
Block Broyden’s Methods for Solving Nonlinear
Equations

Chengchang Liu
Department of Computer Science & Engineering

The Chinese University of Hong Kong
7liuchengchang@gmail.com

Cheng Chen∗

Shanghai Key Laboratory of Trustworthy Computing
East China Normal University
chchen@sei.ecnu.edu.cn

Luo Luo
School of Data Science

Fudan University
luoluo@fudan.edu.cn

John C.S. Lui
Department of Computer Science & Engineering

The Chinese University of Hong Kong
cslui@cse.cuhk.edu.hk

Abstract

This paper studies quasi-Newton methods for solving nonlinear equations. We
propose block variants of both good and bad Broyden’s methods, which enjoy ex-
plicit local superlinear convergence rates. Our block good Broyden’s method has
a faster condition-number-free convergence rate than existing Broyden’s methods
because it takes the advantage of multiple rank modification on Jacobian estima-
tor. On the other hand, our block bad Broyden’s method directly estimates the
inverse of the Jacobian provably, which reduces the computational cost of the iter-
ation. Our theoretical results provide some new insights on why good Broyden’s
method outperforms bad Broyden’s method in most of the cases. The empirical
results also demonstrate the superiority of our methods and validate our theoretical
analysis.

1 Introduction

In this paper, we consider solving the following nonlinear equation systems:

F(x) = 0, (1)

where x ∈ Rd, F(x) def
= [F1(x), · · · , Fd(x)]

⊤ : Rd → Rd and each Fi(x) is differentiable. Solving
nonlinear equations is one of the most important problems in scientific computing [40]. It has various
applications including machine learning [3, 4, 12, 16, 46], game theory [19, 41], economics [2] and
control systems [5, 39].

Newton’s method and its variants [17, 26, 27] such as the Gauss–Newton method [20, 40], the
Levenberg–Marquart method [18, 30, 36, 38] and the trust region method [42, 55] are widely adopted
to solve the systems of nonlinear equations. These methods usually enjoy fast local superlinear rates.

∗The corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Newton’s method takes iterates of form

xt+1 = xt − (J(xt))
−1F(xt),

where J(x) ∈ Rd×d is the Jacobian at x. Since computing the inverse of the exact Jacobian matrix
requires O(d3) running time, Newton’s method suffers from expensive computation especially when
solving the large-scale nonlinear equations [21, 49, 56].

Quasi-Newton methods have been proposed for avoiding the heavy computational cost of Newton-
type methods while preserving good local convergence behaviour [7–11, 13, 25, 33, 34, 43–45,
47, 53]. Among these quasi-Newton methods, the Broyden’s methods [6], including the good and
the bad schemes [1, 32, 37], are considered to be the most effective methods for solving nonlinear
equations. The Broyden’s good method2 approximates the Jacobian J(xt) by an estimator Bt and
updates the Jacobian estimator in each round as Bt+1 = Bt + ∆t. Here ∆t is a rank-1 updating
matrix constructed by the curvature information. Broyden et al. [11], Kelley and Sachs [28] proved
that the good Broyden’s method can achieve asymptotic local superlinear rates.

The bad Broyden’s method approximates the inverse of the Jacobian by Ht and updates the ap-
proximate matrix directly. Although the bad Broyden’s method enjoys less computational cost than
good Broyden’s method in each iteration, it does not perform as well as the good method in most
cases [1]. Lin et al. [31] show that both the good and bad Broyden’s methods have superlinear rates
of O((1/

√
t)t) and provide some insights on the difference between their empirical performance.

Ye et al. [52] proposed a new variant of good Broyden’s method by conducting ∆t with a greedy or
random strategy. Their method achieves a better explicit convergence rate of O((1− 1/d)t(t−1)/4).
However, it remains unknown whether this convergence rate can be further improved by leveraging
block updates which increase the reuse rate of the data in cache and take advantage of parallel
computing [15]. Gower and Richtárik [22] studied several random quasi-Newton updates including
the Broyden’s updates for approximating the inverse of matrices, but they only provide implicit
linear rates for their methods. Liu et al. [35] established explicit convergence rates for several block
quasi-Newton updates, but they focus on approximating positive definite matrices.

In this paper, we propose two random block Broyden’s methods for solving nonlinear equations and
provide their explicit superlinear convergence rates. We compare the theoretical results of proposed
methods with existing Broyden’s methods in Table 1 and summarize our contribution as follows:

• We provide explicit convergence rates for the block good Broyden’s udpate and the block bad
Broyden’s update proposed by Gower and Richtárik [22]. Our results show that the block good
Broyden’s update can approximate a nonsingular matrix A with a linear rate of (1−k/d)t which
improves the previous rate of (1 − 1/d)t where k

def
= rank(∆t). We also show that the “bad”

update can approximate the inverse matrix A−1 with an linear rate of (1 − k/(dκ̂2))t where κ̂
is the condition number of A. To the best of our knowledge, this is the first explicit convergence
rate for the block bad Broyden’s update.

• We propose the block good Broyden’s method with convergence rate O((1 − k/d)t(t−1)/4)
where k is the rank of the updating matrix ∆t. This rate reveals the advantage of block up-
date and improves previous results. Our method also relaxes the initial conditions stated in Ye
et al. [52].

• We propose the block bad Broyden’s method with convergence rate O((1− k/(4dκ2))t(t−1)/4).
We also study the initial conditions of two proposed block variants. Our analysis shows that bad
Broyden’s method is only suitable for the cases where the condition number of the Jacobian is
small, while good Broyden’s method performs well in most cases.

Paper Organization In Section 2, we introduce the notation and assumptions as the preliminaries
of this paper. In Section 3, we introduce the block good or bad Broyden’s updates for approximating
the general matrix. In Section 4, we propose the block good or bad Broyden’s methods with explicit
local superlinear rates. In Section 5, we discuss the behavior difference of the good and bad methods.
We validate our methods by numerical experiments in Section 6. Finally, we conclude our results in
Section 7. All proofs are deferred to appendix.

2We use the names “good Broyden’s method” and “bad Broyden’s method” by following the previous
literature [1, 10, 23, 37].

2

Table 1: We summarize the properties of Broyden’s methods for solving the Nonlinear equations

Methods rank(∆t) Convergence Rate
Good/Bad Broyden’s Method

[1, 6, 31] 1 O
(
1/tt/2

)
Greedy/Randomized Good Broyden’s Method

[52] 1 O
(
(1− 1/d)t(t−1)/4

)
Block Good Broyden’s Method

Algorithm 1 k ∈ [d− 1] O
(
(1− k/d)t(t−1)/4

)
Block Bad Broyden’s Method

Algorithm 2 k ∈ [d] O
(
(1− k/(4κ2d))t(t−1)/4

)

2 Preliminaries

We let [d] def
= {1, 2 · · · , d}. We use ∥ · ∥F to denote the Frobenius norm of a given matrix, ∥ · ∥2

to denote the spectral norm of a vector and Euclidean norm of a matrix respectively. The standard
basis for Rd is presented by {e1, · · · , ed} and Id is the identity matrix. We denote the trace, the
largest singular value, and the smallest singular value of a matrix by tr (·), σmin(·), and σmax(·)
respectively.

We use x∗ to denote the solution of the nonlinear equation (1) and J∗ to denote the Jacobian matrix
at x∗, i.e., J∗

def
= J(x∗). We let µ def

= σmin(J(x∗)), L
def
= σmax(J(x∗)) and then define the condition

number of J∗ as κ def
= L/µ. We also use κ̂

def
= σmax(A)/σmin(A) to present the condition number

of given matrix A.

Then we present two standard assumptions on the nonlinear equations (1), which is widely used in
previous works [17, 31, 52].
Assumption 2.1. The solution x∗ of the nonlinear equation (1) is unique and nondegenerate, i.e.,

µ
def
= σmin(J∗) > 0.

Assumption 2.2. The Jacobian J(x) satisfies

∥J(x)− J∗∥2 ≤ M∥x− x∗∥2 for all x ∈ Rd. (2)

The following proposition shows that if x is in some local region of x∗, the Jacobian matrix J(x)
has a bounded condition number.
Proposition 2.3. Suppose Assumptions 2.1 and 2.2 hold. For all x satisfies ∥x−x∗∥2 ≤ µ2/(6LM),
we have

σmin(J(x)) ≥
µ√
2

and σmax(J(x)) ≤
√
2L.

We present two notations for the block Broyden’s Update.
Definition 2.4 (Block Good Broyden’s Update). Let A, B ∈ Rd×d. For any full column rank
matrix U ∈ Rd×k, we define

Block-G-Broyden(B,A,U) ≜ B+ (A−B)U
(
U⊤U

)−1
U⊤. (3)

Definition 2.5 (Block Bad Broyden’s Update). Let A, H ∈ Rd×d. For any full column rank
matrix U ∈ Rd×k, we define

Block-B-Broyden(H,A,U) ≜ H+ (Id −HA)U(U⊤A⊤AU)−1U⊤A⊤. (4)

3 The Block Broyden’s Updates for Approximating Matrices

In this section, we provide the linear convergence rates of the block good and bad Broyden’s updates
for approximating matrices. The theoretical results is summarized in Table 2.

3

Table 2: We summarize the properties of Broyden’s updates for approximating a given nonsingular
matrix A or A−1.

Updates Previous Results Improved Results
Theorem 3.1/3.2 Measure

Block Good
Broyden’s Update

(
1− 1

d

)t
[22, 52] (a)

(
1− k

d

)t E
[
∥(Bt −A)∥2F

]
Block Bad

Broyden’s Update (1− ρ)t [22] (b)
(
1− k

dκ̂2

)t E
[
∥(Ht −A−1)∥2F

]
(a). the result holds for k = 1 and it is unknown when k > 1.

(b). Gower and Richtárik [22] only prove that ρ ∈ [0, k
d], but do not provide the explicit value of ρ.

The block good Broyden’s update, which aims to compute an approximation of matrix A, can be
written as:

Bt+1 = Block-G-Broyden(Bt,A,Ut).

The following theorem presents a linear convergence rate of (1− k/d)t which is better than the rate
(1− 1/d)t provided by Gower and Richtárik [22], Ye et al. [52].

Theorem 3.1. Assume that A ∈ Rd×d and B0 ∈ Rd×d. If we select Ut = [ei1 , ei2 , · · · , eik] ∈
Rd×k, where {i1, · · · , ik} are uniformly chosen from {1, 2, · · · , d} without replacement at each
round, then for any nonsingular matrix C ∈ Rd×d, the block good Broyden’s update satisfies

∥C(Bt+1 −A)∥2F ≤ ∥C(Bt −A)∥2F , (5)

and

E
[
∥C(Bt −A)∥2F

]
≤
(
1− k

d

)t

∥C(B0 −A)∥2F . (6)

On the other hand, the bad Broyden’s update which targets to approximate A−1 can be written as:

Ht+1 = Block-B-Broyden(Ht,A,Ut).

Gower and Richtárik [22] provide an implicit rate of (1−ρ)t for the above scheme with ρ ∈ [0, k/d],
but their analysis cannot guarantee an explicit ρ. In the following theorem, we show that the block
bad Broyden’s update can approximate Ht to A−1 with an explicit linear rate of (1− k/(κ̂2d))t.

Theorem 3.2. Assume that A ∈ Rd×d and H0 ∈ Rd×d. If we select Ut = [ei1 , ei2 , · · · , eik] ∈
Rd×k where {i1, · · · , ik} are uniformly chosen from {1, 2, · · · , d} without replacement at each
round, then for any nonsingular matrix C ∈ Rd×d, the block bad Broyden’s update satisfies

∥C(Ht+1 −A−1)∥2F ≤ ∥C(Ht −A−1)∥2F , (7)

and

E
[
∥C(Ht −A−1)∥2F

]
≤
(
1− k

dκ̂2

)t

∥C(H0 −A−1)∥2F . (8)

Remark 3.3. If we choose C = Id in Theorem 3.1 and Theorem 3.2, then the measures in these two
theorems are exactly the same as the one in Section 8.5 and Section 8.3 of [22]. Besides, the rate
of Theorem 3.1 recovers the convergent rates of Section 8.5 in [22] and Lemma 4.1 in [52] when we
take k = 1.

4 The Block Broyden’s Methods

In this section, we propose two block Broyden’s methods for solving the nonlinear equation (1). We
present our algorithms in section 4.1 and the corresponding convergence results in Section 4.2.

4

Algorithm 1 Block Good Broyden’s Method (BGB)
1: Input: Initial estimator B0, initial point x0 and block size k.

2: for t = 0, 1 . . .

3: xt+1 = xt −B−1
t F(xt).

4: Choose {i1, i2, · · · , ik} by uniformly select k items from {1, · · · , d} without replacement.

5: Ut = [ei1 , · · · , eik] ∈ Rd×k.

6: Bt+1 = Block-G-Broyden(Bt,J(xt+1),Ut).

7: end for

Algorithm 2 Block Bad Broyden’s Method (BBB)
1: Input: Initial estimator H0, initial point x0 and block size k.

2: for t = 0, 1 . . .

3: xt+1 = xt −HtF(xt).

4: Choose {i1, · · · , ik} by uniformly select k items from {1, · · · , d} without replacement.

5: Ut = [ei1 , · · · , eik] ∈ Rd×k.

6: Ht+1 = Block-B-Broyden(Ht,J(xt+1),Ut).

7: end for

4.1 Algorithms

By using the block Broyden’s updates in Section 3, we propose two novel algorithms called Block
Good Broyden’s Method (BGB) and Block Bad Broyden’s Method (BBB) for solving nonlinear
equations.

We present the BGB algorithm in Algorithm 1 which updates the Jacobian estimator Bt by the block
good Broyden’s update in each iteration. Notice that the inverse of Bt can be computed efficiently
by adopting Sherman-Morrison-Woodbury formula [48]. On the other hand, the BBB algorithm,
which is presented in Algorithm 2, approximates the inverse of the Jacobian directly by using the
block bad Broyden’s update. It usually has a lower computational cost than the BGB algorithm in
each round because the BBB algorithm does not need to compute the inverse of the estimator Ht.
Remark 4.1. Algorithms 1 and 2 do not require full information of the Jacobian. We construct Ut

by subsampling the columns of the identity matrix. When updating the Jacobian estimator by the
block updates, we need to calculate Jt+1Ut which is only the partial information of Jt+1 (columns
of Jt+1). Since we have k ≪ d, it is not expensive to access the partial information of the Jacobian.

4.2 Convergence Analysis for the Block Broyden’s Methods

We provide the convergence analysis for Algorithm 1 and Algorithm 2 in Section 4.2.1 and Sec-
tion 4.2.2 respectively. We denote the Jabcobian matrix at xt as Jt. As previous works [17, 31, 52],
we make an assumption on the estimator matrices in Algorithm 1 and Algorithm 2 as follows:

Assumption 4.2. We assume the sequence {Bt}∞t=0 generated by Algorithm 1 (and {Ht}∞t=0 gen-
erated by Algorithm 2) are well-defined and nonsingular.

4.2.1 Analysis for Block Good Broyden’s Methods

In this subsection, we use the following measures for our convergence analysis,

rt
def
= ∥xt − x∗∥2 and σt

def
= ∥J−1

∗ (Bt − J∗)∥F .

The rt measures the distance between xt and the solution x∗ and σt measures how well does the
estimator matrix Bt approximate the Jacobian at x∗.

The following lemma provides upper bound of σt after one block Broyden’s update.

5

Lemma 4.3. Performing Algorithm 1 under Assumptions 2.1, 2.2 and 4.2, we have

σt+1 ≤ σt +
2M

√
d

µ
rt+1 and E[σt+1] ≤

√
1− k

d
· σt +

2M
√
d

µ
· rt+1. (9)

Based on Lemma 4.3, we present the superlinear convergence rate for Algorithm 1.
Theorem 4.4. Suppose Assumptions 2.1, 2.2 and 4.2 hold and the initial condition of Algorithm 1
satisfies

2M
√
dr0

µ
≤ min

{
(1− q)(d− k)

4(1 + q)d
,

q

4(1 + q)

}
and σ0 ≤ q

2(1 + q)
(10)

for arbitary q ∈ (0, 1). Then for any k ∈ [d− 1], the output of Algorithm 1 satisfies

E
[
∥J−1

∗ (Bt − J∗)∥F
]
≤ 2e

(
1− k

d

)t/2

,

and

E
[
∥xt+1 − x∗∥2
∥xt − x∗∥2

]
≤ 4e

(
1− k

d

)t/2

.

Theorem 4.4 implies the following high probability bound for Algorithm 1.
Corollary 4.5. Performing Algorithm 1 under the same assumption and initial condition as Theo-
rem 4.4, with probability at least 1− δ, we have

∥J−1
∗ (Bt − J∗)∥F ≤ 4ed2

k2δ

(
1− k

d+ k

)t/2

, (11)

and

∥xt − x∗∥2 ≤
(
8ed2

k2δ

)t(
1− k

d+ k

)t(t−1)/4

∥x0 − x∗∥2. (12)

Comparison with [52] Compare Theorem 4.4 with Theorem 4.3 of [52], we can find that the
convergence rate of our BGB algorithm is better than greedy and randomized good Broyden’s meth-
ods [52] if we choose k > 1.

On the other hand, the initial condition of greedy and randomized good Broyden’s methods [52] is

∥x0 − x∗∥2 = O
(

µ

M
√
d

)
and ∥B0 − J0∥F = O (µ) , (13)

while the condition of Theorem 4.4 can be reformulated as

∥x0 − x∗∥2 = O
(

µ

M
√
d

)
and ∥J−1

∗ (B0 − J∗)∥F = O (1) . (14)

Since

∥J−1
∗ (B0 − J∗)∥F ≤ ∥J−1

∗ (J∗ − J0)∥F + ∥J−1
∗ (B0 − J0)∥F

≤ M
√
d

µ
∥x0 − x∗∥2 +

1

µ
∥B0 − J0∥F = O(1),

condition (13) can implies condition (14). However, the reverse is not always true. For example, we
can choose B0 = 1.5J∗ and suppose

J0 = J∗ =

[
3 0
0 10−10

]
.

Then we have ∥J−1
∗ (B0−J∗)∥F = ∥ 1

2I2∥F = O(1) while ∥B0−J0∥F = ∥ 1
2J∗∥F ≫ 10−10 = µ.

Overall, compared with the greedy or randomized good Broyden’s method [52], Theorem 4.4 not
only gives a faster convergence superlinear rate by leveraging the idea of block update, but also
weakens the initial condition by using different measures in the analysis.

6

4.2.2 Analysis for Block Bad Broyden’s Methods

This subsection gives the convergence analysis for Algorithm 2. We use the following measures to
describe the convergent behavior

Rt
def
= ∥J∗(xt − x∗)∥2 and τt

def
= ∥J∗(Ht − J−1

∗)∥F .
The Rt measures the distance between xt and the solution x∗ and τt measures how well does the
estimator Ht approximate the matrix J−1

∗ .

Using the convergence results for the block bad Broyden’s update in Theorem 3.2, we are able
to tackle the difference between the estimator Ht and the matrix J−1

∗ after one block update in
Algorithm 2.
Lemma 4.6. Performing Algorithm 2 under Assumptions 2.1, 2.2 and 4.2 and suppose the sequence
{xt}∞t=0 generated by Algorithm 2 satisfies that ∥xt − x∗∥2 ≤ µ2/(6LM), we have

τt+1 ≤ τt +
4M

√
d

µ2
·R2

t+1 and E[τt+1] ≤
√
1− k

4κ2d
· τt +

4M
√
d

µ2
·Rt+1. (15)

We can establish the superlinear convergence of the block bad Broyden’s method based on
Lemma 4.6.
Theorem 4.7. Suppose Assumptions 2.1, 2.2 and 4.2 hold and the initial condition of Algorithm 2
satisfies

4M
√
dR0

µ2
≤ min

{
1− q

4
,
q

2
,

√
d

3κ

}
and τ0 ≤ q

2
(16)

for arbitrary q ∈ (0, 1). Then for k ∈ [d], the output of Algorithm 2 satisfies

E
[
∥J∗(Ht − J−1

∗)∥F
]
≤ e

(
1− k

4dκ2

)t/2

,

and

E
[
∥J∗(xt+1 − x∗)∥2
∥J∗(xt − x∗)∥2

]
≤ 2e

(
1− k

4dκ2

)t/2

.

Similar to Corollary 4.5, we can also obtain the high probability bound for Algorithm 2.
Corollary 4.8. Performing Algorithm 2 under the same assumption and initial condition as Theo-
rem 4.7, with probability at least 1− δ, we have

∥J∗(Ht − J−1
∗)∥F ≤ 8ed2κ4

δk2

(
1− k

4dκ2 + k

)t/2

, (17)

and

∥J∗(xt − x∗)∥2 ≤
(
16ed2κ4

k2δ

)t(
1− k

4dκ2 + k

)t(t−1)/4

∥J∗(x0 − x∗)∥2. (18)

5 Discussion

In this section, we discuss the performance difference between the good and bad Broyden’s methods
which is considered as an important open problem in the field of nonlinear equations [37].

We first discuss the different performance of the block Broyden’s methods (Algorithm 1 and 2). No-
tice that the “good” method enjoys a condition-number-free superlinear rate of O((1−k/d)t(t−1)/4)
and the initial conditions of B0 and x0 are ∥J−1

∗ (B0 − J∗)∥F = O(1) and ∥x0 − x∗∥2 =

O
(

µ

M
√
d

)
respectively. On the other hand, both the superlinear rate O((1 − k/(4dκ2))t(t−1)/4)

and initial conditions ∥J∗(H0−J−1
∗)∥F = O(min{1,

√
d/κ}), ∥J∗(x0−x∗)∥2 = O(µ2/(M

√
d))

for H0, x0 of the “bad” method depend on κ heavily. Thus we think these two block Broyden’s
methods are suitable for different scenarios:

7

Table 3: Comparison between block good and bad Broyden’s methods where r0 = ∥x0 − x∗∥2,
σ0 = ∥J∗(B0 − J∗)∥F , R0 = ∥J∗(x0 − x∗)∥2 and τ0 = ∥J∗(H0 − J−1

∗)∥F .

Block Good Broyden’s Method
Algorithm 1

Block Bad Broyden’s Method
Algorithm 2

Initial Condition M
√
dr0

µ = O(1), σ0 = O(1) M
√
dR0

µ2 = O(1), τ0 = O(1 ∧
√
d

κ)

Superlinear Rate O
((

1− k
d

)t(t−1)/4
)

O
((

1− k
4dκ2

)t(t−1)/4
)

Suitable Scene κ ≫ 1 κ = O(1)

• The “good” method is more suitable for the cases of large condition number (κ ≫ 1) because its
convergence rate is condition-number-free and its initial condition has weaker dependency on κ
than the “bad” method.

• The ‘bad” method may have better performance when κ = O(1) because under this case the
convergence rates do not differ much between the “good” and “bad” method while the latter one
usually has a cheaper computational cost per iteration.

The condition number is very large in most of the cases which means the “good” method generally
outperforms the “bad” one. We summarize the different convergence rates, initial conditions and
suitable scenes of the block good and bad Broyden’s methods in Table 3.

The similar phenomenon also holds for the classical good and bad Broyden’s methods [31], whose
iterations can be reformulated as

xt+1 = xt −B−1
t F(xt),

Bt+1 = Block-G-Broyden
(
Bt, Ĵt+1,ut

)
= Bt +

(yt −Btut)u
⊤
t

u⊤
t ut

, (19)

and
xt+1 = xt −HtF(xt),

Ht+1 = Block-B-Broyden
(
Ht, Ĵt+1,ut

)
= Ht +

(ut −Htyt)y
⊤
t

y⊤
t yt

(20)

respectively, where ut = xt+1 − xt, Ĵt+1 =
∫ 1

0
J(xt + sut)ds and yt = F(xt+1) − F(xt).

The different convergent behavior of the block Broyden’s updates helps us understand the perfor-
mance difference between the classical good and bad Broyden’s methods for the similarity of their
frameworks.

6 Experiments

We validate our methods on the Chandrasekhar H-equation which is well studied in the previous
literature [26, 31, 52] as follows

Fi(x) = xi −

1− c

2N

N∑
j=1

µixj

µi + µj

−1

, (21)

where x = [x1, · · · , xN]⊤ ∈ RN and F(x) = [F1(x), · · · , FN (x)]⊤ ∈ RN . We denote GB-Cl and
BB-Cl as the classical good and bad Broyden’s methods respectively [1, 31]. We denote GB-Gr and
GB-Ra as the greedy and randomized Broyden’s methods [52] respectively. Our experiments are
conducted on a PC with Apple M1 and all algorithms are implemented in Python 3.8.12.

Our first experiment considers three cases: N = 200, N = 300, N = 400. We set c = 1 − 10−12

for the H-equation and choose the block size k = N/10 for the proposed methods. In all cases,
we use the same inputs B0 = 0.1IN (H0 = 10IN) for all algorithms. We use classical Newton
method as the warm-up algorithm to obtain x0 which satisfies the local condition and take it as the

8

0 150 300

10 13

10 9

10 5

10 1
GB-Cl
BB-Cl
GB-Ra
GB-Gr
BGB
BBB

0 200 400

10 13

10 9

10 5

10 1

0 300 600

10 13

10 9

10 5

10 1

(a) N = 200 (iteration) (b) N = 300 (iteration) (c) N = 400 (iteration)

0.0 0.1 0.2

10 13

10 9

10 5

10 1

0.0 0.2 0.4

10 13

10 9

10 5

10 1

0.0 0.3 0.6

10 13

10 9

10 5

10 1

(d) N = 200 (time) (e) N = 300 (time) (f) N = 400 (time)

Figure 1: We demonstrate iteration numbers vs. ∥F(x)∥2 and CPU time (second) vs. ∥F(x)∥2 for
H-equation with different equation numbers N .

initial point for all methods. We compare the proposed BGB and BBB algorithm with baselines
and present the results of iteration number against ∥F(x)∥2 and running time against ∥F(x)∥2 in
Figure 1. We observe that the proposed block good Broyden’s method (BGB) outperforms the
baselines in all cases, but the block bad Broyden’s method (BBB) does not perform very well. This
is mainly because κ is very large in this setting (κ ≈ 106). We also note that the classical Broyden’s
methods (GB-Cl and BB-Cl) are numerical unstable. Specifically, they do not guarantee the descent
of ∥F(xt)∥2 and encounter nan value during the iterations. The BB-Cl algorithm even fails to
converge after some iterations. Such instability of the classical Broyden’s methods is also observed
in the previous literature [31, 52].

Our second experiment explores the performance of the proposed block Broyden’s methods with
different block size. We also study whether BBB algorithm has good performance for the nonlinear
equation which Jacobian of the solution small condition number. By fixing N = 400 and setting
c = {1−10−1, 1−10−3, 1−10−5}, we obtain different condition numbers of (21) as κ = 2, 31, 327.
We present the results in Figure 2. For each κ, we also vary the block size k = {1, 10, 100} for BGB
and BBB algorithms. We observe that when κ = O(1), BBB outperforms BGB in terms of the CPU
time (Figure 2 (d), (e)). which matches our analysis in section 5. We also find that larger block size
k will lead to faster convergence in terms of the iterations ((a), (b), (c) of Figure 2), which verifies
our theoretical results in section 4.2.

7 Conclusion

In this paper, we have proposed the block Broyden’s methods for solving nonlinear equations. The
proposed block good Broyden’s method enjoys a faster superlinear rate than all of the existing Broy-
den’s methods. We have also shown that the block bad Broyden’s update approximates the inverse
of the object matrix with an explicit linear rate and proposed the block bad Broyden’s method ac-
cordingly. The established convergence results for the block good and bad methods bring us new
understanding on the performance difference between the good and bad Broyden’s methods. Espe-
cially, they can explain why good Broyden’s method generally outperforms the “bad” one.

For the future work, it is possible to incorporate the safeguard mechanism in Wang et al. [50] to re-
move the assumption on the Jacobian estimator (Assumption 4.2). It will also be interesting to study
the global behavior based on the recent advance in Jiang et al. [24] and design efficient stochastic or
sketched algorithms [50, 51, 54] for solving nonlinear equations.

9

0 3 6
10 14

10 10

10 6

10 2 BBB, k = 1
BBB, k = 10
BBB, k = 100

BGB, k = 1
BGB, k = 10
BGB, k = 100

0 6 12
10 14

10 10

10 6

10 2

0 40 80
10 14

10 10

10 6

10 2

(a) κ = 2 (iteration) (b) κ = 31 (iteration) (c) κ = 327 (iteration)

0.000 0.008 0.016
10 14

10 10

10 6

10 2

0.00 0.05 0.10
10 14

10 10

10 6

10 2

0.0 0.1 0.2
10 14

10 10

10 6

10 2

(d)κ = 2 (time) (e) κ = 31 (time) (f) κ = 327 (time)

Figure 2: We demonstrate iteration numbers vs. ∥F(x)∥2 and CPU time (second) vs. ∥F(x)∥2 for
H-equation with different condition number κ.

Acknowledgement

We would like to thank Haishan Ye for valuable discussion. Cheng Chen is supported by National
Natural Science Foundation of China (No. 62306116) and the Dean’s fund of Shanghai Key Labo-
ratory of Trustworthy Computing. Luo Luo is supported by National Natural Science Foundation of
China (No. 62206058) and Shanghai Sailing Program (22YF1402900). John C.S. Lui is supported
in part by the Hong Kong GRC 14215722.

References
[1] Mehiddin Al-Baali, Emilio Spedicato, and Francesca Maggioni. Broyden’s quasi-Newton

methods for a nonlinear system of equations and unconstrained optimization: a review and
open problems. Optimization Methods and Software, 29(5):937–954, 2014.

[2] Lucian-Liviu Albu. Non-linear models: applications in economics. Available at SSRN
1565345, 2006.

[3] Meysam Alizamir, Sungwon Kim, Ozgur Kisi, and Mohammad Zounemat-Kermani. A com-
parative study of several machine learning based non-linear regression methods in estimating
solar radiation: Case studies of the usa and turkey regions. Energy, 197:117239, 2020.

[4] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

[5] Eloıse Berthier, Justin Carpentier, and Francis Bach. Fast and robust stability region estimation
for nonlinear dynamical systems. In 2021 European Control Conference (ECC), pages 1412–
1419. IEEE, 2021.

[6] Charles G. Broyden. A class of methods for solving nonlinear simultaneous equations. Math-
ematics of computation, 19(92):577–593, 1965.

[7] Charles G. Broyden. Quasi-Newton methods and their application to function minimisation.
Mathematics of Computation, 21(99):368–381, 1967.

[8] Charles G. Broyden. The convergence of a class of double-rank minimization algorithms 1.
general considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

[9] Charles G. Broyden. The convergence of a class of double-rank minimization algorithms: 2.
the new algorithm. IMA journal of applied mathematics, 6(3):222–231, 1970.

10

[10] Charles G. Broyden. On the discovery of the “good Broyden” method. Mathematical pro-
gramming, 87:209–213, 2000.

[11] Charles G. Broyden, J. E. Dennis, and Jorge J. Moré. On the local and superlinear convergence
of quasi-Newton methods. IMA Journal of Applied Mathematics, 12(3):223–245, 1973.

[12] Caterina Buizza, César Quilodrán Casas, Philip Nadler, Julian Mack, Stefano Marrone, Zainab
Titus, Clémence Le Cornec, Evelyn Heylen, Tolga Dur, Luis Baca Ruiz, et al. Data learning:
integrating data assimilation and machine learning. Journal of Computational Science, 58:
101525, 2022.

[13] Richard H. Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a cass of quasi-
Newton methods on convex problems. SIAM Journal on Numerical Analysis, 24(5):1171–
1190, 1987.

[14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[15] Timothy A. Davis. Block matrix methods: Taking advantage of high-performance computers.
Technical report, Technical Report TR-98-024, 1998.

[16] Alexandre Défossez and Francis Bach. Averaged least-mean-squares: Bias-variance trade-offs
and optimal sampling distributions. In Artificial Intelligence and Statistics, pages 205–213.
PMLR, 2015.

[17] John E. Dennis Jr and Robert B. Schnabel. Numerical methods for unconstrained optimization
and nonlinear equations. SIAM, 1996.

[18] Jin-yan Fan and Ya-Xiang Yuan. On the quadratic convergence of the Levenberg–Marquardt
method without nonsingularity assumption. Computing, 74:23–39, 2005.

[19] J. Frehse and A. Bensoussan. Nonlinear elliptic systems in stochastic game theory. Journal
für die reine und angewandte Mathematik, 350:23–67, 1984.

[20] Philip E. Gill and Walter Murray. Algorithms for the solution of the nonlinear least-squares
problem. SIAM Journal on Numerical Analysis, 15(5):977–992, 1978.

[21] Nick Gould, Dominique Orban, and Philippe Toint. Numerical methods for large-scale non-
linear optimization. Acta Numerica, 14:299–361, 2005.

[22] Robert M. Gower and Peter Richtárik. Randomized quasi-Newton updates are linearly conver-
gent matrix inversion algorithms. arXiv preprint arXiv:1602.01768, 2016.

[23] Andreas Griewank. Broyden updating, the good and the bad. Optimization Stories, Documenta
Mathematica. Extra Volume: Optimization Stories, pages 301–315, 2012.

[24] Ruichen Jiang, Qiujiang Jin, and Aryan Mokhtari. Online learning guided curvature approx-
imation: A quasi-Newton method with global non-asymptotic superlinear convergence. In
Annual Conference Computational Learning Theory, 2023.

[25] Qiujiang Jin and Aryan Mokhtari. Non-asymptotic superlinear convergence of standard quasi-
Newton methods. Mathematical Programming, pages 1–49, 2022.

[26] Carl T. Kelley. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[27] Carl T. Kelley. Solving nonlinear equations with Newton’s method. SIAM, 2003.

[28] Carl T. Kelley and Ekkehard W. Sachs. A new proof of superlinear convergence for Broyden’s
method in Hilbert space. SIAM Journal on Optimization, 1(1):146–150, 1991.

[29] Dana A. Knoll and David E. Keyes. Jacobian-free Newton–Krylov methods: a survey of
approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.

[30] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of applied mathematics, 2(2):164–168, 1944.

11

[31] Dachao Lin, Haishan Ye, and Zhihua Zhang. Explicit superlinear convergence rates of Broy-
den’s methods in nonlinear equations. arXiv preprint arXiv:2109.01974, 2021.

[32] Dachao Lin, Haishan Ye, and Zhihua Zhang. Explicit convergence rates of greedy and random
quasi-Newton methods. Journal of Machine Learning Research, 23(162):1–40, 2022.

[33] Chengchang Liu and Luo Luo. quasi-Newton methods for saddle point problems. Advances in
Neural Information Processing Systems, 35:3975–3987, 2022.

[34] Chengchang Liu, Shuxian Bi, Luo Luo, and John CS Lui. Partial-quasi-Newton methods:
Efficient algorithms for minimax optimization problems with unbalanced dimensionality. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 1031–1041, 2022.

[35] Chengchang Liu, Cheng Chen, and Luo Luo. Symmetric rank-k methods. arXiv preprint
arXiv:2303.16188, 2023.

[36] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[37] José Mario Martınez. Practical quasi-Newton methods for solving nonlinear systems. Journal
of computational and Applied Mathematics, 124(1-2):97–121, 2000.

[38] Konstantin Mishchenko. Regularized Newton method with global O(1/k2) convergence.
arXiv preprint arXiv:2112.02089, 2021.

[39] Jorge J. Moré. A collection of nonlinear model problems. Technical report, Argonne National
Lab., IL (USA), 1989.

[40] Yu. Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global perfor-
mance. Optimisation methods and software, 22(3):469–483, 2007.

[41] Mojtaba Nourian and Peter E. Caines. ϵ-Nash mean field game theory for nonlinear stochastic
dynamical systems with major and minor agents. SIAM Journal on Control and Optimization,
51(4):3302–3331, 2013.

[42] M.J.D. Powell. A hybrid method for nonlinear equations. Numerical Methods for Nonlinear
Algebraic Equations, 1970.

[43] Anton Rodomanov and Yurii Nesterov. Greedy quasi-Newton methods with explicit superlin-
ear convergence. SIAM Journal on Optimization, 31(1):785–811, 2021.

[44] Anton Rodomanov and Yurii Nesterov. New results on superlinear convergence of classical
quasi-Newton methods. Journal of optimization theory and applications, 188(3):744–769,
2021.

[45] Anton Rodomanov and Yurii Nesterov. Rates of superlinear convergence for classical quasi-
Newton methods. Mathematical Programming, pages 1–32, 2021.

[46] Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont, and Francis Bach. Online regular-
ized nonlinear acceleration. arXiv preprint arXiv:1805.09639, 2018.

[47] David F. Shanno. Conditioning of quasi-Newton methods for function minimization. Mathe-
matics of computation, 24(111):647–656, 1970.

[48] Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to
a change in one element of a given matrix. The Annals of Mathematical Statistics, 21(1):
124–127, 1950.

[49] Ph L. Toint. On large scale nonlinear least squares calculations. SIAM Journal on Scientific
and Statistical Computing, 8(3):416–435, 1987.

[50] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-Newton methods
for nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

12

[51] Xiaoyu Wang, Xiao Wang, and Ya-Xiang Yuan. Stochastic proximal quasi-Newton methods
for non-convex composite optimization. Optimization Methods and Software, 34(5):922–948,
2019.

[52] Haishan Ye, Dachao Lin, and Zhihua Zhang. Greedy and random Broyden’s methods with ex-
plicit superlinear convergence rates in nonlinear equations. arXiv preprint arXiv:2110.08572,
2021.

[53] Haishan Ye, Dachao Lin, Xiangyu Chang, and Zhihua Zhang. Towards explicit superlinear
convergence rate for SR1. Mathematical Programming, pages 1–31, 2022.

[54] Rui Yuan, Alessandro Lazaric, and Robert M. Gower. Sketched Newton–Raphson. SIAM
Journal on Optimization, 32(3):1555–1583, 2022.

[55] Ya-Xiang Yuan. Trust region algorithms for nonlinear equations. Information, 1:7–20, 1998.

[56] Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear
least squares. Numerical algebra, control & optimization, 1(1):15, 2011.

13

We present several useful lemmas in Section A. We give the detailed proof of Section 2 and 3 in
Section B and C. The detailed proof of Broyden’s good method (Section 4.2.1) and Broyden’s bad
method (Section 4.2.2) are presented in Section D and E respectively.

A Useful Lemmas

Lemma A.1. Let U = [ei1 , ei2 , · · · , eik] ∈ Rd×k where {i1, · · · , ik} are uniformly chosen from
{1, 2, · · · , d} without replacement, then it holds that

E
[
U(U⊤U)−1U⊤] = k

d
Id. (22)

Proof. Since U = [ei1 , ei2 , · · · , eik] and i1, · · · , ik are different, it always holds that U⊤U = Ik,
which means

E[U(U⊤U)−1U⊤] = E[UU⊤] = E

[
k∑

m=1

eime⊤im

]
=

k∑
m=1

E[eime⊤im] =
k

d
Id.

Lemma A.2 ([17, Theorem 3.13]). Let A,B ∈ Rd×d, then it holds that

∥AB∥F ≤ ∥A∥2∥B∥F . (23)

Lemma A.3 (Modified from [32, Lemma 26], [52, Theorem 4.5]). Suppose the nonnegative random
sequences {Xt} satisfies E[Xt] ≤ a (1− 1/η)

t/2 and Xt ≥ 0 for all t ≥ 0 and some constants
a ≥ 0 and η > 1. Then for any δ ∈ (0, 1), we have

Xt ≤
2aη2

δ

(
1− 1

1 + η

)t/2

(24)

for all t with probability at least 1− δ.

Proof. According to Markov’s inequality, we have

P

(
Xt ≥

a

ϵt

(
1− 1

η

)t/2
)

≤ E [Xt]

a
ϵt

(
1− 1

η

)t/2 ≤ ϵt,

choose ϵt = δ(1− s)st where 0 < s < 1, we have

P

(
Xt ≥

a

ϵt

(
1− 1

η

)t/2

,∃t ∈ N

)
≤

∞∑
t=1

δ(1− s)st = δ.

With probability 1− δ, we have

Xt ≤

(
1− 1

η

s2

)t/2

· a

(1− s)δ
,

for all t. Set s =
√
1− 1/η2 ≤ 1− 1/(2η2), we obtain the result of (24).

B The Proof of Section 2

B.1 The Proof of Proposition 2.3

Proof. Since ∥J∗∥2 ≤ L, it holds that

∥J(x)∥2 ≤ ∥J(x)− J∗∥2 + ∥J∗∥2
(2)
≤ M∥x− x∗∥2 + L ≤

√
2L.

14

It also holds that

J⊤
∗ J∗ = J(x)⊤J(x) + (J⊤

∗ J∗ − J(x)⊤J(x))

⪯ J(x)⊤J(x) + ∥(J(x)⊤J(x)− J⊤
∗ J∗)∥2Id

⪯ J(x)⊤J(x) + ∥J(x)∥2∥J(x)− J∗∥2Id + ∥J∗∥2∥J(x)− J∗∥2Id
(2)
⪯ J(x)⊤J(x) + 3LM∥x− x∗∥Id ⪯ J(x)⊤J(x) +

µ2

2
Id,

which implies that

σmin(J(x)) ≥
µ√
2
.

C The Proof of Section 3

C.1 The Proof of Theorem 3.1

Proof. We first consider one step of the block good Broyden’s update

B+ = Block-G-Broyden(B,A,U).

According to the block Broyden’s update rule of (3), we have

C(B+ −A) = C(B−A) +C(A−B)U
(
U⊤U

)−1
U⊤ (25)

= C(B−A)
(
Id −U

(
U⊤U

)−1
U⊤
)
. (26)

Then it holds that
C(B+ −A)(B+ −A)⊤C⊤

= C(B−A)
(
Id −U

(
U⊤U

)−1
U⊤
)(

Id −U
(
U⊤U

)−1
U⊤
)
(B−A)⊤C⊤

= C(B−A)
(
Id −U

(
U⊤U

)−1
U⊤
)
(B−A)⊤C⊤

⪯ C(B−A)(B−A)⊤C⊤,

(27)

which proves (5).

According to Lemma A.1, we can obtain

E
[
∥C(B+ −A)∥2F

] (25)
= ∥C(B−A)∥2F − E

[
tr
(
(B−A)⊤C⊤C(B−A)U

(
U⊤U

)−1
U⊤
)]

= ∥C(B−A)∥2F − tr
(
(B−A)⊤C⊤C(B−A)E

[
U
(
U⊤U

)−1
U⊤
])

(22)
= ∥C(B−A)∥2F − k

d
∥C(B−A)∥2F

=

(
1− k

d

)
∥C(B−A)∥2F .

So we have

Et

[
∥C(Bt+1 −A)∥2F

]
=

(
1− k

d

)
∥C(Bt −A)∥2F .

Taking expectation on both sides of the above equation, we have

E
[
∥C(Bt+1 −A)∥2F

]
=

(
1− k

d

)
E[∥C(Bt −A)∥2F].

Thus, we obtain

E
[
∥C(Bt −A)∥2F

]
=

(
1− k

d

)t

∥C(B0 −A)∥2F .

15

C.2 The Proof of Theorem 3.2

Proof. We consider one step of the block bad Broyden’s update

H+ = Block-B-Broyden(H,A,U).

According to the update rule, it holds that

C(H+ −A−1) = C(H−A−1)−C(H−A−1)(AU(U⊤A⊤AU)−1U⊤A⊤)

= C(H−A−1)(Id −AU(U⊤A⊤AU)−1U⊤A⊤),

which means

C(H+ −A−1)(H+ −A−1)⊤C⊤

= C(H−A−1)(Id −AU(U⊤A⊤AU)−1U⊤A⊤)(H−A−1)⊤C⊤

⪯ C(H−A−1)(H−A−1)⊤C⊤

which proves (7). Besides, it holds that

C(H+ −A−1)(H+ −A−1)⊤C⊤

= (H−A−1)(H−A−1)⊤ − (H−A−1)(AU(U⊤A⊤AU)−1U⊤A⊤)(H−A−1)⊤

Since µ̂ = minσ(A) and L̂ = maxσ(A), we have

µ̂2I ⪯ A⊤A ⪯ L̂2I, (28)

which means

C(H−A−1)(AU(U⊤A⊤AU)−1U⊤A⊤)(H−A−1)⊤C⊤

(28)
⪰ 1

L̂2
C(H−A−1)(AU(U⊤U)−1U⊤A⊤)(H−A−1)⊤C⊤.

(29)

Combining the above results, we have

E
[
∥C(H+ −A−1)∥2F

]
(29)
≤ ∥C(H−A−1)∥2F − 1

L̂2
E
[
tr
(
C(H−A−1)(AU(U⊤U)−1U⊤A⊤)(H−A−1)⊤

)
C⊤]

= ∥C(H−A−1)∥2F − 1

L̂2
tr
(
E
[
C(H−A−1)(AU(U⊤U)−1U⊤A⊤)(H−A−1)⊤C⊤])

= ∥H−A−1∥2F − 1

L̂2
tr
(
(H−A−1)AE

[
U(UU⊤)−1U⊤]A⊤(H−A−1)⊤

)
(3)
= ∥C(H−A−1)∥2F − k

L̂2d
tr
(
C(H−A−1)AA⊤(H−A−1)⊤C⊤)

(28)
≤ ∥C(H−A−1)∥2F − kµ̂2

dL̂2
tr
(
C(H−A−1)(H−A−1)⊤C⊤)

=

(
1− k

dκ̂2

)
∥C(H−A−1)∥2F .

So we have

Et

[
∥C(Ht+1 −A−1)∥2F

]
=

(
1− k

dκ̂2

)
∥C(Ht −A−1)∥2F .

Taking expectation on both sides of the above equation, we have

E
[
∥C(Ht+1 −A−1)∥2F

]
=

(
1− k

dκ̂2

)
E
[
∥C(Ht −A−1)∥2F

]
.

Thus, we obtain

E
[
∥C(Ht −A−1)∥2F

]
=

(
1− k

dκ̂2

)t

∥C(H0 −A−1)∥2F .

16

D The Proof of Section 4.2.1

D.1 The Proof of Lemma 4.3

Proof. Take C = J−1
∗ in (5) and (6) of Theorem 3.1, we have

E
[
∥J−1

∗ (Bt+1 − Jt+1)∥2F
]
≤
(
1− k

d

)
∥J−1

∗ (Bt − Jt+1)∥2F , (30)

and

∥J−1
∗ (Bt+1 − Jt+1)∥2F ≤ ∥J−1

∗ (Bt − Jt+1)∥2F . (31)

We have

E [σt+1] = E
[
∥J−1

∗ (Bt+1 − J∗)∥F
]

≤ E
[
∥J−1

∗ (Bt+1 − Jt+1)∥F
]
+ ∥J−1

∗ (Jt+1 − J∗)∥F
(30)
≤
√

1− k

d
· ∥J−1

∗ (Bt − Jt+1)∥F + ∥J−1
∗ (Jt+1 − J∗)∥F

≤
√
1− k

d
· ∥J−1

∗ (Bt − J∗)∥F + 2∥J−1
∗ (Jt+1 − J∗)∥F

(23)
≤
√

1− k

d
· ∥J−1

∗ (Bt − J∗)∥F + 2∥J−1
∗ ∥2∥Jt+1 − J∗∥F

(2)
≤
√
1− k

d
· σt +

2M
√
d

µ
· ∥xt+1 − x∗∥2

=

√
1− k

d
· σt +

2M
√
d

µ
· rt+1.

Similarly, it holds that

σt+1 = ∥J−1
∗ (Bt+1 − J∗)∥F

≤ ∥J−1
∗ (Bt+1 − Jt+1)∥F + ∥J−1

∗ (Jt+1 − J∗)∥F
(31)
≤ ∥J−1

∗ (Bt − Jt+1)∥F + ∥J−1
∗ (Jt+1 − J∗)∥F

≤ ∥J−1
∗ (Bt − J∗)∥F + 2∥J−1

∗ (Jt+1 − J∗)∥F
(23)
≤ ∥J−1

∗ (Bt − J∗)∥F + 2∥J−1
∗ ∥2∥Jt+1 − J∗∥F

(2)
≤ σt +

2M
√
d

µ
∥xt+1 − x∗∥2

= σt +
2M

√
d

µ
rt+1.

D.2 The Proof of Theorem 4.4

We first provide two useful lemmas
Lemma D.1 ([31, Lemma 9]). Under the same assumptions of Theorem 4.4, taking the iteration of
xt+1 = xt −B−1

t F(xt) and Bt is nonsingular, it holds that

rt+1 ≤ ∥B−1
t J∗∥2

(
σtrt +

M

µ
r2t

)
,

if σt ≤ 1, we have

rt+1 ≤ 1

1− σt

(
σtrt +

2M

µ
r2t

)
. (32)

17

Lemma D.2. Under the same assumptions of Theorem 4.4 with the following initial conditions

2Mr0
√
d/µ ≤ min

{
1− q

4(q + 1)
,

q

4(q + 1)

}
and σ0 ≤ q

2(1 + q)
, (33)

we have

rt+1 ≤ qrt.

Proof. We use induction to prove the following facts that

rt+1 ≤ qrt, (34)

and

σt ≤ σ0 +
q

1− q
· 2M

√
d

µ
· r0 ≤ 3q

4(1 + q)
. (35)

For t = 0, we have σ0 ≤ 1, it holds that

r1
(32)
≤ σ0 + 2Mr0/µ

1− σ0
· r0

(33)
≤ 2q/(2(1 + q))

1− q/(2(1 + q))
≤ qr0,

Suppose (34) and (35) hold for all t = 0, · · · t′ − 1, then for t = t′, we have

σt′
(9)
≤ σt′−1 +

2M
√
d

µ
· rt′

(9)
≤ σt′−2 +

2M
√
d

µ
· rt′−1 +

2M
√
d

µ
· rt′

(34)
≤ · · · ≤ σ0 +

2M
√
d

µ

t′∑
i=1

ri ≤ σ0 +
2M

√
d

µ

t′∑
i=1

qir0

≤σ0 +
q

1− q

2M
√
d

µ
r0 ≤ 3q

4(1 + q)
,

which means σt′ ≤ 1, thus we have

rt′+1

(32)
≤ 1

1− 3q/(4(1 + q))

(
3q

4(1 + q)
+

2M

µ
r0

)
rt′

(33)
≤ 4(1 + q)

4 + q
· 4q

4(1 + q)
rt′ ≤ qrt′ .

Now, we prove the results of Theorem 4.4

Proof. We denote α
def
=
√

1− k/d. It holds that

Et[σt+1]
(9)
≤ α

(
σt +

2M
√
d

µα
· rt

)
, (36)

and according to Lemma D.2, we have

1

1− σt

(35)
≤ 1

1− 3q/(4(1 + q))
≤ 1 + q,

which implies that

rt+1

(32)
≤ α

(
σt +

2Mrt
µ

)(
1 + q

α

)
rt (37)

≤α

(
σt +

2M
√
drt

µα

)(
1 + q

α

)
rt. (38)

18

We denote ηt = σt + 2M
√
drt/(µα), then it holds that

Et[ηt+1]
(36),(37)
≤ αηt

(
1 +

2M
√
d(1 + q)

µα2
· rt

)

≤ αηt exp

(
2M

√
d(1 + q)

µα2
rt

)
(34)
≤ αηt exp

(
2M

√
d(1 + q)

µα2
qtr0

)
.

Taking expectation on both sides of the above inequality, we have

E [ηt+1] ≤ α exp

(
2M

√
d(1 + q)

µα2
qtr0

)
E [ηt]

≤ α2 exp

(
2M

√
d(1 + q)

µα2
(qt + qt−1)r0

)
E [ηt−1]

· · ·

≤ αt+1 exp

(
2M

√
d(1 + q)

µα2

t∑
i=0

qir0

)
η0

≤ αt+1 exp

(
2M

√
d(1 + q)

µα2(1− q)
r0

)
η0

≤ αt+12e,

(39)

where the last inequality comes from the initial condition that

r0 ≤ (1− q)µα2

2(1 + q)M
√
d
,

and

η0 = σ0 +
2M

√
dr0

µα
≤ 1 +

1

2

(10)
≤ 2.

So, we have

E
[
rt+1

rt

]
(37)
≤ E [(1 + q)ηt]

(39)
≤ 4eαt,

and

E [σt]
(36)
≤ E [ηt]

(39)
≤ 2eαt.

D.3 The Poof of Corollary 4.5

Proof. We follow the notation and the results obtained in the proof of Theorem 4.4. Using
Lemma A.3 with a = 2e, η = d/k and Xt = σt, we obtain (11). Using Lemma A.3 with a = 4e,
η = d/k and Xt = rt+1/rt, we have

rt+1 ≤ 8ed2

k2δ

(
1− k

d+ k

)t/2

rt,

holds for all t with probability at least 1 − δ. by telescoping the above inequality, we can obtain
(12).

E The Proof of Section 4.2.2

In the following analysis, we denote

µ̂
def
=

µ√
2
, L̂

def
=

√
2L, and κ̂

def
= 2κ (40)

to simplify the presentation.

19

E.1 The Proof of Lemma 4.6

Proof. Take C = J∗ in Theorem 3.2, we have

E
[
∥J∗(Ht+1 − J−1

t+1)∥2F
]
≤
(
1− k

dκ̂2

)
∥J∗(Ht − J−1

t+1)∥2F , (41)

and

∥J∗(Ht+1 − J−1
t+1)∥2F ≤ ∥J∗(Ht − J−1

t+1)∥2F , (42)

We have

E [τt+1] = E
[
∥J∗(Ht+1 − J−1

∗)∥F
]

≤ E
[
∥J∗(Ht+1 − J−1

t+1) + J∗(J
−1
t+1 − J−1

∗)∥F
]

(41)
≤
√

1− k

dκ̂2
∥J∗(Ht − J−1

t+1)∥F + ∥J∗(J
−1
t+1 − J−1

∗)∥F

≤
√
1− k

dκ̂2
· ∥J∗(Ht − J−1

∗)∥F + 2∥J∗(J
−1
t+1 − J−1

∗)∥F

=

√
1− k

dκ̂2
· τt + 2∥J−1

t+1(J∗ − Jt+1)∥F

(23)
≤
√
1− k

dκ̂2
· τt + 2∥J−1

t+1∥2∥J∗ − Jt+1∥F

(2)
≤
√

1− k

dκ̂2
· τt +

2M
√
d

µ̂
· rt+1

≤
√
1− k

dκ̂2
· τt +

2M
√
d

µ̂2
·Rt+1.

Besides, it holds that

τt+1 ≤ ∥J∗(Ht+1 − J−1
t+1) + J∗(J

−1
t+1 − J−1

∗)∥F
(42)
≤ ∥J∗(Ht − J−1

t+1)∥F + ∥J∗(J
−1
t+1 − J−1

∗)∥F
≤ ∥J∗(Ht − J−1

∗)∥F + 2∥J∗(J
−1
t+1 − J−1

∗)∥F
= τt + 2∥J−1

t+1(J∗ − Jt+1)∥F
(23)
≤ τt + 2∥J−1

t+1∥2 ∥J∗ − Jt+1∥F
(2)
≤ τt +

2M
√
d

µ̂
· rt+1

≤ τt +
2M

√
d

µ̂2
·Rt+1 = τt +

4M
√
d

µ2
·Rt+1.

E.2 The Proof of Theorem 4.7

We first present two useful lemmas which use the same assumptions as Theorem 4.7 for the follow-
ing analysis

Lemma E.1 ([31, Lemma 11]). Under the same assumptions of Theorem 4.7, taking the iteration
of xt+1 = xt −HtF(xt), it holds that

Rt+1 ≤ τtRt +
(1 + τt)M

2µ2
·R2

t . (43)

Lemma E.2. If x ∈ Ω∗ def
= {x : |∥J∗(x− x∗)∥2 ≤ µ3/(6LM)}, it holds ∥x− x∗∥ ≤ µ2/(6LM).

20

Proof. We have

∥x− x∗∥2 ≤ ∥J−1
∗ ∥2∥J∗(x− x∗)∥2 ≤ 1

µ
· µ3

6LM
=

µ2

6LM
.

Lemma E.3. Under the same assumptions of Theorem 4.7 with the following initial conditions

4M
√
dR0

µ2
≤ min

{
1− q

4
,
q

2
,

√
d

3κ

}
and τ0 ≤ q

2
, (44)

we have

Rt+1 ≤ qRt and ∥xt − x∗∥2 ≤ µ2

6LM
(45)

hold for all t.

Proof. We use induction to prove that

Rt+1 ≤ qRt ≤ qt+1R0, (46)

and

τt ≤
3q

4
. (47)

For t = 0, we have

R1 ≤
(
τ0 +

M

µ̂2
·R0

)
R0 ≤ qR0,

Suppose (46) and (47) hold for t = 0, · · · t′ − 1, then we have

Rt′ ≤ R0 ≤ µ3

6LM
,

which means xt′ ∈ Ω∗. For t = t′, since x0, · · · ,xt′ ∈ Ω∗, using 2.3 and 4.6, it holds that

τt′
(15)
≤ τt′−1 +

2M
√
d

µ̂2
Rt′

(15)
≤ τt′−2 +

2M
√
d

µ̂2
Rt′−1 +

2M
√
d

µ̂2
Rt′

≤ · · ·
(15)
≤ τ0 +

2M
√
d

µ̂2

t′∑
i=1

Ri

(46)
≤ τ0 +

2M

µ̂2

t′∑
i=1

qiR0

≤ τ0 +
q

1− q
· 2M

√
d

µ̂2
R0

(44)
≤ 3q

4
,

and

Rt′+1

(43)
≤

(
τt′ +

M
√
d

µ̂2
·Rt′

)
Rt′

(46)
≤

(
3q

4
+

M
√
d

µ̂2
·R0

)
Rt′

(44)
= qRt′ ,

which finish the induction. According to Lemma E.2 it holds for that

∥xt − x∗∥2 ≤ µ2

6LM
.

Now, we prove Theorem 4.7.

21

Proof. According to Lemma E.3, we always have ∥xt−x∗∥2 ≤ µ2/(6LM). Using Lemma 4.6 and
Lemma E.1, we have

Et[τt+1]
(15)
≤ β

(
τt +

4M
√
d

µ2
·Rt

)
, (48)

and

Rt+1 ≤ β

(
τt +

4M
√
d

µ2
·Rt

)
2Rt, (49)

where we assume that κ̂ ≥
√
2 and denote β

def
=
√
1− k/(dκ2), ηt

def
= τt + 4M

√
dRt/µ

2. We have

Et[ηt+1]
(48),(49)
≤ βηt

(
1 +

8M
√
d

µ2
·Rt

)
(45)
≤ βηt exp

(
8M

√
d qtR0

µ2

)
,

taking expectation on both sides of the above inequality, we have

E [ηt+1]≤β exp

(
8M

√
d qtR0

µ2

)
E [ηt]

≤ β2 exp

(
8M

√
d (qt + qt−1)R0

µ2

)
E [ηt−1]

· · ·

≤ βt+1 exp

(
8M

√
d

µ2

t∑
i=0

qiR0

)
η0

≤ βt+1 exp

(
8
√
dM

µ2(1− q)
R0

)
η0

≤ βt+1e,

(50)

where the last inequality comes from the initial condition that

R0

(16)
≤ (1− q)µ2

8M
√
d

,

and

η0 = τ0 +
4M

√
dR0

µ2

(16)
≤ 1

2
+

1

2
≤ 1.

So, we have

E
[
Rt+1

Rt

]
(49)
≤ E [2ηt]

(50)
≤ 2eβt,

and

E [τt]
(48)
≤ E [ηt]

(50)
≤ eβt.

E.3 The Proof of Corollary 4.8

Proof. We follow the notation and the results obtained in the proof of Theorem 4.7. Using
Lemma A.3 with a = e, η = k/(4dκ2) and Xt = τt, we obtain (17). Using Lemma A.3 with a = 2e,
η = k/(4dκ2) and Xt = Rt+1/Rt, we have

Rt+1 ≤
(
32d2κ4e

k2δ

)(
1− k

4dκ2 + k

)t/2

Rt,

by telescoping the above inequality, we can obtain (18).

22

0 200 400
iteration

10 13

10 9

10 5

10 1

||F
(x

t)|
|

JFNK
GB-Cl
BB-Cl
GB-Ra
BGB
BBB

0 300 600
iteration

10 13

10 9

10 5

10 1

||F
(x

t)|
|

0 1 2
time (s)

10 13

10 9

10 5

10 1

||F
(x

t)|
|

0 3 6
time (s)

10 13

10 9

10 5

10 1

||F
(x

t)|
|

(a). a9a (b) w8a.

Figure 3: We demonstrate iteration numbers vs. ∥F(x)∥ and CPU time (second) vs. ∥F(x)∥ for
solving logistic regression problem on real world datasets “a9a” and “w8a”.

F Additional Experiments

To verify the efficiency of our methods on real-world data, we adopt the proposed block Broyden’s
methods to solve the classical logistic regression:

min
x∈Rd

1

n

n∑
i=1

ln(1 + exp(−bia
⊤
i x)) +

λ

2
∥x∥2,

which corresponds to solving the following nonlinear equations

λx− 1

n

n∑
i=1

exp (bia
⊤
i x)

1 + exp(−biaix)
· biai = 0.

We compare the proposed methods BGB and BBB with GB-Cl, BB-Cl, GB-Ra and JFNK (Jacobian-
Free Newton–Krylov) method [29]. We do not compare them with GB-Gr because it uses greedy
strategy to choose Ut, which requires to access the full Jacobian and thus is too expensive in practice.
We set the initial Jacobian estimator B0 = I for all cases and validate our methods on two real world
datasets “a9a” and “w8a” from the LIBSVM dataset [14] and present the results in Figure 3. The
results demonstrate that the proposed BGB method outperforms the baselines significantly for the
logistic regression.

23

	Introduction
	Preliminaries
	The Block Broyden's Updates for Approximating Matrices
	The Block Broyden's Methods
	Algorithms
	Convergence Analysis for the Block Broyden's Methods
	Analysis for Block Good Broyden's Methods
	Analysis for Block Bad Broyden's Methods

	Discussion
	Experiments
	Conclusion
	Useful Lemmas
	The Proof of Section 2
	The Proof of Proposition 2.3

	The Proof of Section 3
	The Proof of Theorem 3.1
	The Proof of Theorem 3.2

	The Proof of Section 4.2.1
	The Proof of Lemma 4.3
	The Proof of Theorem 4.4
	The Poof of Corollary 4.5

	The Proof of Section 4.2.2
	The Proof of Lemma 4.6
	The Proof of Theorem 4.7
	The Proof of Corollary 4.8

	Additional Experiments

