
Supplementary Material

6.1 Computational Resources

Our aggregation network takes one day to train on one Nvidia Titan RTX GPU. Inference with our
method can run on a Nvidia T4 GPU on a Google Colab notebook.

In Table 2 we compare the memory consumption of our descriptors as well as the inference time
against the baselines that also use features from large pretrained models. While our full method
explores the upper bound by utilizing features across the diffusion process, which takes 6.62s, one can
also use the same pretrained weights to evaluate faster pruned versions of the same model. For these
pruned versions, we stop the diffusion process after 1, 5, and 10 timesteps. The version that utilizes
the first 10 timesteps performs close to our full method, with a 4% improvement in PCK@0.1img over
DINOv2 with an almost 2x faster inference process. Note that the inference times for DINO and
DINOv2 are bottlenecked by the log binning algorithm from Amir et al. [2] to contextualize the
features into descriptors.

" PCK@0.1img Memory per Descriptor Inference Time per Pair

DINO [2] 51.68 75 MB 3.02 s
DINOv2 [32] 68.33 75 MB 2.99 s
SD-Layer-4 58.80 10 MB 0.33 s
SD-Concat-All 52.12 1.8 GB 0.87 s

Ours - One-Step 63.74 6MB 0.27s
Ours (1 Timestep) 64.61 6 MB 0.28 s
Ours (5 Timesteps) 69.28 6 MB 0.86 s
Ours (10 Timesteps) 72.00 6 MB 1.60 s
Ours (50 Timesteps) 72.56 6 MB 6.62 s

Table 2: We compare average memory and runtime consumption on real images from SPair-71k.

6.2 Stable Diffusion Model Variant

In Figure 7, we ablate the behavior of individual raw feature maps from each layer across multiple
variants of Stable Diffusion. We extract these features from a one-step inversion process. We report
the semantic keypoint matching accuracy on real images from SPair-71k according to PCK@0.1img .
Due to limited computational resources, in this experiment we performed nearest neighbor matching
on 64x64 resolution feature maps (the maximum possible resolution of Stable Diffusion) and rescaled
our predictions to coordinates in the original image resolution. Therefore, we also include a DINO
baseline [2] that uses the same procedure as reference for this experimental setting.

Viewing Figure 7, for Stable Diffusion models that share the same broader model variant (e.g.,
SDv1-3 vs. SDv1-4 vs. SDv1-5), the behavior across layers is similar. In contrast, there is a larger
difference in layer behavior when comparing SDv1 (pink) and SDv2 (blue). For SDv1 Layer 4
outshines all other layers, consistent with observations from prior work [43], but this layer actually
performs extremely poorly in SDv2. In fact, for SDv2 it is Layers 5 and 6 that are the layers that
are strong at semantic correspondence. As seen in Figure 8, SDv2-1’s Layer 4 features seem to
perform poorly at semantic correspondence because they also strongly encode positionality; while
they are able to disambiguate the birds and the backgrounds, they also separate the top left (green),
top right (blue), bottom left (orange), and bottom right (pink) of the image. Perhaps SDv2 also
encodes positionality in the Layer 4 features because this information is relevant when synthesizing
images from prompts that describe relations or more complex object compositions, which SDv1’s
CLIP struggles with representing [17]. Finally, the behavior when concatenating feature maps from
all layers (Concat All) is also very different between SDv1 and SDv2 when viewing Figure 7. While
for SDv1 Concat All performs reasonably well, slightly lagging behind its single best feature map,
for SDv2 it exhibits subpar performance. This trend is better understood when examining the PCA of
these feature maps for two images in Figure 8, where for SDv1-5 Concat All produces a meaningful
feature map that delineates the bird, branch, and background and for SDv2-1 Concat All produces a
muddy feature map that only delinates the top vs. bottom of the image. This phenomenon where
SDv2 produces a low-quality aggregated feature map in the case of simple concatenation is likely

12



1 2 3 4 5 6 7 8 9 10 11 12 Concat All

0.1

0.2

0.3

0.4

0.5

UNet Decoder Layer

PC
K

@
0.
1 i

m
g

DINO SD v1-3 SD v1-4 SD v1-5 SD v2-0 SD v2-1

Figure 7: We report the behavior of individual layers across different variants of Stable Diffusion.
We extract the raw feature map from a one-step inversion process and compute the semantic keypoint
matching performance on real images from SPair-71k.

Figure 8: We show an example pair of real images from SPair-71k and the PCA of the features from
Layers 4-6 and Concat All extracted from a one-step inversion process for SDv1-5 and SDv2-1.

0 5 10 15 20 25 30 35 40 45 50
0.1
0.2
0.3
0.4
0.5

Timestep

PC
K

@
0.
1 i

m
g

Generation Inversion

Figure 9: We report the behavior of inversion vs. generation features across timesteps (t=0 denotes a
clean image and t=50 denotes pure noise), fixed to the raw feature maps from Layer 4 in SDv1-5.
We extract generation features by independently noising and denoising the image at each timestep,
and we extract inversion features from one continuous chain. We compute the semantic keypoint
matching performance on real images from SPair-71k using the same procedure as Section 6.2.

also because its stronger encoding of positionality dominates the encoding of semantics across the
features. On the other hand, our method is able to meaningfully aggregate features across layers
for both SDv1 and SDv2, as demonstrated by the strong keypoint matching performance from both
variants in Table 1. Our method is also able to reflect the differing layer behaviors across different
Stable Diffusion variants, as seen by the consistency between the the trends observed in Figure 7 and
the learned mixing weights in Figure 5.

13



6.3 Inversion vs. Generation Features

As discussed in Figure 3, we opt to use features from the inversion process rather than the generation
process when analyzing real images, because we find that it produces higher quality features at later
timesteps when the input to the model looks closer to noise. As seen in Figure 9, the raw feature
maps from inversion at these late timesteps (t = 25 to 50) are generally more informative than those
from generation for semantic keypoint matching, with a margin of as much as 5% PCK@0.1img ,
while maintaining comparable performance at earlier timesteps (t = 0 to 25).

6.4 Additional Evaluation Datasets

We conduct our main evaluation on SPair-71k and CUB because they presented more complex and
varied examples than other benchmarks, which are largely composed of simple image pairs with
“similar viewpoints and scales” [28]. Nevertheless, in Table 3 we compare our method against the
strongest baselines on PF-PASCAL [12] and PF-WILLOW [13], where our method outperforms
DINOv2 by 2% and 3% PCK@0.1img respectively.

PF-PASCAL PF-WILLOW
" PCK@0.1img " PCK@0.1bbox " PCK@0.1img " PCK@0.1bbox

DINOv2 [32] 84.30 78.99 86.64 71.34
CATS++ [6] 68.02 62.96 78.87 66.09
Ours 86.67 82.85 89.61 77.98

Table 3: We compare our semantic keypoint matching against the strongest baselines on real images
from PF-PASCAL and PF-WILLOW.

6.5 DINO Features Aggregation

In Table 4, we ablate the effect of single layer selection, naive concatenation, and training an
aggregation network for DINO and DINOv2, symmetric to the ablations we performed for our
method. Note that in previous experiments for DINOv2 we used inputs of resolution 770 to account
for its large patch size, but in this experiment we use the same resolution of 224 across all feature
backbones to ensure comparability. Ultimately, our method that trains an aggregation network on
top of Stable Diffusion features performs the best at 72.56% PCK@0.1img , compared with 54.69%
and 68.37% PCK@0.1img for DINO and DINOv2 respectively. Consistent with the hand-selected
features explored in Amir et al. [2], our aggregation network on top of DINO features learns that
Layers 9 - 11 are most useful for the semantic correspondence task.

SPair-71k
" PCK@0.1img " PCK@0.1bbox

DINO [2] 51.68 41.04
DINO - Concat All 20.17 13.60
DINO + Aggregation Network 54.69 44.29

DINOv2 [32] 60.14 46.94
DINOv2 - Concat All 60.89 47.69
DINOv2 + Aggregation Network 68.37 56.35

SD-Layer-4 58.80 46.58
SD-Concat-All 52.12 41.83
Ours 72.56 64.61

Table 4: We ablate the semantic keypoint matching performance of an aggregation network trained
on top of DINO features on real images from SPair-71k. To ensure consistency across all backbones,
we use the same input resolution of 224.

14



6.6 Semantic Keypoint Matching

In Figure 10, we show additional examples of real image pairs from each of the 18 object categories
in SPair-71k and our method’s predicted correspondences. Our method is able to handle a variety of
difficult cases such as large viewpoint transformations (e.g., the side and front views of the cow or
aeroplane) and occlusions from other objects (e.g., the people on top of the motorbike or bars in front
of the potted plant).

In Figure 11, we show additional examples of synthetic image pairs and our method’s predicted corre-
spondences. Many of the prompts were inspired by objects and compositions from PartiPrompts [51].
In the same setting as Section 4.3, we transfer the aggregation network tuned on real images to
make these predictions. Our method is able to produce high-quality correspondences for these
out-of-domain synthetic images, such as the astronaut riding a horse or raccoon playing chess.

6.7 Dense Warping

Our aggregation network, which was trained with sparse semantic keypoints as supervision, can also
be used for dense warping. In Figure 12 we demonstrate how our dense nearest neighbor matches can
be used to splice the appearance and structure of two images. Simply by bilinearly upsampling our
Diffusion Hyperfeatures to the dimension of the input images and copying the nearest source pixel
for every target pixel (i.e., a backward warp), our method is able to preserve fine-grained structures
and textures such as the hair on the dog’s face (right column, fourth row) or the texture of the cat’s
ear (right column, first row). In Figure 13 we show a similar visualization for synthetic images.
In Figure 14 we also use these dense matches between the first frame and other frames of a video
to propagate an object mask or semantic edit. Again, our method is able to preserve fine-grained
textures such as the red spots on the cow or lines on the bear’s vest (third row).

15



Figure 10: Additional examples of predicted correspondences from our method on real images from
each of the 18 categories in SPair-71k.

16



Figure 11: Additional examples of predicted correspondences from our method on synthetic images
from a diverse set of prompts. Note that for synthetic images we transfer the aggregation network
tuned on real images from SPair-71k.

17



Figure 12: We show examples of dense backward warps using our method for real images from SPair-
71k. We compute the nearest neighbors matches between the source and target image, constrained by
an object mask [48], and warp either the source image or colormap accordingly.

18



Figure 13: We show examples of dense backward warps using our method for synthetic images using
the same procedure as the real images.

Figure 14: We show examples of dense forward splats using our method for real frames from DAVIS
videos [35]. We compute the nearest neighbors matches between the first frame and later frames
in the video (t=10, 20, 30), with no constraints, and propagate either a colormap or object edit [33]
applied only to the first frame.

19


	 Introduction
	 Related Work
	 Diffusion Hyperfeatures
	 Diffusion Process Extraction
	 Diffusion Hyperfeatures Aggregation

	 Experiments
	 Semantic Keypoint Matching on Real Images
	 Ablations
	 Transfer on Synthetic Images

	 Conclusion
	 Acknowledgements
	 Computational Resources
	 Stable Diffusion Model Variant
	Inversion vs. Generation Features
	 Additional Evaluation Datasets
	 DINO Features Aggregation
	 Semantic Keypoint Matching
	 Dense Warping


