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Abstract

Graph Neural Networks (GNNs) are crucial for machine learning applications
with graph-structured data, but their success depends on sufficient labeled data.
We present a novel active learning (AL) method for GNNs, extending the Ex-
pected Model Change Maximization (EMCM) principle to improve prediction
performance on unlabeled data. By presenting a Bayesian interpretation for the
node embeddings generated by GNNs under the semi-supervised setting, we ef-
ficiently compute the closed-form EMCM acquisition function as the selection
criterion for AL without re-training. Our method establishes a direct connection
with expected prediction error minimization, offering theoretical guarantees for AL
performance. Experiments demonstrate our method’s effectiveness compared to
existing approaches, in terms of both accuracy and efficiency.

1 Introduction

Graph Neural Networks (GNNs) have gained significant recognition in machine learning applications,
particularly for graph-structured data [71, 32, 68]. Nevertheless, their efficacy is predominantly
contingent on the availability of ample labeled data. The labeling process, often demanding human
intervention and domain knowledge, poses high costs in real-world applications. Active Learning
(AL) presents a compelling solution to mitigate the issue of limited labeled data [1]. AL boosts the
performance of passive learning by iteratively training a model based on the current set of labeled
nodes and selecting the query nodes to expand this set based on the different query heuristics or the
designed acquisition function. The main idea is to identify the most informative nodes for the oracle
to annotate, thereby enhancing test node predictions upon their addition to the training set.

Recently, active learning methods for graph-structured data have seen an upsurge, adapting general
active learning techniques to accommodate the non-IID nature of graphs [88, 89, 90]. Predominantly,
these methods employ heuristic approaches, selecting nodes based on rudimentary measures such as
uncertainty and influence score. While efficient, these strategies lack a direct correlation with expected
prediction performance on remaining unlabeled nodes—our primary concern. Hence, We advocate
for performance-based active learning methods, selecting nodes that directly optimize anticipated
model performance [4].To balance efficiency, we employ the Expected Model Change Maximization
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(EMCM) algorithm [6, 7] from general active learning. EMCM chooses nodes maximizing expected
model change in parameters or predictions, serving as a surrogate for expected prediction error.

Implementing the EMCM principle in GNNs is both challenging and meaningful. First, the acquisition
function for EMCM calculates the expected model change following the addition of a single labeled
node, without the need for re-training. Hence, a Bayesian probabilistic model is preferred in AL [2].
This approach allows for efficient updating of posterior beliefs about the model’s parameters or
predictions upon introducing a new labeled node, aligning perfectly with performance-based methods
like EMCM. However, conventional GNNs lack Bayesian interpretation, while Bayesian GNNs
impose significant computational demands, rendering precise approximation of the expected model
change without re-training practically impossible. Therefore, a lightweight Bayesian probabilistic
learning framework could enable the application of EMCM on graphs. Second, the direct adaptation
of EMCM for GNNs, despite its computational advantages over other performance-based methods,
remains impractical due to the large number of nodes, which is common in real-world cases. Third, a
deep connection can be established between the EMCM method on graphs and the expected prediction
error, offering a theoretical guarantee regarding the potentially optimal AL performance.

In light of these insights, we are the first to extend the EMCM principle to GNNs, contributing in the
following ways. First, we revisit the training process of the Simplified Graph Convolution (SGC)
model [68] for the semi-supervised node classification as an example to obtain an equivalent view of
a bi-level optimization problem. This motivates us to propose a regularized single-level optimization
learning framework that possesses a clear Bayesian interpretation. Second, we derive the posterior
mean and variance of the node embeddings projected onto the truncated graph spectral subspace
via the Laplace approximation. This enables the efficient computation of the acquisition function
of EMCM for graphs through a closed-form solution. Third, we provide theoretical insights into
the proposed method, essentially equating to the selection of the node that directly minimizes the
expected prediction errors of the remaining unlabeled nodes, assuming its addition to the training set.
This theoretical interpretation aligns with the ultimate goal of AL. Fourth, We perform comprehensive
experiments across several datasets, demonstrating the efficacy and efficiency of our proposed
method.

2 Preliminary

2.1 Problem Formulation

We consider a graph G = (V, E) with |V| = n nodes. Node feature vectors are represented as
xi ∈ Rd, aggregated into a node feature matrix X = [x⊺

1 , · · · ,x⊺
n] ∈ Rn×d. The adjacency matrix of

G is given as A ∈ {0, 1}n×n (A ∈ Rn×n if the graph is weighted), aligned with edge set E . Assume
there exists a labeling oracle that can map each node i (i ∈ V = {1, · · · , n}) to its ground-truth
one-hot label vector yi ∈ {0, 1}c. c is the number of classes. The node set V is partitioned into
the labeled node set Vl (|Vl| = nl) and the unlabeled node set Vu (|Vu| = nu). At first, only the
ground-truth labels of labeled nodes {yi}i∈Vl

are revealed to the learning model.

We investigate the pool-based active learning setting on the aforementioned graph (Appendix (D.1)).
The learning model initially undergoes standard training on the labeled set Vl, {yi}i∈Vl

. Subsequently,
it identifies a query node set Vq from Vu (Vq ⊂ Vu) and solicits the labeling oracle for associated
labels. Following this, the labeled and unlabeled sets are updated (Vl ← Vl ∪ Vq,Vu ← Vu \ Vq).
This training cycle and query node selection process repeats until the labeling budget B is depleted
(|Vl| = nl + B). We distinguish between sequential active learning, where one node is selected
to query the oracle (|Vq| = 1), and batch active learning, where a batch of b nodes is chosen
(|Vq| = b ∈ N+). The primary objective is to deduce the soft labels of nodes within the unlabeled set
{ŷi}i∈Vu

(ŷi ∈ [0, 1]c), utilizing the labeling oracle under a total labeling budget B.

More specifically, in each query node selection step under the transductive setting, we aim to solve
Eq. (1) to choose the most informative node(s) and minimize the expected prediction error on the
remaining unlabeled nodes. Here, ℓ : Rc × Rc → R+ signifies the selected loss function.

argmin
Vq :|Vq|=b

Ei∈Vu\Vq
[ℓ(ŷi,yi)] (1)
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2.2 Graph Neural Networks for Semi-supervised Node Classification

Graph Neural Networks (GNNs) excel in learning representations for graph-structured data [71, 62,
10, 57, 40, 95, 43, 92, 11, 61, 94, 59, 82, 60, 58, 39, 93, 9]. Among them, the Graph Convolutional
Networks (GCN) [32] model is the most representative method. Considering the GCN or other GNN
models for the node classification task under the semi-supervised setting, there are two main steps
during one iteration: (1) Forward pass that fuses both node features X and structure information A into
the low-dimensional representation or node embeddings U(Θ) ∈ Rn×c (before the softmax function)
with the training parameters Θ; and (2) Backward pass that updates Θ through gradient decent
according to the training loss function over all labeled nodes as minΘ

∑
i∈Vl

ℓ(S(Ui(Θ)),yi). Here,
Ui(Θ) denotes the i-th row of U(Θ). Typically, ℓ(·, ·) is set as the cross-entropy loss after applying
the Softmax function S(·) on node embedding Ui(Θ). Different GNNs mainly have different designs
in the forward pass, but the backward pass remains the same in general. For a K-layer GCN, we
optimize the training loss such that U(Θ) = ˆ̃A(ϕ( ˆ̃A(· · ·ϕ( ˆ̃AXΘ(0)) · · · )Θ(K−2)))Θ(K−1). Here
Ã = A+I represents the adjacency matrix with the added self-loop and D̃ = D+I with the diagonal
degree matrix D = diag(d1, · · · , dn) where dj =

∑
j Ai,j . The normalized adjacency matrix is

ˆ̃A = D̃−1/2ÃD̃−1/2. We denote Θ = {Θ(i)}K−1
i=0 . Note that GCN conducts linear transformation

and non-linearity activation ϕ(·) repeatedly. SGC [68] reduces this excess complexity by removing
non-linearities and collapsing training parameters Θ between consecutive layers. Similarly, a K-
layer SGC also optimizes the training loss such that the node embedding matrix U(Θ) is fixed as

U(Θ) = ˆ̃AKXΘ.

2.3 General Active Learning and Active Learning on Graphs

Active Learning (AL) [55] selects the most "informative" samples for querying, falling into three cat-
egories: uncertainty-based, representativeness-based, and performance-based methods. Uncertainty-
based methods target the most uncertain instances [83, 101, 50], using criteria like entropy and
margin. Techniques like Query by Disagreement (QBD) and Query by Committee (QBC) [56, 16, 52]
also reside here, employing uncertainty sampling to reduce version space. Representativeness-based
methods select samples best representing the input distribution, using methods such as density-
weighting [14, 46, 27, 28] and clustering [49, 13, 72]. Performance-based methods directly optimize
informativeness via Eq. (1) or surrogates, considering the impact of revealing an instance’s label
on future outcomes. Techniques like Expected Error Reduction (EER) [53], Expected Variance
Reduction (EVR) [54], and Expected Model Change Maximization (EMCM) [6] are examples.

There is a recent surging trend to explore AL strategies on graph-structured data. It is unsuitable to
directly apply general AL techniques to GNNs since the nodes are not i.i.d. but linked with edges
such that connected nodes tend to have the same label. AGE [4] and ANRMAB [18] incorporate
node embedding density and PageRank centrality into their node selection. GEEM [51] adapts the
Expected Error Reduction (EER) method for graphs, while RIM [89] accounts for noisy oracles in
node labeling. Furthermore, ALG [88] optimizes the effectiveness of all nodes influenced by GNNs,
and IGP [90] maximizes information gain propagation. Detailed reviews are found in Appendix B.

2.4 Motivations and Challenges

2.4.1 Bayesian Probabilistic Interpretations

Active learning strategies for graphs often directly utilize GCN or other GNN models as their back-
bone [4, 88, 89, 90, 37], capitalizing on their exemplary representation learning abilities. However,
under semi-supervised settings, these models typically lack a Bayesian probabilistic interpretation,
a fundamental aspect of AL that quantifies uncertainty for uncertainty-based methods and lays the
groundwork for performance-based methods, which incorporate prior knowledge and update the
posterior beliefs about the model parameters or predictions, assuming if new labeled data becomes
available. Relying on GCN or GNN models without Bayesian interpretations may lead to inefficient
sample selection and hinder learning progress. Therefore, integrating a Bayesian probabilistic inter-
pretation within the GNN framework is a desirable enhancement to active learning methodologies.
Existing Bayesian GNNs provide well-defined Bayesian interpretations [96, 24], yet they often come
with significant computational costs. This renders them impractical for active learning environments,
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where model re-training is imperative after each query set selection. To address these challenges, we
aim to introduce a lightweight, general Bayesian learning framework for GNN models. This will
facilitate subsequent query node set selection by enabling rigorous, informed decision-making [17].

2.4.2 Efficient Computation

While numerous existing graph active learning methods extend uncertainty-based or
representativeness-based methods for their simplicity and efficiency (Table 6 in Appendix B.2),
these approaches can be sensitive to outliers and largely reliant on prerequisite density estimation
functions or clustering algorithms. We instead advocate for performance-based methods, which
directly examine the potential impact on the model should an unlabeled node’s label be revealed.
Well-established methods such as EER [53] and EVR [54] and their graph-based adaptations [51] are
notorious for their extremely high computational overhead. As an alternative, we concentrate on the
EMCM concept for AL on graphs. This approach selects nodes that yield the maximum expected
model change, striking a balance between theoretical interpretations and computational costs. Our
proposed general Bayesian learning framework for GNN models enables efficient computation of
expected model changes using closed-form solutions. For graphs with an exceptionally large number
of nodes, we further employ a spectral approximation technique to curtail computational costs.

2.4.3 Solid Theoretical Guarantees

A significant limitation of most current AL techniques for graphs is the absence of theoretical
connections with the expected prediction errors in Eq. (1), the ultimate goal in AL. CSAL [65] offers
an in-depth theoretical analysis of label complexity within the context of AL on graphs, but it only
verifies the existence of such an algorithm without presenting a concrete implementation. This gap
between theory and practice hinders the direct applicability of CSAL. To deploy AL algorithms in
real-world situations, it is crucial to devise methods rooted in rigorous theoretical foundations that
address this limitation, thereby enabling more efficient learning with fewer labeled examples.

3 Methodology

Our starting point is to propose a Bayesian probabilistic learning framework for semi-supervised
node classification task based on GNNs. Instead of following the existing literature [88, 90, 37] that
use GNNs directly as the backbones for graph AL, our Bayesian probabilistic learning framework
naturally supports the dynamic process of AL and allows for seamless updates of the model as new
labeled data become available, thus eliminating the need for full model re-training during node
selection. This key advantage of our Bayesian probabilistic learning framework paves the way for
efficient and interpretable design of our subsequent acquisition function. Following the principle of
Expected Model Change Maximization (EMCM) [6] in general AL, we can adjust the likelihood and
efficiently update posterior beliefs about the expected change in model parameters, assuming the label
of a candidate node from the pool becomes available. More discussions are found in Appendix C.

3.1 A Bayesian Probabilistic Learning Framework for GNNs under Semi-supervised Setting

3.1.1 Optimization View of SGC

We choose the SGC model [68] as an example for derivation and present a Bayesian probabilistic
learning framework for the semi-supervised node classification. Recall that in Sec. 2.2, SGC aims to
solve the following optimization problem Eq. (2) for semi-supervised node classification.

min
Θ

∑
i∈Vl

ℓ(S(Ui(Θ)),yi), s.t. U(Θ) = ˆ̃AKXΘ. (2)

The objective function in Eq. (2) characterizes the backpropagation process, while the constraint
in Eq. (2) describes forward propagation. Different GNNs typically exhibit unique forms of node
embeddings U(Θ) in Eq. (2). Notably, several recent studies [42, 102] have focused on unifying the
forward pass of GNNs within an optimization framework, but these approaches neglect the backward
pass for GNN training. Some research works integrate label information into the unifying framework
for GNNs [84, 74], yet none of them provide clear Bayesian interpretations. However, we can still
transform the constraint in Eq. (2) into another optimization subproblem [102] based on Theorem 3.1.
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Theorem 3.1. The forward pass of a K-layer SGC, U(Θ) = ˆ̃AKXΘ, optimizes the following
problem by performing K steps of gradient descent:

Θ̂
∗
= argmin

Θ̂

Tr(U⊺L̃U), s.t. U = XΘ̂.

Here, Θ̂ is initialized as Θ̂
(0)

= Θ and L̃ = I− ˆ̃A is the normalized Laplacian matrix. Then,

U(Θ) = ˆ̃AKXΘ = XΘ̂
∗

Therefore, Eq. (2) now becomes a bi-level optimization problem as Eq. (3).

min
Θ

∑
i∈Vl

ℓ(S(Ui(Θ)),yi), s.t. U(Θ) = XΘ̂
∗
, Θ̂

∗
= argmin

Θ̂,U=XΘ̂,Θ̂
(0)

=Θ

Tr(U⊺L̃U). (3)

3.1.2 From Optimization View to Bayesian Probabilistic View

Although Eq. (3) is an equivalent optimization view of SGC for semi-supervised node classification,
it does not possess a clear Bayesian interpretation. The upper-level objective in Eq. (3) minimizes
the supervision loss, and the lower-level constraint Tr(U⊺L̃U) minimizes the graph regularization
loss, promoting the homophily assumption that connected nodes share the similar embeddings/labels.
Therefore, motivated by [23], we absorb the lower-level constraint into the objective function itself as
a relaxed single-level optimization problem in Eq. (4) by minimizing both two terms simultaneously.

min
Θ

U(Θ)=XΘ

L =
∑
i∈Vl

ℓ(S(Ui(Θ)),yi) + Tr
(
U(Θ)⊺L̃λU(Θ)

)
, (4)

where L̃λ = L̃+ λI with λ as the balancing factor between two terms. The proposed optimization
problem Eq. (4) immediately leads to a Bayesian probabilistic interpretation [67]. For notational
simplicity, we focus on the detailed derivation of the binary case in the main body. In the special case
of binary node classification, U(Θ) ∈ Rn×c can be reduced to u(Θ) ∈ Rn, and S(·) now becomes
the Sigmoid function σ(·) in Eq. (5).

min
Θ

u(Θ)=XΘ

L =
∑
i∈Vl

ℓ(σ(ui(Θ)), yi) + Tr
(
u(Θ)⊺L̃λu(Θ)

)
, (5)

Note that now ui(Θ) ∈ R and yi ∈ {0, 1}. Then Theorem 3.2 explicitly reveals the Bayesian
probabilistic interpretation of the optimization framework in Eq. (5) [67].
Theorem 3.2. Solving Eq. (5) is equivalent to finding the maximum a posteriori (MAP) estimate of
the posterior probability distribution with the density P(u(Θ) | y) as

P(u(Θ) | y) ∝ µ(u(Θ)) exp (−Φℓ(u(Θ))) . (6)

Here, the prior µ(u(Θ)) follows a Gaussian prior N (0, L̃−1
λ ) and the likelihood exp (−Φℓ(u(Θ))

is defined by the likelihood potential Φℓ(u(Θ)) :=
∑

i∈Vl
ℓ(σ(ui(Θ)), yi). y = [yi]i∈Vl

∈ {0, 1}nl .

The Gaussian prior denotes a prior belief over the distribution of the node embedding u(Θ) governed
by the graph structure or captured by the Laplacian matrix in the covariance term. It relates to the
second trace term in Eq. (5) or the forward pass of SGC. The likelihood (P(y | u(Θ))) represents
the underlying assumptions about how the observed labels yi are generated, determined by ℓ(·, ·). It
relates to the first supervision loss term in Eq. (5) or the backward pass for training SGC.

Theorem 3.2 provides a clear Bayesian interpretation of SGC for semi-supervised node classification.
The forward pass defines a prior over node embeddings parametrized by Θ, while the backward pass
specifies the likelihood based on the supervision loss function. Together, they yield the posterior,
guiding the update of node embeddings after observing limited labels. This insight enables the
utilization of the EMCM method [6], which selects nodes leading maximum model change. For
efficiency in query node selection, we focus on SGC in this work, despite more complex GNNs like
GCN yielding a non-Gaussian prior in Eq. (6). The analysis of more complex GNNs, such as GCN,
yields a non-Gaussian prior while keeping all other aspects unchanged in Theorem 3.2. However, for
computational efficiency in subsequent query node selection, we adhere to the SGC model for now.
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3.2 Expected Model Change Maximization for Graph Active Learning

3.2.1 Challenges for Applying EMCM on Graphs

We choose the EMCM method [6] for three main reasons. First, it is a performance-based approach
that directly assesses the expected impact on the model if a sample is selected for a query, aligning
perfectly with the goal of AL. Second, it offers lower computational costs compared to other
performance-based methods like EER. Third, it is ideally supported by our proposed Bayesian
probabilistic learning framework which provides an efficient way to estimate the expected model
change without re-training. In the sequential active learning setting, our objective is to select the
most informative node k∗ = argmaxk∈Vu

A(k) with a designed acquisition function A(·). Similar
to other performance-based methods, EMCM utilizes a look-ahead model [31] with the modified
objective as Lk,y+

k = L+ ℓ(σ(uk(Θ)), y+k ) with L from Eq. (5), where we add the unlabeled node
k ∈ Vu with the hypothetical label y+k ∈ {0, 1} due to the unavailability of the true label yk. We
select the node that could maximally change the node embeddings if it is added to the query set, via

k∗ = argmax
k∈Vu

A(k) = argmax
k∈Vu

∑
y+
k ∈{0,1}

P(y+k | k)∥u(Θ̃
∗
)− u(Θ∗)∥2. (7)

Here, Θ̃
∗
= argminLk,y+

k , Θ∗ = argminL and P(y+k | k) is the predicted probability of label
y+k for node k estimated by the current model. The high-level motivation of Eq. (7) is that the
generalization error changes only when the current model is updated. Nodes that do not update
the node embeddings are useless for AL. Nodes causing significant model changes in terms of
node embeddings are expected to lead to faster convergence to the optimal model. More detailed
illustrations of EMCM can be found in Appendices B.3 and C.2.1.

Re-training the look-ahead model for the fixed node k in Eq. (7) to obtain the exact solution is
computationally infeasible due to the large number of unlabeled nodes. However, the proposed
equivalent Bayesian learning framework Eq. (6) offers an efficient alternative. By utilizing rank-one
updates of the current model’s posterior mean and covariance (Eq. (5)), the posterior mean and
covariance of the look-ahead model can be computed efficiently without the need for re-training. It
significantly reduces the computational cost involved in applying the EMCM method on graphs.

3.2.2 Truncated Spectral Projection and Laplace Approximation for Efficiency

The computation of u(Θ∗) or u(Θ̃
∗
) through the Bayesian learning method in Eq. (6) still requires

storing a large covariance matrix L̃−1
λ ∈ Rn×n. Motivated by spectral clustering [48], we utilize

the first m (m ≪ n) smallest eigenvalues of L̃ and their corresponding eigenvectors that contain
important geometric information of the graph. Namely, we introduce Λλ = diag(λ1+λ, · · · , λm+λ)
and V = [v1, · · · ,vm] ∈ Rn×m, where vi is the eigenvector corresponding to the i-th eigenvalue
λi. We can now project the node embedding u(Θ) onto the space spanned by these m eigenvectors
by α = V⊺u(Θ). Based on the orthogonality of V (V⊺V = I), we can easily convert Eq. (5) as,

min
α
L̃ =

∑
i∈Vl

ℓ(σ(e⊺i Vα), yi) + Tr (α⊺Λλα) . (8)

Eq. (8) now restricts the model latent space from Rn to Rm, speeding up the model training and
reducing the spatial complexity. A similar Bayesian interpretation of Eq. (8) regarding α ∈ Rm can
be trivially extended from Theorem 3.2. We term this technique as truncated spectral projection.

To further reduce the computational overhead, we apply Laplace approximation on the posterior
distribution of P(α | y) (instead of P(u(Θ) | y)) corresponding to Eq. (6). The key idea is to
approximate the non-Gaussian posterior via suitable Gaussian distributions here so as to obtain the
analytical closed-form of the look-ahead model’s posterior mean and covariance later [47].
Theorem 3.3. The Laplace approximation of the posterior distribution regarding α = V⊺u(Θ) ∈
Rm according to Eq. (8) and Eq. (6) is given as follows.

α | y ∼ N (α̂, Ĉα̂), α̂ = argmin
α

L̃, Ĉα̂ = (Λλ +V⊺(
∑
i∈Vl

F ′(σ(e⊺i Vα̂), yi)eie
⊺
i )V)−1. (9)

Here, we define F ′(x, y) := ∂2ℓ
∂x2 (x, y). ei represents the i-th standard basis vector.
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Theorem 3.3 gives a closed-form approximated Gaussian posterior distribution of α. Note that
α̂ = V⊺u(Θ∗) denotes the current model’s L̃MAP estimator in Eq. (8) based on Theorem 3.2.

3.2.3 Expected Model Change Acquisition Function

Following the definition of Lk,y+
k over Θ, the look-ahead model now optimizes L̃k,y+

k = L̃ +

ℓ(σ(e⊺i Vα), y+k ) with L̃ in Eq. (8). We use α̂k,y+
k to denote the look-ahead model’s L̃k,y+

k MAP

estimator. The exact value of α̂k,y+
k can be obtained by re-training the look-ahead model. We instead

compute an approximation of α̂k,y+
k by one single step of Newton’s method on the objective L̃k,y+

k

without re-training, given by Theorem 3.4. Since the look-ahead model is built upon the current
model, using a single step of Newton’s Method can quickly approximate the solution for L̃k,y+

k based
on the local information (gradient and curvature) around the current model’s MAP estimator [47].

Theorem 3.4. The look-ahead MAP estimator α̂k,y+
k can be obtained by performing one step of

Newton’s method on L̃k,y+
k from the current MAP estimator α̂ as

α̂k,y+
k = α̂−

F (σ(e⊺kVα̂), y+k )

1 + F ′(σ(e⊺kVα̂), y+k )(e
⊺
kV)Ĉα̂(e

⊺
kV)⊺

Ĉα̂(e
⊺
kV)⊺ (10)

We define F (x, y) := ∂ℓ
∂x (x, y), F

′(x, y) := ∂2ℓ
∂x2 (x, y). ei represents the i-th standard basis vector.

Now, we finally come back to the original acquisition function for applying EMCM on graphs in
Eq. (7). The predicted probability of label y+k can be set as the soft label prediction for node k by
the current model P(y+k = 1 | k) = σ(e⊺ku(Θ)) (P(y+k = 0 | k) = 1 − σ(e⊺ku(Θ))). Thanks to

the truncated spectral projection (α̂ = V⊺u(Θ∗), α̂k,y+
k = V⊺u(Θ̃

∗
)) and Laplace approximation,

we can now measure the change of ∥u(Θ̃∗
) − u(Θ∗)∥2 via ∥α̂k,y+

k − α̂∥2 due to the orthogonal
invariance of l2 norm. Based on Theorem 3.4 and Eq. (7), the final designed acquisition function is

A(k) =
∑

y+
k ∈{0,1}

P(y+k = 1|k)y
+
k P(y+k = 0|k)1−y+

k

∣∣∣∣∣ F (σ(v⊺
kα̂), y+k )

1 + F ′(σ(v⊺
kα̂), y+k )v

⊺
kĈα̂vk

∣∣∣∣∣ ∥Ĉα̂vk∥2.

(11)
Here, P(y+k = 1|k) = σ(e⊺ku(Θ)) and define vk := (e⊺kV)⊺ as the k-th row vector of V. The
proposed active learning algorithm expecteD mOdel Change maximizaTion On gRaphs (DOCTOR)
in the sequential setting is presented in Algorithm 2 in Appendix D.2. For the batch active learning
setting and the multi-class classification setting, we refer to Appendices D.3 and D.4.

3.3 Theoretical Insights of the Proposed Method DOCTOR

We analyze the profound connection between the proposed EMCM method and the Expected Error
Minimization (EEM) or EER method for graph active learning. We will show that the designed
acquisition function Eq. (11) will be reduced to the one for EEM under some assumptions and thus
it has a direct connection to the ultimate goal for graph AL in Eq. (1). For clarity, we focus on the
fundamental regression task within the sequential AL setting. We choose the regression for theoretical
analysis to get rid of the non-linear activation functions in the Bayesian learning framework (σ(·) in
Eq. (5)) from the beginning. We also fix the loss function ℓ(·, ·) as the common squared error loss.

Theorem 3.5. We assume ℓ(x, y) = 1
2 (x− y)2 is used for the regression task in the sequential active

learning setting (b=1). In the t-th iteration step, the proposed DOCTOR algorithm aims to solve

max
k∈V(t)

u

A(k) = max
k∈V(t)

u

1

1 + v⊺
kĈα̂

∥Ĉα̂vk∥22. (12)

And the Expected Error Minimization on graphs aims to solve min
k∈V(t)

u
E
i∈V(t)

u \{k}[ℓ(ŷi, yi)]. Then,

argmin
k∈V(t)

u

E
i∈V(t)

u \{k}[ℓ(ŷi, yi)] = argmax
k∈V(t)

u

1

1 + v⊺
kĈα̂

∥Ĉα̂vk∥22. (13)
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Table 1: Test accuracy (%) on five datasets with the same labeling
budget (20 labels per class).

Method Cora Citeseer PubMed Reddit ogbn-arxiv
Random 78.9±0.9 70.7±0.7 78.4±0.5 91.3±0.5 68.3±0.4

AGE 82.5±0.5 71.4±0.5 79.4±0.7 91.5±0.4 68.7±0.3
ALG 82.6±0.6 73.6±0.6 80.8±0.3 92.4±0.6 70.0±0.2
RIM 84.1±0.8 73.2±0.7 80.2±0.4 92.0±0.7 70.5±0.8
IGP 86.3±0.7 75.8±0.4 83.5±0.5 93.3±0.4 70.9±0.5

GraphPart 86.5±1.2 74.0±2.0 81.5±1.6 92.7±1.0 72.3±2.1
DOCTOR 86.9±0.7 76.5±0.8 84.3±0.9 93.5±0.5 73.0±1.2
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Figure 1: Running Time Com-
parison (at log scale).

Theorem 3.5 demonstrates the equivalence between the proposed DOCTOR algorithm and the EEM
method on graphs, given certain basic assumptions. Consequently, from a theoretical standpoint,
DOCTOR can implicitly select the node that minimizes the expected prediction error if added into
the training set during the next iteration, as directly correlated with the initial objective in Eq. (1).
Moreover, DOCTOR offers significantly reduced computational overhead through truncated spectral
projection and Laplace approximation, as compared to EEM-based approaches like GEEM [51].

4 Experiments

We now verify the effectiveness of DOCTOR on five real-world graphs. We aim to evaluate DOCTOR
in terms of prediction accuracy, efficiency, generalization ability, and interpretability (Appendix G).

4.1 Experimental Setup

Datasets We evaluate DOCTOR for the pool-based active learning setting on five datasets, including
three citation networks (i.e., Citeseer, Cora and PubMed) [32], one social network (Reddit) [22],
and one large-scale OGB dataset (ogbn-arxiv) [26]. Details can be found in Appendix F.1.

Baselines We compare DOCTOR with six state-of-the-art baseline methods for active learning on
graphs. Random selects the nodes to query randomly. AGE [4] Combines different query strategies
linearly with time-sensitive parameters. ALG [88] select nodes that maximize the effective reception
field in GCN. RIM [89] further considers the influence quality during node selection. IGP [90]
choose nodes that maximize information gain propagation. GraphPart [41] selects representative
nodes within each graph partition to query. Implementation details are referred to in Appendix F.2.

4.2 Experimental Results

Accuracy Comparison We compare DOCTOR with baselines for multi-class node classification
in the batch AL setting (Appendix D.4). We choose a small set of two randomly sampled labeled
nodes for each method as the initial pool. The query node size is fixed as b = 5 in each iteration and
the labeling budget is fixed as 20 labels per class (B = 20c). The backbone is set as the SGC model.
Table 1 shows the classification accuracy on five datasets with the same labeling budget. We repeat
each method 10 times and report the mean and variance regarding the accuracy. Remarkably, the
proposed DOCTOR achieves the best in all the cases and improves the second-best baseline by nearly
1% on some datasets. The improvement on the Reddit dataset is rather marginal since it is designed
for the inductive setting and DOCTOR is originally proposed for the transductive setting.

To show the influence of the labeling budget, we display the accuracy of different AL methods under
different labeling budgets on three citation datasets in Figure 2. We range the labeling budgets B
from 2c to 20c with c as the number of classes. The results in Figure 2 demonstrate that with the
increase in labeling budget, the accuracy of DOCTOR grows as well, outperforming many of the
baselines with a greater margin.

Efficiency Comparison To evaluate the efficiency of DOCTOR, we conducted an analysis of
its running time per AL iteration alongside other baselines using the Cora dataset. We introduce
another performance-based graph AL method called GEEM [51], which extends the EEM principle
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Figure 2: Test accuracy with different labeling budgets on three datasets.

Table 2: Test accuracy (%) of different methods with different
backbone GNNs on the Citeseer dataset.

Method SGC GCN APPNP GraphSAGE
Random 70.7±0.7 70.8±0.8 71.0±0.6 70.6±0.8

AGE 71.4±0.5 71.6±0.6 71.3±0.5 71.4±0.7
ALG 73.6±0.6 73.8±0.5 74.1±0.7 74.0±0.9
RIM 73.2±0.7 73.0±0.8 73.3±0.8 73.2±0.9
IGP 75.8±0.4 75.4±0.9 75.5±0.6 75.6±1.0

GraphPart 74.0±2.0 74.3±1.6 74.5±1.3 74.9±1.5
DOCTOR 76.5±0.8 76.2±0.7 76.6±0.9 76.4±0.9
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Figure 3: Interpretation Analysis.

for graphs. However, GEEM’s scalability is extremely limited on large-scale datasets. We consider
the training time of GEEM as the baseline and measure the relative running time of each method.
Figure 1 illustrates these results, where the numbers atop each bar represent the multiplier improve-
ment in running time compared to GEEM. Our method, DOCTOR, exhibits significant efficiency
improvements, surpassing GEEM dozens of times while achieving comparable results to ALG. The
more detailed time complexity of the proposed DOCTOR method can be found in Appendix G.1.

Generalization to Other GNNs Note that the acquisition function in the proposed DOCTOR
algorithm is specifically designed for the SGC method [68]. Nonetheless, we can still substitute
the backbone training model, SGC, with other GNNs in each iteration of the AL loop (line 5 in
Algorithm 2) without any difficulties. The resulting acquisition function will be computed based on
the new node embeddings generated by other GNNs without any other changes. We select some
common GNNs, including GCN [32], APPNP [33] and GraphSAGE [22], to verify the generalization
ability of the proposed acquisition function. We change the backbone model of other baselines
accordingly as well. We fix the labeling budget as 20 labels per class. All experiments are conducted
in the transductive AL setting on the Citeseer dataset and the results are summarized in Table 2. Like
other baselines, the proposed acquisition function in the proposed DOCTOR method generalizes well
to other GNN backbone models without any significant changes regarding prediction accuracy, even
though it is originally designed for SGC. The underlying reason is that apart from SGC, most other
GNNs can also be incorporated into the proposed Bayesian learning framework with more complex
forms of prior and the currently derived form of the acquisition function can approximate the exact
solution when other GNNs are used as backbones.

Interpretability We perform a case study on a single iteration step of DOCTOR in the sequential
AL setting using the Cora dataset. We choose one query node from a pool of 10 randomly sampled
unlabeled nodes for visualization purposes. We focus on one iteration step in the exact middle of the
entire AL process. We compare the approximate EMC, computed based on Eq. (11) in the DOCTOR
method, with the exact EMC, computed based on Eq. (7) by adding the node’s label for re-training.
We use the maximum value of the exact EMC among these 10 nodes as the baseline, and we report
all other EMC values in a relative manner in Figure 3. The results show that our efficient computation
of the designed acquisition function via truncated spectral projection and Laplace approximation
approximates the exact solution quite well. Additionally, we sort the candidate nodes in descending
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order based on the exact EMC value and obtain the respective test error by re-training the model with
the node’s label. Figure 3 illustrates that by choosing the node that has the maximum approximate
EMC value without re-training via the proposed acquisition function Eq. (11), we can minimize the
test error on the remaining unlabeled nodes by adding this node to the labeled node set for the next
round of training. This key observation empirically validates the insights of Theorem 3.5.

5 Conclusion

In this work, we extend the EMCM principle for GNNs based on a provided Bayesian learning
framework. This allows us to efficiently compute a closed-form acquisition function that can be used
to select the most informative nodes to label. The proposed DOCTOR method establishes theoretical
connections with the ultimate goal of minimizing expected prediction error in AL. This makes it a
promising tool for training GNNs in real-world applications with limited labeled data.

6 Limitations

The acquisition function in DOCTOR is derived from the SGC model but has good generalizability
to other GNNs empirically. We leave the investigation of the closed-form MAP estimator of other
GNNs as future work. The acquisition function in DOCTOR is originally designed for the sequential
active learning setting, and we only use a simple sampling method to extend it for the batch active
learning setting. We also leave the investigation of a more advanced batch AL extension of DOCTOR
as future work. The theoretical connection between our method with entropy minimization in terms
of strictly proper scoring rules can be further investigated in detail [64]. Other potential applications
of our method can be explored in the hyperbolic space [76, 79, 77, 80, 78, 75, 81] or in the natural
language processing domain [34, 36, 35, 20, 19, 63, 44, 99, 100, 98].
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