
ContiFormer: Continuous-Time Transformer for
Irregular Time Series Modeling

Yuqi Chen1,2∗, Kan Ren2†, Yansen Wang2, Yuchen Fang2,3, Weiwei Sun1, Dongsheng Li2
1 School of Computer Science & Shanghai Key Laboratory of Data Science, Fudan University

2 Microsoft Research Asia, 3 Shanghai Jiao Tong University

Abstract

Modeling continuous-time dynamics on irregular time series is critical to account
for data evolution and correlations that occur continuously. Traditional methods
including recurrent neural networks or Transformer models leverage inductive bias
via powerful neural architectures to capture complex patterns. However, due to their
discrete characteristic, they have limitations in generalizing to continuous-time
data paradigms. Though neural ordinary differential equations (Neural ODEs) and
their variants have shown promising results in dealing with irregular time series,
they often fail to capture the intricate correlations within these sequences. It is
challenging yet demanding to concurrently model the relationship between input
data points and capture the dynamic changes of the continuous-time system. To
tackle this problem, we propose ContiFormer that extends the relation modeling of
vanilla Transformer to the continuous-time domain, which explicitly incorporates
the modeling abilities of continuous dynamics of Neural ODEs with the attention
mechanism of Transformers. We mathematically characterize the expressive power
of ContiFormer and illustrate that, by curated designs of function hypothesis, many
Transformer variants specialized in irregular time series modeling can be covered as
a special case of ContiFormer. A wide range of experiments on both synthetic and
real-world datasets have illustrated the superior modeling capacities and prediction
performance of ContiFormer on irregular time series data. The project link is
https://seqml.github.io/contiformer/.

1 Introduction

Irregular time series are prevalent in real-world applications like disease prevention, financial decision-
making, and earthquake prediction [4, 27, 64]. Their distinctive properties set them apart from regular
time series data. First, irregular time series data are characterized by irregularly generated or
non-uniformly sampled observations with variable time intervals, as well as missing data due to
technical issues, or data quality problems, which pose challenges for traditional time series analysis
techniques [6, 55]. Second, even though the observations are irregularly sampled, the underlying
data-generating process is assumed to be continuous [30, 42, 43]. Third, the relationships among the
observations can be intricate and continuously evolving. All these characteristics require elaborate
modeling approaches for better understanding these data and making accurate predictions.

The continuity and intricate dependency of these data samples pose significant challenges for model
design. Simply dividing the timeline into equally sized intervals can severely damage the continuity
of the data [36]. Recent works have suggested that underlying continuous-time process is appreciated
for irregular time series modeling [6, 30, 39, 43], which requires the modeling procedure to capture

∗The work was conducted during the internship of Yuqi Chen and Yuchen Fang at Microsoft Research.
†Correspondence to Kan Ren, contact: rk.ren@outlook.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://seqml.github.io/contiformer/

the continuous dynamic of the system. Furthermore, due to the continuous nature of data flow, we
argue that the correlation within the observed data is also constantly changing over time. For instance,
stock prices of tech giants (e.g., MSFT and GOOG) show consistent evolving trends, yet they are
affected by short-term events (e.g., large language model releases) and long-term factors.

To tackle these challenges, researchers have pursued two main branches of solutions. Neural ordinary
differential equations (Neural ODEs) and state space models (SSMs) have illustrated promising
abilities for capturing the dynamic change of the system over time [9, 19, 28, 49]. However, these
methods overlook the intricate relationship between observations and their recursive nature can lead to
cumulative errors if the number of iterations is numerous [9]. Another line of research capitalizes on
the powerful inductive bias of neural networks, such as various recurrent neural networks [6, 39, 45]
and Transformer models [38, 48, 54, 60]. However, their use of fixed-time encoding or learning upon
certain kernel functions fails to capture the complicated input-dependent dynamic systems.

Based on the above analysis, modeling the relationship between observations while capturing the
temporal dynamics is a challenging task. To address this problem, we propose a Continuous-Time
Transformer, namely ContiFormer, which incorporates the modeling abilities of continuous dynamics
of Neural ODEs within the attention mechanism of Transformers and breaks the discrete nature of
Transformer models. Specifically, to capture the dynamics of the observations, ContiFormer begins
by defining latent trajectories for each observation in the given irregularly sampled data points. Next,
to capture the intricate yet continuously evolving relationship, it extends the discrete dot-product
in Transformers to a continuous-time domain, where attention is calculated between continuous
dynamics. With the proposed attention mechanism and Transformer architecture, ContiFormer
effectively models complex continuous-time dynamic systems.

The contributions of this paper can be summarized below.

• Continuous-Time Transformer. To the best of our knowledge, we are the first to incorporate a
continuous-time mechanism into attention calculation in Transformer, which is novel and captures
the continuity of the underlying system of the irregularly sampled time-series data.

• Parallelism Modeling. To tackle the conflicts between continuous-time calculation and the parallel
calculation property of the Transformer model, we propose a novel reparameterization method,
allowing us to parallelly execute the continuous-time attention in the different time ranges.

• Theoretical Analysis. We mathematically characterize that various Transformer variants [34,
38, 48, 54, 60] can be viewed as special instances of ContiFormer. Thus, our approach offers a
broader scope that encompasses Transformer variants.

• Experiment Results. We examine our method on various irregular time series settings, including
time-series interpolation, classification, and prediction. The extensive experimental results have
illustrated the superior performance of our method against strong baseline models.

2 Related Work

Time-Discretized Models. There exists a branch of models based on the time-discrete assumption
which transforms the time-space into a discrete one. Recurrent Neural Networks (RNN) [14, 24] and
Transformers [51] are powerful time-discrete sequence models, which have achieved great success in
natural language processing [15, 37, 58], computer vision [20, 63] and time series forecasting [31, 35,
52, 53, 56, 61, 62]. Utilizing them for irregular time series data necessitates discretizing the timeline
into time bins or padding missing values, potentially resulting in information loss and disregarding
inter-observation dynamics. [13, 36, 41]. An alternative is to construct models that can utilize these
various time intervals [34, 60]. Additionally, several recent approaches have also encoded time
information into features to model irregularly sampled time series, including time representation
approaches [54, 60] and kernel-based methods [38], which allow learning for time dynamics. For
instance, Mercer [54] concatenates the event embedding with the time representation. Despite these
advances, these models are still insufficient in capturing input-dependent dynamic systems.

Continuous-Time Models. Other works shift to the continuous-time modeling paradigm. To
overcome the discrete nature of RNNs, a different strategy involves the exponential decay of the hidden
state between observations [6, 39]. Nevertheless, the applicability of these techniques is restricted
to decaying dynamics specified between successive observations [9]. Neural ODEs are a class of

2

models that leverage the theory of ordinary differential equations to define the dynamics of neural
networks [9, 27]. Neural CDE [30] and Neural RDE [40] further utilize the well-defined mathematics
of controlled differential equations [2, 29] and rough path theory [5] to construct continuous-time
RNN. ODE-RNN [43] combines Neural ODE with Gated Recurrent Unit (GRU) [12] to model
continuous-time dynamics and input changes. Whereas these approaches usually fail to capture the
evolving relationship between observations [45]. CADN [11] and ANCDE [26] extend ODE-RNN
and Neural CDE by incorporating an attention mechanism to capture the temporal relationships,
respectively. Another line of research explores the use of state space models (SSMs) to represent
continuous-time dynamic systems [1, 18, 19, 49]. However, these models adopt a recursive schema,
which hampers its efficiency and can lead to cumulative errors [9]. In contrast, our proposed model,
ContiFormer leverages the parallelism advantages of the Transformer architecture and employs a
non-autoregressive paradigm. Furthermore, extending the Transformer to the continuous-time domain
remains largely unexplored by researchers. Such extension provides a more flexible and powerful
modeling ability for irregular time series data.

3 Method

The ContiFormer is a Transformer [51] model for processing time series data with irregular time
intervals. Formally, an irregular time series is defined as Γ = [(X1, t1), . . . , (XN , tN)], where obser-
vations may occur at any time and the observation time points ω = (t1, . . . , tN) are with irregular
intervals. Xi is the input feature for the i-th observation. We denote X = [X1;X2; ..., XN] ∈ RN×d.

As aforementioned, it is challenging yet demanding to concurrently model the relationship between
input data points and capture the dynamic changes of the continuous-time system. To tackle the
challenge, we propose a Continuous-Time Transformer architecture as shown in Figure 1. Each
layer of ContiFormer takes as input an irregular time series X and the sampled time ω and outputs a
latent continuous trajectory that captures the dynamic change of the underlying system. With such a
design, ContiFormer transforms the discrete observation sequence into the continuous-time domain.
At each layer, the core attention module takes a continuous perspective and expands the dot-product
operation in the vanilla Transformer to the continuous-time domain, which not only models the
underlying continuous dynamics but also captures the evolving input-dependent process. For better
understanding, the description of each layer will omit the layer index, without causing confusion.

Throughout the remaining section, we adopt the notation ω to denote a sequence of (reference) time
points, while t is the random variable representing a query time point. Matrices are donated using
uppercase letters, and lowercase letters except t represent continuous functions.

3.1 Continuous-Time Attention Mechanism

The core of the ContiFormer layer is the proposed continuous-time multi-head attention (CT-MHA)
module, as shown in Figure 1. At each layer, we first transform the input irregular time series X into
Q = [Q1;Q2; . . . ;QN] for queries, K = [K1;K2; . . . ;KN] for keys, and V = [V1;V2; . . . ;VN] for
values. At a high level, the CT-MHA module transforms the irregular time series inputs to latent
trajectories and outputs a continuous dynamic system that captures the time-evolving relationship
between observations. To accomplish this, it utilizes ordinary differential equations to define the
latent trajectories for each observation. Within the latent state, it assumes that the underlying
dynamics evolve following linear ODEs. Subsequently, it constructs a continuous query function by
approximating the underlying sample process of the input. Ultimately, it produces a continuous-time
function that captures the evolving relationship and represents the complex dynamic system.

Continuous Dynamics from Observations Transformer calculates scaled dot-product attention for
queries, keys, and values [51]. In continuous form, we first employ ordinary differential equations to
define the latent trajectories for each observation. Specifically, assuming that the first observation and
last observation come at time point t1 and tN respectively, we define continuous keys and values as

ki(ti) = Ki , ki(t) = ki(ti) +

∫ t

ti

f
(
τ,ki(τ); θk

)
dτ ,

vi(ti) = Vi , vi(t) = vi(ti) +

∫ t

ti

f
(
τ,vi(τ); θv

)
dτ ,

(1)

3

≈ç≈ç

Traj. �Traj. for �� Traj. for �� Traj. for ��Highlighted Traj.
Notations in CT-MHA module (Traj. stands for Trajectory)

Continuous-
Time MHA

Feed Forward

Add & Norm

...

Scaled Dot Product
Eq. (3)

Multiply by Value
Eq. (5)

Output
Eq. (7)

Aggregation
Eq. (6)

Output Traj. Z

key

query

value

time
(Q1, t 1) (Q2, t 2)

Continuous-Time Multi-Head Attention (CT-MHA)

...

...
......

...
......

H

t

ViV2

V1 Ki

K2

K1

z(t)

(Qi, t i)

...

(X1, t 1) (X2, t 2) (Xi, t i)
...

Add & Norm

X = [X1, X2, ..., Xi, ...]
� = [t 1 , t 2 , ..., t i, ...]

×L

Q K V

�� =[��
� , . . . , ���

�]
(reference points)

Figure 1: Architecture of the ContiFormer layer. ContiFormer takes an irregular time series and its
corresponding sampled time points as input. Queries, keys, and values are obtained in continuous-
time form. The attention mechanism (CT-MHA) performs a scaled inner product in a continuous-time
manner to capture the evolving relationship between observations, resulting in a complex continuous
dynamic system. Feedforward and layer normalization are adopted, similar to the Transformer.
Finally, a sampling trick is employed to make ContiFormer stackable. Note that the highlighted
trajectories in purple indicate the part of functions that are involved in the calculation of the output.

where t ∈ [t1, tN], ki(·),vi(·) ∈ Rd represent the ordinary differential equation for the i-th observa-
tion with parameters θk and θv , and the initial state of ki(ti) and vi(ti) respectively and the function
f (·) ∈ Rd+1 → Rd controls the change of the dynamics.

Query Function While keys and values are associated with the input and output of the attention
mechanism, a query specifies what information to extract from the input. To model a dynamic system,
queries can be modeled as a function of time that represents the overall changes in the input to the
dynamic system at a specific time point t, i.e., q(t). Specifically, we adopt a common assumption
that irregular time series is a discretization of an underlying continuous-time process. Thus, similar
to [30], we define a closed-form continuous-time interpolation function (e.g., natural cubic spline)
with knots at t1, . . . , tN such that q(ti) = Qi as an approximation of the underlying process.

Scaled Dot Product The self-attention mechanism is the key component in Transformer architec-
ture. At its core, self-attention involves calculating the correlation between queries and keys. This
is achieved through the inner product of two matrices in discrete form, i.e., Q ·K⊤. Extending the
discrete inner-product to its continuous-time domain, given two real functions f(x) and g(x), we
define the inner product of two functions in a closed interval [a, b] as

⟨f, g⟩ =
∫ b

a

f(x) · g(x)dx . (2)

Intuitively, it can be thought of as a way of quantifying how much the two functions “align” with
each other over the interval. Inspired by the formulation of the inner product in the continuous-time
domain, we model the evolving relationship between the i-th sample and the dynamic system at time
point t as the inner product of q and ki in a closed interval [ti, t], i.e.,

αi(t) =

∫ t

ti
q(τ) · ki(τ)

⊤dτ

t− ti
. (3)

Due to the nature of sequence data, it is common to encounter abnormal points, such as events
with significantly large time differences. To avoid numeric instability during training, we divide the

4

integrated solution by the time difference. As a consequence, Eq. (3) exhibits discontinuity at αi(ti).
To ensure the continuity of the function αi(·), we define αi(ti) as

αi(ti) = lim
ϵ→0

∫ ti+ϵ

ti
q(τ) · ki(τ)

⊤dτ

ϵ
= q(ti) · ki(ti)

⊤ . (4)

Expected Values Given a query time t ∈ [t1, tN], the value of an observation at time point t is
defined as the expected value from ti to t. Without loss of generality, it holds that the expected values
of an observation sampled at time ti is vi(ti) or Vi. Formally, the expected value is defined as

v̂i(t) = Et∼[ti,t] [vi(t)] =

∫ t

ti
vi(τ)dτ

t− ti
. (5)

Multi-Head Attention The continuous-time attention mechanism is a powerful tool used in ma-
chine learning that allows for the modeling of complex, time-varying relationships between keys,
queries, and values. Unlike traditional attention mechanisms that operate on discrete time steps,
continuous-time attention allows for a more fine-grained analysis of data by modeling the input as a
continuous function of time. Specifically, given the forehead-defined queries, keys, and values in
continuous-time space, the continuous-time attention given a query time t can be formally defined as

CT-ATTN(Q,K, V,ω)(t) =

N∑
i=1

α̂i(t) · v̂i(t) ,

where α̂i(t) =
exp

(
αi(t)/

√
dk
)∑N

j=1 exp
(
αj(t)/

√
dk
) .

(6)

Multi-head attention, an extension of the attention mechanism [51], allows simultaneous focus on
different input aspects. It stabilizes training by reducing attention weight variance. We extend Eq. (6)
by incorporating multiple sets of attention weights, i.e.,

CT-MHA(Q,K, V,ω)(t) = Concat
(
head(1)(t), . . . ,head(H)(t)

)
WO ,

where head(h)(t) = CT-ATTN
(
QWQ

(h),KWK
(h), V WV

(h),ω
)
(t) ,

(7)

where WO, WQ
(h), W

K
(h) and WV

(h) are parameter matrices, h ∈ [1,H] and H is the head number.

3.2 Continuous-Time Transformer

Despite the widespread adoption of Transformers [51] in various research fields, their extension
for modeling continuous-time dynamic systems is underexplored. We propose ContiFormer that
directly builds upon the original implementation of vanilla Transformer while extending it to the
continuous-time domain. Specifically, we apply layer normalization (LN) after both the multi-head
self-attention (MHA) and the feed-forward blocks (FFN). We formally characterize the ContiFormer
layer below

z̃l(t) = LN
(
CT-MHA(X l, X l, X l,ωl)(t) + xl(t)

)
,

zl(t) = LN
(
FFN(z̃l(t)) + z̃l(t)

)
,

(8)

where zl(t) is the output from the l-th ContiFormer layer at time point t. Additionally, we adopt
residual connection to avoid potential gradient vanishing [23]. To incorporate the residual connection
with the continuous-time output, we approximate the underlying process of the discrete input X l

using a continuous function xl(t) based on the closed-form continuous-time interpolation function.

Sampling Process As described before, each ContiFormer layer derives a continuous function
zl(t) w.r.t. time as the output, while receiving discrete sequence X l as input. However, zl(t)
can not be directly incorporated into neural network architectures that expect inputs in the form
of fixed-dimensional vectors and sequences [48], which places obstacles when stacking layers of
ContiFormer. To address this issue, we establish reference time points for the output of each layer.
These points are used to discretize the layer output, and can correspond to either the input time points
(i.e., ω) or task-specific time points. Specifically, assume that the reference points for the l-th layer is
ωl = [tl1, t

l
2, ..., t

l
βl
], the input to the next layer X l+1 can be sampled as {zl(tlj)|j ∈ [1, βl]}.

5

3.3 Complexity Analysis

Table 1: Per-layer complexity (Comp. per Layer), minimum
number of sequential operations (Seq. Op.), and maximum
path lengths (Max. Path Len.). N is the sequence length, d
is the representation dimension, T is the number of function
evaluations (NFE) for the ODE solver in a single forward
pass from t1to tN , and S represents the NFE from −1 to 1.

Model Comp. per Layer Seq. Op. Max. Path Len.

Transformer [51] O(N2 · d) O(1) O(1)
RNN [25] O(N · d2) O(N) O(N)

Neural ODE [9] O(T · d2) O(T) O(T)

ContiFormer O(N2 · S · d2) O(S) O(1)

We consider an autoregressive task
where the output of each observation
is required for a particular classifica-
tion or regression task. Therefore, the
reference points for each layer are de-
fined as ωl = ω.

To preserve the parallelization of
Transformer architecture and mean-
while implement the continuous-time
attention mechanism in Eq. (6), we
first adopt time variable ODE [8] to
reparameterize ODEs into a single in-
terval [−1, 1], followed by numerical
approximation method to approximate the integrals, i.e.,

αi(tj) =

∫ tj
ti

q(τ) · ki(τ)
⊤dτ

tj − ti
=

1

2

∫ 1

−1

q̃i,j(τ) · k̃i,j(τ)
⊤dτ ≈ 1

2

P∑
p=1

γpq̃i,j(ξp) · k̃i,j(ξp)
⊤ , (9)

where P denotes the number of intermediate steps to approximate an integral, ξp ∈ [−1, 1] and γp ≥ 0,
k̃i,j(s) = ki ((s(tj − ti) + ti + tj)/2), and q̃i,j(s) = qi ((s(tj − ti) + ti + tj)/2). Finally, αi(tj)

can be solved with one invokes of ODESolver that contains N2 systems, i.e., k̃1,1(ξp−1)
...

k̃N,N (ξp−1)

︸ ︷︷ ︸

K(ξp−1)

+

∫ ξp

ξp−1

f(s,K(s); θk)ds =

 k̃1,1(ξp)
...

k̃N,N (ξp)

︸ ︷︷ ︸

K(ξp)

, (10)

where p ∈ [1, ..., P] and we further define ξ0 = −1. Additionally, q̃i,j(ξp) can be obtained by
interpolating on the close-form continuous-time query function. Similar approach is adopted for
solving v̂i(tj) in Eq. (5). The detailed implementation is deferred to Appendix A.

We consider three criteria to analyze the complexity of different models, i.e., per-layer complexity,
minimum number of sequential operations, and maximum path lengths [51]. Complexity per layer
refers to the computational resources required to process within a single layer of a neural network.
Sequential operation refers to the execution of operations that are processed iteratively or in a
sequential manner. Maximum path length measures the longest distance information must traverse to
establish relationships, reflecting the model’s ability to learn long-range dependencies.

As noted in Table 1, vanilla Transformer is an efficient model for sequence learning with O(1)
sequential operations and O(1) path length because of the parallel attention mechanism, whereas
the recurrent nature of RNN and Neural ODE rely on autoregressive property and suffer from a
large number of sequential operations. Utilizing Eq. (9) and leveraging the parallelism inherent
in the Transformer architecture, our model, ContiFormer, achieves O(S) sequential operations and
O(1) path length, while also enjoying the advantage of capturing complex continuous-time dynamic
systems. We have S ≪ T and we generally set S < N in our experiments.

3.4 Representation Power of ContiFormer

In the previous subsections, we introduce a novel framework for modeling dynamic systems. Then
a natural question is: How powerful is ContiFormer? We observe that by choosing proper weights,
ContiFormer can be an extension of vanilla Transformer [51]. Further, many Transformer variants
tailored for irregular time series, including time embedding methods [48, 54] and kernelized attention
methods [34, 38], can be special cases of our model. We provide an overview of the main theorem
below and defer the proof to Appendix B.

Theorem 1 (Universal Attention Approximation Theorem). Given query (Q) and key (K) ma-
trices, such that ∥Qi∥2 < ∞, ∥Qi∥0 = d for i ∈ [1, ..., N]. For certain attention matrix, i.e.,

6

Figure 2: Interpolation and extrapolation of spirals with irregularly-samples time points by Trans-
former, Neural ODE, and our model.

Attn(Q,K) ∈ RN×N (see Appendix B.1 for more information), there always exists a family of
continuously differentiable vector functions k1(·),k2(·), . . . ,kN (·), such that the discrete definition
of the continuous-time attention formulation, i.e., [α1(·),α2(·), ...,αN (·)] in Eq. (4), given by

Ãttn(Q,K) =

α1(t1) α2(t1) · · · αN (t1)
α1(t2) α2(t2) · · · αN (t2)

...
...

. . .
...

α1(tN) α2(tN) · · · αN (tN)

 , (11)

satisfies that Ãttn(Q,K) = Attn(Q,K).

4 Experiments

In this section, we evaluate ContiFormer on three types of tasks on irregular time series data, i.e.,
interpolation and extrapolation, classification, event prediction, and forecasting. Additionally, we
conduct experiments on pendulum regression task [19, 45], the results are listed in Appendix C.5.

Implementation Details By default, we use the natural cubic spline to construct the continuous-time
query function. The vector field in ODE is defined as f(t, x) = Actfn(LN(Lineard,d(Lineard,d(x) +
Linear1,d(t)))), where Actfn(·) is either tanh or sigmoid activation function, Lineara,b(·) : Ra → Rb

is a linear transformation from dimension a to dimension b, LN denotes the layer normalization. We
adopt the Gauss-Legendre Quadrature approximation to implement Eq. (9). In the experiment, we
choose the Runge-Kutta-4 [44] (RK4) algorithm to solve the ODE with a fixed step of fourth order
and a step size of 0.1. Thus, the number of forward passes to integrate from −1 to 1, i.e., S in Table
1, is 80. All the experiments were carried out on a single 16GB NVIDIA Tesla V100 GPU.

4.1 Modeling Continuous-Time Function

Table 2: Interpolation and extrapolation results of
different models on 2-dimensional spirals. ↓ indi-
cates the lower the better.

Metric Transformer [51] Latent ODE [9] ContiFormer

Task = Interpolation (×10−2)

RMSE (↓) 1.37 ± 0.14 2.09 ± 0.22 0.49 ± 0.06
MAE (↓) 1.42 ± 0.13 1.95 ± 0.25 0.52 ± 0.06

Task = Extrapolation (×10−2)

RMSE (↓) 1.36 ± 0.10 1.59 ± 0.05 0.64 ± 0.09
MAE (↓) 1.49 ± 0.12 1.52 ± 0.05 0.65 ± 0.08

The first experiment studies the effectiveness
of different models from different categories
on continuous-time function approximation.
We generated a dataset of 300 2-dimensional
spirals, sampled at 150 equally-spaced time
points. To generate irregular time points, we
randomly sample 50 points from each sub-
sampled trajectory without replacement. We
visualize the interpolation and extrapolation
results of the irregular time series for differ-
ent models, namely Latent ODE (w/ RNN en-
coder) [9], Transformer [51] and our proposed
ContiFormer. Besides, we list the interpolation and extrapolation results in Table 2 using rooted
mean squared error (RMSE) and mean absolute error (MAE) metrics. More visualization results
and experimental settings can be found in Appendix C.1. As shown in Figure 2, both Latent ODE
and ContiFormer can output a smooth and continuous function approximation, while Transformer
fails to interpolate it given the noisy observations (1⃝). From Table 2, we can observe that our model
outperforms both Transformer and Latent ODE by a large margin. The improvement lies in two

7

Table 3: Experimental results on irregular time series classification. Avg. ACC. stands for average
accuracy over 20 datasets and Avg. Rank stands for average ranking over 20 datasets. ↑ (↓) indicates
the higher (lower) the better.

Mask Ratio 30% Dropped 50% Dropped 70% Dropped

Metric Avg. ACC. (↑) Avg. Rank (↓) Avg. ACC. (↑) Avg. Rank (↓) Avg. ACC. (↑) Avg. Rank (↓)

GRU-D [30] 0.7284 6 0.7117 5.8 0.6725 6.15
GRU-∆t [6] 0.7298 5.75 0.7157 5.65 0.6795 5.7

ODE-RNN [43] 0.7304 5.45 0.7000 5.55 0.6594 6.4
Neural CDE [30] 0.7142 6.85 0.6929 6.5 0.6753 6.3

mTAN [48] 0.7381 5.7 0.7118 5.85 0.6955 5.4
CADN [10] 0.7402 5.4 0.7211 5.55 0.7183 3.9

S5 [49] 0.7854 4.4 0.7638 4.25 0.7401 4.45
TST [57] 0.8089 2.75 0.7793 3.15 0.7297 4.2

ContiFormer 0.8126 2.4 0.7997 1.9 0.7749 2.1

aspects. First, compared to Transformer, our ContiFormer can produce an almost3 continuous-time
output, making it more suitable for modeling continuous-time functions. Second, compared to Latent
ODE, our ContiFormer excels at retaining long-term information (2⃝), leading to lower prediction
error in extrapolating unseen time series. Conversely, Latent ODE is prone to cumulative errors (3⃝),
resulting in poorer performance in extrapolation tasks. Therefore, we conclude that ContiFormer is a
more suitable approach for modeling continuous-time functions on irregular time series.

4.2 Irregularly-Sampled Time Series Classification

The second experiment evaluates our model on real-world irregular time series data. To this end, we
first examine the effectiveness of different models for irregular time series classification. We select
20 datasets from UEA Time Series Classification Archive [3] with diverse characteristics in terms
of the number, dimensionality, and length of time series samples. More detailed information and
experimental results can be found in Appendix C.2. To generate irregular time series data, we follow
the setting of [30] to randomly drop either 30%, 50% or 70% observations.

We compare the performance of ContiFormer with RNN-based methods (GRU-∆t [30], GRU-D [6]),
Neural ODE-based methods (ODE-RNN [43], CADN [10], Neural CDE [30]), SSM-based models
(S5 [49]), and attention-based methods (TST [57], mTAN [48]).

Time
t

Figure 3: Visualization of attention scores on
UWaveGestureLibrary dataset. Colors indicate
the attention scores for different instances at time
t = 0. Observations at time t = 0 are observed
and normalize the time interval to [0, 1].

Table 3 presents the average accuracy and rank
number under different drop ratios. ContiF-
ormer outperforms all the baselines on all three
settings. The complete results are shown in Ap-
pendix C.2.3. Moreover, attention-based meth-
ods perform better than both RNN-based meth-
ods and ODE-based methods, underscoring the
significance of effectively modeling the inter-
correlation of the observations. Additionally,
we find that our method is more robust than
other models. ContiFormer exhibits the smallest
performance gap between 30% and 50%.

Besides, we study the learned attention patterns
with different models. Attention captures the
impact of previous observations on the future
state of a system by measuring the correlation
between different observations at different time
points. Consequently, it is expected that a model
effectively capturing the underlying dynamics would exhibit continuous, smooth, and input-dependent
intermediate outcomes. As illustrated in Figure 3, ContiFormer and TST are both capable of

3The output of ContiFormer can be considered “continuous” only if we overlook the approximation and
numerical errors in the ODESolver. Additionally, traditional Transformers are commonly trained with dropout to
prevent overfitting, which can result in discontinuous outputs. To mitigate this issue, a straightforward approach
is to set the dropout rate to 0, thereby producing an “almost” continuous output for ContiFormer.

8

Table 4: Prediction result of compared models for event prediction. LL for log-likelihood and ACC
for accuracy. ↑ (↓) indicates the higher (lower) the better. (bold values indicate the best performance
and + indicates outperforming the best baseline by at least 3 standard deviations.)

Model Metric Synthetic Neonate Traffic MIMIC StackOverflow BookOrder

HP [22]
LL (↑) -3.084 ± .005 -4.618 ± .005 -1.482 ± .005 -4.618 ± .005 -5.794 ± .005 -1.036 ± .000

Accuracy (↑) 0.756 ± .000 – 0.570 ± .000 0.795 ± .000 0.441 ± .000 0.604 ± .000
RMSE (↓) 0.953 ± .000 10.957 ± .012 0.407 ± .000 1.021 ± .000 1.341 ± .000 3.781 ± .000

RMTPP [16]
LL (↑) -1.025 ± .030 -2.817 ± .023 -0.546 ± .012 -1.184 ± .023 -2.374 ± .001 -0.952 ± .007

Accuracy (↑) 0.841 ± .000 – 0.805 ± .002 0.823 ± .004 0.461 ± .000 0.624 ± .000
RMSE (↓) 0.369 ± .014 9.517 ± .023 0.337 ± .001 0.864 ± .017 0.955 ± .000 3.647 ± .003

NeuralHP [39]
LL (↑) -1.371 ± .004 -2.795 ± .012 -0.643 ± .004 -1.239 ± .027 -2.608 ± .000 -1.104 ± .005

Accuracy (↑) 0.841 ± .000 – 0.759 ± .001 0.814 ± .001 0.450 ± .000 0.621 ± .000
RMSE (↓) 0.631 ± .002 9.614 ± .013 0.358 ± .001 0.846 ± .007 1.022 ± .000 3.734 ± .003

SAHP [54]
LL (↑) -0.619 ± .063 -2.646 ± .057 0.372 ± .022 -1.110 ± .030 -2.404 ± .002 -0.304 ± .002

Accuracy (↑) 0.841 ± .000 – 0.780 ± .001 0.830 ± .004 0.455 ± .000 0.622 ± .000
RMSE (↓) 0.521 ± .055 9.403 ± .060 0.337 ± .000 0.851 ± .006 0.963 ± .000 3.676 ± .011

THP [64]
LL (↑) -0.589 ± .017 -2.702 ± .045 -0.569 ± .015 -1.137 ± .038 -2.354 ± .001 -1.102 ± .052

Accuracy (↑) 0.841 ± .000 – 0.818 ± .001 0.834 ± .005 -0.468 ± .000 0.622 ± .004
RMSE (↓) 0.205 ± .006 9.471 ± .045 0.332 ± .000 0.843 ± .017 0.951 ± .000 3.688 ± .004

NSTKA [38]
LL (↑) -1.001 ± .025 -2.747 ± .061 -0.667 ± .027 -1.188 ± .012 -2.406 ± .003 -1.098 ± .019

Accuracy (↑) 0.842 ± .000 – 0.767 ± .001 0.833 ± .003 0.465 ± .000 0.621 ± .000
RMSE (↓) 0.379 ± .015 9.502 ± .049 0.346 ± .001 0.842 ± .008 0.956 ± .000 3.731 ± .007

GRU-∆t [9]
LL (↑) -0.871 ± .050 -2.736 ± .031 -0.613 ± .062 -1.164 ± .026 -2.389 ± .002 -0.915 ± .006

Accuracy (↑) 0.841 ± .000 – 0.800 ± .004 0.832 ± .007 0.466 ± .000 0.627 ± .000
RMSE (↓) 0.249 ± .013 9.421 ± .050 0.335 ± .001 0.850 ± .010 0.950 ± .000 3.666 ± .016

ODE-RNN [43]
LL (↑) -1.032 ± .102 -2.732 ± .080 -0.491 ± .011 -1.183 ± .028 -2.395 ± .001 -0.988 ± .006

Accuracy (↑) 0.841 ± .000 – 0.812 ± .000 0.827 ± .006 0.467 ± .000 0.624 ± .000
RMSE (↓) 0.342 ± .030 9.289 ± .048 0.334 ± .000 0.865 ± .021 0.952 ± .000 3.605 ± .004

mTAN [48]
LL (↑) -0.920 ± .036 -2.722 ± .026 -0.548 ± .023 -1.149 ± .029 -2.391 ± .002 -0.980 ± .004

Accuracy (↑) 0.842 ± .000 – 0.811 ± .002 0.832 ± .009 0.466 ± .000 0.620 ± .000
RMSE (↓) 0.286 ± .008 9.363 ± .042 0.334 ± .001 0.848 ± .006 0.950 ± .000 3.680 ± .015

ContiFormer
LL (↑) -0.535 ± .028+ -2.550 ± .026 0.635 ± .019+ -1.135 ± .023 -2.332 ± .001+ -0.270 ± .010+

Accuracy (↑) 0.842 ± .000 – 0.822 ± .001+ 0.836 ± .006 0.473 ± .000+ 0.628 ± .001+
RMSE (↓) 0.192 ± .005 9.233 ± .033 0.328 ± .001+ 0.837 ± .007 0.948 ± .000+ 3.614 ± .020

capturing input-dependent patterns effectively, while mTAN struggles due to the fact that its attention
mechanism depends solely on the time information. In addition, ContiFormer excels in capturing
complex and smooth patterns compared to TST, showcasing its ability to model time-evolving
correlations effectively and potentially more robust to noisy data. Consequently, we believe that
ContiFormer better captures the nature of irregular time series.

4.3 Predicting Irregular Event Sequences

Next, we evaluate different models for predicting the type and occurrence time of the next event
with irregular event sequences [7, 21, 46, 47], a.k.a, marked temporal point process (MTPP) task. To
this end, we use one synthetic dataset and five real-world datasets for evaluation, namely Synthetic,
Neonate [50], Traffic [32], MIMIC [16], BookOrder [16] and StackOverflow [33]. We use the 4-fold
cross-validation scheme for Synthetic, Neonate, and Traffic datasets following [17], and the 5-fold
cross-validation scheme for the other three datasets following [39, 64]. We repeat the experiment
3 times and report the mean and standard deviations in Table 4. More information about the task
description, dataset information, and training algorithm can be found in Appendix C.3.

We first compare ContiFormer with 3 models on irregular time series, i.e., GRU-∆t, ODE-RNN,
and mTAN, which respectively belong to RNN-based, ODE-based, and attention-based approaches.
Additionally, we compare ContiFormer with baselines specifically designed for the MTPP task. These
models include parametric method (HP [22]), RNN-based methods (RMTPP [16], NeuralHP [39]),
and attention-based methods (SAHP [59], THP [64], NSTKA [38]).

The experimental results, as presented in Table 4, demonstrate the overall statistical superiority of
ContiFormer to the compared baselines. Notably, the utilization of specific kernel functions, e.g.,
NSTKA and mTAN, results in subpar performance on certain datasets, highlighting their limitations
in modeling complex data patterns in real-world scenarios. Furthermore, parametric methods like HP,
perform poorly on most datasets, indicating their drawbacks in capturing real-life complexities.

9

Table 5: Results of regular time series forecasting. Input length for ILI is 36 and 96 for the others.
Prediction lengths for ETTm2 and ETTh2 are {24, 48, 168, 336}, {96, 192, 336, 540} for Exchange
and Weather, and {24, 36, 48, 60} for ILI. Results are averaged over the four prediction lengths.
Bold/underlined values indicate the best/second-best. MSE stands for mean squared error.

Model ContiFormer TimesNet[52] DLinear[56] FEDformer[62] Autoformer[53] Transformer[51]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange 0.339 0.399 0.320 0.396 0.277 0.377 0.392 0.446 0.440 0.477 1.325 0.949

ETTm2 0.226 0.300 0.214 0.276 0.220 0.305 0.226 0.300 0.231 0.307 0.689 0.633

ETTh2 0.356 0.395 0.321 0.364 0.358 0.396 0.351 0.393 0.352 0.394 2.081 1.179

ILI 2.632 1.042 2.874 1.066 4.188 1.493 4.467 1.547 4.046 1.446 5.130 1.507

Weather 0.257 0.290 0.259 0.285 0.260 0.311 0.315 0.360 0.318 0.359 0.672 0.579

4.4 Regular Time Series Forecasting

Lastly, we evaluate ContiFormer’s performance in the context of regular time series modeling. To
this end, we conducted an extensive experiment following the experimental settings from [53]. We
employed the ETT, Exchange, Weather, and ILI datasets for time series forecasting tasks. We
compare ContiFormer with the recent state-of-the-art model (TimesNet [52]), Transformer-based
models (FEDformer[62], Autoformer[53]) and MLP-based model (DLinear [56]).

Table 5 summarizes the experimental results. Contiformer achieves the best performance on ILI
dataset. Specifically, it gives 10% MSE reduction (2.874 → 2.632). Also, Contiformer outperforms
Autoformer and FEDformer on Exchange, ETTm2, and Weather datasets. Therefore, it demonstrates
that Contiformer performs competitively with the state-of-the-art model on regular time series
forecasting. For a more comprehensive exploration of the results, please refer to Appendix C.4.

5 Efficiency Analysis

Table 6: Actual time cost during training for differ-
ent models on RacketSports dataset (0% dropped)
from UEA dataset. We adopt RK4 solver for ODE-
RNN, Neural CDE, and ContiFormer. Step size
refers to the amount of time increment for the RK4
solver. ↑ (↓) indicates the higher (lower) the better.

Model Step Size Time Cost (↓) Accuracy (↑)

TST [57] – 0.14× 0.826
S5 [49] – 1× 0.772

ODE-RNN [43] 0.1 2.47× 0.827
0.01 14.64× 0.796

Neural CDE [42] 0.1 3.48× 0.743
0.01 25.03× 0.748

ContiFormer 0.1 1.88× 0.836
0.01 5.87× 0.836

Employing continuous-time modeling in Con-
tiFormer often results in substantial time and
GPU memory overhead. Hence, we conduct a
comparative analysis of ContiFormer’s actual
time costs against those of Transformer-based
models (TST), ODE-based models (ODE- RNN,
Neural CDE), and SSM-based models (S5).

Table 6 shows that both TST and S5 are effec-
tive models. Additionally, ContiFormer lever-
ages a parallel mechanism for faster inference,
resulting in faster inference speed as compared
to ODE-RNN and Neural CDE. Furthermore,
ContiFormer demonstrates competitive perfor-
mance even with a larger step size, as detailed
in Appendix D.3. Therefore, ContiFormer’s ro-
bustness to step size allows it to achieve a supe-
rior balance between time cost and performance.
Please refer to Appendix E for more details.

6 Conclusion

We propose ContiFormer, a novel continuous-time Transformer for modeling dynamic systems
of irregular time series data. Compared with the existing methods, ContiFormer is more flexible
since it abandons explicit closed-form assumptions of the underlying dynamics, leading to better
generalization in various circumstances. Besides, similar to Neural ODE, ContiFormer can produce a
continuous and smooth outcome. Taking advantage of the self-attention mechanism, ContiFormer can
also capture long-term dependency in irregular observation sequences, achieving superior performance
on a variety of irregular time series modeling tasks.

10

7 Acknowledgement

This research is supported in part by the National Natural Science Foundation of China under grant
62172107.

References
[1] Abdul Fatir Ansari, Alvin Heng, Andre Lim, and Harold Soh. Neural continuous-discrete state

space models for irregularly-sampled time series. arXiv preprint arXiv:2301.11308, 2023.

[2] Imanol Perez Arribas. Derivatives pricing using signature payoffs. arXiv preprint
arXiv:1809.09466, 2018.

[3] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom,
Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018.
arXiv preprint arXiv:1811.00075, 2018.

[4] Stefan Bauer, Bernhard Schölkopf, and Jonas Peters. The arrow of time in multivariate time
series. In International Conference on Machine Learning, pages 2043–2051. PMLR, 2016.

[5] Youness Boutaib, Lajos Gergely Gyurkó, Terry Lyons, and Danyu Yang. Dimension-free euler
estimates of rough differential equations. arXiv preprint arXiv:1307.4708, 2013.

[6] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent
neural networks for multivariate time series with missing values. Scientific reports, 8(1):6085,
2018.

[7] Chao Chen, Haoyu Geng, Nianzu Yang, Junchi Yan, Daiyue Xue, Jianping Yu, and Xiaokang
Yang. Learning self-modulating attention in continuous time space with applications to sequen-
tial recommendation. In International Conference on Machine Learning, pages 1606–1616.
PMLR, 2021.

[8] Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point
processes. In International Conference on Learning Representations, 2021.

[9] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[10] Jen-Tzung Chien and Yi-Hsiang Chen. Continuous-time self-attention in neural differential
equation. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3290–3294. IEEE, 2021.

[11] Jen-Tzung Chien and Yi-Hsiang Chen. Learning continuous-time dynamics with attention.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[12] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[13] Edward Choi, Cao Xiao, Walter Stewart, and Jimeng Sun. Mime: Multilevel medical embedding
of electronic health records for predictive healthcare. Advances in neural information processing
systems, 31, 2018.

[14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. Recurrent marked temporal point processes: Embedding event history to vector. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pages 1555–1564, 2016.

[17] Yuchen Fang, Kan Ren, Caihua Shan, Yifei Shen, You Li, Weinan Zhang, Yong Yu, and
Dongsheng Li. Learning decomposed spatial relations for multi-variate time-series modeling.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

11

[18] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. Advances in Neural Information Processing
Systems, 35:35971–35983, 2022.

[19] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

[20] Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu.
Cmt: Convolutional neural networks meet vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12175–12185, 2022.

[21] Vinayak Gupta and Srikanta Bedathur. Proactive: Self-attentive temporal point process flows
for activity sequences. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 496–504, 2022.

[22] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90, 1971.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[25] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[26] Sheo Yon Jhin, Heejoo Shin, Sujie Kim, Seoyoung Hong, Minju Jo, Solhee Park, Noseong
Park, Seungbeom Lee, Hwiyoung Maeng, and Seungmin Jeon. Attentive neural controlled
differential equations for time-series classification and forecasting. Knowledge and Information
Systems, pages 1–31, 2023.

[27] Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in
Neural Information Processing Systems, 32, 2019.

[28] Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

[29] Patrick Kidger, Patric Bonnier, Imanol Perez Arribas, Cristopher Salvi, and Terry Lyons. Deep
signature transforms. Advances in Neural Information Processing Systems, 32, 2019.

[30] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information Processing Systems,
33:6696–6707, 2020.

[31] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[32] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference
on research & development in information retrieval, pages 95–104, 2018.

[33] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection,
2014.

[34] Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential
recommendation. In Proceedings of the 13th international conference on web search and data
mining, pages 322–330, 2020.

[35] Yan Li, Xinjiang Lu, Haoyi Xiong, Jian Tang, Jiantao Su, Bo Jin, and Dejing Dou. Towards long-
term time-series forecasting: Feature, pattern, and distribution. arXiv preprint arXiv:2301.02068,
2023.

[36] Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
with rnns: Improved classification of clinical time series. In Machine learning for healthcare
conference, pages 253–270. PMLR, 2016.

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

12

[38] Yu Ma, Zhining Liu, Chenyi Zhuang, Yize Tan, Yi Dong, Wenliang Zhong, and Jinjie Gu. Non-
stationary time-aware kernelized attention for temporal event prediction. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1224–1232,
2022.

[39] Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. Advances in neural information processing systems, 30, 2017.

[40] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential
equations for long time series. In International Conference on Machine Learning, pages
7829–7838. PMLR, 2021.

[41] Michael C Mozer, Denis Kazakov, and Robert V Lindsey. Discrete event, continuous time rnns.
arXiv preprint arXiv:1710.04110, 2017.

[42] Sung Woo Park, Kyungjae Lee, and Junseok Kwon. Neural markov controlled sde: Stochastic
optimization for continuous-time data. In International Conference on Learning Representations,
2022.

[43] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[44] Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathematische
Annalen, 46(2):167–178, 1895.

[45] Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time
series with continuous recurrent units. In International Conference on Machine Learning, pages
19388–19405. PMLR, 2022.

[46] Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal
point processes. arXiv preprint arXiv:1909.12127, 2019.

[47] Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast and flexible
temporal point processes with triangular maps. Advances in Neural Information Processing
Systems, 33:73–84, 2020.

[48] Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly
sampled time series. In International Conference on Learning Representations, 2021.

[49] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers
for sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

[50] Nathan J Stevenson, Karoliina Tapani, Leena Lauronen, and Sampsa Vanhatalo. A dataset of
neonatal eeg recordings with seizure annotations. Scientific data, 6(1):1–8, 2019.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[52] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis. arXiv preprint
arXiv:2210.02186, 2022.

[53] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

[54] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Self-attention
with functional time representation learning. Advances in neural information processing systems,
32, 2019.

[55] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 8980–8987, 2022.

[56] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages
11121–11128, 2023.

13

[57] George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivariate time series representation learning.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 2114–2124, 2021.

[58] Jing Zhang, Peng Zhang, Baiwen Kong, Junqiu Wei, and Xin Jiang. Continuous self-attention
models with neural ode networks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 14393–14401, 2021.

[59] Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
International conference on machine learning, pages 11183–11193. PMLR, 2020.

[60] Yuan Zhang. Attain: Attention-based time-aware lstm networks for disease progression mod-
eling. In In Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI-2019), pp. 4369-4375, Macao, China., 2019.

[61] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,
2021.

[62] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
Conference on Machine Learning, pages 27268–27286. PMLR, 2022.

[63] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159,
2020.

[64] Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
process. In International conference on machine learning, pages 11692–11702. PMLR, 2020.

14

A Implement Details and Complexity Analysis

A.1 Background: Time Variable ODE

A numerical ODE solver integrates a single ODE system dx
dt = f(t, x), where x ∈ Rd and f :

Rd+1 → Rd. Given an initial state xt0 , the ODE solver produces xt1 , xt2 , ..., xtN , which represents
the latent state for each time point [9], i.e.,

xt1 , xt2 , . . . , ztN = ODESolve (xt0 , f, t0, . . . , tN) . (12)

To obtain the solution of Eq. (12), it requires the ODE solver to integrate over the interval [t0, tN].

Varied time intervals Now, we suppose that we need to solve M dynamic system that has different
time intervals. Let denote for the i-th system, the start point is t(i)0 and the endpoint is t(i)1 and the
ODE system is defined by dx

dt = f(t, x). We can construct a dummy variable so that the integral
interval always starts from −1 and ends at 1 and perform a change of variables to transform every
system to use this dummy variable.

For simplifying purposes, we assume that a single system that integrates from t0 to t1 with f(t, x)
can control the differential equation and the solution of x(t). We introduce a dummy variable
s = 2t−t0−t1

t1−t0
and a solution x̃(s) in a fix interval [−1, 1] satisfies

x̃(s) = x(
s(t1 − t0) + t0 + t1

2
) . (13)

The differential equation that solve x follows that

f̃(s, x̃(s)) =
dx̃(s)
ds

=
dx(t)
dt

∣∣∣∣
t=

s(t1−t0)+t0+t1
2

dt

ds

= f(t, x(t))|
t=

s(t1−t0)+t0+t1
2

(
t1 − t0

2

)
= f

(
s(t1 − t0) + t0 + t1

2
, x̃(s)

)(
t1 − t0

2

)
.

(14)

Since x̃(−1) = x(t0) and x̃(1) = xt1 , thus we have

x(t1) = ODESolve(x(t0), f, t0, t1) = ODESolve(x̃(−1), f̃ ,−1, 1) . (15)

A.2 Background: Approximating Definite Integral of a Function

Given a function f that integrates over an interval [−1, 1], a simple method to approximate it is to
assume that the change is linear over time, i.e.,∫ 1

−1

f(x)dx ≈ f(−1) + f(1)

2
. (16)

Besides, in numerical analysis, Gauss–Legendre Quadrature provides a more accurate way to approx-
imate an integral over an interval [−1, 1], i.e.,∫ 1

−1

f(x)dx ≈
∑
j

ωjf (ξj) , (17)

where {ωj} and {ξj} are quadrature weights and nodes such that −1 ≤ ξ1 < ... < ξk ≤ 1.

A.3 Putting it all together

Given an irregular-sampled sequence, Γ = [(x1, t1), (x2, t2), ..., (xN , tN)], where xi ∈ Rd is the
input feature of the i-th tokens happen at time ti and N is the length of the sequence. We analyze the
time and space complexity for an autoregressive task where the output of each observation is required
for a particular classification or regression task. Specifically, for Eq. (3), αi(t1),αi(t2), . . . ,αi(tN)

15

is required to form the output of Transformer. Therefore, the key difficulty is to solve Eq. (3). By
using the numerical approximation method, we have

αi(tj) =

∫ tj
ti

q(τ) · ki(τ)
⊤dτ

tj − ti
=

1

2

∫ 1

−1

q̃i,j(τ)·k̃i,j(τ)
⊤dτ ≈ 1

2

P∑
p=1

γpq̃i,j(ξp)·k̃i,j(ξp)
⊤ , (18)

where q̃i,j and k̃i,j follows that:

q̃i,j(s) = q

(
s(ti − tj) + ti + tj

2

)
,

k̃i,j(s) = qj

(
s(ti − tj) + ti + tj

2

)
.

(19)

We use k̂i,j to denote dk̃i,j(s)
ds . Thus, αi(tj) can be solved by paralleling N2 ODE solvers. Specifi-

cally, k̃i,j(ξp) is given by

k̃i,j(ξ1), k̃i,j(ξ2), ..., k̃i,j(ξp) = ODESolver(kj(tj), k̂i,j ,−1, ξ1, ξ2, ..., ξp) . (20)

As for q̃i,j(ξk), since the input sequence is irregularly sampled and discrete in time, we propose to use
interpolation methods [30] (e.g., linear interpolation or cubic interpolation) method on Q to construct
a continuous-time query. Therefore q̃i,j(ξk) can be easily calculated in O(d) time complexity.

B Representation Power of ContiFormer

In the section, we mathematically prove that by curated designs of function hypothesis, many
Transformer variants can be covered as a special case of ContiFormer. For simplification, we only
discuss the self-attention mechanism, where Q,K, V ∈ RN×d.

B.1 Transformer Variants

We first show several Transformer-based methods for irregular time series. Most of these methods
shown below calculate N ×N attention matrix and multiply it with V 4.

Vanilla Transformer Given query Q ∈ RN×d and V ∈ RN×d, the attention matrix of a vanilla
transformer [51] is calculated as

Attn(Q,K) =

Q1 ·K⊤

1 Q1 ·K⊤
2 · · · Q1 ·K⊤

N

Q2 ·K⊤
1 Q2 ·K⊤

2 · · · Q2 ·K⊤
N

...
...

. . .
...

QN ·K⊤
1 QN ·K⊤

2 · · · QN ·K⊤
N

 , (21)

and the output of the self-attention mechanism is obtained by5

Zi = Softmax(Attn(Q,K)i)V . (22)

Kernelized Attention Kernelized attention mechanism 6 incorporate time information through
defining specific kernel function k(x, x′) and replace the attention matrix with

Attn(Q,K) =

Q1 ·K⊤

1 ∗ k(t1, t1) Q1 ·K⊤
2 ∗ k(t1, t2) · · · Q1 ·K⊤

N ∗ k(t1, tN)
Q2 ·K⊤

1 ∗ k(t2, t1) Q2 ·K⊤
2 ∗ k(t2, t2) · · · Q2 ·K⊤

N ∗ k(t2, tN)
...

...
. . .

...
QN ·K⊤

1 ∗ k(tN , t1) QN ·K⊤
2 ∗ k(tN , t2) · · · QN ·K⊤

N ∗ k(tN , tN)

 .

(23)
4Throughout the proof section, we define vi(ti) = vi(ti) = Vi, and focus on the proof of attention matrix.
5For simplification, we assume single-head attention is adopted throughout the proof.
6Not to be confused with methods that regard kernels as a form of approximation of the attention matrix.

16

Kernel functions are typically symmetric and hold that ϕ(x, x) = 1 for any x. For instance,
NSTKA [38] propose a learnable Generalized Spectral Mixture (GSM) kernel, i.e.,

kGSM (x, x′) =
∑
i

ϕi(x)ϕi (x
′) kGibbs,i (x, x

′) cos (2π (µi(x)x− µi (x
′)x′)) ,

where kGibbs,i (x, x
′) =

√
2li(x)li (x′)

li(x)2 + li (x′)
2 exp

(
− (x− x′)

2

li(x)2 + li (x′)
2

)
.

(24)

where µi(x) denotes the mean, lengthscale as li(x) and input-dependent weight as ϕi(x).

Time Embedding Methods Time embedding methods learn a time representation, adding or
concatenating it with the input embedding, i.e.,

Âttn(Q,K) =

(Q1,Φ(t1)) · (K1,Φ(t1))

⊤ · · · (Q1,Φ(t1)) · (KN ,Φ(tN))⊤

(Q2,Φ(t2)) · (K1,Φ(t1))
⊤ · · · (Q2,Φ(t2)) · (KN ,Φ(tN))⊤

...
. . .

...
(QN ,Φ(tN)) · (K1,Φ(t1))

⊤ · · · (QN ,Φ(tN)) · (KN ,Φ(tN))⊤

 , (25)

where (·, ·) is the concatenation of two vectors, Φ(·) : R → Rd is a learnable time representation.
For simplification, we assume that time embedding is concatenated with the input embedding and
ignore linear transformation on the time embedding.7

For instance, Mercer [54] transforms the periodic kernel function into the high-dimensional space
spanned by truncated Fourier basis under certain frequencies ({ωi}) and coefficients {ci}, i.e.,

Φ(t) 7→ ΦM
d =

[
ΦM

ω1,d(t), . . . ,Φ
M
ωk,d

(t)
]⊤

,

where ΦM
ω (t) =

[
√
c1, . . . ,

√
c2j cos

(
jπt

ω

)
,
√
c2j+1 sin

(
jπt

ω

)
, . . .

]
.

(26)

mTAN [48] generalizes the notion of a positional encoding used in Transformer-based models to
continuous-time domain, i.e.,

Φ(t) = ϕ(t) · w , (27)

where w ∈ Rd×d is a linear transformation 8 and

ϕ(t)i =

{
ω0 · t+ ϕ0, if i = 0

sin(ωi · t+ ϕi), if 0 < i ≤ d
, (28)

where ω and ϕ are learnable weights. Furthermore, mTAN assumes that Q = K = 0.

Besides, since Softmax(x+ c) = Softmax(x), where x is a vector and c is a constant. The following
equation holds,

Softmax(Attn(Q,K)) = Softmax(Âttn(Q,K)) , (29)

where the matrix form of Softmax normalize each row of the matrix and

Attn(Q,K) =
Q1 ·K⊤

1 · · · Q1 ·KN +Φ(t1) · (Φ(tN)− Φ(t1))
⊤

Q2 ·K1 +Φ(t2) · (Φ(t2)− Φ(t1))
⊤ · · · Q2 ·KN +Φ(t2) · (Φ(tN)− Φ(t2))

⊤

...
. . .

...
QN ·K1 +Φ(tN) · (Φ(t1)− Φ(tN))⊤ · · · QN ·K⊤

N

 .

(30)

7Using the concatenation operation, we have (Qi,Φ(ti)) · (Kj ,Φ(tj))
⊤ = Qi ·K⊤

j +Φ(ti) · Φ(tj)⊤.
8In the original paper, the equation is defined as Φ(ti, tj) = ϕ(ti)wv⊤ϕ(tj). For simplicity purpose, we

assume that w = v.

17

B.2 Proof of Extension and Universal Approximation

Lemma 1 (Existence of Continuously Differentiable Vector Function). Given a continuously dif-
ferentiable vector function u : R → Rd ∈ C1, such that ∀x ∈ R, ∥u(x)∥2 < ∞, ∥u(x)∥0 = d and
a continuously differentiable function w : R → R ∈ C1, there always exists another continuously
differentiable vector function v : R → Rd ∈ C1 with a fixed point p satisfying u(p) · v(p)⊤ = w(p),
such that ∀x ∈ R, u(x) · v(x)⊤ = w(x) holds. 9

Proof. Throughout the proof, we define ξ := v(p).

Since ∀x ∈ R, 0 < ∥u(x)∥2 < ∞, we define

v(x) =
u(x)

∥u(x)∥22
· w(x) + k(x) , (31)

where k(x) ∈ C1 such that ∀x ∈ R, u(x) · k(x)⊤ = 0 holds. Therefore, for ∀x ∈ R, we have

u(x) · v(x)⊤ = u(x) ·
(

u(x)

∥u(x)∥22
· w(x) + k(x)

)
= w(x) + u(x) · k(x) = w(x) . (32)

Thus, we only need to prove the existence of k(x). Since v(x) has a fixed point at p, therefore,

k(p) = ξ − u(p)

∥u(p)∥22
· w(p) . (33)

Let z[i] denote the i-th element of a vector z, thus, Eq. (33) is equivalent to

k(p)[i] = ξ[i]− u(p)[i]

∥u(p)∥22
∗ w(p)[i] , (34)

for i ∈ [1, d]. Since we have u(p) · v(p)⊤ = w(p), thus,

k(p) · u(p)⊤ = ξ · u(p)⊤ − w(p) = 0 . (35)

We denote ci := k(p)[i] ∗ u(p)[i]. Since Eq. (35) holds, therefore
∑d

i=1 ci = 0. Finally, we can
construct k(x) as

k(x) =

k(x)[1]
k(x)[2]

...
k(x)[d]

⊤

=

c1/u(x)[1]
c2/u(x)[2]

...
cd/u(x)[d]

⊤

. (36)

Since u,w ∈ C1, therefore k ∈ C1, thus v ∈ C1.

Lemma 2 (Existence of ki(t)). Given a continuously differentiable vector function q : R → Rd ∈ C1

such that ∀x ∈ R, ∥q(x)∥2 < ∞, ∥q(x)∥0 = d and a continuously differentiable function f : R →
R ∈ C2 and a vector Ki ∈ Rd and satisfies f(ti) = q(ti) ·K⊤

i , there always exist a continuously
differentiable vector function ki : R → Rd, such that the following statements hold:

• ki(ti) = Ki,

• ∀t ∈ R, t ̸= ti,αi(t) :=

∫ t
ti

q(τ)·ki(τ)
⊤dτ

t−ti
= f(t).

Proof. Since t ̸= ti, we have
αi(t) = f(t)

⇐⇒ αi(t)(t− ti) = f(t)(t− ti)

1⃝⇐⇒ dαi(t)(t− ti)

dt
=

df(t)(t− ti)

dt

⇐⇒ q(t) · ki(t)
⊤ =

df
dt

(t− ti) + f(t) ,

(37)

9Consider an open set U on the real line and a function f defined on U with real values. Let k be a non-
negative integer. The function f is said to be of differentiability class Ck if the derivatives f ′, f ′′, . . . , f (k) exist
and are continuous on U .

18

where 1⃝ holds since we can define αi(ti) = f(ti). Besides, since

lim
|ϵ|→0

αi(ti + ϵ) = lim
|ϵ|→0

∫ ti+ϵ

ti
q(τ) · ki(τ)dτ

ϵ
= q(ti) · ki(ti)

⊤ = q(ti) ·K⊤
i , (38)

such a definition does not break the continuity of α.

Since f ∈ C2, therefore we denote g(t) := df
dt (t− ti) + f(t) ∈ C1. Besides,

g(ti) = f(ti) = q(ti) ·K⊤
i = q(ti) · ki(ti)

⊤ (39)

By using Lemma 1 with g corresponding to w, q to u, ki to v and p = ti, we can prove the existence
of ki that satisfies Eq. (37).

Theorem 2 (Universal Attention Approximation Theorem). Given query (Q) and key (K), such
that ∥Qi∥2 < ∞, ∥Qi∥0 = d for i ∈ [1, ..., N]. For any attention matrix with formulation defined
in Appendix B.1, i.e., Attn(Q,K), there always exists a family of continuously differentiable vec-
tor functions k1(·), k2(·), . . . , kN (·), such that the discrete formulation of [α1(·),α2(·), ...,αN (·)]
defined by

Ãttn(Q,K) =

α1(t1) α2(t1) · · · αN (t1)
α1(t2) α2(t2) · · · αN (t2)

...
...

. . .
...

α1(tN) α2(tN) · · · αN (tN)

 , (40)

satisfies that Ãttn(Q,K) = Attn(Q,K), where

αi(t) =

∫ t

ti
q(τ) · ki(τ)

⊤dτ

t− ti
, if t ̸= ti , (41)

and αi(ti) = q(ti) · ki(ti)
⊤, q(t) satisfies q(ti) = Qi.

Proof. First, we show that the diagonal elements in Eq. (40), i.e.,

αi(ti) = q(ti) · ki(ti)
⊤ = Qi ·K⊤

i , (42)

holds for different forms of attention matrix defined in Appendix B.1.

Next, for a given i ∈ [1, N], there exists a continuous cubic spline hi : R → R satisfies hi(tj) =
Attn(Q,K)j,i for ∀j ∈ [1, . . . , N] and hi ∈ C2. By using Lemma 2 with hi corresponding to f ,
there exists a function ki such that αi(t) = hi(t). Therefore, αi(tj) = hi(tj) for j ∈ [1, ..., N], and
we finish the proof.

C Experiment Details

C.1 Modeling Continuous-Time Function

C.1.1 Background: 2D Spiral

A spiral is a curve that starts from a central point and gradually moves away from it while turning
around it. We consider two types of spirals that start from time s and end at time e. The first type of
spiral is defined as

x(t) = (a+ bt) · cos(t) ,
y(t) = (a+ bt) · sin(t) , (43)

while the second type of spiral is defined as

x(t) = (a+ 50b/ (e− t)) · cos(e− t) ,

y(t) = (a+ 50b/ (e− t)) · sin(e− t) ,
(44)

where a and b are parameters of the Archimedean spiral.

19

Table 7: More experimental results on spiral 2d.

α Metric Transformer[51] Neural ODE[9] Latent ODE[9] Latent ODE[43] Neural CDE[42] ContiFormer(w/ RNN Enc) (w/ ODE Enc)

Task = Interpolation (×10−2)

0.02 RMSE (↓) 1.37 ± 0.15 1.90 ± 0.17 2.09 ± 0.22 4.53 ± 1.34 4.80 ± 0.50 0.50 ± 0.06
MAE (↓) 1.42 ± 0.14 1.90 ± 0.17 1.95 ± 0.26 4.25 ± 1.48 5.12 ± 0.47 0.53 ± 0.07

0.2 RMSE (↓) 2.30 ± 0.51 1.88 ± 0.09 3.34 ± 0.10 4.82 ± 1.97 4.60 ± 1.08 0.42 ± 0.04
MAE (↓) 1.75 ± 0.18 1.58 ± 0.12 3.16 ± 0.43 4.73 ± 1.21 4.58 ± 0.93 0.42 ± 0.01

2 RMSE (↓) 3.75 ± 0.50 2.1 ± 0.21 3.04 ± 0.48 4.49 ± 1.26 2.92 ± 0.32 0.45 ± 0.11
MAE (↓) 2.33 ± 0.60 2.49 ± 0.30 2.88 ± 0.54 4.12 ± 1.00 2.96 ± 0.23 0.41 ± 0.07

Task = Extrapolation (×10−2)

0.02 RMSE (↓) 1.37 ± 0.11 2.07 ± 0.02 1.59 ± 0.05 2.69 ± 0.82 2.24 ± 0.03 0.64 ± 0.10
MAE (↓) 1.49 ± 0.12 2.02 ± 0.07 1.52 ± 0.09 2.83 ± 0.88 2.38 ± 0.04 0.65 ± 0.08

0.2 RMSE (↓) 2.96 ± 1.46 4.38 ± 0.35 4.78 ± 0.15 5.03 ± 1.96 3.81 ± 1.02 0.74 ± 0.10
MAE (↓) 2.79 ± 1.11 3.35 ± 0.43 4.02 ± 0.59 4.72 ± 1.96 3.37 ± 0.78 0.69 ± 0.09

2 RMSE (↓) 5.36 ± 0.97 6.02 ± 0.58 5.70 ± 0.57 4.68 ± 1.70 3.44 ± 1.06 0.75 ± 0.07
MAE (↓) 4.48 ± 0.82 4.84 ± 0.43 4.46 ± 0.60 4.29 ± 1.34 3.32 ± 0.85 0.69 ± 0.07

C.1.2 Experiment Setting

We generate 300 spirals and 200/100 spirals are used for training/testing respectively. For each
spiral, it randomly belongs to either a clockwise spiral or a counter-clockwise spiral, we sample
a ∼ N (0, α), b ∼ N (0.3, α) and we set α = 0.02 for Table 2. Also, we add Gaussian noise from
N (0, β) to all training samples and we set β = 0.1. We test different models for interpolation and
extrapolation. Specifically, each spiral is sampled at 150 equally-spaced time points. To generate an
irregular time series, we randomly sample 30 points from the first half of the trajectory. Thus, the
first half of the trajectories are used for the interpolation task while the second half of the trajectories,
which is totally unobserved during both training and testing, are used for the extrapolation task. All
the models are trained for 5000 iterations with a batch size equal to 64.

C.1.3 Baseline Implementation

We compare ContiFormer with Neural ODE-based models and Transformer.

• Neural ODE[9]. This model uses the hidden vectors from the last observation as input, and obtain
both the interpolation and extrapolation result from a single ODE solver. We train the model by
minimizing the mean square loss.

• Latent ODE (w/ RNN Enc)[9]. We run an RNN encoder through the time series and in-
fer the parameters for a posterior over zt0 . Next, we sample zt0 ∼ q (zt0 | {xti , ti}). Fi-
nally, we obtain both the interpolation and extrapolation result from a single ODE solver, i.e.,
ODESolve(zt0 , f, θf , t0, ..., tM), where (t0, t1, ..., tM) is the time of the trajectory. We train the
model by maximizing the evidence lower bound (ELBO).

• Latent ODE (w/ ODE Enc)[43]. We replace the RNN encoder in Latent ODE (w/ RNN Enc) with
the ODE-RNN encoder following [43]. Again, we train the model by maximizing the evidence
lower bound (ELBO).

• Neural CDE[42]. We follow the official implementation to construct the CDE function. For the
interpolation, the hidden vectors are directly obtained from the continuous-time path from Neural
CDE. For the extrapolation, we input the hidden vectors from the last timestamp of the Neural
CDE to a single ODE solver. We train the model by minimizing the mean square loss.

• Transformer[51]. In order to obtain the prediction for both seen and unseen time points, we
use a learnable mask for unseen inputs. Instead of using position embedding, the input is added
with a temporal encoding before forwarding it to the transformer layer. We train the model by
minimizing the mean square loss.

• ContiFormer. We use linear interpolation to deal with unseen observations to avoid the numer-
ical error caused by constructing the continuous-time query. Similar to Transformer, temporal
encoding is adopted and the model is trained by minimizing the mean square loss.

20

C.1.4 Experimental Results with Different α

In this subsection, we test Transformer, Neural ODE and ContiFormer with different α to show the
robustness of these models. As shown in Table 7, our model can achieve the best result on different
parameters.

C.1.5 More Visualization Results

More visual results with α=0.02 can be found in Figure 4.

Figure 4: More visualization results with α = 0.02. Here, Latent ODE refers to Latent ODE w/ RNN
Encoder [9].

C.2 Irregular Time Series Classification

C.2.1 Training Details

For both our model and the baseline models, we adopted a fixed learning rate of 10−2 and a batch
size of 64. To ensure the reliability of our results, all experiments were conducted three times, and
the reported values represent the mean. The training process for all models lasted for 1000 epochs.
However, if the training accuracy failed to show any improvement for 100 consecutive epochs, the
training was stopped to avoid unnecessary computation.

C.2.2 Dataset Information

We select 20 datasets from UEA Time Series Classification Archieve with diverse characteristics
in terms of the number, dimensionality and length of time series samples, as well as the number of
classes. Detailed information is listed in Table 8.

C.2.3 Full Experimental Results

We follow the setting of [30] to randomly drop either 30%, 50% or 70% observations. Experimental
results are shown in Table 9, Table 10 and Table 11. We can find that ContiFormer outperforms
RNN-based methods, ODE-based methods and Transformer-based methods. Also, we observe that
ContiFormer outperforms all the baselines by a large margin when 70% observations are dropped,
which confirms that ContiFormer is more suitable for irregular time series modeling.

21

Table 8: Dataset Information of UEA.

Dataset Ablation # Train # Test Length # Classes # Variates

ArticularyWordRecognition AWR 275 300 144 25 9
BasicMotions BM 40 40 100 4 6

CharacterTrajectories CT 1422 1436 182 20 3
DuckDuckGeese DDG 60 40 270 5 1345

Epilepsy EP 137 138 207 4 3
ERing ER 30 270 65 6 4

FingerMovements FM 316 100 50 2 28
HandMovementDirection HMD 160 74 400 4 10

Handwriting HW 150 850 152 26 3
Heartbeat HB 204 205 405 2 61

JapaneseVowels JV 270 370 29 9 12
Libras LB 180 180 45 15 2
LSST LSST 2459 2466 36 14 6

NATOPS NATOPS 180 180 51 6 24
PEMS-SF PEMS 267 173 144 7 963
PenDigits PD 7494 3498 8 10 2

RacketSports RS 151 152 30 4 6
SelfRegulationSCP1 SR 268 293 896 2 6
SpokenArabicDigits SA 6599 2199 93 10 13

UWaveGestureLibrary UGL 2238 2241 315 8 3

Table 9: Experimental result on UEA when 30% observations are dropped. (ODE. stands for ODE-
RNN, N. CDE stands for Neural CDE, ACC. stands for Accuracy.)

Dataset GRU-D GRU-∆t ODE. CADN N. CDE S5 mTAN TST ContiFormer
AWR 0.8533 0.8956 0.8789 0.8056 0.9089 0.9011 0.8067 0.9722 0.9633
BM 0.9333 0.9417 0.8250 0.9583 0.9917 0.9833 0.9917 0.9667 0.9750
CT 0.9325 0.8558 0.9415 0.9575 0.9276 0.9610 0.9529 0.9742 0.9833

DDG 0.5867 0.5933 0.5067 0.4600 0.3400 0.5667 0.6000 0.6533 0.7267
EP 0.7995 0.8043 0.8454 0.8123 0.7657 0.9074 0.9203 0.9589 0.9324
ER 0.7062 0.7148 0.6296 0.8623 0.7543 0.8346 0.7123 0.9160 0.9210
FM 0.6167 0.6167 0.5667 0.6233 0.5867 0.6033 0.5433 0.6133 0.6000

HMD 0.3559 0.4099 0.5450 0.4505 0.3333 0.6171 0.4414 0.5946 0.4550
HW 0.0722 0.1251 0.0675 0.0925 0.1831 0.1302 0.0937 0.2196 0.2000
HB 0.7577 0.7593 0.7805 0.7431 0.7333 0.7431 0.7789 0.7398 0.7561
JV 0.9703 0.9550 0.9432 0.9703 0.9225 0.9676 0.9595 0.9865 0.9919
LB 0.5037 0.4741 0.5222 0.5938 0.7481 0.9216 0.5426 0.7519 0.8778

LSST 0.5589 0.5615 0.5715 0.5574 0.3940 0.6389 0.5307 0.5520 0.6004
NATOPS 0.9204 0.9315 0.8704 0.8944 0.8148 0.8500 0.9019 0.9352 0.9222

PEMS 0.7938 0.7669 0.8208 0.7958 0.7572 0.9133 0.8189 0.8420 0.8401
PD 0.9309 0.9222 0.9433 0.9402 0.8422 0.8110 0.9029 0.9520 0.9517
RS 0.7434 0.7281 0.7654 0.7325 0.6798 0.7500 0.7325 0.8158 0.8487
SR 0.8942 0.9124 0.9101 0.8259 0.8783 0.8737 0.8646 0.9044 0.9101
SA 0.9663 0.9660 0.9830 0.9809 0.8998 0.9291 0.9321 0.9744 0.9836

UGL 0.6729 0.6625 0.6917 0.7479 0.8219 0.8042 0.7344 0.8552 0.8135

Acc. (↑) 0.7284 0.7298 0.7304 0.7402 0.7142 0.7854 0.7381 0.8089 0.8126
Rank (↓) 6 5.75 5.45 5.4 6.85 4.4 5.7 2.75 2.4

22

Table 10: Experimental result on UEA when 50% observations are dropped. (ODE. stands for
ODE-RNN, N. CDE stands for Neural CDE, ACC. stands for Accuracy.)

Dataset GRU-D GRU-∆t ODE. CADN N. CDE S5 mTAN TST ContiFormer
AWR 0.8811 0.8978 0.8989 0.8067 0.9133 0.9078 0.8067 0.9633 0.9633
BM 0.9417 0.8500 0.7667 0.9417 0.9583 0.9917 0.9583 0.9500 0.9583
CT 0.8872 0.9088 0.9506 0.9798 0.9285 0.9638 0.9431 0.9601 0.9798

DDG 0.5467 0.6000 0.4933 0.5467 0.3467 0.5667 0.6067 0.6533 0.6867
EP 0.7295 0.7899 0.7512 0.6728 0.7101 0.9012 0.9106 0.9589 0.9469
ER 0.7358 0.7432 0.5704 0.8527 0.7691 0.8284 0.6432 0.9012 0.8901
FM 0.5800 0.5967 0.5933 0.5933 0.6000 0.6033 0.5700 0.6067 0.6067

HMD 0.4099 0.4054 0.4685 0.4550 0.3243 0.5811 0.4099 0.5270 0.4595
HW 0.0769 0.0945 0.0588 0.1004 0.1855 0.1357 0.0737 0.1600 0.1757
HB 0.7642 0.7593 0.7707 0.7512 0.7333 0.7463 0.7789 0.7350 0.7610
JV 0.9604 0.9532 0.9126 0.9649 0.9180 0.9631 0.9595 0.9775 0.9856
LB 0.3796 0.4352 0.4537 0.5680 0.7315 0.6352 0.5259 0.6556 0.8537

LSST 0.5203 0.5292 0.5223 0.5222 0.3969 0.7204 0.5126 0.5151 0.5661
NATOPS 0.9185 0.9167 0.8444 0.8741 0.8019 0.8315 0.8778 0.8778 0.9222

PEMS 0.7823 0.7861 0.8170 0.7611 0.7534 0.9114 0.8015 0.7669 0.8401
PD 0.8245 0.7804 0.8563 0.8369 0.6389 0.6544 0.6898 0.8827 0.8799
RS 0.7412 0.7368 0.7127 0.7632 0.5526 0.7193 0.6601 0.7807 0.8355
SR 0.9135 0.9170 0.9044 0.8123 0.8760 0.8885 0.8658 0.8987 0.9067
SA 0.9583 0.9556 0.9759 0.9663 0.8907 0.9218 0.9254 0.9667 0.9767

UGL 0.6833 0.6583 0.6781 0.6531 0.8281 0.8042 0.7167 0.8490 0.8000

ACC. (↑) 0.7117 0.7157 0.7000 0.7211 0.6929 0.7638 0.7118 0.7793 0.7997
Rank (↓) 5.8 5.65 5.75 5.55 6.5 4.25 5.85 3.15 1.9

Table 11: Experimental result on UEA when 70% observations are dropped. (ODE. stands for
ODE-RNN, N. CDE stands for Neural CDE, ACC. stands for Accuracy)

Dataset GRU-D GRU-∆t ODE. CADN N. CDE S5 mTAN TST ContiFormer
AWR 0.8689 0.8822 0.8433 0.7911 0.9178 0.8956 0.7956 0.9089 0.9511
BM 0.7583 0.7917 0.7167 0.9750 0.9000 0.9167 0.9417 0.9167 0.9167
CT 0.8433 0.8496 0.9471 0.9582 0.9241 0.9547 0.9009 0.9313 0.9675

DDG 0.5200 0.6000 0.4800 0.5667 0.3533 0.5667 0.6067 0.5867 0.7267
EP 0.7464 0.7222 0.6643 0.6667 0.6667 0.8802 0.9058 0.9420 0.9275
ER 0.6741 0.6617 0.5383 0.8647 0.7630 0.8025 0.7407 0.8198 0.8580
FM 0.5467 0.5933 0.5733 0.6000 0.5767 0.6133 0.5700 0.5300 0.6233

HMD 0.3829 0.3784 0.4459 0.4324 0.3378 0.5991 0.3694 0.4324 0.4144
HW 0.0784 0.0831 0.0541 0.0957 0.1533 0.1078 0.0604 0.1255 0.1247
HB 0.7610 0.7528 0.7593 0.7610 0.7561 0.7512 0.7691 0.7593 0.7593
JV 0.9514 0.9414 0.9261 0.9685 0.8964 0.9559 0.9613 0.9595 0.9766
LB 0.3648 0.3722 0.3463 0.5412 0.6796 0.6278 0.4926 0.5500 0.7648

LSST 0.4803 0.4895 0.4505 0.5278 0.4093 0.6778 0.4992 0.4874 0.5149
NATOPS 0.8722 0.8981 0.7889 0.9074 0.7944 0.8259 0.8463 0.8315 0.9204

PEMS 0.7418 0.7611 0.7842 0.7726 0.7303 0.8902 0.7861 0.6840 0.8227
PD 0.7451 0.6670 0.7802 0.7596 0.5201 0.5197 0.6063 0.8078 0.8069
RS 0.6711 0.6776 0.6316 0.7018 0.5570 0.6382 0.6228 0.6930 0.7697
SR 0.9090 0.9170 0.9158 0.8515 0.8726 0.8874 0.8635 0.8612 0.8953
SA 0.9304 0.9295 0.9523 0.9513 0.8622 0.9024 0.8925 0.9447 0.9600

UGL 0.6031 0.6219 0.5896 0.6729 0.8344 0.7896 0.6792 0.8219 0.7969

ACC. (↑) 0.6725 0.6795 0.6594 0.7183 0.6753 0.7401 0.6955 0.7297 0.7749
Rank (↓) 6.15 5.7 6.4 3.9 6.3 4.45 5.4 4.2 2.1

C.3 Predicting Irregular-Sampled Sequences

C.3.1 Background: Marked Temporal Point Process (MTPP)

The marked Temporal Point Process (MTPP) has been widely studied in recent years. We define
a sequence of events and types as Γ = [(t1, k1), (t2, k2), . . . , (tN , kN)], where ti is the time point
when the i-th event occurs, with t1 < t2 < . . . < tN , ki ∈ {1, 2, . . . ,K} is the type of the i-th event
and K is the total number of event types. A history event is the event sequence up to but not including

23

time t, denoted by Ht = (tj , kj) : tj < t. The goal of the temporal point process is to model the
conditional intensity function (CIF), denoted by λ∗

k(t), which represents the likelihood of an event
occurring at time t, given the historical events. Models are trained so that the log probability of an
event sequence, i.e.,

log p(Γ) =

N∑
j=1

log λ∗
kj

(tj)−
∫ tN

t1

λ∗(τ)dτ . (45)

C.3.2 Dataset Description

We use one synthetic dataset and five real-world datasets, namely Synthetic, Neonate [50], Traffic [32],
MIMIC [16], BookOrder [16] and StackOverflow [33] to evaluate our model.

Synthetic To evaluate the effectiveness of the proposed method, we create a synthetic dataset.
Specifically, we consider 10 types of event where each type of event contain three properties, i.e.,
(Xi, Vi, Di). Hence, given an event e with type j is represented as e = (e.x, e.v, e.d, e.k), where
e.x ∼ N (Xj , µ1), e.v ∼ N (Vj , µ2), e.d = Dj > 0 and e.k is the type of the event. We set
µ1 = µ2 = 0.01 and X,V,D ∈ R10 is randomly generated and pre-defined.

To model both the correlation between events and the dynamic changes of events within the system.
We first define the dynamic attention (weight) for each event, which is composed of inter-event
dependency modeling and intra-event dynamic modeling. For inter-event dependency, it aims to
calculate time-aware attention (weight) between each pair of events. Specifically, we use the following
equation to define the weight between event e and ê,

ω(e, ê) = (e.t− ê.t) · (e.x ∗ ê.v − ê.x ∗ e.v) . (46)

Next, the define λ∗
k(t) and λ∗(t) in which we assume that only the last event attributes to the decision

of the next event, following Markov decision process (MDP), i.e.

λ∗
k(t) = P (k|ê.k) · Softplus

(∑
e∈Ht

ω(e, ê) · exp
(
−(t− e.t)

e.d

))
,

λ∗(t) = Softplus

(∑
e∈Ht

ω(e, ê) · exp
(
−(t− e.t)

e.d

))
.

(47)

where exp (−(t− e.t)/e.d) is the exponential decay effect for each event, ê is the last event as of
time t. The existence of the exponential decay function ensures that all the events will eventually
disappear in the system as time goes to infinity so as to stabilize the conditional intensify function.
P (k|k̂) is a pre-defined matrix that means the probability of the next event to with type k given that
the type of the previous event is ê.

Next, we predict the occurrence time of the next event with

t̂j+1 =

∫ ∞

tj

t · p (t | Ht) dt ,

where p (t | Ht) = λ∗(t) exp

(
−
∫ t

tj

λ∗(t)dt

)
.

(48)

To predict the type of the next event, we sample the type of the next event from P (·|ê.k), where ê.k
is the type of the previous event.

Finally, we use 500 different random seeds to generate a total of 500 event sequences. Also, we use
4-fold cross-validation for evaluation. The generation process is shown in Algorithm 1.

Neonate. Neonate dataset is a clinical dataset from 79 patients, among which 48 patients have
incurred at least two seizures during the observation. The dataset contains only one type of event,
i.e., the start point of a seizure (in minutes). The task is to predict when the next seizure will happen.
Note that we only clear the start point of the seizure. Thus, we only have one type of event.

24

Algorithm 1 Generate Synthetic Dataset with Time-Aware Dynamic Kernel

Input seed ∈ [0, 500), tmax = 20, X = [0.78, 0.11,−1.0,−0.56,−0.78, 1.0, 0.56,−0.33, 0.3,
−0.11], V = [−0.17, 0.5,−0.28, 0.28, 0.17, 0.39,−0.05, 0.05,−0.39,−0.5], D = [0.5, 0., 0.28,
0.17, 0.22, 0.44, 0.33, 0.11, 0.05, 0.39]
Output A generated event sequence E.
Initialize the random state of Numpy using seed and defined the probabilistic matrix P .
Initialize the event sequence E to be an empty array, and set current time T = 0.
Random generate the type of the first event e.k and sample e.x, e.v and e.d.
Add the event to the event sequence.
while t ≤ tmax do

Calculate the conditional intensity function using Eq. (47).
Predict the time of the next event e.t using Eq. (48).
Assume the type of previous event is k̂, sample the type of the next event e.k from P (·|k̂).
Sample sample e.x, e.v and e.d given e.k.
Add the generated event to the event sequence E.
Update T = e.t.

end while
return E

Traffic. Traffic dataset is a benchmark dataset for time-series forecasting collected by the Caltrans
Performance Measurement System (PeMS). This dataset contains the traffic state monitoring of
861 sensors in a two-year period. The data is collected every 1 hour. We extract time points with
fluctuations higher than 50% as events, whose types are up and down according to the direction. We
consider two events that are within 6 hours as duplicated events and remove the latter one from the
dataset. Besides, for each sensor, it contains a long sequence, we partition these event sequences by
month, i.e., for each event sequence, it contains the event of a sensor in one month.

MIMIC. MIMIC dataset is a clinical dataset that collects patients’ visits to a hospital’s ICU in a
seven-year period. We treat the visits of each patient as a separate sequence.

BookOrder. BookOrder dataset is a financial dataset that contains transaction records of stock in
one day. We record the time (in milliseconds) and the action that was taken in each transaction. The
dataset is a single long sequence with only two types of events: “buy” and “sell”. We clip the event
sequences so that the maximum length is 500 in both the train and test sets. Furthermore, the mean µ
and standard derivative σ of the time difference between two events in the dataset is 1.32 and 20.24
respectively. Therefore, we clip the maximum time difference to 70.

StackOverflow. StackOverflow dataset is a question-answering website. The website rewards users
with badges to promote engagement in the community, and the same badge can be rewarded multiple
times to the same user. We collect data in a two-year period, and we treat each user’s reward history
as a sequence.

For MIMIC, Bookorder, and StackOverflow datasets, we use the dataset from the Google Drive10.
Statistic information can be found in Table 12. We use the 4-fold cross-validation scheme for
Synthetic, Neonate, and Traffic datasets following [17], and the 5-fold cross-validation scheme for
the other three datasets following [39, 64].

C.3.3 Implementation Details

Input Embedding Given the history event Ht = {(tj , kj) : tj < t} with a total of K events, the
input of Transformer-based model and RNN-based model is obtained through event embedding and
temporal encoding, i.e., for the i-th event xi = emb(k) + enc(t), where emb(k) is the k-th column
of the embedding table E ∈ RK×d and temporal encoding is defined by a combination of sine and
cosine function [64].

10https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U?resourcekey=
0-OrlU87jyc1m-dVMmY5aC4w

25

https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U?resourcekey=0-OrlU87jyc1m-dVMmY5aC4w
https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U?resourcekey=0-OrlU87jyc1m-dVMmY5aC4w

Table 12: Dataset statistics: name of the dataset, number of event types, number of events in the
dataset, average length per sequence, and number of sequences in training/test sets.

Dataset K # Events Avg. Length # Train Seqs # Test Seqs

Synthetic 10 8, 618 17 375 125
Neonate 1 534 11 38 10
Traffic 2 154, 747 60 1, 938 647
MIMIC 75 2, 419 4 527 65

BookOrder 2 414, 800 2, 074 90 100
StackOverflow 22 480, 413 72 4, 777 1, 326

Conditional Intensity Function Given the output from the model, i.e. h (t1) ,h (t2) , ..,h (tN).
The dynamics of the temporal point process are described by a continuous conditional intensity
function. To reduce the memory cost and accelerate the training process. Instead of using the
continuous-time output from ContiFormer, we only use ContiFormer to generate a hidden repre-
sentation for discrete time points, i.e., t1, t2, ..., tj , ..., tN . Following [64], the conditional intensity
function is defined by

λ (t | Ht) =

K∑
k=1

λk (t | Ht) , (49)

where each of the type-specific conditional intensity function is defined by

λk (t | Ht) = fk

(
αk

t− tj
tj

+w⊤
k h (tj) + bk

)
, (50)

where on interval t ∈ [tj , tj+1) and fk(x) = βk log (1 + exp (x/βk)) is the softplus function with
parameter βk. The use of such a closed-form intensity function allows for O(1) interpolation.

Training Loss We train our model and all the baseline models by jointing maximizing the log-
likelihood of the sequence and minimizing the prediction losses.

Specifically, for a sequence S over an interval [ti, tN], given the conditional intensity function
λ (t | Ht), the log-likelihood is given by

ℓLL(S) =
N∑
j=1

log λ (tj | Hj)︸ ︷︷ ︸
event log-likelihood

−
∫ tN

t1

λ (t | Ht) dt︸ ︷︷ ︸
non-event log-likelihood

. (51)

One challenge to compute the log-likelihood is to solve the integral, i.e., Λ =
∫ tN
t1

λ (t | Ht) dt. Since
softplus function has no closed-form computation, we apply the Monte Carlo integration method, i.e.,

Λ̂MC =

P∑
j=2

(tj − tj−1)

(
1

P

P∑
i=1

λ (ui)

)
, (52)

where ui ∼ Unif(tj−1, tj) for i ∈ [1, ..., P] is sampled from a uniform distribution over an interval
[tj−1, tj].

Besides the log-likelihood loss, we also use the cross-entropy loss and regression loss for predicting
the type and time of the next events.

Specifically, given the conditional intensity function, the next time stamp prediction is given by

p (t | Ht) = λ (t | Ht) exp

(
−
∫ t

tj

λ (τ | Hτ) dτ

)
,

t̂j+1 =

∫ ∞

tj

t · p (t | Ht) dt .

(53)

26

Thus, the regression loss and the cross-entropy loss are given by

ℓreg(S) =
N∑
i=2

(t̂i − ti)
2 , ℓpred(S) =

N∑
i=2

− log

(
λki

(
t̂i
)

λ
(
t̂i
)) . (54)

Overall, the modeling is trained in a multi-task manner, i.e.,

ℓ(S) = ℓLL + α1ℓreg(S) + α2ℓpred(S) , (55)

where α1 and α2 are the pre-defined weight. By default, we set α1 = 0.01 and α2 = 1.

C.3.4 Significance test on Synthetic and BookOrder datasets

To demonstrate the statistical superiority of ContiFormer, we conducted a t-test on Synthetic and
BookOrder datasets using 10 random seeds. The t-test results are listed in Table 13.

Table 13: Significance test on Synthetic and BookOrder dataset with 10 repeats. The P-value
represents the significant value between the ContiFormer and the baseline model. Bolder values
represent P-value < 10−6 in significance test.

Dataset Synthetic BookOrder

Metric LL (↑) Accuracy (↑) RMSE (↓) LL (↑) Accuracy (↑) RMSE (↓)

Statistic Mean P-value Mean P-value Mean P-value Mean P-value Mean P-value Mean P-value

GRU-dt -0.8611 5.38E-08 0.8420 0.003 0.2556 3.49E-09 -1.0137 1.07E-31 0.6274 3.11E-08 3.6680 1.32E-05
NSTKA -1.0088 1.27E-21 0.8419 0.0003 0.3863 1.74E-12 -1.0916 2.95E-27 0.6223 5.48E-15 3.7175 1.88E-08

ODE-RNN -0.8432 2.39E-11 0.8420 0.098 0.2401 3.77E-08 -0.9458 1.44E-26 0.6278 1.17E-07 3.5898 1.94E-03
RMTPP -1.0132 3.57E-19 0.8420 0.0143 0.3711 6.70E-18 -0.9551 9.70E-26 0.6245 1.45E-13 3.6475 9.76E-04
SAHP -0.6247 2.21E-05 0.8420 0.1778 0.5218 2.37E-10 -0.3053 1.83E-07 0.6227 1.45E-13 3.6810 9.55E-07
THP -0.6035 6.28E-06 0.8420 0.1354 0.2100 4.85E-06 -1.0788 1.55E-17 0.6251 1.96E-06 3.6907 8.02E-07

ContiFormer -0.5445 N/A 0.8421 N/A 0.1943 N/A -0.2745 N/A 0.6295 N/A 3.6171 N/A

C.4 Regular Time Series Forecasting

Time series forecasting has garnered considerable attention in recent years, as evidenced by various
studies [35, 53, 61]. In this study, we assess ContiFormer against several models tailored for regular
time series forecasting.

Datasets We evaluate ContiFormer on five experimental datasets. i) ETT dataset [61] contains the
data collected from electricity transformers, including load and oil temperature that are recorded
every 15 minutes between July 2016 and July 2018. Here, we use ETTm2 and ETTh2 datasets. ii)
Exchange dataset [53] records the daily exchange rates of eight different countries ranging from 1990
to 2016. iii) Weather dataset is recorded every 10 minutes for 2020 whole year, which contains 21
meteorological indicators, such as air temperature, humidity, etc. v) ILI dataset includes the weekly
recorded influenza-like illness (ILI) patients data from Centers for Disease Control and Prevention of
the United States between 2002 and 2021.

Baselines We compare ContiFormer with several transformer-based models for regular time series
forecasting under the multivariate setting. These transformer-based models includes: FEDformer[62],
Autoformer[53], Informer[61] and Reformer[31]. Also, we chose one recent state-of-the-art model.
i.e. TimesNet[52] for comparison.

Results of Time Series Forecasting The experimental results are depicted in Table 14. ContiFormer
achieves the best performance on ILI dataset. Specifically, it gives 10% MSE reduction (2.874 →
2.632). Also, ContiFormer outperforms Autoformer and FEDformer on Exchange, ETTm2, and
Weather datasets. Therefore, it demonstrates that ContiFormer performs competitively with the
state-of-the-art model.

C.5 Pendulum Regression Task

The objective of pendulum regression is to assess the models’ capability in accommodating ob-
servations obtained at irregular intervals [45, 49]. The input sequence comprises 50 images, each

27

Table 14: Results of regular time series forecasting. We set the input length as 36 for ILI and 96 for
the others. Avg. stands for Average. Bold values indicate the best performance and underlined values
indicate the second-best performance (lower the better).

Models ContiFormer TimesNet[52] DLinear[56] FEDformer[62] Autoformer[53] Transformer[51] Informer[61] Reformer[31]

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
xc

ha
ng

e 96 0.105 0.232 0.107 0.238 0.088 0.217 0.153 0.284 0.153 0.283 0.891 0.743 1.348 0.966 1.208 0.961
192 0.215 0.339 0.201 0.327 0.175 0.313 0.264 0.375 0.327 0.413 1.338 0.955 1.296 0.941 1.329 1.001
336 0.336 0.427 0.354 0.435 0.310 0.421 0.437 0.485 0.555 0.560 1.553 1.056 1.641 1.072 3.023 1.427
540 0.698 0.598 0.614 0.582 0.534 0.555 0.710 0.639 0.724 0.648 1.515 1.042 2.430 1.284 1.801 1.159
Avg. 0.339 0.399 0.320 0.396 0.277 0.377 0.392 0.446 0.440 0.477 1.325 0.949 1.679 1.066 1.841 1.137

E
T

T
m

2

24 0.126 0.226 0.104 0.200 0.109 0.213 0.149 0.253 0.157 0.262 0.282 0.397 0.391 0.475 0.405 0.499
48 0.175 0.276 0.143 0.238 0.145 0.249 0.172 0.268 0.177 0.276 0.501 0.535 0.420 0.484 0.541 0.569

168 0.272 0.336 0.255 0.308 0.262 0.345 0.255 0.318 0.262 0.324 0.824 0.730 1.068 0.869 1.149 0.846
336 0.331 0.361 0.352 0.359 0.366 0.414 0.326 0.361 0.328 0.365 1.149 0.871 1.379 0.983 2.258 1.153
Avg. 0.226 0.300 0.214 0.276 0.220 0.305 0.226 0.300 0.231 0.307 0.689 0.633 0.815 0.703 1.088 0.767

E
T

T
h2

24 0.237 0.327 0.196 0.281 0.179 0.277 0.262 0.340 0.266 0.343 0.946 0.800 1.408 1.028 0.762 0.703
48 0.287 0.355 0.244 0.317 0.247 0.329 0.291 0.354 0.294 0.358 1.009 0.826 1.642 1.100 1.101 0.856

168 0.417 0.426 0.397 0.409 0.430 0.448 0.403 0.420 0.403 0.419 3.014 1.483 3.261 1.511 2.076 1.144
336 0.484 0.471 0.446 0.449 0.577 0.532 0.448 0.458 0.445 0.456 3.357 1.606 3.155 1.481 2.633 1.297
Avg. 0.356 0.395 0.321 0.364 0.358 0.396 0.351 0.393 0.352 0.394 2.081 1.179 2.366 1.280 1.643 1.000

IL
I

24 2.391 1.004 2.925 1.061 4.412 1.576 4.979 1.668 4.334 1.527 4.789 1.431 5.718 1.623 4.678 1.455
36 2.673 1.006 3.145 1.127 4.314 1.529 4.812 1.628 4.084 1.438 4.995 1.474 5.353 1.564 4.801 1.490
48 2.536 1.039 2.716 1.027 3.910 1.424 4.112 1.465 3.870 1.408 5.283 1.545 5.120 1.537 4.946 1.510
60 2.930 1.117 2.711 1.049 4.114 1.446 3.965 1.428 3.895 1.411 5.454 1.578 5.556 1.613 5.134 1.545

Avg. 2.632 1.042 2.874 1.066 4.188 1.493 4.467 1.547 4.046 1.446 5.130 1.507 5.437 1.584 4.890 1.500

W
ea

th
er

96 0.170 0.218 0.171 0.221 0.194 0.250 0.254 0.323 0.253 0.317 0.579 0.539 0.599 0.541 0.940 0.675
192 0.229 0.271 0.230 0.269 0.237 0.297 0.287 0.344 0.293 0.347 0.738 0.613 0.459 0.453 1.061 0.735
336 0.288 0.317 0.289 0.302 0.282 0.334 0.336 0.374 0.346 0.380 0.464 0.466 0.575 0.495 1.201 0.802
540 0.341 0.355 0.345 0.348 0.325 0.365 0.384 0.400 0.379 0.394 0.909 0.700 0.862 0.625 0.958 0.702
Avg. 0.257 0.290 0.259 0.285 0.260 0.311 0.315 0.360 0.318 0.359 0.672 0.579 0.624 0.529 1.040 0.729

measuring 24 by 24 pixels, and is afflicted by correlated noise. These images are sampled at irregular
intervals from a continuous trajectory spanning a duration of 100 units, while the targets correspond
to the sine and cosine values of the pendulum’s angle. It’s important to note that the pendulum follows
a nonlinear dynamical system, with the velocity remaining unobserved. Table 15 summarizes the
results of this experiment. ContiFormer outperforms CRU and ODE-RNN.

Table 15: Regression MSE ×10−3 (mean ± std) on pendulum regression task.

Model Regression MSE (×10−3)

mTAN [48] 65.64 (4.05)
ODE-RNN [43] 7.26 (0.41)

CRU [45] 4.63 (1.07)
S5 [49] 3.41 (0.27)

ContiFormer 4.21 (0.24)

D Ablation Study and Parameter Study

D.1 Effects of Different Attention Mechanism

We study the impact of different attention mechanisms to show the significance of both continuous-
evolving attention scores and continuous value functions. We claim that both of these two continuous
designs attribute to the modeling of complex dynamic systems. We conduct the experiment on 6
datasets for event prediction task. As shown in Table. 16, ContiFormer outperforms both of the two
variants, which shows that jointly modeling the dynamic relationship between input observations and
meanwhile capturing the dynamic change of the observations is critical for modeling complex event
sequences in reality.

D.2 Effects of Different Numeric Approximation Methods

As discussed in Appendix A.2, linear interpolation and Gauss-Legendre Quadrature are two methods
for approximating an integral in a close interval [−1, 1]. We study the impact of these two methods
and set P , i.e., the number of intermediate steps for integral approximation, in the Gauss-Legendre
quadrature from {2, 3, 4, 5}. We conducted the experiment on 6 datasets for event prediction task.

28

Table 16: Effects of different attention mechanism design on event prediction task. Attn. stands for
Attention. " refers to a continuous version of attention/value, while % refers to a static version. It is
important to note that when both attention and value are static, the model is equivalent to Transformer.
Conversely, when both are continuous, the model is referred to as ContiFormer.

Dataset Synthetic Neonate Traffic

Attn. Value LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% % -0.589 0.841 0.205 -2.702 9.471 0.569 0.818 0.332
% " -0.576 0.842 0.202 -2.634 9.249 0.598 0.819 0.327
" % -0.563 0.842 0.200 -2.590 9.267 0.544 0.814 0.329

" " -0.535 0.842 0.192 -2.550 9.233 0.635 0.822 0.328

Dataset MIMIC BookOrder StackOverflow

Attn. Value LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% % -1.137 0.834 0.843 -0.302 0.622 3.688 -2.354 0.468 0.951
% " -1.147 0.832 0.837 -0.312 0.627 3.690 -2.354 0.468 0.950
" % -1.137 0.837 0.838 -0.272 0.629 3.632 -2.337 0.472 0.948
" " -1.135 0.836 0.837 -0.270 0.628 3.614 -2.334 0.472 0.948

Table 17: Effects of difference numerical approximation methods on event prediction task. (default
to linear approximation instead of the Gauss-Legendre quadrature method).

P
Dataset Synthetic Neonate Traffic

LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

Approxiamation Method = Linear

– -0.535 0.842 0.192 -2.550 9.233 0.635 0.822 0.328

Approxiamation Method = Gauss-Legendre Quadrature

2 -0.545 0.842 0.198 -2.571 9.235 0.599 0.817 0.330
3 -0.531 0.842 0.194 -2.594 9.236 0.610 0.820 0.328
4 -0.556 0.842 0.199 -2.590 9.253 0.589 0.819 0.328
5 -0.550 0.842 0.193 -2.602 9.258 0.601 0.820 0.328

P
Dataset MIMIC BookOrder StackOverflow

LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

Approxiamation Method = Linear

– -1.135 0.836 0.837 -0.270 0.628 3.614 -2.332 0.473 0.948

Approxiamation Method = Gauss-Legendre Quadrature

2 -1.144 0.834 0.840 -0.291 0.627 3.653 -2.337 0.472 0.948
3 -1.142 0.837 0.839 -0.294 0.627 3.667 -2.337 0.471 0.948
4 -1.143 0.837 0.839 -0.287 0.627 3.647 -2.340 0.471 0.948
5 -1.132 0.834 0.838 -0.290 0.628 3.563 -2.338 0.471 0.948

The experimental results can be found in Table 17. As shown in the table, our model exhibits low
sensitivity to the choice of approximation methods.

D.3 Effects of Tolerance Errors in ODESolver

ODE solvers play a crucial role in ensuring that the model’s output remains within a specified
tolerance of the true solution [9]. By adjusting this tolerance, we can observe changes in the behavior
of the neural network. Given our use of a fixed-step ODE solver, we sought to investigate the impact
of the step size on prediction performance throughout the experiment. Specifically, we explored
different step sizes from the set {0.5, 0.1, 0.05, 0.01, 0.005}. A smaller step size corresponds to a
greater number of forward passes required to solve the ordinary differential equations, resulting in
more accurate solutions at the expense of increased computational time. We conducted extensive
experiments on 6 datasets for the event prediction task. The experimental results are presented in Table
18. The table reveals that our model demonstrates low sensitivity to the tolerance error. Therefore,
we set the tolerance error to 0.1 in order to make a desirable balance between computational time and
prediction accuracy. We explain the phenomena in two aspects. First, our framework, similar to the

29

Table 18: Effects of tolerance errors in ODESolver on event prediction task (default to 0.5 for Neonate
dataset and 0.1 for other datasets). (The use of a double dash (–) indicates that the experiment requires
an excessively long duration of time.)

P
Dataset Synthetic Neonate Traffic

LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

5e-1 -0.559 0.841 0.196 -2.550 9.233 0.614 0.820 0.328
1e-1 -0.535 0.842 0.192 -2.561 9.229 0.635 0.822 0.328
5e-2 -0.549 0.842 0.195 -2.568 9.236 0.620 0.819 0.329
1e-2 -0.539 0.842 0.195 -2.573 9.233 0.619 0.820 0.329
5e-3 -0.549 0.842 0.199 -2.559 9.238 0.613 0.819 0.329

Stepsize
Dataset MIMIC BookOrder StackOverflow

LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

5e-1 -1.138 0.837 0.837 -0.268 0.629 3.619 -2.333 0.473 0.948
1e-1 -1.135 0.836 0.837 -0.270 0.628 3.614 -2.332 0.473 0.948
5e-2 -1.137 0.835 0.837 -0.263 0.629 3.609 -2.332 0.473 0.948
1e-2 -1.143 0.836 0.838 -0.263 0.629 3.612 – – –
5e-3 -1.147 0.837 0.838 – – – – – –

Transformer architecture, circumvents cumulative errors by eliminating the necessity of sequentially
passing neural networks in a regressive manner. Second, since the output from the attention module
is actually a weighted sum of the tokens, the total variance is lowered. For instance, assume that
X1, X2, ..., XN ∼ N (µ, σ2) , then the total variance of the mean value x̄ = 1

N (X1+X2+ ...+XN)

is σ2

N , and the variance is significantly lowered given the large . Overall, our model is not sensitive to
tolerance error, which makes our model robust to different scenarios.

D.4 Effects of Vector Fields in ODE

Neural ODEs are controlled by a vector field that defines the change of x over time, i.e.,

dx
dt

= f(x, t) . (56)

where f : Rd+1 → Rd. We investigate two types of f to implement Eq. (1).

Specifically, we denote Concat as

f(x, t) = Actfn(Lineard,d(Lineard,d(x) + Linear1,d(t))) , (57)

and ConcatNorm as

f(x, t) = Actfn(LN(Lineard,d(Lineard,d(x) + Linear1,d(t)))) , (58)

where Actfn(·) is either tanh or sigmoid activation function, Lineara,b(·) : Ra → Rb: is a linear
transformer from dimension a to dimension b, LN denotes the layer normalization. We conduct the
experiment on 6 datasets for event prediction task. The experimental results are shown in Table 19.
As shown in the table, incorporating normalization before the activation function leads to improved
predictive performance.

D.5 Effects of Dropout Rate

Dropout in the Transformer can prevent overfitting and boost performance. However, with the
increment of the dropout rate, we output of ContiFormer tends to be less continuous, leading to
a sub-optimal solution for tasks that prefer a continuous-time output. To this end, we conduct
experiments on both modeling continuous-time function and event prediction tasks. As for the task
of modeling continuous-time function, it is desirable to have a dynamic system where outputs are
“almost” continuous and smooth. As shown in Figure 5, the performance of both Transformer and
ContiFormer drops significantly as the dropout rate increases. For prediction tasks, the dynamic
system can be shaky, which reflects noise or other uncontrolled influences on the system. The
experimental results on event prediction can be found in Table 20. As shown in the table, the dropout
rate has low sensitivity to the prediction results.

30

Table 19: Effects of different vector field designs on event prediction task. Attn. stands for Attention.
" refers to ConcatNorm, while % refers to Concat.

Dataset Synthetic Neonate Traffic

Norm Actfn LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% tanh -0.552 0.842 0.198 -2.550 9.233 0.639 0.820 0.329
% sigmoid -0.561 0.842 0.201 -2.602 9.263 0.635 0.822 0.328
" tanh -0.556 0.842 0.199 -2.584 9.242 0.628 0.820 0.328
" sigmoid -0.535 0.842 0.192 -2.601 9.232 0.616 0.819 0.329

Dataset MIMIC BookOrder StackOverflow

Norm Actfn LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% tanh -1.162 0.831 0.837 -0.274 0.627 3.615 -2.337 0.472 0.948
% sigmoid -1.144 0.836 0.838 -0.270 0.628 3.614 -2.334 0.472 0.948
" tanh -1.157 0.833 0.840 -0.307 0.622 3.681 -2.335 0.473 0.947
" sigmoid -1.135 0.836 0.837 -0.302 0.625 3.689 -2.332 0.473 0.948

Figure 5: Interpolation results on 2D spiral under different dropout rates.

D.6 Effects of Time Normalization

As shown in Eq. (3) and Eq. (5), due to the nature of sequence data, it is common to encounter
abnormal points, such as events with significantly large time differences. To avoid numeric instability
during training, we divide the integrated solution by the time difference. To examine the effect of
normalization, we conduct experiments on 6 datasets for event prediction task. The experimental
results can be found in Table 21, which shows that the normalization is significant on most datasets,
including Synthetic, Neonate, MIMIC and StackOverflow datasets.

E Time Cost v.s. Memory Cost v.s. Accuracy

Figure 6: Time Cost v.s. Memory Cost v.s. Accuracy.

Utilizing continuous-time modeling in ContiFormer often results in substantial time and GPU
memory overhead. We have conducted a comparative analysis of ContiFormer’s actual time costs in
comparison to Transformer-based models (TST), ODE-based models (ODE-RNN, Neural CDE), and
SSM-based models (S5). Throughout our analysis, we employ an RK4 solver for ODE-based models
and our model, setting the step size to 0.1 and 0.01. It’s worth noting that, for ODE-RNN and other

31

Table 20: Effects of dropout rate in ContiFormer on event prediction task (default to 0.1).

Dropout
Dataset Synthetic Neonate Traffic

LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

0 -0.557 0.842 0.191 -2.588 9.215 0.633 0.824 0.328
0.1 -0.535 0.842 0.192 -2.550 9.233 0.635 0.822 0.328
0.3 -0.644 0.842 0.223 -2.583 9.242 0.577 0.814 0.332
0.5 -0.696 0.841 0.230 -2.579 9.280 0.525 0.813 0.331

Dropout
Dataset MIMIC BookOrder StackOverflow

LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

0 -1.193 0.825 0.839 -0.268 0.629 3.616 -2.338 0.472 0.949
0.1 -1.135 0.836 0.837 -0.270 0.628 3.614 -2.332 0.473 0.948
0.3 -1.142 0.833 0.836 -0.266 0.630 3.608 -2.336 0.472 0.948
0.5 -1.149 0.834 0.844 -0.270 0.629 3.624 -2.342 0.471 0.948

Table 21: Effects of normalization on event prediction task. Attn. stands for Attention. " refers
to normalizing the attention/value as shown in Eq. (3)/Eq. (5), while % refers to removing the
normalization, i.e. t− ti. Note that ContiFormer use both normalization for attention and values.

Dataset Synthetic Neonate Traffic

Attn. Value LL (↑) ACC (↑) RMSE (↓) LL (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% % -0.618 0.842 0.215 -2.612 9.277 0.721 0.822 0.329
% " -0.601 0.841 0.206 -2.576 9.240 0.536 0.814 0.336
" % -0.584 0.842 0.205 -2.601 9.272 0.576 0.818 0.327
" " -0.535 0.842 0.192 -2.550 9.233 0.635 0.822 0.328

Dataset MIMIC BookOrder StackOverflow

Attn. Value LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓) LL (↑) ACC (↑) RMSE (↓)

% % -1.167 0.826 0.848 -0.311 0.627 3.710 -2.346 0.470 0.948
% " -1.149 0.833 0.840 -0.269 0.630 3.634 -2.341 0.471 0.948
" % -1.172 0.826 0.844 -0.277 0.629 3.654 -2.336 0.472 0.948
" " -1.135 0.836 0.837 -0.270 0.628 3.614 -2.334 0.472 0.948

ODE-based models, the input times have an impact on the number of forward passes when using a
fixed-step ODE solver, thus, affecting the time costs.

The left figure in Figure 6 illustrates the influence of input times concerning input length. For the
model with normalization (a.k.a., w/ norm), the input times consistently range from [0, 1], regardless
of the input length. Conversely, for the model without normalization (a.k.a., w/o norm), the input
times span from [0, L], where L represents the input length.

As depicted in the middle figure in Figure 6, our model performs comparably to ODE-RNN (w/ norm)
when the input length is up to 100, but becomes approximately four times slower as the input length
extends to 1000. The right figure in Figure 6 displays GPU memory usage, revealing a significantly
higher memory cost associated with our model.

Table 22 provides a more comprehensive overview of different models on UEA datasets. It is evident
that our model strikes a better balance between accuracy and time cost. Specifically, our model
achieves the best performance on 3 out of 6 selected datasets while incurring only twice the time cost
compared to S5.

32

Table 22: Time Cost v.s. Accuracy for different models on UEA classification datasets (0% dropped).
For all ODE-based models and our model, we adopt the RK4 solver and step size refers to the amount
of time increment for the RK4 solver. ↑ (↓) indicates the higher (lower) the better. Note that since
the results are aggregated over 3 random seeds, achieving the same results doesn’t indicate the same
outcome for each random seed.

Dataset BasicMotions JapaneseVowels Libras
Model Step Size Time Cost (↓) Accuracy (↑) Time Cost (↓) Accuracy (↑) Time Cost (↓) Accuracy (↑)

TST - 0.56× 0.975 0.10× 0.986 0.36× 0.843
S5 - 1× 0.958 1× 0.926 1× 0.655

ODE-RNN (w/o norm) 0.1 3.06× 0.917 0.79× 0.952 2.67× 0.602
0.01 18.94× 0.925 5.26× 0.955 16.29× 0.611

ODE-RNN (w/ norm) 0.1 1.46× 1.000 0.32× 0.980 1.24× 0.637
0.01 1.59× 1.000 0.47× 0.980 1.59× 0.619

Neural CDE 0.1 4.47× 0.958 1.16× 0.932 3.87× 0.763
0.01 34.26× 0.958 9.57× 0.942 28.48× 0.744

ContiFormer 0.1 2.89× 0.975 0.49× 0.990 2.26× 0.870
0.01 13.75× 0.975 1.87× 0.991 8.74× 0.870

Dataset NATOPS PEMS-SF RacketSports
Model Step Size Time Cost (↓) Accuracy (↑) Time Cost (↓) Accuracy (↑) Time Cost (↓) Accuracy (↑)

TST - 0.32× 0.963 0.15× 0.890 0.14× 0.826
S5 - 1× 0.839 1× 0.896 1× 0.772

ODE-RNN (w/o norm) 0.1 2.67× 0.909 4× 0.778 2.47× 0.827
0.01 16.52× 0.907 28.45× 0.761 14.65× 0.796

ODE-RNN (w/ norm) 0.1 1.28× 0.898 1.47× 0.775 1.15× 0.785
0.01 1.45× 0.898 1.44× 0.775 1.57× 0.787

Neural CDE 0.1 3.83× 0.789 6.04× 0.763 3.48× 0.743
0.01 29.24× 0.787 50.36× 0.763 25.04× 0.748

ContiFormer 0.1 2.32× 0.935 5.45× 0.823 1.87× 0.836
0.01 9.76× 0.935 37.08× 0.823 5.88× 0.836

F Broader Impact

The proposed model, ContiFormer, presents several potential impacts within the field of machine
learning and irregular time series analysis. These include:

• Enhanced Modeling Capability: ContiFormer extends the Transformer architecture to effectively
capture complex continuous-time dynamic systems. By leveraging continuous-time modeling
techniques, the model demonstrates improved performance in handling irregular time series data,
offering a more flexible and powerful modeling ability.

• Practical Applications: Our proposed method achieves state-of-the-art performance in a variety of
tasks and real-life datasets, which makes it more promising to tackle real-world applications. The
ability to model continuous-time dynamics offers valuable insights into time-evolving systems,
facilitating improved decision-making and predictive capabilities in diverse domains.

33

	Introduction
	Related Work
	Method
	Continuous-Time Attention Mechanism
	Continuous-Time Transformer
	Complexity Analysis
	Representation Power of ContiFormer

	Experiments
	Modeling Continuous-Time Function
	Irregularly-Sampled Time Series Classification
	Predicting Irregular Event Sequences
	Regular Time Series Forecasting

	Efficiency Analysis
	Conclusion
	Acknowledgement
	Implement Details and Complexity Analysis
	Background: Time Variable ODE
	Background: Approximating Definite Integral of a Function
	Putting it all together

	Representation Power of ContiFormer
	Transformer Variants
	Proof of Extension and Universal Approximation

	Experiment Details
	Modeling Continuous-Time Function
	Background: 2D Spiral
	Experiment Setting
	Baseline Implementation
	Experimental Results with Different
	More Visualization Results

	Irregular Time Series Classification
	Training Details
	Dataset Information
	Full Experimental Results

	Predicting Irregular-Sampled Sequences
	Background: Marked Temporal Point Process (MTPP)
	Dataset Description
	Implementation Details
	Significance test on Synthetic and BookOrder datasets

	Regular Time Series Forecasting
	Pendulum Regression Task

	Ablation Study and Parameter Study
	Effects of Different Attention Mechanism
	Effects of Different Numeric Approximation Methods
	Effects of Tolerance Errors in ODESolver
	Effects of Vector Fields in ODE
	Effects of Dropout Rate
	Effects of Time Normalization

	Time Cost v.s. Memory Cost v.s. Accuracy
	Broader Impact

