$$
\begin{aligned}
\ddot{y}(t) & =-\omega \int_{0}^{t} u(\tau) \sin (\omega(t-\tau)) d \tau+[u(\tau) \cos (\omega(t-\tau))]_{\tau=t} \\
& =-\omega^{2} y(t)+u(t)
\end{aligned}
$$

461 Thus $y(t)$ solves the ODE (2.6), with initial condition $y(0)=\dot{y}(0)=0$.

B. 2 Proof of Fundamental Lemma 3.5

Reconstruction of a continuous signal from its sine transform. Let $[0, T] \subset \mathbb{R}$ be an interval. We recall that we define the windowed sine transform $\mathcal{L}_{t} u(\omega)$ of a function $u:[0, T] \rightarrow \mathbb{R}^{p}$, by

$$
\mathcal{L}_{t} u(\omega)=\int_{0}^{t} u(t-\tau) \sin (\omega \tau) d \tau, \quad \omega \in \mathbb{R}
$$

In the following, we fix a compact set $K \subset C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$. Note that for any $u \in K$, we have $u(0)=0$, and hence K can be identified with a subset of $C\left((-\infty, T] ; \mathbb{R}^{p}\right)$, consisting of functions with $\operatorname{supp}(u) \subset[0, T]$. We consider the reconstruction of continuous functions $u \in K$. We will show that u can be approximately reconstructed from knowledge of $\mathcal{L}_{t}(\omega)$. More precisely, we provide a detailed proof of the following result:

Lemma B.1. Let $K \subset C\left((-\infty, T] ; \mathbb{R}^{p}\right)$ be compact, such that $\operatorname{supp}(u) \subset[0, T]$ for all $u \in K$. For any $\epsilon, \Delta t>0$, there exists $N \in \mathbb{N}$, frequencies $\omega_{1}, \ldots, \omega_{N} \in \mathbb{R} \backslash\{0\}$, phase-shifts $\vartheta_{1}, \ldots, \vartheta_{N} \in \mathbb{R}$ and weights $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}$, such that

$$
\sup _{\tau \in[0, \Delta t]}\left|u(t-\tau)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t} u\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)\right| \leq \epsilon,
$$

for all $u \in K$ and for all $t \in[0, T]$.

Proof. Step 0: (Equicontinuity) We recall the following fact from topology. If $K \subset$ $C\left((-\infty, T] ; \mathbb{R}^{p}\right)$ is compact, then it is equicontinuous; i.e. there exists a continuous modulus of continuity $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\phi(r) \rightarrow 0$ as $r \rightarrow 0$, such that

$$
\begin{equation*}
|u(t-\tau)-u(t)| \leq \phi(\tau), \quad \forall \tau \geq 0, t \in[0, T], \forall u \in K \tag{B.1}
\end{equation*}
$$

Step 1: (Connection to Fourier transform) Fix $t_{0} \in[0, T]$ and $u \in K$ for the moment. Define $f(\tau)=u\left(t_{0}-\tau\right)$. Note that $f \in C\left([0, \infty) ; \mathbb{R}^{p}\right)$, and f has compact support $\operatorname{supp}(f) \subset[0, T]$. We also note that, by (B.1), we have

$$
|f(t+\tau)-f(t)| \leq \phi(\tau), \quad \forall \tau \geq 0, t \in[0, T]
$$

We now consider the following odd extension of f to all of \mathbb{R} :

$$
F(\tau):= \begin{cases}f(\tau), & \text { for } \tau \geq 0 \\ -f(-\tau), & \text { for } \tau \leq 0\end{cases}
$$

Since F is odd, the Fourier transform of F is given by

$$
\widehat{F}(\omega):=\int_{-\infty}^{\infty} F(\tau) e^{-i \omega \tau} d \tau=i \int_{-\infty}^{\infty} F(\tau) \sin (\omega \tau) d \tau=2 i \int_{0}^{T} f(\tau) \sin (\omega \tau) d \tau=2 i \mathcal{L}_{t_{0}} u(\omega) .
$$

Let $\epsilon>0$ be arbitrary. Our goal is to uniformly approximate $F(\tau)$ on the interval $[0, \Delta t]$. The main complication here is that F lacks regularity (is discontinuous), and hence the inverse Fourier transform of \widehat{F} does not converge to F uniformly over this interval; instead, a more careful reconstruction based on mollification of F is needed. We provide the details below.

Step 2: (Mollification) We now fix a smooth, non-negative and compactly supported function $\rho: \mathbb{R} \rightarrow \mathbb{R}$, such that $\operatorname{supp}(\rho) \subset[0,1], \rho \geq 0, \int_{\mathbb{R}} \rho(t) d t=1$, and we define a mollifier $\rho_{\epsilon}(t):=$ $\frac{1}{\epsilon} \rho(t / \epsilon)$. In the following, we will assume throughout that $\epsilon \leq T$. We point out that $\operatorname{supp}\left(\rho_{\epsilon}\right) \subset[0, \epsilon]$, and hence, the mollification $F_{\epsilon}(t)=\left(F * \rho_{\epsilon}\right)(t)$ satisfies, for $t \geq 0$:

$$
\begin{aligned}
\left|F(t)-F_{\epsilon}(t)\right| & =\left|\int_{0}^{\epsilon}(F(t)-F(t+\tau)) \rho_{\epsilon}(\tau) d \tau\right|=\left|\int_{0}^{\epsilon}(f(t)-f(t+\tau)) \rho_{\epsilon}(\tau) d \tau\right| \\
& \leq\left\{\sup _{\tau \in[0, \epsilon]}|f(t)-f(t+\tau)|\right\} \int_{0}^{\epsilon} \rho_{\epsilon}(\tau) d \tau \leq \phi(\epsilon)
\end{aligned}
$$

In particular, this shows that

$$
\sup _{t \in[0, T]}\left|F(t)-F_{\epsilon}(t)\right| \leq \phi(\epsilon)
$$

can be made arbitrarily small, with an error that depends only on the modulus of continuity ϕ.
Step 3: (Fourier inverse) Let $\widehat{F}_{\epsilon}(\omega)$ denote the Fourier transform of F_{ϵ}. Since F_{ϵ} is smooth and compactly supported, it is well-known that we have the identity

$$
F_{\epsilon}(\tau)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{F}_{\epsilon}(\omega) e^{-i \omega \tau} d \omega, \quad \forall t \in \mathbb{R}
$$

where $\omega \mapsto \widehat{F}_{\epsilon}(\omega)$ decays to zero very quickly (almost exponentially) as $|\omega| \rightarrow \infty$. In fact, since $F_{\epsilon}=F * \rho_{\epsilon}$ is a convolution, we have $\widehat{F}_{\epsilon}(\omega)=\widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega)$, where $|\widehat{F}(\omega)| \leq 2\|f\|_{L^{\infty}} T$ is uniformly bounded, and $\widehat{\rho}_{\epsilon}(\omega)$ decays quickly. In particular, this implies that there exists a $L=L(\epsilon, T)>0$ independent of f, such that

$$
\begin{equation*}
\left|F_{\epsilon}(\tau)-\frac{1}{2 \pi} \int_{-L}^{L} \widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega) e^{-i \omega \tau} d \omega\right| \leq 2 T\|f\|_{L^{\infty}} \int_{|\omega|>L}\left|\widehat{\rho}_{\epsilon}(\omega)\right| d \omega \leq\|f\|_{L^{\infty} \epsilon}, \quad \forall \tau \in \mathbb{R} \tag{B.2}
\end{equation*}
$$

Step 4: (Quadrature) Next, we observe that, since F and ρ_{ϵ} are compactly supported, their Fourier transform $\omega \mapsto \widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega) e^{-i \omega \tau}$ is smooth; in fact, for $|\tau| \leq T$, the Lipschitz constant of this mapping can be explicitly estimated by noting that

$$
\begin{aligned}
\frac{\partial}{\partial \omega}\left[\widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega) e^{-i \omega \tau}\right] & =\frac{\partial}{\partial \omega} \int_{\operatorname{supp}\left(F_{\epsilon}\right)}\left(F * \rho_{\epsilon}\right)(t) e^{i \omega(t-\tau)} d t \\
& =\int_{\operatorname{supp}\left(F_{\epsilon}\right)} i(t-\tau)\left(F * \rho_{\epsilon}\right)(t) e^{i \omega(t-\tau)} d t
\end{aligned}
$$

We next take absolute values, and note that any t in the support of F_{ϵ} obeys the bound $|t| \leq T+\epsilon \leq$ $2 T$, while $|\tau| \leq T$ by assumption; it follows that

$$
\operatorname{Lip}\left(\omega \mapsto \widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega) e^{-i \omega \tau}\right) \leq(2 T+T)\|F\|_{L^{\infty}}\left\|\rho_{\epsilon}\right\|_{L^{1}}=3 T\|F\|_{L^{\infty}}, \quad \forall \tau \in[0, T]
$$

It thus follows from basic results on quadrature that for an equidistant choice of frequencies $\omega_{1}<$ $\cdots<\omega_{N}$, with spacing $\Delta \omega=2 L /(N-1)$, we have

$$
\left|\frac{1}{2 \pi} \int_{-L}^{L} \widehat{F}(\omega) \widehat{\rho}_{\epsilon}(\omega) e^{-i \omega \tau} d \omega-\frac{\Delta \omega}{2 \pi} \sum_{j=1}^{N} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}\right| \leq \frac{C L^{2} 3 T\|F\|_{L^{\infty}}}{N}, \quad \forall \tau \in[0, T],
$$

for an absolute constant $C>0$, independent of F, T and N. By choosing N to be even, we can ensure that $\omega_{j} \neq 0$ for all j. In particular, recalling that $L=L(T, \epsilon)$ depends only on ϵ and T, and choosing $N=N(T, \epsilon)$ sufficiently large, we can combine the above estimate with B.2 to ensure that

$$
\left|F_{\epsilon}(\tau)-\frac{\Delta \omega}{2 \pi} \sum_{j=1}^{N} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}\right| \leq 2\|f\|_{L^{\infty} \epsilon}, \quad \forall \tau \in[0, T]
$$

where we have taken into account that $\|F\|_{L^{\infty}}=\|f\|_{L^{\infty}}$.
Step 5: (Conclusion) To conclude the proof, we recall that $\widehat{F}(\omega)=2 i \mathcal{L}_{t_{0}} u(\omega)$ can be expressed in terms of the sine transform $\mathcal{L}_{t} u$ of the function u which was fixed at the beginning of Step 1 . Recall also that $f(\tau)=u\left(t_{0}-\tau\right)$, so that $\|f\|_{L^{\infty}}=\|u\|_{L^{\infty}}$. Hence, we can write the real part of $\frac{\Delta \omega}{2 \pi} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}=\frac{\Delta \omega}{2 \pi} 2 i \mathcal{L}_{t_{0}} u\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}$, in the form $\alpha_{j} \mathcal{L}_{t_{0}}\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)$ for coefficients $\alpha_{j} \in \mathbb{R}$ and $\theta_{j} \in \mathbb{R}$ which depend only on $\Delta \omega$ and $\widehat{\rho}_{\epsilon}\left(\omega_{j}\right)$, but are independent of u. In

$$
\begin{aligned}
\sup _{\tau \in[0, \Delta t]}\left|u\left(t_{0}-\tau\right)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t_{0}} u\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)\right| & =\sup _{t \in[0, \Delta t]}\left|F(\tau)-\operatorname{Re}\left(\frac{\Delta \omega}{2 \pi} \sum_{j=1}^{N} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}\right)\right| \\
& \leq \sup _{\tau \in[0, \Delta t]}\left|F(\tau)-\frac{\Delta \omega}{2 \pi} \sum_{j=1}^{N} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}\right| \\
\leq & \sup _{\tau \in[0, \Delta t]}\left|F(\tau)-F_{\epsilon}(\tau)\right| \\
& +\sup _{\tau \in[0, \Delta t]}\left|F_{\epsilon}(\tau)-\frac{\Delta \omega}{2 \pi} \sum_{j=1}^{N} \widehat{F}\left(\omega_{j}\right) \widehat{\rho}_{\epsilon}\left(\omega_{j}\right) e^{-i \omega_{j} \tau}\right|
\end{aligned}
$$

By Steps 1 and 3, the first term on the right-hand side is bounded by $\leq \phi(\epsilon)$, while the second one is bounded by $\leq 2 \sup _{u \in K}\|u\|_{L^{\infty}} \epsilon \leq C \epsilon$, where $C=C(K)<\infty$ depends only on the compact set $K \subset C\left([0, T] ; \mathbb{R}^{p}\right)$. Hence, we have

$$
\sup _{\tau \in[0, \Delta t]}\left|u\left(t_{0}-\tau\right)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t_{0}} u\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)\right| \leq \phi(\epsilon)+C \epsilon .
$$

In this estimate, the function $u \in K$ and $t_{0} \in[0, T]$ were arbitrary, and the modulus of continuity ϕ as well as the constant C on the right-hand side depend only on the set K. it thus follows that for this choice of α_{j}, ω_{j} and ϑ_{j}, we have

$$
\sup _{u \in K} \sup _{t \in[0, T]} \sup _{\tau \in[0, \Delta t]}\left|u(t-\tau)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t} u\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)\right| \leq \phi(\epsilon)+C \epsilon
$$

Since $\epsilon>0$ was arbitrary, the right-hand side can be made arbitrarily small. The claim then readily follows.

The next step in the proof of the fundamental Lemma 3.5 needs the following preliminary result in functional analysis,

Lemma B.2. Let \mathcal{X}, \mathcal{Y} be Banach spaces, and let $K \subset \mathcal{X}$ be a compact subset. Assume that $\Phi: \mathcal{X} \rightarrow \mathcal{Y}$ is continous. Then for any $\epsilon>0$, there exists a $\delta>0$, such that if $\left\|u-u^{K}\right\|_{\mathcal{X}} \leq \delta$ with $u \in \mathcal{X}, u^{K} \in K$, then $\left\|\Phi(u)-\Phi\left(u^{K}\right)\right\|_{\mathcal{Y}} \leq \epsilon$.

Proof. Suppose not. Then there exists $\epsilon_{0}>0$ and a sequence $u_{j}, u_{j}^{K},(j \in \mathbb{N})$, such that $\| u_{j}-$ $u_{j}^{K} \|_{\mathcal{X}} \leq j^{-1}$, while $\left\|\Phi\left(u_{j}\right)-\Phi\left(u_{j}^{K}\right)\right\|_{\mathcal{Y}} \geq \epsilon_{0}$. By the compactness of K, we can extract a subsequence $j_{k} \rightarrow \infty$, such that $u_{j_{k}}^{K} \rightarrow u^{K}$ converges to some $u^{K} \in K$. By assumption on u_{j}, this implies that

$$
\left\|u_{j_{k}}-u^{K}\right\|_{\mathcal{X}} \leq\left\|u_{j_{k}}-u_{j_{k}}^{K}\right\|_{\mathcal{X}}+\left\|u_{j_{k}}^{K}-u^{K}\right\|_{\mathcal{X}} \xrightarrow{(k \rightarrow \infty)} 0
$$

which, by the assumed continuity of Φ, leads to the contradiction that $0<\epsilon_{0} \leq \| \Phi\left(u_{j_{k}}\right)-$ $\Phi\left(u^{K}\right) \|_{\mathcal{Y}} \rightarrow 0$, as $k \rightarrow \infty$.

Proof of Lemma 3.5 Now, we can prove the fundamental Lemma in the following,
Proof. Let $\epsilon>0$ be given. We can identify $K \subset C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$ with a compact subset of $C\left((-\infty, T] ; \mathbb{R}^{p}\right)$, by extending all $u \in K$ by zero for negative times, i.e. we set $u(t)=0$ for $t<0$. Applying Lemma B.2 with $\mathcal{X}=C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$ and $\mathcal{Y}=C_{0}\left([0, T] ; \mathbb{R}^{q}\right)$, we can find a $\delta>0$, such that for any $u \in C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$ and $u^{K} \in K$, we have

$$
\begin{equation*}
\left\|u-u^{K}\right\|_{L^{\infty}} \leq \delta \quad \Rightarrow \quad\left\|\Phi(u)-\Phi\left(u^{K}\right)\right\|_{L^{\infty}} \leq \epsilon \tag{B.3}
\end{equation*}
$$

By the inverse sine transform Lemma B.1 there exist $N \in \mathbb{N}$, frequencies $\omega_{1}, \ldots, \omega_{N} \neq 0$, phaseshifts $\vartheta_{1}, \ldots, \vartheta_{N}$ and coefficients $\alpha_{1}, \ldots, \alpha_{N}$, such that for any $u \in K$ and $t \in[0, T]$:

$$
\sup _{\tau \in[0, T]}\left|u(t-\tau)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t} u\left(\omega_{j}\right) \sin \left(\omega_{j} \tau-\vartheta_{j}\right)\right| \leq \delta .
$$

$$
\mathcal{R}\left(\beta_{1}, \ldots, \beta_{N} ; t\right)(\tau):=\sum_{j=1}^{N} \alpha_{j} \beta_{j} \sin \left(\omega_{j}(t-\tau)-\vartheta_{j}\right)
$$

Let Y be the solution of

$$
\ddot{Y}=-\omega^{2} Y+u, \quad Y(0)=\dot{Y}(0)=0
$$

Then we have, on account of $\sigma(0)=0$ and $\sigma^{\prime}(0)=1$,

$$
\begin{aligned}
s^{-1} \sigma\left(-s \omega^{2} Y+s u\right)-\left[-\omega^{2} Y+u\right] & =\frac{\sigma\left(-s \omega^{2} Y+s u\right)-\sigma(0)}{s}-\sigma^{\prime}(0)\left[-\omega^{2} Y+u\right] \\
& =\frac{1}{s} \int_{0}^{s} \frac{\partial}{\partial \zeta}\left[\sigma\left(-\zeta \omega^{2} Y+\zeta u\right)\right] d \zeta-\sigma^{\prime}(0)\left[-\omega^{2} Y+u\right] \\
& =\frac{1}{s}\left(\int_{0}^{s}\left[\sigma^{\prime}\left(-\zeta \omega^{2} Y+\zeta u\right)-\sigma^{\prime}(0)\right] d \zeta\right)\left[-\omega^{2} Y+u\right]
\end{aligned}
$$

It follows from Lemma 3.4 that for any input $u \in K$, with $\sup _{u \in K}\|u\|_{L^{\infty}}=: B<\infty$, we have a uniform bound $\|Y\|_{L^{\infty}} \leq B T / \omega$, hence we can estimate

$$
\left|-\omega^{2} Y+u\right| \leq B(\omega T+1)
$$

uniformly for all such u. In particular, it follows that

$$
\left|s^{-1} \sigma\left(-s \omega^{2} Y+s u\right)-\left[-\omega^{2} Y+u\right]\right| \leq B(T \omega+1) \sup _{|x| \leq s B(T \omega+1)}\left|\sigma^{\prime}(x)-\sigma^{\prime}(0)\right|
$$

Clearly, for any $\delta>0$, we can choose $s \in(0,1]$ sufficiently small, such that the right hand-side is bounded by δ, i.e. with this choice of s,

$$
\left|s^{-1} \sigma\left(-s \omega^{2} Y(t)+s u(t)\right)-\left[-\omega^{2} Y(t)+u(t)\right]\right| \leq \delta, \quad \forall t \in[0, T]
$$

holds for any choice of $u \in K$. We will fix this choice of s in the following, and write $g(y, u):=$ $s^{-1} \sigma\left(-s \omega^{2} y+s u\right)$. We note that g is Lipschitz continuous in y, for all $|y| \leq B T / \omega$ and $|u| \leq B$, with $\operatorname{Lip}_{y}(g) \leq \omega^{2} \sup _{|\xi| \leq B(\omega T+1)}\left|\sigma^{\prime}(\xi)\right|$.
-
with dimension $m=p N$, and $w \in \mathbb{R}^{m}, V \in \mathbb{R}^{m \times p}$, and a linear output layer $y \mapsto \widetilde{A} y, \widetilde{A} \in \mathbb{R}^{m \times m}$, such that $[\widetilde{A} y(t)]_{j} \approx \mathcal{L}_{t} u\left(\omega_{j}\right)$ for $j=1, \ldots, N$; more precisely, such that

$$
\begin{equation*}
\sup _{t \in[0, T]} \sum_{j=1}^{N}\left|\alpha_{j}\right|\left|\mathcal{L}_{t} u\left(\omega_{j}\right)-[\widetilde{A} y]_{j}(t)\right| \leq \frac{\epsilon}{2}, \quad \forall u \in K \tag{B.5}
\end{equation*}
$$

581
Composing with another linear layer $B: \mathbb{R}^{m} \simeq \mathbb{R}^{p \times N} \rightarrow \mathbb{R}^{p}$, which maps $\boldsymbol{\beta}=\left[\beta_{1}, \ldots, \beta_{N}\right]$ to

$$
B \boldsymbol{\beta}:=\sum_{j=1}^{N} \alpha_{j} \beta_{j} \sin \left(\omega_{j} \Delta t-\vartheta_{j}\right) \in \mathbb{R}^{p}
$$

we define $A:=B \widetilde{A}$, and observe that from ($\bar{B} .4$) and $(\widehat{B .5}$:

$$
\begin{aligned}
\sup _{t \in[0, T]}|u(t-\Delta t)-A y(t)| \leq & \sup _{t \in[0, T]}\left|u(t-\Delta t)-\sum_{j=1}^{N} \alpha_{j} \mathcal{L}_{t} u\left(\omega_{j}\right) \sin \left(\omega_{j} \Delta t-\vartheta_{j}\right)\right| \\
& +\sup _{t \in[0, T]} \sum_{j=1}^{N}\left|\alpha_{j}\right|\left|\mathcal{L}_{t} u\left(\omega_{j}\right)-[\widetilde{A} y]_{j}(t)\right|\left|\sin \left(\omega_{j} \Delta t-\vartheta_{j}\right)\right|
\end{aligned}
$$

$\leq \epsilon$.

B.5 Proof of Lemma 3.8

Proof. Fix Σ, Λ, γ as in the statement of the lemma. Our goal is to approximate $u \mapsto \Sigma \sigma(\Lambda u+\gamma)$.
Step 1: (nonlinear layer) We consider a first layer for a hidden state $y=\left[y_{1}, y_{2}\right]^{T} \in \mathbb{R}^{p+p}$, given by

$$
\left\{\begin{array}{l}
\ddot{y}_{1}(t)=\sigma(\Lambda u(t)+\gamma) \\
\ddot{y}_{2}(t)=\sigma(\gamma)
\end{array}\right\}, \quad y(0)=\dot{y}(0)=0 .
$$

This layer evidently does not approximate $\sigma(\Lambda u(t)+\gamma)$; however, it does encode this value in the second derivative of the hidden variable y_{1}. The main objective of the following analysis is to approximately compute $\ddot{y}_{1}(t)$ through a suitably defined additional layer.
Step 2: (Second-derivative layer) To obtain an approximation of $\sigma(\Lambda u(t)+\gamma)$, we first note that the solution operator

$$
\mathcal{S}: u(t) \mapsto \eta(t), \quad \text { where } \ddot{\eta}(t)=\sigma(\Lambda u(t)+\gamma)-\sigma(\gamma), \quad \eta(0)=\dot{\eta}(0)=0
$$

defines a continuous mapping $\mathcal{S}: C_{0}\left([0, T] ; \mathbb{R}^{p}\right) \rightarrow C_{0}^{2}\left([0, T] ; \mathbb{R}^{p}\right)$, with $\eta(0)=\dot{\eta}(0)=\ddot{\eta}(0)=0$. Note that η is very closely related to y_{1}. The fact that $\ddot{\eta}=0$ is important to us, because it allows us to smoothly extend η to negative times by setting $\eta(t):=0$ for $t<0$ (which would not be true for $y_{1}(t)$. The resulting extension defines a compactly supported function $\eta:(-\infty, 0] \rightarrow \mathbb{R}^{p}$, with $\eta \in C^{2}\left((-\infty, T] ; \mathbb{R}^{p}\right)$. Furthermore, by continuity of the operator \mathcal{S}, the image $\mathcal{S}(K)$ of the compact set K under \mathcal{S} is compact in $C^{2}\left((-\infty, T] ; \mathbb{R}^{p}\right)$. From this, it follows that for small $\Delta t>0$, the second-order backward finite difference formula converges,

$$
\sup _{t \in[0, T]}\left|\frac{\eta(t)-2 \eta(t-\Delta t)+\eta(t-2 \Delta t)}{\Delta t^{2}}-\ddot{\eta}(t)\right|=o_{\Delta t \rightarrow 0}(1), \quad \forall \eta=\mathcal{S}(u), u \in K
$$

where the bound on the right-hand side is uniform in $u \in K$, due to equicontinuity of $\{\ddot{\eta} \mid \eta=\mathcal{S}(u), u \in K\}$. In particular, the second derivative of η can be approximated through linear combinations of time-delays of η. We can now choose $\Delta t>0$ sufficiently small so that

$$
\sup _{t \in[0, T]}\left|\frac{\eta(t)-2 \eta(t-\Delta t)+\eta(t-2 \Delta t)}{\Delta t^{2}}-\ddot{\eta}(t)\right| \leq \frac{\epsilon}{2\|\Sigma\|}, \quad \forall y=\mathcal{S}(u), u \in K
$$

where $\|\Sigma\|$ denotes the operator norm of the matrix Σ. By Lemma 3.7, applied to the input set $\widetilde{K}=\mathcal{S}(K) \subset C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$, there exists a coupled oscillator

$$
\begin{equation*}
\ddot{z}(t)=\sigma(w \odot z(t)+V \eta(t)+b), \quad z(0)=\dot{z}(0)=0 \tag{B.6}
\end{equation*}
$$

and a linear output layer $z \mapsto \widetilde{A} z$, such that

$$
\sup _{t \in[0, T]}|[\eta(t)-2 \eta(t-\Delta t)+\eta(t-2 \Delta t)]-\widetilde{A} z(t)| \leq \frac{\epsilon \Delta t^{2}}{2\|\Sigma\|}, \quad \forall \eta=\mathcal{S}(u), u \in K
$$

Indeed, Lemma 3.7 shows that time-delays of any given input signal can be approximated with any desired accuracy, and $\eta(t)-2 \eta(t-\Delta)-\eta(t-2 \Delta)$ is simply a linear combination of time-delays of the input signal η in B.6.
To connect $\eta(t)$ back to the $y(t)=\left[y_{1}(t), y_{2}(t)\right]^{T}$ constructed in Step 1, we note that

$$
\ddot{\eta}=\sigma(A u(t)+b)-\sigma(b)=\ddot{y}_{1}-\ddot{y}_{2},
$$

and hence, taking into account the initial values, we must have $\eta \equiv y_{1}-y_{2}$ by ODE uniqueness. In particular, upon defining a matrix \widetilde{V} such that $\widetilde{V} y:=V y_{1}-V y_{2} \equiv V \eta$, we can equivalently write (B.6) in the form,

$$
\begin{equation*}
\ddot{z}(t)=\sigma(w \odot z(t)+\widetilde{V} y(t)+b), \quad z(0)=\dot{z}(0)=0 . \tag{B.7}
\end{equation*}
$$

Step 3: (Conclusion)

Composing the layers from Step 1 and 2, we obtain a coupled oscillator

$$
\ddot{y}^{\ell}=\sigma\left(w^{\ell} \odot y^{\ell}+V^{\ell} y^{\ell-1}+b^{\ell}\right), \quad(\ell=1,2),
$$

initialized at rest, with $y^{1}=y, y^{2}=z$, such that for $A:=\Sigma \widetilde{A}$ and $c:=\Sigma \sigma(\gamma)$, we obtain

$$
\begin{aligned}
\sup _{t \in[0, T]}\left|\left[A y^{2}(t)+c\right]-\Sigma \sigma(\Lambda u(t)+\gamma)\right| \leq & \leq\|\Sigma\| \sup _{t \in[0, T]}|\widetilde{A} z(t)-[\sigma(\Lambda u(t)+\gamma)-\sigma(\gamma)]| \\
& =\|\Sigma\| \sup _{t \in[0, T]}|\widetilde{A} z(t)-\ddot{\eta}(t)| \\
\leq & \leq\|\Sigma\| \sup _{t \in[0, T]}\left|\widetilde{A} z(t)-\frac{\eta(t)-2 \eta(t-\Delta t)+\eta(t-2 \Delta t)}{\Delta t^{2}}\right| \\
& \quad+\|\Sigma\| \sup _{t \in[0, T]}\left|\frac{\eta(t)-2 \eta(t-\Delta t)+\eta(t-2 \Delta t)}{\Delta t^{2}}-\ddot{\eta}(t)\right| \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

This concludes the proof.

B. 6 Proof of Theorem 3.1

Proof. Step 1: By the Fundamental Lemma 3.5, there exist N, a continuous mapping Ψ, and frequencies $\omega_{1}, \ldots, \omega_{N}$, such that

$$
\left|\Phi(u)(t)-\Psi\left(\mathcal{L}_{t} u\left(\omega_{1}\right), \ldots, \mathcal{L}_{t} u\left(\omega_{N}\right) ; t^{2} / 4\right)\right| \leq \epsilon
$$

for all $u \in K$, and $t \in[0, T]$. Let M be a constant such that

$$
\left|\mathcal{L}_{t} u\left(\omega_{1}\right)\right|, \ldots,\left|\mathcal{L}_{t} u\left(\omega_{N}\right)\right|, \frac{t^{2}}{4} \leq M
$$

for all $u \in K$ and $t \in[0, T]$. By the universal approximation theorem for ordinary neural networks, there exist weight matrices Σ, Λ and bias γ, such that

$$
\left|\Psi\left(\beta_{1}, \ldots, \beta_{N} ; t^{2} / 4\right)-\Sigma \sigma(\Lambda \boldsymbol{\beta}+\gamma)\right| \leq \epsilon, \quad \boldsymbol{\beta}:=\left[\beta_{1}, \ldots, \beta_{N} ; t^{2} / 4\right]^{T}
$$

holds for all $t \in[0, T],\left|\beta_{1}\right|, \ldots,\left|\beta_{N}\right| \leq M$.
Step 2: Fix $\epsilon_{1} \leq 1$ sufficiently small, such that also $\|\Sigma\|\|\Lambda\| \operatorname{Lip}(\sigma) \epsilon_{1} \leq \epsilon$, where $\operatorname{Lip}(\sigma):=$ $\sup _{|\xi| \leq\|\Lambda\| M+|\gamma|+1}\left|\sigma^{\prime}(\xi)\right|$ denotes an upper bound on the Lipschitz constant of the activation function over the relevant range of input values. It follows from Lemma 3.6, that there exists an oscillator network,

$$
\begin{equation*}
\ddot{y}^{1}=\sigma\left(w^{1} \odot y^{1}+V^{1} u+b^{1}\right), \quad y^{1}(0)=\dot{y}^{1}(0)=0 \tag{B.8}
\end{equation*}
$$

of depth 1 , such that

$$
\sup _{t \in[0, T]}\left|\left[\mathcal{L}_{t} u\left(\omega_{1}\right), \ldots, \mathcal{L}_{t} u\left(\omega_{N}\right) ; t^{2} / 4\right]^{T}-A^{1} y^{1}(t)\right| \leq \epsilon_{1}
$$

for all $u \in K$.
Step 3: Finally, by Lemma 3.8, there exists an oscillator network,

$$
\ddot{y}^{2}=\sigma\left(w^{2} \odot y^{2}+V^{2} y^{1}+b^{1}\right)
$$

of depth 2 , such that

$$
\sup _{t \in[0, T]}\left|A^{2} y^{2}(t)-\Sigma \sigma\left(\Lambda A^{1} y^{1}(t)+\gamma\right)\right| \leq \epsilon,
$$

holds for all y^{1} belonging to the compact set $K_{1}:=\mathcal{S}(K) \subset C_{0}\left([0, T] ; \mathbb{R}^{N+1}\right)$, where \mathcal{S} denotes the solution operator of B.8).
Step 4: Thus, we have for any $u \in K$, and with short-hand $\mathcal{L}_{t} u(\boldsymbol{\omega}):=\left(\mathcal{L}_{t} u\left(\omega_{1}\right), \ldots, \mathcal{L}_{t} u\left(\omega_{N}\right)\right)$,

$$
\begin{aligned}
\left|\Phi(u)(t)-A^{2} y^{2}(t)\right| \leq \mid & \Phi(u)(t)-\Psi\left(\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right) \mid \\
& +\left|\Psi\left(\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right)-\Sigma \sigma\left(\Lambda\left[\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right]+\gamma\right)\right| \\
& +\left|\Sigma \sigma\left(\Lambda\left[\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right]+\gamma\right)-\Sigma \sigma\left(\Lambda A^{1} y^{1}(t)+\gamma\right)\right| \\
& +\left|\Sigma \sigma\left(\Lambda A_{1} y_{1}(t)+\gamma\right)-A^{2} y^{2}(t)\right|
\end{aligned}
$$

By step 1, we can estimate

$$
\left|\Phi(u)(t)-\Psi\left(\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right)\right| \leq \epsilon, \quad \forall t \in[0, T], u \in K
$$

By the choice of Σ, Λ, γ, we have

$$
\left|\Psi\left(\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right)-\Sigma \sigma\left(\Lambda\left[\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right]+\gamma\right)\right| \leq \epsilon, \quad \forall t \in[0, T], u \in K
$$

By construction of y^{1} in Step 2, we have

$$
\begin{aligned}
& \left|\Sigma \sigma\left(\Lambda\left[\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right]+\gamma\right)-\Sigma \sigma\left(\Lambda A_{1} y_{1}(t)+\gamma\right)\right| \\
& \quad \leq\|\Sigma\| \operatorname{Lip}(\sigma)\|\Lambda\|\left|\left[\mathcal{L}_{t} u(\boldsymbol{\omega}) ; t^{2} / 4\right]-A^{1} y^{1}(t)\right| \\
& \quad \leq\|\Sigma\| \operatorname{Lip}(\sigma)\|\Lambda\| \epsilon_{1} \\
& \quad \leq \epsilon
\end{aligned}
$$

for all $t \in[0, T]$ and $u \in K$. By construction of y^{2} in Step 3, we have

$$
\left|\Sigma \sigma\left(\Lambda A^{1} y^{1}(t)+\gamma\right)-A^{2} y^{2}(t)\right| \leq \epsilon, \quad \forall t \in[0, T], u \in K
$$

Thus, we conclude that

$$
\left|\Phi(u)(t)-A^{2} y^{2}(t)\right| \leq 4 \epsilon
$$

for all $t \in[0, T]$ and $u \in K$. Since $\epsilon>0$ was arbitrary, we conclude that for any causal and continuous operator $\Phi: C_{0}\left([0, T] ; \mathbb{R}^{p}\right) \rightarrow C_{0}\left([0, T] ; \mathbb{R}^{q}\right)$, compact set $K \subset C_{0}\left([0, T] ; \mathbb{R}^{p}\right)$ and $\epsilon>0$, there exists a coupled oscillator of depth 3 , which uniformly approximates Φ to accuracy ϵ for all $u \in K$. This completes the proof.

