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Abstract

Neural Architecture Search (NAS) has emerged as a favoured method for unearthing
effective neural architectures. Recent development of large models has intensified
the demand for faster search speeds and more accurate search results. However,
designing large models by NAS is challenging due to the dramatical increase of
search space and the associated huge performance evaluation cost. Consider a
typical modular search space widely used in NAS, in which a neural architecture
consists of m block nodes and a block node has n alternative blocks. Facing the
space containing nm candidate networks, existing NAS methods attempt to find the
best one by searching and evaluating candidate networks directly. Different from
the general strategy that takes architecture search as a whole problem, we propose
a novel divide-and-conquer strategy by making use of the modular nature of the
search space. Here, we introduce MathNAS, a general NAS framework based on
mathematical programming. In MathNAS, the performances of the m ∗ n possible
building blocks in the search space are calculated first, and then the performance
of a network is directly predicted based on the performances of its building blocks.
Although estimating block performances involves network training, just as what
happens for network performance evaluation in existing NAS methods, predicting
network performance is completely training-free and thus extremely fast. In
contrast to the nm candidate networks to evaluate in existing NAS methods, which
require training and a formidable computational burden, there are only m ∗ n
possible blocks to handle in MathNAS. Therefore, our approach effectively reduces
the complexity of network performance evaluation. The superiority of MathNAS
is validated on multiple large-scale CV and NLP benchmark datasets. Notably on
ImageNet-1k, MathNAS achieves 82.5% top-1 accuracy, 1.2% and 0.96% higher
than Swin-T and LeViT-256, respectively. In addition, when deployed on mobile
devices, MathNAS achieves real-time search and dynamic network switching
within 1s (0.4s on TX2 GPU), surpassing baseline dynamic networks in on-device
performance. Our code is available at https://github.com/wangqinsi1/MathNAS.

1 Introduction

Neural Architecture Search (NAS) has notably excelled in designing efficient models for Computer
Vision (CV) [1, 2, 3, 4] and Natural Language Processing (NLP) [5, 6, 7] tasks. With the growing
popularity of the Transformer architecture [8, 9], designers are increasingly drawn to using NAS to
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develop powerful large-scale models. Many existing NAS studies focus on designing search spaces
for large models and conducting searches within them [10, 11, 12].

However, designing large models by NAS is challenging due to the dramatical increase of search space
and the associated huge performance evaluation cost [10, 13]. Consider a widely used modular search
space, in which a neural architecture is treated as a topological organization of m different block
nodes and each block node has n different block implementations. Obviously, the number of possible
networks or neural architectures, nm, grows explosively with n and m. In addition, candidate
networks of large models are larger and require more computation for performance evaluation.
Therefore, in order to conduct an effective architecture search, a proper search strategy and a suitable
performance evaluation method are extremely important.

It is noteworthy that to improve search strategy, recent researches [14, 15] convert NAS to mathemat-
ical programming (MP) problems, which substantially decrease the search cost. MP-NAS provides a
promising direction for rapidly designing large models. However, current MP-NAS methods exhibit
certain architectural constraints. For example, DeepMAD [14] is solely applicable for architecture de-
sign within CNN search spaces, and LayerNAS [15] is exclusively suitable for hierarchically ordered
search spaces. These limitations impede the application of MP-NAS methods to advanced search
spaces, such as SuperTransformer [13, 5]. Besides, alternative strategies for effective performance
evaluation of candidate networks are also expected, despite the improvement brought by parameter
sharing [16, 17], performance prediction based on learning curves [18, 19] and so on.

In this study, we introduce MathNAS, a novel MP-NAS framework for universal network architecture
search. In contrast to previous studies which estimate the performance of a network by solving a
whole problem, MathNAS adopts an alternative divide-and-conquer approach. In brief, MathNAS
improves the performance evaluation of a candidate network by estimating the performance of each
block of the network first, and then combining them to predict the overall performance of the network.
Although estimating block performance involves network training, predicting network performance
is completely training-free. Therefore, this approach reduces the complexity of network performance
evaluation. MathNAS achieves further improvement of the search strategy by transforming NAS to a
programming problem, reducing the search complexity to polynomial time.

MathNAS contains three key steps:

• Block performance estimation: The performance of each block is estimated by the perfor-
mance difference between networks having and having not that specific block.

• Network performance prediction: The performance of a network is predicted based on
the performances of its blocks.

• NAS by ILP: Utilizing the block performances, NAS is solved as an Integer Linear Pro-
gramming (ILP) problem.

We perform experiments on search spaces with various network architectures, including NAS-Bench-
201 (GNN) [20], MobileNetV3 (CNN) [21], SuperTransformer (Transformer) [5] and NASViT
(CNN+Trans) [13]. Our experiments demonstrate that predicting network performance based on its
blocks’ performances is applicable to different network architectures. In particular, the Spearman
coefficient between the actual and the predicted top-1 indices on four different search spaces achieve
0.97, 0.92, 0.93, and 0.95, respectively. At the same time, by using the merit of the divide-and-conquer
strategy to transform NAS into an ILP problem, MathNAS can find models superior to state-of-the-art
(SOTA) models across different search spaces and tasks. In CV tasks, MathNAS achieves 82.5% top-1
accuracy on ImageNet-1k with 1.5G FLOPs and 15M parameters, outperforming AutoFormer-small
(81.7%) and LeViT-256 (81.6%). In NLP tasks, MathNAS reaches a Blue Score of 28.8, on par
with Transformer (28.4), but requiring only 1/5 of the FLOPs. In summary, our contributions are as
follows:

1. We propose a general framework for performance evaluation of candidate networks by
estimating block performance first and then combining them to predict network performance,
which greatly improves the evaluation efficiency.

2. By virtue of the established mapping between block performance and network performance,
we transform NAS into an ILP problem, which reduces the search complexity to polynomial.

3. We demonstrate MathNAS by considering three key performance indices for network design,
i.e. accuracy, latency and energy, and achieve results superior to SOTA models.
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2 The Proposed Method

Search Space and Notations. In this paper, we consider a widely used modular search space
S = {N1, ...,Nk, ...}, in which network Nk consists of m block nodes Bi(1 ≤ i ≤ m). For a
block node, there is n alternative blocks, i.e. Bi = {bi,1, ..., bi,j , ..., bi,n}, where block bi,j(1 ≤ i ≤
m, 1 ≤ j ≤ n) represents the j-th implementation of the i-th block node. A network can therefore
be denoted as N = (b1,J1

, ..., bi,Ji
, ..., bm,Jm

), with its i-th block node implemented by block bi,Ji
.

Totally, there are mn possible networks in the search space. Here, we focus on three key performance
indices for network design, i.e. accuracy, latency and energy consumption. The accuracy, latency and
energy consumption of network N are denoted as Acc(N ), Lat(N ), Eng(N ) , respectively.

2.1 Problem Formulation: Reduce NAS Search Complexity from O(nm) to O(m ∗ n).

The objective of hardware-aware NAS is to find the best neural architecture N ∗ with the highest
accuracy under limited latency L̂ and energy consumption Ê in the search space S:

N ∗ = argmax
N∈S

Acc(N ), s.t.Lat(N ) ≤ L̂, Eng(N ) ≤ Ê (1)

In order to fulfill the above goal, NAS has to search a huge space, evaluate and compare the
performance of candidate networks. Early NAS studies usually fully train the candidate networks
to obtain their performance ranking, which is prohibitively time-consuming. Subsequent works
introduce various acceleration methods. For instance, the candidate networks can avoid training
from scratch by sharing weights [16, 17]. Also, the performance of a candidate network can be
predicted based on the learning curve obtained from early termination of an incomplete training
[18, 19]. Despite of these improvements, a candidate network has to be trained, no matter fully or
partially, to obtain a reasonable performance evaluation. And the huge number of candidate networks
in the search space poses a formidable efficiency challenge.

However, the modular nature of the search space may provide us with a novel possibility. Although
there are nm candidate networks in the search space, they are all constructed by the n ∗m blocks.
If we can evaluate the performances of the blocks by training of a limited number of networks, and
if we can combine these block performance indices to obtain a reasonable performance evaluation
of networks, we can reduce the complexity of network performance evaluation from O(nm) to
O(n ∗m).

Guided by this idea, we reformulate the search of N ∗ from S as a succession of sub-problems. Each
sub-problem corresponds to the task of searching the block bi,J ∗

i
with the highest accuracy within

the block node Bi. This approach notably simplifies the original problem:

N ∗ = (b1,J ∗
1
, b2,J ∗

2
, . . ., bm,J ∗

m
) = argmax

b1,j∈B1

(bA1,j)⊕ argmax
b2,j∈B2

(bA2,j)⊕ · · · ⊕ argmax
bm,j∈Bm

(bAm,j) ,

s.t.
∑m

i=1
bLi,J ∗

i
≤ L̂ ,

∑m

i=1
bEi,J ∗

i
≤ Ê,

(2)

where bAi,j , bLi,j , bEi,j represent the accuracy, latency, and energy of block bi,j respectively. ⊕ denotes
the operation of adding a block to the network. With this approach, each block bi,j is searched
only once and the complexity can be effectively reduced to O(n ∗m). However, due to the mutual
influence between blocks, a unified understanding of the relationship between the performance of N
and its constituent blocks remains elusive, posing a challenge to the application of this method.

2.2 Divide-and-Conquer: Network-Block-Network

Consider the switching process N(i,1)→(i,Ji), signifying the selection of the i-th B in network N as it
switches from bi,1 to bi,Ji

, with other selected blocks remaining unchanged. Thus, any network N =

(b1,J1 , b2,J2 , ..., bm,Jm) can be viewed as the outcome of the base network Ñ = (b1,1, b2,1, ..., bm,1)
undergoing m sequential switching processes. Guided by this idea, we explore two aspects:

E1: Can block performance be directly calculated as with network performance?

Considering the entire search space S, let us denote the collection of networks with the selected
block bi,1 as NΩ

(i,1), which comprises nm−1 networks. For any network N(i,1) in NΩ
(i,1), the switch-

ing process N(i,1)→(i,j) signifies the selection of the i-th B in network N as it switches from bi,1
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(a) ∆Acc(N(i,1)→(i,j)) vs F(N ) on NAS-Bench-201 (left) and MobileNetV3 (right).

(b) ∆Lat(N(i,1)→(i,j)) (left)/ ∆Eng(N(i,1)→(i,j)) (right) vs F(N ) in NAS-Bench-201 on edgegpu.

Figure 1: The relationship between ∆Acc(N(i,1)→(i,j)), ∆Lat(N(i,1)→(i,j)), ∆Eng(N(i,1)→(i,j))
and F(N ). We conduct experiments on two search spaces: (1) NAS-Bench-201 [20]. Graph Network.
We use the accuracy obtained on ImageNet after training each network independently. We count the
accuracy of all networks in the search space. (2) MobileNetv3 [21]: sequentially connected CNN
network. We use the accuracy obtained by the network with shared weights. We sample 5 blocks per
block node and count the accuracies of 3125 subnetworks on the ImageNet validation set.

to bi,j , with other selected blocks remaining unchanged. In this switch, two changes occur. The
first change sees the selected block in Bi switching from bi,1 to bi,j .The second change arises
from an internal adjustment in Bi, modifying its interactions with other block spaces in the net-
work. These changes lead to a difference in performance between N(i,1) and N(i,j), denote as
∆Acc(N(i,1)→(i,j)),∆Lat(N(i,1)→(i,j)),∆Eng(N(i,1)→(i,j)). By averaging performance differ-
ence obtained from all nm−1 switching processes, NΩ

(i,1)→(i,j), we can derive two key parameters:

1. ∆ϕ(B(i,1)→(i,j)), the change in inherent capability of Bi.
2. ∆Φ(B(i,1)→(i,j)), the change in the interactive capability of Bi within S.

Accordingly, we define the performances of bi,j as:

bAi,j = ∆Acc
(
NΩ

(i,1)→(i,j)

)
= ∆ϕ(B(i,1)→(i,j)) + ∆Φ(B(i,1)→(i,j)) (3)

Similarly, bLi,j and bEi,j can be calculated employing the same methodology. The unbiased empirical
validation and theoretical proof supporting this method can be found in the Appendix.

E2: How can we predict network performance using block performance?

To accurately derive the performance difference stemming from the switching process, we consider
the performance difference that a particular block switch brings to different networks. We performed
the identical process N(i,1)→(i,Ji) over a range of networks within NΩ

(i,1). The outcome is illustrated
in Figure 1, which depicts the relationship between the differences of three performances—latency,
energy, and accuracy—and the FLOPs of the network. Our findings reveal that, within the same
switching operation, latency and energy differences maintain consistency across different networks,
while accuracy differences exhibit an inverse proportionality to the network’s FLOPs, F(N ).

This finding is logical, as networks with smaller FLOPs have lower computational complexity,
rendering them more susceptible to block alterations. Conversely, networks with larger FLOPs exhibit
higher computational complexity, making them less sensitive to individual block switching. In the
Appendix, we proceed to fit the inverse relationship between accuracy difference and network FLOPs
using various formulas. The results suggest that the accuracy difference is approximately inversely
related to the network’s FLOPs. Consequently, we can posit ∆Acc(N(i,1)→(i,Ji)) = α ∗ 1/F(N ),
where α represents a specific block’s coefficient.

Based on these observations, we can deduce that for any network N(i,1) within the set NΩ
(i,1), the

performance difference resulting from the switching process can be approximated as follows:

∆Lat(N(i,1)→(i,j)) ≈ bLi,j ,∆Eng(N(i,1)→(i,j)) ≈ bEi,j ,∆Acc(N(i,1)→(i,j)) ≈ bAi,j ∗
F
(
NΩ

(i,j)

)
F(N(i,j))

(4)
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(a)Lat on NB201 (b)Energy on NB201 (c)Acc on MBV3 (d)Acc on NB201

Figure 2: Validation of the predictive performance of Equation 5 and the effect of sampling rate
on it. The setup of the search space is the same as in Figure 1. The first row shows the predictive
performance of Equation 5 when calculating bAi,j , bLi,j , and bEi,j with Equation 3. The second row
shows the predictive performance of Equation 5 when randomly sampling the network and computing
the average difference to estimate bAi,j , bLi,j , and bEi,j for the corresponding dataset.

By integrating Equation 3 and 4, we can estimate the performance of N = (b1,J1
, b2,J2

, ..., bm,Jm
):

Lat(N ) = Lat(Ñ )−
∑m

i=1
bLi,Ji

, Eng(N ) = Eng(Ñ )−
∑m

i=1
bEi,Ji

Acc(N ) = Acc(Ñ )−
∑m

i=1
bAi,Ji

∗
F
(
NΩ

(i,Ji)

)
F(N(i,Ji)

)

(5)

Proof-of-Concept Experiment. In our examination of the predictive efficacy of Equation 5 across
diverse network types, as depicted in Figure 2, we observe that it accurately forecasts three perfor-
mances for both sequentially connected networks and graph networks and both weight-independent
and weight-shared networks, all without necessitating network training. To the best of our knowledge,
our method is the first work to precisely estimate network performances using a linear formula, and
notably, it is theoretically applicable to all architectures.

2.3 Simplification: Single-sampling Strategy Instead of Full-sampling

Algorithm 1 Math Neural Architecture Search
Stage1: Determine the Average-FLOPs Network
for i=1,2,...,m do

Calculate the average of the FLOPs of all blocks at
the i-th note, F(bi) = (F(bi,1)+ ...+F(bi,n))/n;
Select bi,Ji whose FLOPs is closest to F(bi).

end
Define average-FLOPs net N avg = {b1,J1 , .., bm,Jm}.
Stage2: Calculate Block Performances
for i=1,2,...,m do

for j=1,2,...,n do
Switch the i-th block in N avg from bi,1 to bi,j ;
Calculate the performance difference of the net-
work brought about by switching and use it as
the performance of the block bAi,j , b

L
i,j , b

E
i,j .

end
end
Stage3: Prediction and Architecture Search
Calculate three characteristics of the base net Ñ =
{b1,1, . . . , bm,1} as Acc(Ñ ), Lat(Ñ ), Eng(Ñ );
For network N = {b1,J1 , b2,J2 , ..., bm,Jm}, its accu-
racy, latency and energy can be estimated by Equa. 5.
Set required accuracy/latency/energy limit, and solve the
corresponding ILP problem to obtain the architecture.

Despite the outstanding predictive performance
displayed by Equation 5, its computation of loss
averages proves to be costly. In this section,
by employing a single-sample sampling strat-
egy, we effectively reduce the time complexity
from O(nm) to O(n ∗m), enhancing efficiency
without compromising precision.

Partial Network Sampling Strategies. We
begin by investigating the sample size require-
ments for Equation 5. The second row of Figure
2 demonstrates rapid convergence of Equation
5 with a notably small sample count for perfor-
mance prediction. Specifically, Figure 2(c)(d)
reveals that a mere 5% random sampling of net-
works is sufficient for the prediction to converge
towards optimal performance. This underscores
the impressive efficacy of Equation 5, which
exhibits rapid convergence even with a limited
number of random samples.

Single Network Sampling Strategy. Build-
ing upon Equation 4, we can select an average-
FLOPs network, denoted as N avg , in the search
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(a)Acc on MBv3 (b)Acc on NB201 (c)Acc on SuperTran (d)Acc on SuperViT

(e)Lat on MBv3 (f)Lat on NB201 (g)Ener on NB201 (h)Lat on SuperTran

Figure 3: MathNAS algorithm verification. We conduct experiments on 4 search space. (1)Mo-
bileNetV3 [21] (2)NAS-Bench-201 [20] (3)SuperTransformer [5] (4)SuperViT [13]. For NAS-Bench-
201, we use the accuracy of each network trained individually as Acc(N ). For other spaces, the
validate accuracy under shared weights base net is used. We show accuracy predictions on these four
networks as well as hardware efficiency predictions on them. The calculation of bAi,j , b

L
i,j and bEi,j

follows Algorithm 1. For NAS-Bench-201, we verify all nets and other spaces, we randomly sample
1000 nets to verify the prediction effect.

space with FLOPs approximating the mean value, ensuring F
(
NΩ

(i,j)

)
/F(Navg

(i,j)
) ≈ 1. This leads to:

bAi,j ≈ ∆Acc(N avg
(i,1)→(i,j)) , b

L
i,j ≈ ∆Lat(N avg

(i,1)→(i,j)) , b
E
i,j ≈ ∆Eng(N avg

(i,1)→(i,j)) By incorporat-
ing N avg into Equation 5, we gain the ability to calculate any network performance. Thus, we only
need to verify the performance of N avg

(i,1) and N avg
(i,j) for bi,j , resulting in an O(n ∗m) search time

complexity. The complete MathNAS algorithm is presented in Algorithm 1, which, in theory, can
achieve accurate prediction on any network structure with polynomial search complexity.

Validation experiment of single-sample strategy effectiveness. We assess the efficacy of Algo-
rithm 1 across CNN, GCN, Transformer, and CNN+Transformer search spaces, with the outcomes
displayed in Figure 3. It is evident that the Spearman correlation coefficient between predicted and
actual values exceeds 0.9 for all networks. Remarkably, accuracies of 0.95 and 0.97 are attained on
ViT and CNN architectures, respectively, emphasizing the algorithm’s robustness.

2.4 MathNAS: Converting Architecture Search to ILP.

We denote bFi,j as the FLOPs of block bi,j , and bBi,j ∈ {0, 1} as the indicator of whether block bi,j
is used in a network. If block bi,j is selected as the implementation of block node Bi in a network,
bBi,j = 1, otherwise 0. The problem that NAS needs to solve can be formulated as:

max
bB

Acc(Ñ )−
∑m

i=1

∑n
j=1 b

A
i,j ∗ bBi,j∑m

i=1

∑n
j=1 b

F
i,j ∗ bBi,j

∗ F(N )

s.t. Lat(Ñ )−
m∑
i=1

n∑
j=1

bLi,j ∗ bBi,j ≤ L̂, Eng(Ñ )−
m∑
i=1

n∑
j=1

bEi,j ∗ bBi,j ≤ Ê,

∑n

j=1
bBi,j = 1, bBi,j ∈ {0, 1} ,∀1 ≤ i ≤ m.

(6)

The objective is to obtain the maximum accuracy network under two constraints. First, the latency
and energy cannot exceed the limit. Second, for any block node, only one block is used. As Equation
6 is a fractional objective function, it can be transformed into an ILP problem by variable substitution.
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3 Performance Evaluation

Experiments were conducted at three levels to evaluate the efficacy of MathNAS. Firstly, we validated
the effectiveness of MathNAS on CV tasks by conducting searches across three different search
spaces. Then we employed MathNAS to design efficient architectures for NLP tasks, showcasing its
remarkable generalization capabilities. Finally, we leveraged MathNAS to perform real-time searches
on edge devices, considering hardware resources, and achieved exceptional on-device performance.

3.1 Experimental Setup

Search space. For CV tasks, we validate our method on three search spaces: (1) NAS-Bench-201
[20]: a search space encompasses 15,625 architectures in a DARTS-like configuration. (2) SuperViT
[13]: a hybrid search space that combines ViT and CNN, containing approximately 4× 1010 network
architectures. (3) MobileNetV3 [21]: a lightweight network search space comprising about 1010
network architectures. For NLP tasks, we validate our approach on the SuperTransformer search
space [5], which includes 1015 networks within a lightweight Transformer framework.

Search and training settings. For NAS-Bench-201 and MobileNetV3, we adopt the training
methodology employed in [16] and [22] to train the base net for 100 epochs. Subsequently, we
conducted MathNAS search on the base net. As for SuperTransformer and SuperViT, we adhere to the
training algorithm proposed by [13] to train the base net for 100 epochs before conducting MathNAS
search. The settings of hyperparameters in the training are consistent with the original paper. We
employ the Gurobipy solver to address the ILP problem. In the SuperViT and SuperTransformer
search spaces, we impose a search time limit of 10 seconds to expedite the process. For the other
search spaces, we do not enforce any time constraints.

The search cost of MathNAS consists of two stages: offline network pre-training that is conducted
only once and online real-time search. During the offline network pre-training, MathNAS evaluates
block performance once. During online searching, MathNAS is capable of multiple real-time searches
based on the current hardware resource constraints. To negate the influence of variations in GPU
models and versions on the pre-training time, and to facilitate comparisons by future researchers, we
have adopted pre-trained networks provided by existing works. All mentions of search cost in the
paper refer solely to the real-time search time on edge devices. We provide a detailed description of
the search space, more experimental results, and visualizations of the searched architectures in the
Appendix.

3.2 MathNAS for Designing Effective CV Networks

MathNAS for NAS-Bench-201. To assess the effectiveness of our method in striking a balance
between accuracy and hardware efficiency, we compare networks searched by MathNAS under
hardware efficiency constraints to those searched by BRP-NAS [30], which utilizes GNN predictors
to estimate network performance. As illustrated in Figure 4, MathNAS consistently locates networks
that approach Pareto optimality in the majority of cases, whereas the employment of GNN predictors
leads to suboptimal model choices. An extensive comparison between the searched architectures and
SOTA models is provided in the Appendix for further insight.

Figure 4: A comparison of networks searched by MathNAS (red circles) versus those searched by
BRP-NAS (brown triangles) in the NAS-Bench-201 space. Across different devices, the networks
searched by MathNAS demonstrate a closer proximity to the Pareto front (yellow five-pointed stars)
as compared to the networks obtained through BRP-NAS.
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Model Top-1(%) Top-5(%) F(M) Param(M)

ResNet-18[23] 77.7 93.2 1800 11.7
ReXNet[24] 77.9 93.9 400 4.8

MathNAS-T1 78.4 93.5 200 8.9
LeViT-128[25] 78.6 94.0 406 9.2

EfficientNet-B1[26] 79.1 94.4 700 7.8
ReXNet[24] 79.5 94.7 660 7.6

MathNAS-T2 79.6 94.3 325 9.3
ResNetY-4G[27] 80.0 94.8 4000 21
LeViT-192[25] 80.0 94.7 658 10.9

EfficientNet-B2[26] 80.1 94.9 1000 9.2
ReXNet[24] 80.3 95.2 900 9.7

ResNet-50[23] 80.6 95.1 4100 25.6
MathNAS-T3 81.3 95.1 671 13.6
Swin-T[28] 81.3 95.5 4500 29

EfficientNet-B3[26] 81.6 95.7 1800 12
LeViT-256[25] 81.6 95.4 1120 18.9

ReXNet[24] 81.6 95.7 1500 16
AutoFormer-small[29] 81.7 95.7 5100 22.9

MathNAS-T4 82.0 95.7 1101 14.4
AutoFormer-base[29] 82.4 95.7 11000 54

LeViT-384[25] 82.6 96.0 2353 39.1
MathNAS-T5 82.5 95.8 1476 14.8

Figure 5: MathNAS v.s. SOTA ViT and CNN models on ImageNet-1K.

MathNAS for ViT. To assess the performance of MathNAS in designing larger models, we utilize it
to create effective ViT models for ImageNet-1K classification. Figure 5 demonstrates that MathNAS
surpasses or matches the performance of existing SOTA models. For instance, MathNAS-T5 achieves
an accuracy of 82.5%, which is comparable to LeViT-384 [25] and Autoformer-base [29], while
consuming only about 50% and 15% of their respective FLOPs. Similarly, MathNAS-T3 achieves
comparable accuracy to RexNet [24] but with approximately half the FLOPs. MathNAS also exhibits
exceptional performance in the realm of small networks. Particularly, MathNAS-T1 achieves a top-1
accuracy of 78.4%, surpassing ResNet-18 [23] and ReXNet [24] by 0.7% and 0.5% respectively.

Table 1: Performance of mobile networks designed
with MathNAS. Top-1 accuracy on ImageNet-1K.

Model FLOPs(M) Top-1 Search Time Scale Up

FBNet-b[31] 295 74.1 609h 1.9×
AtomNAS-A[32] 258 74.6 492h 2.3×

OFA[22] 301 74.6 120h 9.6×
MathNAS-MB1 257 75.9 0.9s 4.6M×

MnasNet-A1[33] 312 75.2 40025h 1.0×
ProxylessNAS-R[34] 320 74.6 520h 76.9×

AtomNAS-B[32] 326 75.5 492h 81.4×
FairNAS-C[35] 321 71.1 384h 104.2×

Single Path One-Shot[36] 323 74.4 288h 138.9×
OFA[22] 349 75.8 120h 333.5×

MathNAS-MB2 289 76.4 1.2s 144M×

EfficientNet B0[4] 390 76.3 72000h 1.0×
FBNet-c[31] 375 74.9 580h 124.1×

ProxylessNAS-GPU[34] 465 75.1 516h 139.5×
AtomNAS-C[32] 363 76.3 492h 146.3×
FairNAS-A[35] 388 75.3 384h 104.2×
FairNAS-B[35] 345 75.1 384h 104.2×

MathNAS-MB3 336 78.2 1.5s 173M×

EfficientNet B1[4] 700 79.1 72000 1.0×
MnasNetA1[33] 532 75.4 40025 1.8×
BigNAS-M[37] 418 78.9 1152 62.5×
MathNAS-MB4 669 79.2 0.8s 324M×

MathNAS for Mobile CNNs. We employ
MathNAS to design mobile CNN models for fur-
ther investigation, conducting our search within
the MobileNetV3 search space. As demon-
strated in Table 1, MathNAS-MB4 achieves
a top-1 accuracy of 79.2%, which is on par
with EfficientNet-B1 (79.1%). It is important
to note that EfficientNet-B1 is derived through
a brute-force grid search, necessitating approx-
imately 72,000 GPU hours [4]. Despite this,
MathNAS-MB4 offers comparable performance
to EfficientNet-B1 while only requiring 0.8 sec-
onds to solve an ILP problem on the GPU and
search for a suitable network. MathNAS also ex-
cels in the context of smaller networks. Notably,
MathNAS-MB1 requires only 257M FLOPs to
achieve a top-1 accuracy of 75.9%, surpassing
the performance of FBNet-b [31], AtomNAS-A
[32], and OFA [22], all of which demand higher
computational resources.

3.3 MathNAS for Designing Effective NLP Networks

We perform a comparative evaluation of MathNAS against SOTA NLP models on the WMT’14
En-De task to gauge its effectiveness. Table 2 reveals that MathNAS surpasses all baseline models in
terms of BLEU score while also achieving FLOPs reduction across three distinct devices. Specifically,
on Intel Xeon CPUs, MathNAS with full precision attains a remarkable 74% reduction in FLOPs
compared to Transformer [8] and a 23% reduction compared to HAT [5], while registering improved
BLEU scores by 0.4 and 0.3, respectively. Additionally, MathNAS excels in designing lightweight
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Table 2: MathNAS vs. SOTA baselines in terms of accuracy and efficiency on NLP tasks.
Raspberry Pi Intel Xeon CPU Nvidia TITAN Xp GPU Search Cost

Model FLOPs BLEU Latency FLOPs BLEU Latency FLOPs BLEU Latency Time CO2

Transformer[8] 10.6G 28.4 20.5s 10.6G 28.4 808ms 10.6G 28.4 334ms 184h 52lbs
Evolved Trans.[38] 2.9G 28.2 7.6s 2.9G 28.2 300ms 2.9G 28.2 124ms 219200h 624000lbs

HAT[5] 1.5G 25.8 3.5s 1.9G 25.8 138ms 1.9G 25.6 57ms 200h 57lbs
MathNAS 1.7G 25.5 3.2s 1.8G 25.9 136ms 1.8G 25.9 68ms 10s 0.0008lbs

HAT[5] 2.3G 27.8 5.0s 2.5G 27.9 279ms 2.5G 27.9 126ms 200h 57lbs
MathNAS 2.1G 28.3 4.7s 2.4G 28.6 272ms 2.0G 28.1 107ms 10s 0.0008lbs

HAT[5] 3.0G 28.4 7.0s 3.5G 28.5 384ms 3.1G 28.5 208ms 200h 57lbs
MathNAS 2.8G 28.6 6.5s 2.8G 28.8 336ms 2.6G 28.6 189ms 10s 0.0008lbs

NLP models. On Nvidia TITAN Xp GPUs under latency constraints, MathNAS yields FLOPs
comparable to HAT [5], but with a 0.3 higher BLEU score. A noteworthy aspect is that the network
search process facilitated by MathNAS requires only 10 seconds, considerably reducing search time.
As a result, employing MathNAS leads to a reduction of over 99% in CO2 emissions compared to
baseline models, underscoring its positive environmental impact.

3.4 MathNAS for Designing Dynamic Networks.

Deployed on edge devices (Raspberry Pi 4b, Jetson TX2 CPU, TX2 GPU), MathNAS allows dynamic
network switching suited to device conditions. Within the MobileNetV3 search space, we account for
memory limitations by calculating performance indices for each block, subsequently deploying five
selected Pareto-optimal blocks balancing accuracy and latency in each block node. During runtime,
latency is continuously monitored. Should it surpass a preset threshold, MathNAS immediately
updates the blocks’ latency. Then the device solves the ILP problem to identify the optimal network
architecture, comparing and switching blocks with the searched network as required.

In comparison with SOTA dynamic network models, MathNAS demonstrates superior performance
as outlined in Table 3 and Figure 6. Impressively, MathNAS solves the ILP problem on-device in a
mere 0.4 seconds on the TX2 GPU, enabling real-time search. This notably enhances the number
of executable networks on the device, outdoing SlimmableNet [39] and USlimmableNet [40] by
factors of 781 and 116 respectively. Additionally, through a block-based approach, MathNAS enables
efficient network alterations by replacing only essential blocks. When compared to Dynamic-OFA
[41], which shares similar performance, MathNAS significantly reduces the switching time by 80%.
The Appendix details the use of Pareto-optimal blocks and related network experiment results.

Table 3: MathNAS vs. SOTA baselines in terms of Dynamic Networks.
Network Latency (ms) On Device Performance

Model Top-1
(%)

FLOPs
(M)

Raspb
Pi

TX2
CPU

TX2
GPU

Search
Method

Search
Time

Switch
Unit

Switch
Time

Nets
Number

Scale
Up

S-MbNet-v2[39] 70.5 301 1346 958 118 Manual Design - Channel 15ms 4 1.0x
US-MbNet-v2[40] 71.5 300 1358 959 158 Manual Design - Channel 18ms 27 6.7x
AS-MNASNet[42] 75.4 532 2097 1457 2097 Greedy Slimming 4000h Channel 37ms 4 1.0x
Dynamic-OFA[41] 78.1 732 2404 1485 80 Random+Evplution 35h Network 244ms 7 1.7x

MathNAS 75.9
79.2

257
669

832
2253

525
1398

76
81 On-Device Search 0.4-12s Block 61ms 3125 781x

Figure 6: Top-1 vs. Latency of MathNAS over SOTA dynamic baselines on three devices.
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4 Conclusion

This paper introduces MathNAS, the first architecturally-general MP-NAS. By virtue of the modular
nature of the search space, we introduce block performance and establish the mapping from block
performance and network performance, which enables subsequent transformation of NAS to an ILP
problem. This novel strategy reduces network search complexity from exponential to polynomial
levels while maintaining excellent network performance. We propose three transformation formulas
to depict this process and support them with theoretical proofs and extensive experiments. Math-
NAS achieves SOTA performance on various large-scale CV and NLP benchmark datasets. When
deployed on mobile devices, MathNAS enables real-time search and dynamic networks, surpassing
baseline dynamic networks in on-device performance. Capable of conducting rapid searches on any
architecture, MathNAS offers an appealing strategy for expediting the design process of large models,
providing a clearer and more effective solution.
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