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The contents of this supplementary material are organized as follows:

Section A provides additional experimental results, including more results with three modalities,
performance under dynamic weathers, performance under several challenging or extreme environ-
mental conditions (e.g., increased number of vehicles and dazzling sunlight), results on DeepMind
Control Suit, and ablation study of auxiliary losses and the design of re-fusion.

Section B provides further discussions related to our approach. This includes a comparison between
value-level dynamic fusion and feature-level dynamic fusion supported by empirical results, the
advantages of hierarchical bi-level fusion over uni-level fusion, and the relationship and differences
between our approach and the value decomposition techniques in multi-agent RL.

Section C describes the details of the experimental setup, including network architectures, hyper-
parameters, and hardware details.

Section D states the potential negative societal impacts of our work.

A Additional experimental results

A.1 Experimental Results on Dynamic Weathers

In this experiment, we manipulate the weather conditions in CARLA to simulate smooth changes in
the position of the sun over time, while also introducing occasional stormy weather. This manipu-
lation aims to replicate realistic weather transitions that occur naturally, such as the shift from day
to night or the transition from sunny to rainy conditions. By incorporating these weather variations,
we seek to create a more immersive and dynamic environment that closely resembles real-world
weather changes. As shown in Fig. A1, upon observing real-time weather fluctuations, we find that
reliance solely on LVE for value fusion resulted in subpar performance. This outcome emphasizes
the necessity of feature interaction or feature fusion to tackle intricate situations. Furthermore, an
amalgamation of feature fusion and value fusion can offer better performance. This indicates that
the feature-level and value-level integration allows for a better understanding of the environment
and optimizes decision-making processes in the face of dynamic and challenging scenarios.
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Dynamic weather

Figure A1: Visualization of dynamic weather changes and corresponding experimental results.

A.2 Experimental Results on Challenging and Extreme Conditions

Increased number of vehicles To enhance the difficulty and assess the effectiveness of our method
under more complex road conditions, we increase the number of cars on the road from 20 to 30.
This adjustment allows us to evaluate the robustness and adaptability of our approach in handling
a larger number of vehicles in the environment. As we increase the number of vehicles on the
road, Fig. A2 (a) clearly indicates that HAVE consistently delivers the highest performance. This
observation underscores the effectiveness of incorporating both feature fusion and value fusion in our
approach. By estimating values from two perspectives (GVE and LVE), our model can successfully
capture and leverage the complementary information from multiple modalities, leading to improved
performance in scenarios with a higher density of moving targets.

Extremely Dazzling Sunlight A particularly challenging scenario in driving occurs when we are
moving toward the sun (e.g., driving west in the afternoon and facing the setting sun). In such situa-
tions, the intense brightness emitted by the sun can cause overexposure in the RGB camera, leading
to loss of details and difficulties in capturing accurate images. As shown in Fig. A2 (b), HAVE
gives the best experimental results under dazzling sunlight weather. One potential explanation could
be the robustness of the proposed HAVE in handling high variations in scene illumination. That is,
HAVE is able to adaptively adjust the contribution of each modality according to its specific value.

A.3 Additional Experimental Results with Multiple Modalities

Here we provide an additional evaluation of our approach with multiple modalities, including RGB,
event signals, and depth. By examining the results in Fig. A3 (a) and Fig. A3 (b), we can obtain
more evidence of the strengths of our method, which explores the benefits of leveraging multi-modal
inputs in reinforcement learning tasks.

A.4 Additional experiments on the DMControl Suite

we conduct additional experiments using the Mujoco-powered DeepMind Control Suite (DMCon-
trol) [4] with RGB and depth as input modalities on two challenging tasks (Cheetah, run and Walker,
walk). The training and testing curves of HAVE and other comparable methods are given in A4.
From the results, it is clear that HAVE also outperforms other methods in these robot control tasks.

A.5 Ablation Study of Auxiliary Losses

We have carried out the corresponding experiments in the ClearNight environment of CARLA. The
results are illustrated in Fig. A3 (c). Specifically, three terms are comprised: the global transition
loss, the sum of individual transition losses, and the reward prediction loss. When compared to the
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Figure A2: Visualization of challenging and extreme conditions and their corresponding experimen-
tal results.
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Figure A3: (a) and (b) are additional experimental results with three modalities on CloudyNight and
CloudyNoon. (c) is auxiliary losses ablation.

full results of HAVE in Fig.4 (top left) of the main paper, Fig. A3 (c) reveals that omitting any of
these terms negatively impacts model performance. Among them, the reward prediction loss is the
most crucial, leading to the most significant performance drop. When all three terms are excluded
(i.e., the ‘w/o aux’ curve in Fig. A3 (c)), there is a notable decline in performance.

A.6 Ablation Study on the Design of Re-fusion

We need dynamic fusion over static ones (such as taking the mean of GVE and LVE values), since
LVE does not always outperform when GVE provides accurate estimates, and conversely, GVE
does not always excel when LVE estimates are precise. Their effectiveness is contingent upon the
attributes of the current global modality, which can vary drastically depending on the environmental
context. To address this variability, we employ a hypernetwork for a dynamic combination of both
methods. While we have experimented with directly merging GVE and LVE, Table A1 indicates
that, although direct fusion is feasible, the dynamic fusion through the hypernetwork proves more
efficacious.
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Figure A4: Performance of different algorithms on Mujoco-powered DeepMind Control Suite envi-
ronments with RGB and depth frames as input modalities.

Table A1: Ablation study on the design of the re-fusion process on CARLA.

ClearNight ClearNoon
Re-fusion method Dynamic Direct Dynamic Direct

ER 319±71 307±67 336±76 307±84
D(m) 212±52 203±56 223±44 213±48

B Further Discussions

Value-level vs. Feature-level Fusion The value-level and feature-level dynamic fusion approaches
in RL can be viewed as complementary paradigms: each have their unique strengths and contribute
in different ways to the learning process. Feature-level dynamic fusion enables the combination of
distinct feature sets originating from various modalities. In this way, the learning system can capi-
talize on the complementary and shared aspects of different modalities in a more nuanced manner.
However, it may encounter difficulties when the alignment between modalities is not clear, or when
modalities have conflicting information. Feature-level fusion can potentially amplify these issues,
as it does not have the ability to weigh the importance of each modality based on the value it con-
tributes to the task at hand. In contrast, value-based dynamic fusion, which operates on Q-values,
allows for more informed decision-making as each modality can directly influence the final policy
decision. As a result, it can effectively balance the different modalities based on their contribution
to the expected reward, which can be particularly beneficial in environments where modalities offer
divergent or contradictory information. In Fig. A6, we provide results on two more weather condi-
tions. Taking together the results in Fig. A1, Fig. A2, and Fig. A6, it’s apparent that the performance
of one paradigm over another is dependent on specific environmental conditions. Nevertheless, our
HAVE framework, which applies both fusion paradigms, consistently outperforms approaches using
a single paradigm, demonstrating their complementarity.

Bi-level Fusion vs. Uni-level Fusion The hierarchical bi-level fusion approach in our multi-modal
reinforcement learning framework allows a more refined balance between global and local modal-
ities through its dual-weighting mechanism. By assigning individual weights wMi to each local
modality and subsequently modulating them with a task-related weight in the re-fusion network H,
the algorithm can adjust the contribution of each local modality twice: initially based on the intrin-
sic relevance of a modality, and subsequently, taking into account the overall task context. This
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Figure A5: Feature-level Fusion vs. Value-level Fusion.
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Figure A6: Comparison of HAVE, feature-level fusion methods (GVE, Transfuser, EFNet) and
value-level fusion method (LVE).
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Figure A7: Hierarchical bi-level Fusion vs. uni-level Fusion.

Figure A8: Performance comparison between hierarchical bi-level fusion and uni-level fusion.
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double modulation facilitates a more nuanced integration of local and global modalities into the fi-
nal value estimate. On the contrary, the uni-level fusion method shown in Fig. A7 affords only a
single adjustment level per modality, which could potentially hinder the establishment of a precise
balance between local and global modalities. Given that the global modality inherently comprises
more information, it is plausible that its corresponding value weight might overshadow those of the
individual local modalities, thereby downplaying their contributions. Our experimental results in
Fig. A8 also demonstrate the advantage of hierarchical bi-level fusion over uni-level fusion.

Relationship to Multi-agent RL Multi-agent RL (MARL) focuses on the interaction between mul-
tiple learning agents, while multi-modal RL is about the fusion of information from multiple modal-
ity sources to enhance the learning of a single agent. Our adaptive value estimation method shares
similar spirit of the value decomposition techniques in MARL [3, 5]. However, the methods and
techniques used in the two areas can be quite different due to the distinct challenges each task faces.

In MARL, value decomposition involves splitting the joint action-value function into individual
value functions for each agent. This is done to manage the complexity of the joint action space and
to enable decentralized execution. The goal is to facilitate each agent’s ability to take individual
actions that contribute optimally to the collective reward, while considering the inter-dependencies
of actions among the agents. This often involves a mixing network to aggregate the decomposed
value functions, which allows for an intricate weighting system to balance the impacts of different
agents’ actions.

In contrast, our adaptive value estimation technique HAVE leverages information from different
input modalities to predict a single action: The GVE uses a global critic to evaluate the global state,
while the LVE involves separate critics for each modality. This approach aims to harness the unique
insights each modality offers. The GVE and LVE are then combined to learn together to reduce the
overall estimation error. Then the actor uses the updated value function from both GVE and LVE to
improve its policy.

C Detailed Experimental Setup

In this section, we elaborate on the detailed experimental setup, including network architectures,
environment setup of the CARLA benchmark, and hyper-parameters.

C.1 Network Architecture

Encoder For each modality, we employ individual feature extractors to process the input data. The
observed modalities consist of three stacked frames rendered at a resolution of 128×128. The input
channel numbers of stacked RGB, events, and depth data are therefore 9, 15, and 3, respectively. All
feature extractors share a similar network architecture comprising four convolutional layers, which
generate 256× 6× 6 feature maps at the last layer. After each convolutional layer, a ReLU layer is
applied. Additionally, FC layers are placed after the channel-concatenated global modality feature
map and each individual modality feature map, responsible for projecting the feature maps to 50-
dimensional latent vectors fg and {fMi}di=1.

Actor and Critic Network With the latent vectors fg and {fMi}di=1 as inputs, the actor network
generates parameters representing a Gaussian distribution over actions. This network architecture
comprises three FC layers, with the first two FC layers followed by the non-linear activation func-
tion ReLU. On the other hand, the critic network shares a similar structure to the actor network,
but it outputs a single value: the estimated Q-value for a given state-action pair. In our HAVE
framework, we have Md+1 critic networks in total. Among them, d critic networks are dedicated
to individual modality value estimation, evaluating the Q-value specific to each modality. Addition-
ally, one critic network is specifically designed for global modality value estimation, providing an
overall assessment across all modalities. By employing separate critic networks for each modality
and a dedicated global modality critic network, we can effectively estimate the values associated
with different modalities, enabling comprehensive value estimation in the joint learning of different
modalities.

Transition and Reward Prediction Network In our framework, we employ a total of Md+1 tran-
sition networks, including individual transition networks for each modality and a transition network
designed for the global modality. Here we take the global modality transition network as an ex-
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ample. Following the experimental setup described in [1], the transition network takes the current
latent vector observation fg

t of the global modality and the corresponding action at as inputs. It
then generates the inferred latent vector for the next global modality observation using two linear
layers. These linear layers have a hidden dimension of 512, and the first layer is followed by a
ReLU activation function. The purpose of the transition network is to model the dynamics of the
global modality and predict the next latent vector observation based on the current observation and
the chosen action. Similar to the global modality, the transition networks for other local modalities
follow a similar architecture but have different input and output dimensions based on the specific
modality. Each individual modality transition network is responsible for predicting the next latent
vector observation for its respective modality. Furthermore, there is a single reward prediction net-
work in our framework. This network shares a similar architecture with the transition network but
outputs a predicted reward with a dimension of one. The reward prediction network aims to esti-
mate the expected reward associated with a given state-action pair, providing crucial feedback for
reinforcement learning.

C.2 Environment Details

C.2.1 Weather Conditions

The eight weather conditions (ClearNight, ClearNoon, CloudyNight, CloudyNoon, HardRainNight,
HardRainNoon, WetNight and WetNoon) used in our study are predefined based on the default
parameters of the CARLA simulation environment. In addition to the eight predefined weather
conditions, we consider specific weather hyper-parameters of some extreme weathers, which are
outlined in detail in Table A3. These hyper-parameters provide a comprehensive understanding of
the weather conditions simulated during our study.

C.2.2 Modalities

RGB Camera: The “RGB" camera in our setup functions as a conventional camera, capturing
rich texture and color information of the scene. However, traditional cameras face two prominent
challenges. The first issue is motion blur, which occurs when the speed of motion in the scene
surpasses the camera’s sampling rate. This results in blurry images. Although motion blur can be
mitigated through algorithms, it often incurs significant computational costs, making it unsuitable
for real-time applications. The second challenge is limited dynamic range, which refers to issues
of underexposure or overexposure caused by varying lighting conditions. In instances of intense
sunlight, traditional cameras may struggle to capture objects within the field of view. Consequently,
we provide key parameters related to motion blur and dynamic range settings to address these chal-
lenges effectively, as shown in Table A2.

Events Camera: Event cameras, such as the Dynamic Vision Sensor (DVS), overcome the limita-
tions of traditional cameras at the sensor level. Unlike conventional cameras, event cameras solely
focus on observing “motion" or, more precisely, “changes in brightness" within the scene. When a
brightness change occurs, the event camera outputs a binary signal (1 or -1) indicating the brightness
change of the corresponding pixel. Event cameras exhibit distinct advantages, including a signifi-
cantly wider dynamic range (140 dB versus 60 dB) than traditional cameras, absence of motion
blur, and high temporal resolution (in the order of microseconds). These characteristics make event
cameras highly suitable for vision-based reinforcement learning tasks, as they excel at capturing
dynamic information. However, it is important to note that event cameras do not generate an image
if there is no pixel difference between two consecutive synchronous frames. Similar to conventional
cameras, event cameras may also experience hot spot noise, which can arise from pixel damage or
issues with the charging and discharging mechanism, resulting in the generation of high-frequency
events. To replicate the image characteristics produced by actual event cameras, we introduce noise
into our simulation. These noises emulate the inherent characteristics of event cameras. The specific
parameter settings for the noise generation are summarized in Table A2.

Depth Camera: The depth camera is not the main focus of our research, but it serves to validate the
effectiveness of our proposed method under multiple modalities. Therefore, no specific treatment
or customization is applied to the depth camera. We follow the default settings provided by the
CARLA simulation platform to obtain depth information. While it is not a primary focus, the depth
camera’s default configuration allows us to incorporate depth information into our experiments and
evaluate the performance of our method.
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Table A2: Hyper-parameter setting used in our experiments. The names of these parameters can be
found in the documentation of CARLA.

RGB
Exposure_speed_up 3.0
Exposure_speed_down 1.0
Blur_amount 1.0
Motion_blur_intensity 1.0
Motion_blur_max_distortion 0.8
Motion_blur_min_object_screen_size 0.4
Lens_flare_intensity 0.2
Shutter_speed 100.0

Events
Positive_threshold 0.3
Negative_threshold 0.3
Sigma_positive_threshold 0.05
Sigma_negative_threshold 0.05

Other setting of environment
Num_cars 20
Num_cameras 1

C.2.3 Reward Setting

For autonomous driving in CARLA, the goal of agent is to drive as far as possible on highway
without collision under diverse weather conditions. Thus the reward function is designed similar
to [6]:

rt = v⊤egoûhighway ·∆t− λc · collision− λs · |steer| − λb · brake (1)

where v⊤ego denotes the velocity vector of our agent vehicle, ûhighway is the unit vector of highway,
and ∆t = 0.1 is the discretized the simulation time. λc, λs and λb are set to 0.001, 0.1 and 0.1
respectively. The first term is designed to encourage the vehicle to travel as far as possible along
the highway. The last three terms are put in place to ensure the vehicle avoids collisions, minimizes
excessive steering, and refrains from abrupt braking.

C.3 RL-related hyper-parameters

The RL-related hyper-parameters of our experiments are detailed in Table A4. For a fair comparison,
we adopt the same hyper-parameters as in [2].

Table A3: Weather hyper-parameters used in our experiments.
Weather Parameters Dazzling Sunlight
Cloudiness 0.0
Precipitation 0.0
Precipitation_deposits 0.0
wind_intensity 0.0
fog_density 0.0
fog_distance 1000.0
wetness 0.0
sun_azimuth_angle 270.0
sun_altitude_angle 10.0

C.3.1 Hardware Details

Computing infrastructure We train all models with a server equipped with NVIDIA GeForce RTX
3090 GPUs and a 64-core AMD EPYC 7H12 2.6GHz CPU Processor.
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Table A4: RL-related hyper-parameters used in our experiments.
Hyperparameter Value
Frame rendering 128× 128
Stacked frames 3
Action repeat 1
Batch size 128
Discount factor λ 0.99
Init steps 1,000
Episode length 1,000
Learning algorithm Soft Actor-Critic (SAC)
Number of frames 120,000
Replay buffer size 100,000
Optimizer (encoder, actor, critic) Adam (β1 = 0.9, β2 = 0.999)
Optimizer (transition and reward prediction network) Adam
Learning rate (encoder, actor, critic) 1e-3
Learning rate (transition and reward prediction network) 1e-3
Learning rate (α in SAC) 1e-3
Batch size 128
Transition and reward prediction network update frequecy 1
Actor update freq update frequecy 1
Critic target update freq update frequecy 2

D Potential Negative Societal Impacts

Autonomous systems powered by reinforcement learning could be vulnerable to adversarial attacks,
leading to malfunctioning or rogue behavior. In the worst case, such systems could pose physical
dangers if they operate machinery or vehicles. On the other hand, reinforcement learning models,
especially those dealing with multi-modal data, can be complex and hard to interpret. This lack of
transparency can lead to a lack of trust in their decisions, especially in critical areas like healthcare
or autonomous vehicles.
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