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Abstract

Recently, multivariate time series (MTS) forecasting techniques have seen rapid
development and widespread applications across various fields. Transformer-based
and GNN-based methods have shown promising potential due to their strong ability
to model interaction of time and variables. However, by conducting a compre-
hensive analysis of the real-world data, we observe that the temporal fluctuations
and heterogeneity between variables are not well handled by existing methods.
To address the above issues, we propose CrossGNN, a linear complexity GNN
model to refine the cross-scale and cross-variable interaction for MTS. To deal
with the unexpected noise in time dimension, an adaptive multi-scale identifier
(AMSI) is leveraged to construct multi-scale time series with reduced noise. A
Cross-Scale GNN is proposed to extract the scales with clearer trend and weaker
noise. Cross-Variable GNN is proposed to utilize the homogeneity and heterogene-
ity between different variables. By simultaneously focusing on edges with higher
saliency scores and constraining those edges with lower scores, the time and space
complexity (i.e., O(L)) of CrossGNN can be linear with the input sequence length
L. Extensive experimental results on 8 real-world MTS datasets demonstrate the
effectiveness of CrossGNN compared with state-of-the-art methods. The code is
available at https://github.com/hqh0728/CrossGNN.

1 Introduction

Time series forecasting has been widely used in many fields (i.e., climate [1], traffic [31], energy [3],
finance [13], etc) [8, 29, 20, 10]. Multivariate time series (MTS) consists of time series with multiple
variables and MTS forecasting aims at predicting future values based on historical time series. Deep
learning models [26, 24, 17, 4, 21] have demonstrated superior performance in MTS forecasting.
In particular, Transformer-based models [34, 27, 35] have achieved great power in MTS, benefiting
from its attention mechanism which can model the long-term interaction between different time
points of sequences (cross-time). Graph Neural Networks (GNNs) [28, 16, 2, 19, 7] have also shown
promising results for MTS forecasting, which can extract pre-defined or adaptive interaction between
different variables (cross-variable).

However, a recent study [33] shows that a simple linear model dramatically outperformed many state-
of-the-art (SOTA) models, and it inspires us to investigate the reasons why the existing cross-time
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and cross-variable interaction modeling fail to enhance prediction performance. By conducting a
thorough analysis on real-world data, we observe that the presence of some unexpected noise (caused
by humans, sensor distortion) may be responsible for it. In time dimension, as shown in Figure 1 (a),
Transformer-based model heavily relies on the input sequences to generate the attention map, while
its prediction may be susceptible to incidental noise, even some small fluctuation (i.e., noise) could
easily lead to significant shifts on temporal dependencies. Our findings reveal that self-attention
mechanism tend to assign high scores to outlier points in time series, resulting in spurious cross-time
correlations. In variable dimension, cross-variable correlation exhibits a complex and dynamic
evolution over time [18]. Despite the existence of underlying causal associations between variables,
extracting cross-variable interaction is difficult due to the influence of noise interference. Additionally,
as shown in Figure1 (b), we observe that such unexpected noise, which can be detected by the outlier
detection algorithm [14], accounts for a high proportion in the time series.

Figure 1: Data analysis on the real-world dataset [31]. (a) Forecasting results of Transformer-based
models suffering from unexpected noise. (b) Proportion of noise in the ETTh1, ETTm1, Traffic, and
Weather datasets [27] detected by [14]. (c) Different levels of noise signals in multi-scale time series.
(d) Homogeneous and heterogeneous relationships between variables.

Despite the non-negligible noise in time series, we can still discover the potential opportunities to
confront noise challenges. (1) Cross-Scale Interaction. As shown on Figure 1 (c), by performing
multi-scale extraction on the time series, we observe that different scales possess distinct levels
of noise intensity, typically with coarser scales exhibiting lower noise intensity. Evidently, captur-
ing dependencies across different scales enables the cross-time relationships to be robust against
noise [15]. (2) Cross-Variable Interaction. As shown on Figure 1 (d), there is both homogeneity
and heterogeneity for cross-variable interaction in real-world data [36]. In fact, the two relationships
can both contribute to invariant connections during the temporal progression. Consequently, learning
the invariant associations that contain both homogeneous and heterogeneous relationships among
variables can boost its robustness to confront noise. Based on above analysis, it is still challenging to
refine interaction in noisy MTS. The key obstacles can be summarized as follows: 1) How to capture
cross-scale interaction that is not sensitive to unexpected input noise. 2) How to extract cross-variable
relations between heterogeneous variables.

In this work, we propose CrossGNN, which is the first GNN solution to refine both cross-time
and cross-variable interactions for MTS forecasting. To deal with the unexpected noise in time
dimension, we firstly devise an adaptive multi-scale identifier (AMSI) to construct multi-scale time
series with different noise levels. In time dimension, we propose Cross-Scale GNN, which is a
temporal correlation graph, to model the dependency between different scales. The scales with
clearer trends and weaker noise will be assigned with more edge weight. In variable dimension,
we first introduce heterogeneous interaction modeling between variables into MTS forecasting and
propose cross-variable GNN to utilize the homogeneity and heterogeneity between different variables
with positive and negative edge weights. By focusing on edges with higher saliency scores and
constraining those edges with lower scores at the same time, CrossGNN achieves linear time and
space complexity (i.e., O(L)) with input sequence length L. The main contributions are summarized
as follows:

• We conduct comprehensive studies on real-world MTS data and discover that the unexpected
noise in time dimension and variable-wise heterogeneity between variables is not well
handled by existing Transformer-based and GNN-based models.

• We propose a linear complexity CrossGNN model, which is the first GNN model to refine
both cross-scale and cross-variable interaction for MTS forecasting.

2



1) To deal with the unexpected noise in time dimension, AMSI is leveraged to construct
multi-scale time series with different noise level and a Cross-Scale GNN is proposed to
capture the scales with clearer trend and weaker noise.
2) Cross-Variable GNN is designed to model the dynamic correlations between different
variables. This the first model to introduce heterogeneous interaction modeling between
variables into MTS forecasting.

• Extensive evaluation on 8 real-world MTS datasets demonstrates the effectiveness of Cross-
GNN. Specifically, CrossGNN achieved top-1 performance on 47 settings and top-2 on 9
settings when compared with 9 state-of-the-art models with varying prediction lengths.

2 Related Work

Multivariate Time Series Forecasting. MTS forecasting has witnessed significant advancements
due to the emergence of deep neural networks. These networks can be based on Convolutional Neural
Network (CNN) [26, 23], Recurrent Neural Network (RNN) [5, 6], Transformer [11, 25, 27, 35, 9],
or Graph Neural Network (GNN) [28, 32]. Generally, the primary emphasis of these studies lies
in devising interactions between the temporal dimensions (cross-time) and the variable dimensions
(cross-variable).

Cross-Time Interaction Modeling. Cross-time interaction modeling aims to capture correlations
between different time points. Recently, CNN-based model TimesNet [26] transforms the time
series into a two-dimensional matrix and uses a CNN-based backbone for feature extraction. RNN-
based model LSTnet [6] utilizes the Long Short-Term Memory (LSTM) to model the temporal
dependencies, but it may be limited by the inherent issue of gradient vanishing/exploding in RNNs.
Transformer-based models benefit from its self-attention mechanism, enabling them to capture long-
term cross-time dependency. AutoFormer [27] incorporates a decomposition mechanism that splits
the input sequence into trend and seasonality, and integrate an auto-correlation module into the
transformer to capture long-term cross-time dependency. FedFormer [35] leverages a frequency-
enhanced decomposition mechanism while incorporating additional frequency information. However,
despite the outstanding performance of Transformer-based methods, we observe that their self-
attention mechanism is susceptible to unexpected noise, as shown on Figure 1(a). Based on these
findings, we propose an innovative GNN-based method that constructs a cross-scale temporal graph
to mitigate the impact of temporal noise on modeling cross-time correlations.

Cross-Variable Interaction Modeling. Cross-Variable Interaction is proved to be critical for MTS
forecasting [34], and numerous works have employed Graph Neural Networks (GNNs) [22, 37, 30, 38]
to capture cross-variable relationships. STGCN [32] firstly utilizes GNN to model the cross-variable
dependency in traffic forecasting, which can effectively capture the dependency between different
roads in pre-defined topology graphs. MTGNN [28] expands the utilization of GNN from spatio-
temporal prediction to MTS forecasting, and proposes a straightforward method for computing
adaptive cross-variable graph. On the other hand, the Transformer-based MTS prediction works
have also recognized the potential of cross-variable interactions to enhance prediction performance,
such as CrossFormer [34]. However, the cross-variable relationship is dynamic and can be greatly
influenced by noise during the learning process. Given this, we refine the cross-variable relationship
by decoupling homogeneity and heterogeneity in MTS, resulting in a noise-insensitive relationship
during the temporal evolution.

3 Methodology

In long-term multivariate time series (MTS) forecasting, the input comprises historical sequences
across D variables denoted by X = {Xt

1, ..., X
t
D}Lt=1 ∈ RL×D, where L denotes the look-back

window size and Xt
i denotes time series of the ith variate at the tth time step. The objective of MTS

forecasting is to predict future time series denoted by X̂ = {X̂t
1, ..., X̂

t
D}L+T

t=L+1 ∈ RT×D based on
X , where T represents the prediction time steps and T ≫ 1. The detailed structure of CrossGNN
is illustrated in Figure 2. We firstly employ an adaptive multi-scale identifier (AMSI) to generate
multi-scale time series and reduce noise on coarse scale. Then, we construct scale-sensitive and trend-
aware temporal graph to extract cross-scale interaction. We perform cross-variable aggregation via
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Figure 2: CrossGNN architecture. (a) Adaptive multi-scale identifier (AMSI) is devised to extract the
multi-scale MTS X ′ from the input X . (b) Cross-Scale GNN facilitates cross-time interaction within
and across different scales, while Cross-Variable GNN models cross-variable interaction for both
homogeneous and heterogeneous relationships. (c) Direct multi-step (DMS) forecasting is leveraged
to predict the future time series based on two MLPs.

modeling homogeneous and heterogeneous relationships between variables. Finally, direct multi-step
(DMS) forecasting is adopted in decoder to predict future time series.

3.1 Adaptive Multi-Scale Identifier

The adaptive multi-scale identifier (AMSI) is designed to capture the different scales of MTS from
coarse to fine, and reduce the unexpected noise on the coarse scale. Technically, we utilize Fast
Fourier Transform (FFT) to analyze the time series in the frequency domain and calculate the potential
periods of the time series, inspired by [26]. We compute the amplitude of each time series at various
frequencies using FFT and subsequently average the amplitude of X across variable dimension:

A = AvgDi=1 (Amp (FFT (X ))) , (1)

where Amp(·) is the calculation of amplitude, FFT(·) is the calculation of FFT, A ∈ RL represents
the calculated amplitude of each frequency, which is averaged from D variables by Avg(·). We
choose the frequencies {f1, f2, · · · , fS} which correspond to the Top-S amplitude values:

{f1, · · · , fS} = argTop-S(A), (2)

where arg Top-S(·) picks out the S frequency values with the highest amplitude from A. The period
lengths {p1, p2, · · · , pS} are calculated by the selected frequencies as follows:

ps =

⌈
L

fs

⌉
, s ∈ {1, · · · , S}. (3)

Then, AvgPool(·) with kernel size ps and stride ps, s ∈ {1, 2, ..., S}, are applied to the MTS
X ∈ RL×D in the time dimension to capture the MTS at s-th scales:

Xs = AvgPool(X )kernel=stride=ps
, (4)

where AvgPool(·) downsamples time series to obtain Xs ∈ RL(s)×D, L(s) = ⌊ L
ps
⌋ is the time series

length in the s-th scale, ⌊·⌋ is the operation of rounding down. We concatenate the captured different
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scales in the time dimension and obtain a period-wise multi-scale MTS X ′ ∈ RL′×D as the output of
AMSI, L′ =

∑S
s=1 L(s) is the sum of lengths across all scales:

X ′ = Concat(X1,X2, ...,XS). (5)

Here, we employ an expansion dimension strategy (using an MLP), to create an embedding for each
time step at different scale. This strategy is inherited from MTGNN [28], aiming to enhance the
local semantics at each time step and positively impact subsequent cross-scale and cross-variable
interactions. The shape of X ′ is finally expanded as RL×D×C .

3.2 Cross-Scale GNN

The Cross-Scale GNN is designed to utilize the interaction of the multi-scale MTS X ′ and extract
the scales with clearer association and weaker noise. The cross-scale graph in the time dimension is
represented as Gscale = (V scale, Escale). V scale = {vscale1 , vscale2 , ..., vscaleL′ } is the time nodes set
in all time scales, where vscalei is the i-th time node. Escale ∈ RL′×L′

assigns the correlation weights
between each time node, each element in Escale meaning the correlation weight between two time
nodes (inter-scale or intra-scale). The key purpose of Cross-scale GNN is to learn the cross-scale
temporal correlation weights Escale that is insensitive to noise interference. To diminish the effect of
noise on correlation weights, we maintain the independence by initializing Escale with the production
of two learnable vectors vecscale1 and vecsclae2 , ensuring Escale not affected by noise hidden in input:

Escale = Softmax(ReLU(vecscale1 × vecscale2 )), (6)

where ReLU(·) is the active function regularizing the weight matrix so that each element is positive,
and Softmax(·) is the operation to ensure the weights of all nodes correlated to a particular time
node sum to 1.

Scale-sensitive Restriction. We consider that for any time node, the number of its correlated time
nodes on the fine scale should be more than the number on the coarse scale. For any time node vscalei ,
the number of its correlated nodes at s-th scale is restricted to ks = ⌈K

ps
⌉, where ps is the period

length of s-th scale, ⌈·⌉ denotes the ceiling function, K is a constant. This ensures that finer-scale
time series contribute more temporal node associations. The neighbor time node set at s-th scale (i.e.
the correlated time nodes at s-th scale ) of vscalei is denoted as:

N scale
s (vscalei ) = arg Top-ks(E

scale
s (vscalei )), (7)

where arg Top-ks(·) is an operation to extract ks nodes with highest correlation weight,
Escale

s (vscalei ) ∈ RL(s) is the correlation weight of time node vscalei at s-th scale. In this way,
the number of neighboring nodes at different scales can be restricted based on the correlation weight
matrix Escale.

Trend-aware Selection. To ensure the temporal trends can be captured, we preserve the associations
between a time node and its both preceding and succeeding nodes. Denote N trend(vscalei ) as the
trend neighbor set of time node vscalei , which can be defined as follows:

N trend(vscalei ) = {vscalej | |i− j| ≤ 1, scale(vscalei ) = scale(vscalej )}, (8)

where scale(·) provides the scale of a time node. The trend neighbor set of vscalei consists of its
adjacent time nodes (i.e., |i− j| ≤ 1) which share the same scale. This gives the ability to preserve
temporal trends in the cross-scale correlation graph.

Correlation Weight Re-normalization. Denote N (vi) = N scale(vi)∪N trend(vi) as the selected
neighbor set of time nodes vscalei . The final correlation weight is re-normalized as follows:

Escale[i, j] =

{
Escale[i,j]∑

vm∈N(vi)
Escale[i,m]

, if vj ∈ N (vi),

0, otherwise,
(9)

where Escale[i, j] is the correlation weight between vscalei and vscalej . This step filters out non-
significant correlation and preserves a restricted set of neighboring nodes N (vscalei ) to each node.
Also, re-normalization is applied to the retained correlation. Then, cross-scale correlation graph
between time nodes at different scales is constructed.
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Cross-scale interaction. After obtaining the cross-scale temporal correlation graph, we do cross-
scale interaction in the time dimension based on GNN, and the information propagation process will
be stacked for N layers:

HN time,N
i,: = (

S∑
s=1

∑
vj∈N scale

s (vi)

E[i, j] · Htime,N−1
j,: ) + (

∑
vm∈N trend(vi)

E[i,m] · Htime,N−1
m,: )

Htime,N
i,: = σ(Concat(HN time,N

i,: ,Htime,N−1
i,: ) ·W )

Htime,N
i,: = Htime,N

i,: /||Htime,N
i,: ||2

(10)
where σ is the activation function; W is the learnable matrix; Htime is the time node feature; HN time

is the aggregation of neighbor time node feature. HN time,N
i,: aggregates the neighboring node feature

from the previous layer correlated to the time nodes of vscalei . Then Htime,N
i,: is updated by the

aggregated time node feature HN time,N
i,: and its previous layer feature Htime,N−1

i,: . Finally, the
normalized Htime,N

:,: at N -th layer is the output of Cross-Scale GNN.

3.3 Cross-Variable GNN

Cross-Variable GNN is designed to extract the invariant correlation consisting of homogeneous
and heterogeneous relationship. In variable dimension, the cross-variable graph is represented as
Gvar = (V var, Evar). V var = {vvar1 , vvar2 , ..., vvarD } is the variable node set, where D is the
number of variables, and vvari is the i-th variable node. Evar is the variable correlation weight matrix,
each element in Evar meaning the correlation weight between two variables. Evar is initialized by
production of two latent vectors vecvar1 and vecvar2 :

Evar = Softmax(ReLU(vecvar1 × vecvar2 )) (11)

Heterogeneity Disentanglement. Specifically, we select the nodes with Kvar
+ highest correlation

weight as positive neighbors with homogeneous connections, and take the nodes with Kvar
− lowest

correlation score as negative neighbors with heterogeneous connections. Denote Evar(vvari ) as the
correlation weight of D variable nodes related to vvari . For variable vi, its two decoupled neighbor sets
can be represented as N var

− (vi) = Bottom-Kvar
- (Evar(vi)) and N var

+ (vi) = Top-Kvar
+ (Evar(vi)),

respectively.

Correlation Weight Re-normalization. The corresponding homogeneous and heterogeneous
correlation weights are derived as follows:

Evar[i, j] =


−

1
Evar [i,j]∑

vk∈Nvar
− (vi)

1
Evar [i,k]

, if vj ∈ N var
− (vi),

Evar[i,j]∑
vk∈Nvar

+
(vi)

Evar[i,k] , if vj ∈ N var
+ (vi),

0, otherwise

, (12)

This process filters out edges other than homogeneous and heterogeneous edges. The weights of
homogeneous edges are positively correlated with their correlation scores, while the weights of
heterogeneous edges are negatively correlated with their correlation scores. Additionally, separate re-
normalization is applied to the weights of homogeneous edges and heterogeneous edges, respectively.
Then, the cross-variable graph is constructed with disentangled homogeneous and heterogeneous
correlations.

Cross-variable Interaction. For variable vi, the disentangled cross-variable message passing can
be formulated as:

HN var,N
:,i =

∑
vj∈Nvar

+ (vi)

Evar[i, j] · Hvar,N−1
:,j +

∑
vk∈Nvar

− (vi)

Evar[i, k] · Hvar,N−1
:,k ,

Hvar,N
:,i = σ(Concat(HN var,N

:,i ,Hvar,N−1
:,i ) ·W ),

Hvar,N
:,i = Hvar,N

:,i /||Hvar,N
:,i ||2,

(13)
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Hvar is the variable node feature; HN var is the aggregation of neighbor variable node feature.
HN var,N

:,i aggregates both homogeneous and heterogeneous neighbor node feature of previous layer
correlated to vvari . Hvar,N

:,i is updated by the aggregated variable feature HN var,N
:,i and its previous

layer feature Hvar,N−1
:,i . Finally, the normalized Hvar,N

:,i at N -th layer is the output of Cross-variable
GNN.

3.4 Direct Multi-step forecasting

After obtaining the output features of Cross-Variable GNN, we exploit the direct multi-step (DMS)
forecasting [33] for the decoder to predict the multi-step MTS at once. We take two MLPs as the
decoder, where the first MLPC maps the time dimension of features from C to 1, while the second
MLPT maps the time dimension from the historical input sequence L′ to the output sequence length.
The final prediction can be obtained by:

{X̂t
1, ..., X̂

t
D}L+T

t=L+1 = MLPT(MLPC(Hvar)). (14)

Table 1: MTS forecasting results in terms of MSE and MAE, the lower the better. The prediction
length T ∈ {96, 192, 336, 720} and look back window size is set as 96. The best results are
highlighted in bold and the second best are underlined.

Models CrossGNN TimesNet Crossformer PatchTST ETSformer DLinear FEDformer Autoformer Pyraformer MTGNN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.335 0.373 0.338 0.375 0.349 0.395 0.339 0.377 0.375 0.398 0.345 0.372 0.379 0.419 0.505 0.475 0.543 0.510 0.379 0.446
192 0.372 0.390 0.374 0.387 0.405 0.411 0.376 0.392 0.408 0.410 0.380 0.389 0.426 0.441 0.553 0.496 0.557 0.537 0.470 0.428
336 0.403 0.411 0.410 0.411 0.432 0.431 0.408 0.417 0.435 0.428 0.413 0.413 0.445 0.459 0.621 0.537 0.754 0.655 0.473 0.430
720 0.461 0.442 0.478 0.450 0.487 0.463 0.499 0.461 0.499 0.462 0.474 0.453 0.543 0.490 0.671 0.561 0.908 0.724 0.553 0.479

E
T

T
m

2 96 0.176 0.266 0.187 0.267 0.208 0.292 0.192 0.273 0.189 0.280 0.193 0.292 0.203 0.287 0.255 0.339 0.435 0.507 0.203 0.299
192 0.240 0.307 0.249 0.309 0.263 0.332 0.252 0.314 0.253 0.319 0.284 0.362 0.269 0.328 0.281 0.340 0.730 0.673 0.265 0.328
336 0.304 0.345 0.321 0.351 0.337 0.369 0.318 0.357 0.314 0.357 0.369 0.427 0.325 0.366 0.339 0.372 1.201 0.845 0.365 0.374
720 0.406 0.400 0.408 0.403 0.429 0.430 0.413 0.416 0.414 0.413 0.554 0.522 0.421 0.415 0.433 0.432 3.625 1.451 0.461 0.459

E
T

T
h1

96 0.382 0.398 0.384 0.402 0.384 0.428 0.385 0.408 0.494 0.479 0.386 0.400 0.376 0.419 0.449 0.459 0.664 0.612 0.515 0.517
192 0.427 0.425 0.436 0.429 0.438 0.452 0.431 0.432 0.538 0.504 0.437 0.432 0.420 0.448 0.500 0.482 0.790 0.681 0.553 0.522
336 0.465 0.445 0.491 0.469 0.495 0.483 0.485 0.462 0.574 0.521 0.481 0.459 0.459 0.465 0.521 0.496 0.891 0.738 0.612 0.577
720 0.472 0.468 0.521 0.500 0.522 0.501 0.497 0.483 0.562 0.535 0.519 0.516 0.506 0.507 0.514 0.512 0.963 0.782 0.609 0.597

E
T

T
h2

96 0.309 0.359 0.340 0.374 0.347 0.391 0.343 0.376 0.340 0.391 0.333 0.387 0.358 0.397 0.346 0.388 0.645 0.597 0.354 0.454
192 0.390 0.406 0.402 0.414 0.419 0.427 0.405 0.417 0.430 0.439 0.477 0.476 0.429 0.439 0.456 0.452 0.788 0.683 0.457 0.464
336 0.426 0.444 0.452 0.452 0.449 0.465 0.448 0.453 0.485 0.479 0.594 0.541 0.496 0.487 0.482 0.486 0.907 0.747 0.515 0.540
720 0.445 0.464 0.462 0.468 0.479 0.505 0.464 0.483 0.500 0.497 0.831 0.657 0.463 0.474 0.515 0.511 0.963 0.783 0.532 0.576

E
le

ct
ri

ci
ty 96 0.173 0.275 0.168 0.272 0.185 0.288 0.159 0.268 0.187 0.304 0.197 0.282 0.193 0.308 0.201 0.317 0.386 0.449 0.217 0.318

192 0.195 0.288 0.184 0.289 0.201 0.295 0.177 0.278 0.199 0.315 0.196 0.285 0.201 0.315 0.222 0.334 0.378 0.443 0.238 0.352
336 0.206 0.300 0.198 0.300 0.211 0.312 0.195 0.296 0.212 0.329 0.209 0.301 0.214 0.329 0.231 0.338 0.376 0.443 0.260 0.348
720 0.231 0.335 0.220 0.320 0.223 0.335 0.215 0.317 0.233 0.345 0.245 0.333 0.246 0.355 0.254 0.361 0.376 0.445 0.290 0.369

Tr
af

fic

96 0.570 0.310 0.593 0.321 0.591 0.329 0.583 0.319 0.607 0.392 0.650 0.396 0.587 0.366 0.613 0.388 0.867 0.468 0.660 0.437
192 0.577 0.321 0.617 0.336 0.607 0.345 0.591 0.331 0.621 0.399 0.598 0.370 0.604 0.373 0.616 0.382 0.869 0.467 0.649 0.438
336 0.588 0.324 0.629 0.336 0.613 0.339 0.599 0.332 0.622 0.396 0.605 0.373 0.621 0.383 0.622 0.337 0.881 0.469 0.653 0.472
720 0.597 0.337 0.640 0.350 0.620 0.348 0.601 0.341 0.632 0.396 0.645 0.394 0.626 0.382 0.660 0.408 0.896 0.473 0.639 0.437

W
ea

th
er 96 0.159 0.218 0.172 0.220 0.191 0.251 0.171 0.230 0.197 0.281 0.196 0.255 0.217 0.296 0.266 0.336 0.622 0.556 0.230 0.329

192 0.211 0.266 0.219 0.261 0.219 0.279 0.219 0.271 0.237 0.312 0.237 0.296 0.276 0.336 0.307 0.367 0.739 0.624 0.263 0.322
336 0.267 0.310 0.280 0.306 0.287 0.332 0.277 0.321 0.298 0.353 0.283 0.335 0.339 0.380 0.359 0.395 1.004 0.753 0.354 0.396
720 0.352 0.362 0.365 0.359 0.368 0.378 0.365 0.367 0.352 0.288 0.345 0.381 0.403 0.428 0.419 0.428 1.420 0.934 0.409 0.371

E
xc

ha
ng

e 96 0.084 0.203 0.107 0.234 0.097 0.214 0.108 0.223 0.085 0.204 0.088 0.218 0.148 0.278 0.197 0.323 1.748 1.105 0.102 0.228
192 0.171 0.294 0.226 0.344 0.190 0.310 0.197 0.316 0.182 0.303 0.176 0.315 0.271 0.380 0.300 0.369 1.874 1.151 0.267 0.335
336 0.319 0.407 0.367 0.448 0.362 0.429 0.375 0.429 0.348 0.428 0.313 0.427 0.460 0.500 0.509 0.524 1.943 1.172 0.393 0.457
720 0.805 0.677 0.964 0.746 0.980 0.783 0.934 0.773 1.025 0.774 0.839 0.695 1.195 0.841 1.447 0.941 2.085 1.206 1.090 0.811

4 Experiment

4.1 Datasets And Experiment Setup

Datasets We conduct extensive experiments on 8 real-world datasets following [27], including
Weather, Traffic, Exchange Rate, Electricty and 4 ETT datasets(ETTh1, ETTh2, ETTm1 and
ETTm2). We follow the standard protocol in [27] and split datasets into training, validation and test
set by the ratio of 6:2:2 for the last 4 ETT datasets, and 7:1:2 for the other datasets.

Baselines and Setup We compare our method with 9 state-of-the-art methods, including Times-
Net [26]; 6 Transformer-based methods: PatchTST [12], Crossformer [34], ETSformer [25],
FEDformer [35], Pyraformer [11], Autoformer [27]; GNN-based method: MTGNN [28]; simple
yet powerful linear model Dlinear [33]. All the models are following the same experimental setup
with prediction length T ∈ {96, 192, 336, 720} for all datasets as in the original papers. We collect
all baseline results from [26] except MTGNN, with the default look-back window L = 96. We
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Table 2: Performance comparisons on ablative variants
Datasets Weather Traffic ETTm2

Predict Length 96 192 336 720 96 192 336 720 96 192 336 720

C-AMSI MSE 0.167 0.220 0.276 0.358 0.585 0.590 0.596 0.610 0.192 0.249 0.313 0.420
MAE 0.229 0.284 0.318 0.382 0.330 0.336 0.341 0.354 0.279 0.318 0.358 0.417

C-CS MSE 0.175 0.231 0.290 0.371 0.588 0.599 0.603 0.614 0.200 0.259 0.328 0.422
MAE 0.241 0.286 0.325 0.385 0.331 0.343 0.342 0.358 0.281 0.325 0.364 0.421

C-Hete MSE 0.172 0.224 0.277 0.364 0.589 0.588 0.603 0.616 0.190 0.255 0.320 0.417
MAE 0.231 0.280 0.327 0.381 0.329 0.332 0.335 0.354 0.280 0.320 0.358 0.417

C-CV MSE 0.174 0.227 0.279 0.367 0.588 0.591 0.604 0.616 0.193 0.257 0.322 0.419
MAE 0.235 0.281 0.328 0.382 0.330 0.335 0.338 0.358 0.278 0.323 0.359 0.418

CrossGNN MSE 0.159 0.211 0.267 0.352 0.570 0.577 0.588 0.597 0.176 0.240 0.304 0.406
MAE 0.218 0.266 0.307 0.362 0.310 0.321 0.324 0.337 0.265 0.307 0.345 0.400

reproduced the results of MTGNN [28] with look-back window L = 96 on all datasets according to
the settings in the original paper. We calculate the Mean Square Error(MSE) and Mean Absolute
Error(MAE) of MTS forecasting as metrics. More details about datasets, baselines, implementation,
hyper-parameters are shown in Appendix A.3.

4.2 Main Results

The quantitative results of MTS forecasting using different methods is shown in Table 1. CrossGNN
achieves outstanding performance on most datasets across various prediction length settings, obtaining
47 first-place and 9 second-place rankings in total 64 settings. Quantitatively, compared with the best
results that Transformer-based methods can offer, CrossGNN achieves an overall 10.43% reduction
on MSE and 10.11% reduction on MAE. Compared with GNN-based method MTGNN, CrossGNN
achieves a more significant reduction 22.57% on MSE and 25.74% on MAE. Compared with other
strong baselines like TimesNet and Dlinear, CrossGNN can still outperform them in general. Our
method dose not achieve the best performance on the Electricity dataset. Further analysis reveals
that the more severe out-of-distribution (OOD) problem in Electricity dataset results in a lower
generalization of the learned temporal graph relations on the test set.

4.3 Robustness Analysis of Noise

To evaluate the model robustness against noise, we add different intensities of Gaussian
white noise to the original MTS and observe the performance changes of different methods.

Figure 3: Robustness analysis under different
signal-to-noise ratio (SNR) on ETTm2.

Figure 3 shows the MSE results of CrossGNN,
ETSformer [25] and MTGNN [28] under dif-
ferent noise ratio on ETTm2 dataset, and the
input length is set as 96. As the signal-to-noise
ratio (SNR) decreases from 100db to 0db, the
mean square error (MSE) increases more slowly
on CrossGNN (0.177) compared to ETSformer
(0.191) and MTGNN (0.205). The quantita-
tive results demonstrate that CrossGNN exhibits
good robustness against noisy data and has a
great advantage when dealing with unexpected
fluctuations. We speculate such improvements
benefit from the explicit modeling of respective
scale-level and variable-level interactions.

4.4 Ablation Study

We conduct ablation studies by removing corre-
sponding modules from CrossGNN on three datasets. C-AMSI removes the adaptive multi-scale
identifier (AMSI) and directly use k fixed lengths (e.g., 1, 2, 3, ..., k) for average pooling. C-CS
removes the Cross-Scale GNN module. C-Hete removes the heterogeneous connections and focuses
on the homogeneous correlation modeling between different variables. C-CV removes both homoge-
neous and heterogeneous connections. We analyze the results shown in Table 2. Obs.1) Removing
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Cross-Scale GNN results in the most significant decrease in prediction metrics, emphasizing its strong
ability in modeling the interaction between different scales and time points. Obs.2) Cross-Variable
GNN also improves the model performance a lot, demonstrating the importance of modeling the
complex and dynamic interaction between different variables. Obs.3) AMSI constantly improves the
forecasting accuracy, suggesting that different scales of MTS contain rich interaction information.

4.5 Hyper-Parameter sensitivity

Look-Back Window Size Figure 4 shows the MSE results of models with different look-back
window sizes on four datasets. As the window size increases, the performance of Transformer-based
models fluctuates while CrossGNN constantly improves. This indicates that the attention mechanism
of Transformer-based methods may focus much more on the temporal noise but our method can
better extract the relationships between different time nodes through Cross-Scale GNN.

Number of Scales We vary the number of scales from 4 to 8 and report the MSE and MAE results
on Weather and Traffic dataset. As shown in Figure 5 (a) and Figure 5 (b), We observe that the
performance improvement becomes less significant after a certain number of scales, indicating that a
certain scale size is sufficient to eliminate most of the effects of temporal noise. Number of Node
Neighbors The number of neighboring nodes limited to each time node is mainly determined by the
hyperparameter K. As shown on Figure 5 (c) and Figure 5 (d), we experiment with K values of 10,
15, 20, 25, and 30 and found that CrossGNN is not sensitive to the number of K. This indicates that
it is only necessary to focus on strongly correlated nodes for effective information aggregation in
temporal interaction.

Figure 4: The MSE results (Y-axis) of models with different look-back window sizes (X-axis) on
ETTh2, ETTm2, Traffic and Weather, the output length is set as 336.

Figure 5: The MSE (left Y-axis) and MAE results (right Y-axis) of CrossGNN on Traffic and
Weather. (a) and (b) display the performance on different scale numbers. (c) and (d) demonstrates the
performance on different number of node neighbors

4.6 Complexity Analysis

Table 3 illustrates the theoretical complexity of CrossGNN and existing Transformer-based methods.
Detailed complexity derivation can be found in the Appendix C. To verify that the time and space
complexity of our method is indeed O(L), we use TVM to implement the GNN computation part
and compare the computation time and memory usage of with full connected graph during inference
on ETTh2. Comparison experiments are implemented on a Intel(R) 8255C CPU @ 2.50GHZ with
40GB memory, centos 7.8, and TVM 1.0.0. Figure 6 illustrates the time and memory cost of GNN
modules, and our proposed approach is close to linear with the input length.
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Method Complexity per layer

Transformer O(L2)
Informer O(L logL)

Autoformer O(L logL)
Pyraformer O(L)
CrossGNN O(L)

Table 3: The computation complexity in the-
ory. L represents the length of the input data.

Figure 6: Comparison of time and memory con-
sumption on ETTh2. (a) memory occupation. (b)
computation time.

5 Conclusion and Future Work

In this work, we construct a comprehensive analysis of real-world data and observe that the temporal
fluctuations and heterogeneity between variables, caused by unexpected noise, are not well handled
by current popular time-series forecasting methods. To address above issues, we propose a linear
complexity CrossGNN model, which is the first GNN model to refine both cross-scale and cross-
variable interaction for MTS forecasting. An adaptive multi-scale identifier (AMSI) is leveraged
to obtain multi-scale time series with reduced noise from input MTS. In particular, Cross-Scale
GNN captures the scales with clearer trend and weaker noise, while Cross-Variable GNN maximally
exploits the homogeneity and heterogeneity between different variables. Extensive experiments on 8
real-world MTS datasets demonstrate the effectiveness of CrossGNN over existing SOTA methods
while maintaining linear memory occupation and computation time as the input size increases. For
future work, it is worth exploring the design of dynamic graph networks that can effectively capture
complex interactions in out-of-distribution (OOD) scenarios.
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Appendix

A Experimental Details

A.1 Datasets

We conduct extensive experiments on 8 real-world datasets following [27]. The interval length, time
step number, and the variable number of each real-world dataset are presented in Table 4. The
detailed dataset descriptions are as follows:
1) ETTh (ETTh1, ETTh2, ETTm1, ETTm2) consists of two hourly-level datasets (ETTh) and two
15minute-level datasets (ETTm). Each of them contains seven oil and load features of electricity
transformers from July 2016 to July 2018.
2) Weather includes 21 indicators of weather, such as air temperature, and humidity. Its data is
recorded every 10 min for 2020 in Germany.
3) Traffic describes hourly road occupancy rates measured by 862 sensors on San Francisco Bay
area freeways from 2015 to 2016.
4) Exchange-rate collects the daily exchange rates of 8 countries from 1990 to 2016.
5) Electricity contains hourly electricity consumption (in Kwh) of 321 clients from 2012 to 2014.

Table 4: The statistics of the datasets for MTS forecasting.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Traffic Exchange-rate Electricity

Interval Length 1 Hour 1 Hour 15 Minutes 15 Minutes 10 Minutes 1 Hour 1 Day 1 Hour
Time step # 17,420 17,420 69,680 69,680 52,696 17,544 7,588 26,304
Variable # 7 7 7 7 21 862 8 321

A.2 Baseline Methods

We briefly describe the selected 9 state-of-the-art baselines as follows:
1) TimesNet [26] is a task-general foundational model for time series analysis that utilizes a mod-
ular architecture to unravel intricate temporal variations. A parameter-efficient inception block is
leveraged to capture intra-period and inter-period variations in 2D space.
2) Crossformer [34] is a versatile vision transformer which solves attention among different vari-
ables.
3) PatchTST [12] is a strong baseline dependent on channel-independence and time series segmen-
tation.
4) ETSformer [25] is a Transformer-based model for time-series forecasting that incorporates
inductive biases of time-series structures and introduces novel exponential smoothing attention (ESA)
and frequency attention (FA) to improve performance.
5) DLinear [33] is a simple linear-based model combined with a decomposition scheme.
6) FEDformer [35] is a Transformer-based model that uses the seasonal-trend decomposition with
frequency-enhanced blocks to capture cross-time dependency for forecasting.
7) Autoformer [27] is a Transformer-based model using decomposition architecture with an auto-
Correlation mechanism to capture cross-time dependency for forecasting.
8) Pyraformer [11] is a Transformer-based model learning multi-resolution representation of the
time series by the pyramidal attention module to capture cross-time dependency for forecasting.
9) MTGNN [28] explicitly utilizes cross-variable dependency using GNN. A graph learning layer
learns a graph structure where each node represents one variable in MTS.

A.3 Implementation Details

To ensure a fair comparison, the look-back window size is set to 96, which is consistent with all
baselines. We set the scale numbers S to 5 and set K to 10 for all datasets, as sensitivity experiments
have shown that S does not have a significant impact beyond 5 and CrossGNN is not sensitive to K.
Additionally, the mean squared error (MSE) is used as the loss function. For the learning rate, a grid
search is conducted among [5e-3, 1e-3, 5e-4, 1e-4, 5e-5, 1e-5] to obtain the most suitable learning
rate for all datasets. Besides, the dimension of the channel is set as 8 for smaller datasets and 16 for
larger datasets, respectively. The training would be terminated early if the validation loss does not

13



decrease for three consecutive rounds. The model is implemented in PyTorch 1.8.0 and trained on a
single NVIDIA Tesla V100 PCIe GPU with 16GB memory.

B Additional Experimental Results

B.1 Analysis on Robustness Against Noise

Figure 7: The MSE results (Y-axis) of models on ETTh2, ETTm2 and Weather with different signal-
to-noise ratio (SNR).
To evaluate the robustness of CrossGNN against noise, we add different intensities of Gaussian white
noise to the original MTS and observe the performance changes. As the intensity of Gaussian white
noise increases, the signal-to-noise ratio (SNR) gradually decreases from 100 dB to 0 dB. Figure 7
shows the MSE results of CrossGNN, ETSformer [25] and MTGNN [28] on ETTh2, ETTTm2, and
Weather under different SNR. As the SNR decreases from 100db to 0db, the mean square error (MSE)
of CrossGNN increases more slowly than MTGNN and ETSformer.

Taking the results on the ETTm2 dataset as an example, when the noise intensity increases at the
beginning (i.e., SNR decreases from 100db to 10db), the prediction accuracy of MTGNN and
ETSformer becomes unstable. Their prediction accuracy drops more rapidly when the noise intensity
suddenly increases (i.e., SNR decreases from 10db to 0db). In contrast, CrossGNN maintains
overall stability, and its performance degrades more slowly. The quantitative results demonstrate
that CrossGNN exhibits good robustness against noisy data and has a great advantage when dealing
with unexpected fluctuations. Such improvements benefit from the explicit modeling of respective
cross-scale and cross-variable interactions.

B.2 Sensitivity Analysis

Figure 8: The MSE (left Y-axis) and MAE results (right Y-axis) of CrossGNN with different number
of scales (X-axis) on ETTh2, ETTm2, Traffic, and Weather.

Number of Scales We vary the number of scales from 4 to 8 and report the MSE and MAE results
on ETTh2, ETTm2, Traffic, and Weather. As shown in Figure 8, We observe that the performance
improvement becomes less significant after a certain number of scales (i.e., 5), indicating that a
certain scale size is sufficient to eliminate most of the effects of temporal noise.

Number of Temporal Node Neighbors The number of temporal neighboring nodes is primarily
determined by the hyperparameter K. As depicted in Figure 9, we conducted experiments with
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Figure 9: The MSE (left Y-axis) and MAE results (right Y-axis) of CrossGNN with different K
(X-axis) on ETTh2, ETTm2, Traffic, and Weather.

different K values, including 10, 15, 20, 25, and 30, and observed that CrossGNN is not sensitive to
the number of K. This suggests that effective cross-scale interaction can be achieved by focusing
only on strongly correlated time nodes.

B.3 Visualization of Forecasting Results of Different Models

We present the visualization of forecasting results of CrossGNN and other baseline models on 8
datasets in Figure 10 and Figure 11. These datasets exhibit diverse temporal patterns, with 96-steps
input length and output horizon. It can be observed that the prediction results of the Transformer-
based model are significantly affected by noise, resulting in fluctuations. In contrast, the prediction
results of CrossGNN are less affected by noise, and the predicted values are closer to the true results.

For example, considering the forecasting results on the Traffic dataset, there are three unexpected
noise points (i.e., irregularly high points) in the input data. During prediction, the attention mechanism
of the Transformer-based model may focus on the noisy points, leading to a bias towards higher
output predictions. As a result, although the Transformer-based model seems to capture the periods
of the time series, it fails to produce accurate predictions. In contrast, CrossGNN is unaffected by
these three noisy data points and generates predictions that are closer to the ground truth. While
Transformer-based models struggle to capture the scale and bias of future data due to unexpected
noise in the input data, CrossGNN outperforms other models in terms of both scale and bias in
forecasting.

C Derivation of Computational Complexity

In this section, we theoretically prove that the time and space complexity of the Cross-Scale module
and Cross-Variable module in CrossGNN are both linear. We have organized the notations used in
Table 5 for ease of reading.

Table 5: Meaning of notations
Notation Meaning

vi The i-th time node
S Number of scales
s Index of the scale
ps Period length of the s-th scale
L Original input length (i.e., look-back window size)
L(s) Time length at the s-th scale
L′ Total length of concatenated multi-scale time series
Kscale The hyperparameter to control temporal neighbor numbers
Kvar The hyperparameter to control variable neighbor numbers
ks The temporal neighbor numbers at the s-th scale
A(vi) Total temporal neighbor node number correlated to vi
A Total correlated temporal node pair number
D Variable numbers
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Figure 10: Visualization of 96-step forecasting results on Electricity, Exchange-rate, Traffic, and
Weather, and the look-back window size is set as 96.

Proposition 1. The time and space complexity for the Cross-scale GNN is O(Kscale × lnS × L)
and amounts to O(L) when S and Kscale are constants w.r.t. L.

Proof. To improve readability, we substitute K for Kscale. Denote L(s) as the number of time nodes
at s-th scale:

L(s) = ⌊ L
ps

⌋, 1 ≤ s ≤ S, (15)

where ps is the corresponding period length of the s-th scale and L is the original input length (i.e.,
look-back window size). L′ is the sum of time nodes at different scales, and it could be expressed by:

L′ =

S∑
s=1

L(s) =

S∑
s=1

⌊ L
ps

⌋ ≤
S∑

s=1

⌊L
s
⌋ ≤ L

S∑
s=1

1

s
≈ L(lnS + ϵ+

1

2S
), (16)

where lnS + ϵ+ 1
2S ≈

∑S
s=1

1
S is the approximate summation formula for the harmonic series, and

ϵ is the Euler-Mascheroni constant.

For a time node, we set its scale-sensitive time node neighbor numbers to ks = ⌈K
ps
⌉ at s-th scale.

Since the trend-aware neighbor nodes are defined as its previous node and next node at the current
scale, the number of trend-aware neighbor nodes can reach 2 when these nodes do not overlap with
the scale-sensitive neighbor nodes. However, when there is overlap, the number of trend-aware
neighbor nodes can be 0 or 1.Therefore, the maximum neighbor node number of vi is given by:
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Figure 11: Visualization of 96-step forecasting results on ETTh1, ETTh2, ETTm1 and ETTm2, and
the look-back window size is set as 96.

A(vi) ≤
S∑

s=1

ks + 2 (17)

= K

s=S∑
s=1

1

p(s)
+ 2 (18)

≤ K(
1

1
+

1

2
+ ...+

1

S
) + 2 (19)

≈ K(lnS + ϵ+
1

2S
) + 2, (20)

Total correlated node pair number is expressed as:

A = L′ ×A(vi) ≤ L(lnS + ϵ+
1

2S
)(K(lnS + ϵ+

1

2S
) + 2) ≈ 2K × ln (S)× L. (21)

Consequently, the complexity of the proposed cross-scale GNN is:

O(A) ≤ O(2K × ln (S)× L). (22)

Since K and S are all constant terms that are independent of the length L and remain fixed when L
changes, the complexity can be further reduced to O(L).

Proposition 2. The time and space complexity for the Cross-variable GNN is O(Kvar ×D) and
amounts to O(D) when Kvar is a constant w.r.t. D.

Proof. Without loss of generality, we assume that the number of homogeneous and heterogeneous
correlated nodes for each variable are both Kvar. For a cross-variable graph, there are a total of

17



∑D
i=1 2K

var = 2KvarD correlated variable node pairs. Correspondingly, since the complexity of
graph computation is related to the number of edges, the time and space complexity of cross-variable
GNN are both O(Kvar ×D). As Kvar is a constant that is independent of D, its complexity is linear
(i.e., O(D)).
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