiplication. We can get Ĉα̂

via Eq. (9) in O(m3) due to the matrix inversion of size m×m. So we have O(mn+m3) in total

3https://en.wikipedia.org/wiki/Lanczos_algorithm
4https://spectralib.org

36

100 101 102

Relative Training Time (log scale)
79

80

81

82

83

84

85

Ac
cu
ra
cy
 (%

)

AGE: 4.63x

ALG: 1.15x

RIM: 0.7x

IGP: 1.2x

GraphPart: 61x

GEEM: 102xDOCTOR: 1x

(a) PubMed

100 101 102

Relative Training Time (log scale)
91.0

91.5

92.0

92.5

93.0

93.5

94.0

Ac
cu
ra
cy
 (%

)

AGE: 9.63x

ALG: 1.54x

RIM: 0.98x

IGP: 1.67x
GraphPart: 109x

GEEM: 459x
DOCTOR: 1x

(b) Reddit

Figure 7: Prediction accuracy versus training time of baselines and DOCTOR on two datasets.

for line 6. Assuming the size of S is fixed as |S|, it is easy to check the overhead for computing the
expected model change (lines 8-10) via Eq. (11) is O(|S|m3) since several intermediate variables like
Ĉα̂ have been computed. To select the final top-b nodes as the query set, we apply the QuickSelect
algorithm to get the threshold b-largest acquisition function value in O(|S|) and then filter out all
nodes that have acquisition function value greater than the threshold value. Hence, it takes O(|S|)
time to select top b maximizes (line 11). To sum up, it takes O(M+mn+m3 + |S|m3 + |S|) to
complete one AL iteration. Since we have 1 < m≪ n and |S| > 1 in the batch AL setting, we know
that it costs O(M+mn+ |S|m3) in one AL iteration (lines 5-12) in Algorithm 3. Note that this
result is a great improvement compared with the time complexity of GEEM [51] (O(|S|M)), where
we have to re-train the backbone model for at least |S| times to evaluate the performance when each
candidate node is added into the labeled node set in one single AL iteration.

G.1.2 Running Time Comparison

In Figure 7, we plot the performance of the state-of-the-art baseline models over their end-to-end
training time relative to that of DOCTOR on the PubMed and Reddit dataset. From Figure 7, we can
observe that DOCTOR is much more efficient than the other performance-based method, GEEM,
without any significant loss in terms of the prediction accuracy. Meanwhile, it is almost as efficient
as RIM, which is the most efficient method of all, but DOCTOR achieves a much higher prediction
accuracy. Therefore, our proposed method strikes a good balance between performance and efficiency.

G.2 Generalization to Other GNNs

We further verify the generalization ability of the proposed acquisition function in DOCTOR when
the backbone model is changed to other GNNs. The results on the inductive dataset, Reddit, are
summarized in Table 9. We make several key observations from the results in Table 9. First,
for the fixed backbone model, DOCTOR indeed achieves the best performance even though its
improvement from the second-best is often marginal since DOCTOR is designed for a transductive
setting. Therefore, the proposed acquisition function generalizes well to other GNNs because
our Bayesian learning framework can incorporate many GNNs based on the unified optimization
framework, discussed in Appendix C.2.3. Second, for the fixed method, the use of any other GNNs,
like SGC, GCN, and APPNP, does not make much difference but the use of GraphSAGE will result
in a significant improvement because GraphSAGE is specifically designed for the inductive setting.
We leave the investigation of a specific design of graph active learning methods under the inductive
setting for further work since it is out of the scope of this paper. For now, we can use GraphSAGE or
other inductive GNNs as the backbone models.

G.3 Sensitivity

We find it difficult to perform an ablation study on our proposed DOCTOR method since all the
components designed in DOCTOR are correlated to each other. Therefore, we analyze the influence
of key hyperparameters in DOCTOR, the number of top-m smallest eigenvalues in the truncated

37

Table 9: Test accuracy (%) of different methods with different backbone GNNs on the Reddit dataset.
Method SGC GCN APPNP GraphSAGE
Random 91.3±0.5 91.1±0.5 91.4±0.6 94.3±0.4

AGE 91.5±0.4 91.6±0.3 92.0±0.7 94.8±0.4
ALG 92.4±0.6 92.4±0.3 92.8±0.6 95.2±0.5
RIM 92.0±0.7 92.1±0.7 92.3±0.9 95.0±0.8
IGP 93.3±0.4 93.4±0.2 93.6±0.5 95.7±0.7

GraphPart 92.7±1.0 92.5±0.8 92.8±0.7 94.7±0.6
DOCTOR 93.5±0.5 93.5±0.7 93.7±0.6 95.8±0.8

(a) Cora (b) Citeseer

Figure 8: Influence of hyperparameters λ and m in the proposed DOCTOR method on two datasets.

spectral projection, and the balancing factor λ in Λλ. From Figure 8, we can see that the performance
of DOCTOR is quite stable under different configurations of λ and m. A larger m usually leads to
better performance since the approximation of the node embeddings projection will be more precise,
but the improvement may be quite marginal if m is too large. In addition, λ should be carefully
chosen to achieve optimal performance by avoiding setting it too small or too large.

H Broader Impacts

To avoid ethical concerns, our method can gain access to the ground-truth labeled database to
simulate querying a human annotator in the experiments. DOCTOR can be employed in graph-related
applications in the real world, like predicting malicious accounts with money laundry activities
on transaction networks. However, when human annotators are involved, DOCTOR will face the
noisy label issue and the information leakage concern. We encourage researchers to be aware of the
limitations and privacy concerns of DOCTOR when deployed in real-world applications.

38

