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Abstract

Integrating RGB frames with alternative modality inputs is gaining increasing
traction in many vision-based reinforcement learning (RL) applications. Existing
multi-modal vision-based RL methods usually follow a Global Value Estimation
(GVE) pipeline, which uses a fused modality feature to obtain a unified global
environmental description. However, such a feature-level fusion paradigm with a
single critic may fall short in policy learning as it tends to overlook the distinct
values of each modality. To remedy this, this paper proposes a Local modality-
customized Value Estimation (LVE) paradigm, which dynamically estimates the
contribution and adjusts the importance weight of each modality from a value-
level perspective. Furthermore, a task-contextual re-fusion process is developed
to achieve a task-level re-balance of estimations from both feature and value lev-
els. To this end, a Hierarchical Adaptive Value Estimation (HAVE) framework
is formed, which adaptively coordinates the contributions of individual modalities
as well as their collective efficacy. Agents trained by HAVE are able to exploit the
unique characteristics of various modalities while capturing their intricate inter-
actions, achieving substantially improved performance. We specifically highlight
the potency of our approach within the challenging landscape of autonomous driv-
ing, utilizing the CARLA benchmark with neuromorphic event and depth data to
demonstrate HAVE’s capability and the effectiveness of its distinct components.
The code of our paper can be found at https://github.com/Yara-HYR/HAVE.

1 Introduction

Recent years have witnessed a renewed interest in multi-modal perception in the computer vision
research community [10, 36, 20, 26, 37]. For many visual tasks such as semantic segmentation
and object detection, the inclusion of multi-modal data (e.g., depth, infrared) is proven to be indis-
putably beneficial [41, 29, 49, 25]. This trend equally applies to the intelligent agents in vision-
based Reinforcement Learning (RL), in which multi-modal inputs can also promote decision ro-
bustness [39, 19, 1, 11, 31]. For instance, an autonomous-driving agent taking RGB frames solely
as input may frequently suffer from extreme light conditions, as shown in Fig. 1(a). Neverthe-
less, combining additional sensory inputs such as event signals coming from a neuromorphic event
camera [27] can effectively alleviate these problems, enabling a more comprehensive realization of
traffic status [5, 32, 12].
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Figure 1: Top: Desired modality contributions of (a) under-exposed RGB frame vs. high dynamic
range (HDR) event signals, and (b) clear RGB frame vs. event signals saturated by background
noise. Bottom: Multi-modal fusion at (c) the feature level, where only the fused modality feature is
used for value evaluation, and (d) the value level, where individual value estimation is conducted for
each modality to identify which one performs better under the current circumstance.

Despite the abundance of fruitful studies in the field of multi-modal visual perception, a majority
of them focus on traditional static learning tasks. In contrast, the dynamic and unlabeled nature of
RL renders the development of multi-modal agents exceedingly difficult [6]. To reconcile multi-
sensory data, existing methods [18, 36, 6, 22, 40] train the agents with fused modality features and
form a mixed global modality, as shown in Fig.1(c). The policy is then learned via Global Value
Estimation (GVE), in which the global modality feature is responsible for environment description
and then paired with action to compute a single Q-value. Although being an effective and widely
adopted paradigm, utilizing GVE alone may overlook the distinct task-related contributions of dif-
ferent modalities. Specifically, due to the diverse attributes of sensors, single modalities may not
contribute equally under multiple environmental conditions (e.g., the cases given in Fig. 1 (a) and
(b)). The feature-level fusion process in GVE, no matter how sophisticated, inevitably disregards the
unique value of each sensory data since only a single critic is shared over multiple modalities. As a
result, negative interference between modalities may occur and compromise learning performance.

Based on the above analysis, we propose Local modality-customized Value Estimation (LVE), as
illustrated in Fig. 1 (d). Different from feature-level fusion, LVE learns a single policy with distinct,
per-modality value calculation, forming a value-level fusion paradigm through a tailor-designed Q-
value weighting process. As a result, the modality-specific contributions can be explicitly estimated,
which promotes policy flexibility. In addition, while LVE is intrinsically a better alternative than
GVE, the two paradigms are not competitive but complementary. Considering this, we further de-
velop a task-contextual re-fusion process, which utilizes an efficient fusing network guided directly
by the task reward to reach a task-level balance between LVE and GVE. The collaboration of the
above components eventually forms a Hierarchical Adaptive Value Estimation (HAVE) frame-
work for multi-modal vision-based RL, yielding a potent policy that can flexibly leverage the unique
strengths of each modality while profiting from the comprehensive information from all modalities.
We specifically highlight the potency of our approach to the challenging autonomous driving task.
In particular, we explicitly consider the neuromorphic event camera [27] signals that capture the
motion information of the environment, which well-suites our task but has not yet been explored by
existing multi-modal RL algorithms.

In summary, the contributions of our work are three-fold: 1) We design a novel hierarchical adaptive
value estimation (HAVE) framework for multi-modal vision-based RL. HAVE distinctively features
a local modality-customized value estimation (LVE) paradigm to enable optimized reward allocation
based on modality importance. 2) We develop a task-contextual re-fusion process to merge the profi-
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ciencies of LVE and GVE, allowing HAVE to benefit from both particularized and unified modality
values. 3) Our approach achieves state-of-the-art performance on challenging autonomous driving
tasks. As the first multi-modal RL algorithm considering event camera signals as one of the in-
put modalities, our approach exhibits superior performance under various environmental conditions,
demonstrating its potential as an effective multi-modal vision-based RL solution.

2 Related Work

Vision-based RL aims to train agents that receive raw image-based observations from environments
for decision-making. Compared to state-based RL, vision-based RL has found significant use in
many practical tasks, from video game playing [34] to robotic manipulation [21]. However, learning
policy directly from such high-dimensional input is challenging. To tackle the problem, a consider-
able amount of works have been developed, including 1) applying data augmentation to increase the
diversity of samples [50, 24, 30], 2) introducing auxiliary tasks such as contrastive loss [23, 54, 2],
3) pretraining an encoder to improve the representational ability [51, 28, 42], and 4) modeling envi-
ronment dynamics in the latent space [17, 16, 38]. Although most vision-based RL methods adopt
RGB camera frames as inputs, some recent works have also started to explore new sensors and data
formats for RL, such as event cameras [46, 47] which captures fast and asynchronous light changes
with high temporal precision.

Multi-modal Visual Learning has been extensively studied in the field of computer vision [3].
With the development of sensor technologies, it becomes effortless to acquire sufficient data from
complemented visual modalities (e.g., RGB, infrared, depth, and event signals). As a result, many
multi-modal learning methods are proposed for traditional visual tasks, such as object detection [29]
and segmentation [10, 25]. For multi-modal RL, the agent’s observation space is modified to in-
clude all modalities. Recent works have started to focus on multi-modal vision-based RL due to
its improved effectiveness compared with using only single-modality data. Chen et al.propose a
multi-modal state-space model trained with mutual information lower-bound to promote the consis-
tency between the latent codes of each modality [6]. A fusion network is proposed by Khalil et al.to
produce accurate joint multi-modal perception and motion prediction for autonomous driving [22].
Ma et al.propose a multi-modal RL approach that focuses on modality alignment and importance
enhancement [31]. There are also multi-modal RL methods designed for other tasks such as robot
control [4] and dialog system [33, 53]. Despite their distinct technical details, most of the exist-
ing methods perform a feature-level fusion of modalities and ignore the properties of RL itself. In
fact, policy learning depends on the value estimation of the critic. Consequently, we view the multi-
modal visual RL problem from a novel adaptive value estimation perspective. Instead of concen-
trating solely on robust global modality features, our approach synergistically balances individual
modalities’ contributions, leading to a more equitable and efficient value allocation. Leveraging
the task-contextual re-fusion mechanism, our method further capitalizes on both feature-based and
value-based fusion paradigms, resulting in a more robust policy.

3 Methodology

3.1 Preliminaries

Problem Definition We formulate the task of multi-modal vision-based RL as a Markov Decision
Process (MDP) [44] with multiple observations, which is defined by a tuple (S,A,P,R, γ), where
S =

∏d
i=1 OMi is the joint observation space of d modalities and OMi is the observation space of

modality i. A is all possible actions the agent can take. P : S × A × S → [0, 1] is the transition
probability function, P(ot+1|ot, at) denotes the probability of transitioning from joint observation
ot = (oM1

t , oM2
t , . . . , oMd

t ) at time step t to the next joint observation ot+1 = (oM1
t+1, o

M2
t+1, . . . , o

Md
t+1)

after taking action at from a policy function π.

Soft Actor-Critic (SAC) Our approach is built on SAC [14, 15], which goal is to learn a policy that
maximizes the expected cumulative reward while maintaining exploration by encouraging diverse
actions. In SAC, the objective function is given by introducing a policy entropy term:

Lπ = Eat∼π [Q(ot, at)− α log π(at|ot)] , (1)
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Figure 2: HAVE framework and its distinct components. (a) Global Value Estimation (GVE), (b)
Local modality-customized Value Estimation (LVE), and (c) HAVE with task-level value re-fusion.

where Q is the value function, and α is a temperature parameter that controls the trade-off between
exploration and exploitation. The value function is trained using the Bellman equation and a soft
Q-function update:

LQ = E(ot,at)∼D

[(
Q(ot, at)−

(
R(ot, at) + γEot+1∼p [V (ot+1)]

))2]
, (2)

where ot and at are sampled from the replay buffer D and γ is the discount factor. V (ot+1) is the
soft state value function, defined as:

V (ot+1) = Eãt+1∼π

[
Q̄(ot+1, ãt+1)− α log π(ãt+1|ot+1)

]
, (3)

where Q̄ denotes an exponential moving average of the critic network Q and ãt+1 comes from the
current policy.

Event Cameras and Representations Despite RGB frames, another major modality that we use to
evaluate our approach is the event signals generated by a neuromorphic event camera [27]. Each
pixel in the event camera outputs a positive/negative event signal whenever the log light intensity
of that pixel has increased/decreased by a constant threshold. The event signals have an extremely
high dynamic range (up to 120 dB) and can reach a high temporal resolution in the order of µs.
Therefore, they are able to capture the missing motion clues that are missed in the RGB frames for
many visual tasks such as autonomous driving and robot navigation. To utilize event signals, we
use the stacking based on time (SBT) [48] representation that splits the event sequence into fixed
temporal bins, forming an event frame representation with multiple channels similar to RGB frames.

3.2 Global Value Estimation

In Global Value Estimation (GVE), a total of d observation encoders are used to extract observation
features fMi

t for each modality observation oMi
t at time step t. A global modality feature fg

t is
then calculated by fusing all modality features. For simplicity, we directly concatenate fMi

t (i =
1, 2, . . . , d) along the channel dimension. Given fg

t , GVE first computes the value estimation qgt =
Qθg (fg

t , at) using a single global critic network Qθg , as shown in Fig. 2(a). Following the SAC
algorithm, the target value ygt is then calculated as:

ygt = R(ot, at) + γV (fg
t+1), (4)

where R(ot, at) is the reward returned by the environment. The soft state value function V (fg
t+1) is

denoted as:
V (fg

t+1) = Eãt+1∼π

[
Q̄θg (fg

t+1, ãt+1)− α log π(ãt+1|fg
t+1)

]
. (5)

However, since using a single value function Qθg shared over all modalities, it is hard to dynamically
balance the relative contribution of each fMi

t under complex environmental conditions.
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3.3 Local Modality Customized Value Estimation

The objective of Local modality-customized Value Estimation (LVE) is to effectively differenti-
ate and quantify the unique contribution of each modality, thereby facilitating a more granular
and modality-aware decision-making process. Specifically, in LVE, d individual value functions
QθM1 , QθM2 , ..., QθMd are setup instead of global-only functions in GVE. These value functions
share the same network architecture but are learned separately. To facilitate value decomposition, an
assignment network is designed to assimilate all estimated values and re-calibrate them according
to the collective environmental condition portrayed by modality features.

Value Inference: We assume that the locally-aggregated total value qlt can be approximately decom-
posed into a linear combination of the separate value functions across different modalities under a
shared policy:

qlt ≈
d∑

i=1

wMi
t QθMi (fMi

t , at), (6)

where wMi denotes the contribution weight of modality Mi to the total value. The value function
QθMi for each modality processes the current individual modal observation feature fMi

t along with
the current action at, generating the estimated action values at each time step. Each QθMi is learned
by backpropagating gradients from the Q-learning rule. Similarly, the total target value ylt can be
defined as:

ylt ≈ R(ot, at) + γV (fM1
t+1, ..., f

Md
t+1). (7)

The soft state value function V (fM1
t+1, ..., f

Md
t+1) is then defined as:

V (fM1
t+1, ..., f

Md
t+1) = Eãt+1∼π

[
d∑

i=1

vMi
t+1Q̄

θMi (fMi
t+1, ãt+1)− α log π(ãt+1|fg

t+1)

]
, (8)

where vMi
t is the contribution weight of modality Mi to the the estimated Q-value from Q̄θMi at the

next time. ãt+1 ∼ π(·|fg
t+1) comes from the current policy according to the global modality feature

fg
t+1 since there is only one policy network for the multi-modal decision task.

Contribution Assignment: Given value decomposition in Eq. 6 and Eq. 7, a critical next step is
to calculate accurate modality weights wMi

t and vMi
t to ensure precise total value estimation. To

achieve this, the contribution assignment process involves modality interactions through an assign-
ment network based on the attention mechanism. Taking the calculation of wMi

t as an example, the
global modality feature fg

t is used as a bridge to ensure information flow between all individual
modalities. As demonstrated in Fig. 2(b), two fully connected (FC) layers with parameters Wq and
Wk are used to project both fMi

t and fg
t into a p-dimensional common latent subspace. Then wMi

t
can be obtained through a softmax function as:

wMi
t =

exp((Wqf
g
t )(Wkf

Mi
t )⊤/

√
p)∑d

i=1 exp((Wqf
g
t )(Wkf

Mi
t )⊤/

√
p)

, (9)

where
√
p is used for scaling to prevent vanishing gradients [45]. The computation of vMi

t+1 follows
a similar derivation, which is omitted here for brevity.

By assigning the value function in a modality-customized manner, LVE adeptly manages multi-
modal sensory inputs, enhancing model efficiency and interpretability. Our approach readily adapts
to complex environmental scenarios, accommodating varying modality importance levels.

3.4 Task-Contextual Re-fusion

Feature-based vs. Value-based Fusion From the details of GVE and LVE, we see that the main
difference distinguishing them is their fusion principle (feature-based vs. value-based). Intuitively,
the two paradigms are not competitive but complementary. Specifically, in the context of RL, value-
based fusion offers significant advantages over feature-based fusion since the former is more related
to the actual decision. In the meantime, the feature-based fusion method can use its collective modal-
ity value to offer a value-based one with a sturdy global reference, mitigating inaccuracies caused
by input noise. Therefore, we further develop task-contextual re-fusion for a subsequent re-fuse of
GVE with LVE in the reward/task level. The idea is to directly bridge the two fusion mechanisms
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based on environmental reward feedback, allowing the task to determine which paradigm better suits
the current situation.

Details of the Re-fusion Process Given the estimated value qgt and qlt obtained from GVE and
LVE, respectively, we adopt a dynamic fusion mechanism with a re-fusion network H to fuse qgt
and qlt. Specifically, H consists of a series of FC layers and hypernetworks. Each hypernetwork
consists of a single linear layer, which receives the global modality feature fg

t as input and produces
a weight matrix or a bias vector for a single FC layer in H. To fuse qgt and qlt, f

g
t is first sent into all

hypernetworks to obtain the parameters of the FC layers in H, then qgt and qlt are sent into H to get
the final total value H(qgt , q

l
t). The final target value can be obtained using a similar way, wherein

the estimated Q-value from the target Q-network at the next time is processed by another mixing
network H′. For brevity, we denote the this target value as H′(ygt , y

l
t).

3.5 Learning Framework

Coping GVE with LVE and task-contextual re-fusion, our approach forms a unified framework,
which we name as Hierarchical Adaptive Value Estimation (HAVE) for multi-modal vision-based
RL. In this section, we elaborate on the training details of our HAVE framework.

Policy Evaluation with HAVE For the training of policy evaluation, we minimize the temporal dif-
ference (TD) error between the predicted value H(qgt , q

l
t), and the target value H′(ygt , y

l
t) following

the SAC algorithm:
LQ = E(ot,at)∼D

[(
H(qgt , q

l
t)−H′(ygt , y

l
t)
)2]

, (10)

where D denotes the replay buffer.

Policy Improvement The policy evaluation described above can cover reasonable Q-values to help
find better policies. In the policy improvement step, we leverage the values obtained from GVE,
LVE, and the task-contextual re-fusion process to update the policy π. To be specific, the goal is to
maximize the expected cumulative reward by selecting actions that have the highest combined value
estimates:

Lπ = Eat∼π

[
H(qgt , q

l
t)− α log π(at|fg

t )
]
. (11)

After identifying the optimal action under the improved policy, we can update the policy parameters
by backpropagating gradients.

Auxiliary Losses Besides policy evaluation and improvement, we also learn to predict the rewards
and next latent states as in DeepMDP [13] to assist representation learning, providing a latent state
space that is consistent with environmental dynamics:

Laux = ∥Pg(fg
t , at)− fg

t+1∥2 +
d∑

i=1

∥PMi(fMi
t , at)− fMi

t+1∥2 + [Rg(fg
t , at)−R(ot+1, at+1)]

2
,

(12)
where Pg and PMi(i = 1, 2, . . . , d) are transition networks for the global and individual modalities,
respectively. Rg is the reward prediction network. All these networks are formed by FC layers and
a more detailed architecture description can be found in the supplementary material.

Overall Training Objective Given the above training objectives, the overall loss of HAVE is finally
defined by:

L = LQ + Lπ + Laux. (13)

By iteratively performing policy evaluation and improvement steps, HAVE can effectively exploit
the strengths of both global and distinct value estimates, ultimately converging to an improved policy
that can handle the challenges posed by a broad range of environmental modalities.

3.6 Further Analyses

Our hierarchical adaptive value estimation framework for multi-modal RL process offers several key
benefits, which we list as follows:

Remark 1 (Prevention of Modality Dominance): The mechanism of LVE and task-contextual re-
fusion prevents one modality from dominating the others, thereby avoiding the issue of modality
collapse.
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To realize this, consider that the mixing network H in the task-contextual re-fusion performs fixed
non-linear transformations on both qgt and qlt given fg

t , where qlt is formed by the convex combination
of individual modality values (Eq. 6) as in LVE. Therefore, we have:

sign(
∂H(qgt , q

l
t)

∂qMi
t

) = sign(
∂H(qgt , q

l
t)

∂qlt

∂qlt
∂qMi

t

) = sign(
∂H(qgt , q

l
t)

∂qlt
), ∀i ∈ [1, 2, . . . , d] , (14)

where sign(·) is the real sign function, qMi
t = QθMi (fMi

t , at) is the individual modality value

and ∂qlt
∂q

Mi
t

= wMi
t > 0 are the modality weights. Eq. 14 indicates that the contributions of all

modalities are either increasing or decreasing together during the learning process, which prevents
opposite gradient values between modalities that enhance some of them while suppressing others.
In addition, the calculation of modality weights wMi

t based on softmax global-individual feature
similarity (Eq. 9) further prevents modality collapse caused by persistent zero weights.

Remark 2 (Pareto Optimality of Modalities): Assuming continuous action space, the global opti-
mal action produced by our approach achieves a Pareto optimum across individual modalities.

Suppose the optimal action given some fixed modality features is a∗, which implies ∂H(qgt ,q
l
t)

∂a∗ = 0.
Combining Eq. 6 with the chain rule, we have:

∂H(qgt , q
l
t)

∂a∗
=

∂H(qgt , q
l
t)

∂qlt

∂qlt
∂a∗

=
∂H(qgt , q

l
t)

∂qlt

d∑
i=1

wMi
t

∂qMi
t

∂a∗
= 0. (15)

Considering the non-linear structure of H, ∂H(qgt ,q
l
t)

∂qlt
is unlikely to be zero for all qlt. This implies

that
∑d

i=1 w
Mi
t

∂q
Mi
t

∂a∗ = 0 for all i = 1, 2, . . . , d, which suggests that at the point a∗, the positive
weighted sum of the gradients of individual modalities’ values is zero. This implies that there is
no alternative action assignment in the vicinity of a∗ that can increase the value for any individual
modality without decreasing the value for some other modality. Such condition forms a Pareto
optimum across the modalities, which indicates the resources (modality values) are allocated in the
most efficient way possible [35].

4 Experiments

4.1 Settings

Environments To evaluate our approach under realistic and challenging multi-modal environments,
we employ the CARLA simulator [8], which is a widely used open-source platform for autonomous
driving research. CARLA provides a rich and realistic urban environment to evaluate autonomous
driving agents in various traffic scenarios. Three distinct modalities are adopted: 1) RGB frames,
2) event signals generated by CARLA’s synthetic event-camera simulator, and 3) per-pixel depth
frames. Eight different weather settings are used to provide thorough coverage of different envi-
ronmental conditions. The action space consists of continuous control actions, such as steering,
acceleration, and braking. Similar to [52, 9], the reward function is designed to encourage the agent
to maintain a safe distance from 20 other moving vehicles and obstacles, and drive as far as possible
along the highway of CARLA’s Town04 map in 1000 time steps. We use the single camera view
setting on the vehicle’s roof with 60-degree views.

Implementation Details Our approach is implemented based on SAC [14, 15] and DeepMDP [13].
The same encoder network architecture and training hyperparameters are adopted for all comparative
methods. Following common practices [50, 23], we convert each modality data into its correspond-
ing image-based representations and stack several consecutive images to infer temporal information.
The spatial resolution of the input images is 128× 128 and the channel numbers of RGB, event and
depth frames are 3, 5 and 1, respectively. All methods are trained for 120k frames across 5 random
seeds to report the mean and standard deviation of the rewards. We evaluate the performance of
each approach in terms of driving episode reward and distance. Other details are provided in the
supplementary material.
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Weather Measures SAC DrQ DeepMDP TransFuser EFNet Ours-LVE Ours-HAVE

ClearNight ER 186± 65 242± 84 225± 87 260± 95 241± 89 274± 68 319± 71
D(m) 112± 39 169± 41 161± 51 178± 43 170± 62 192± 50 212± 52

CloudyNight ER 218± 71 248± 69 265± 85 280± 71 289± 64 295± 67 322± 96
D(m) 132± 64 167± 36 183± 55 195± 43 197± 41 213± 44 217± 53

HardRainNight ER 170± 90 261± 91 255± 77 287± 65 275± 72 294± 85 327± 87
D(m) 107± 63 163± 63 160± 36 204± 56 203± 54 209± 54 229± 51

WetNight ER 189± 79 234± 97 241± 47 274± 76 290± 93 289± 112 304± 102
D(m) 127± 57 155± 53 164± 36 171± 58 201± 56 196± 61 222± 69

ClearNoon ER 235± 58 280± 94 269± 64 282± 53 234± 79 294± 82 336± 76
D(m) 153± 49 195± 40 187± 36 193± 39 150± 46 186± 61 223± 44

CloudyNoon ER 201± 87 274± 77 226± 24 277± 67 261± 78 293± 76 315± 82
D(m) 138± 68 170± 42 136± 16 171± 42 164± 58 186± 44 209± 68

HardRainNoon ER 189± 74 220± 72 248± 59 264± 99 279± 91 287± 95 316± 88
D(m) 104± 56 129± 60 161± 43 178± 62 208± 76 207± 69 218± 63

WetNoon ER 209± 81 245± 83 226± 52 304± 81 273± 82 296± 84 341± 78
D(m) 136± 64 172± 58 169± 38 213± 51 204± 70 215± 54 239± 55

Table 1: Comparison with state-of-the-art methods on eight different kinds of weather. ER denotes
episode return and D is distance in meters. The best results are bolded and the second best results
are underlined.

4.2 Comparison with State of the Art

We compare our method with a variety of methods, including the SAC [15] baseline, DeepMDP [13],
DrQ [50], TransFuser [7], and EFNet [43]. For RL methods SAC, DrQ and DeepMDP, we directly
concatenate the features of the different modalities as the input for subsequent value and policy learn-
ing. For TransFuser and EFNet which are designed for traditional visual tasks, we only adopt their
advanced modality fusion modules and keep DeepMDP as the RL algorithm for a fair comparison.

Results of Two Modalities We first evaluate different methods under two modality inputs (RGB
frames and event signals) in Table 1. The results show that our method achieves the highest episode
reward and driving distance under all eight weather conditions. DrQ and DeepMDP perform bet-
ter than the SAC baseline with limited improvement, showing that the feature-fusion based GVE
paradigm, together with simple feature concatenation, cannot fully extract the expressive power of
each modality. The improved performance of TransFuser and EFNet over DeepMDP reflects the
importance of the advanced modality feature fusion mechanism. However, they are still inferior
to ours-LVE, which uses the proposed LVE paradigm to explicitly assign modality contributions
weights with value-based fusion. The results indicate that the key to multi-modal RL is to consider
the suitability of individual modalities. Finally, by using the task-contextual re-fusion process to
integrate GVE and LVE, our full method achieve superior performance even with simple feature
concatenation fusion, proving the effectiveness of our task-driven hierarchical design.

Figure 3: Performance with three modalities.

Results of Multiple Modalities We then eval-
uate our method on three modalities (RGB
frames, event signals, and depth frames). Al-
though TransFuser and EFNet technically pos-
sible to scale both methods to accommodate
more than two modalities, such an adapta-
tion would require significant modifications to
the implementation, along with a quadratic
increase in computational complexity due to
cross attention mechanism. Thus we directly
compare our method with SAC, DrQ and DeepMDP. The training curves under two weather con-
ditions are demonstrated in Fig. 3, which also show the advantage of our methods. Additional
experiment results can be found in the supplementary material.

4.3 Performance Analysis

Ablation Studies To systematically evaluate the effectiveness of the proposed HAVE approach and
its individual components, we conduct a series of ablation experiments on the CARLA benchmark
that trains agents using: 1) single modality data with RGB frames or event signals, 2) GVE with
feature concatenation, 3) our proposed LVE paradigm, and 4) our full method. The training curves
and testing performance are shown in Fig. 4 and Tab. 2, respectively. First, we observe that the indi-

8



Figure 4: Training curves of individual modalities and different multi-modal training paradigms.

Methods Measures Night Noon
Clear Cloudy HardRain Wet Clear Cloudy HardRain Wet

RGB ER 75 ± 5 194 ± 36 189 ± 17 88 ± 23 214 ± 55 201 ± 37 223 ± 67 232 ± 74
D(m) 46 ± 21 121 ± 24 136 ± 15 53 ± 26 125 ± 42 121 ± 25 128 ± 51 141 ± 54

Events ER 158 ± 29 187 ± 32 164 ± 28 175 ± 29 145 ± 37 151 ± 41 154 ± 34 147 ± 40
D(m) 102 ± 23 129 ± 26 105 ± 21 120 ± 18 86 ± 27 92 ± 32 104 ± 21 86 ± 36

GVE ER 225 ± 87 265 ± 85 255 ± 77 241 ± 47 269 ± 64 226 ± 24 248 ± 59 226 ± 52
D(m) 161 ± 51 183 ± 55 160 ± 36 164 ± 36 187 ± 36 136 ± 16 161 ± 43 169 ± 38

LVE ER 274 ± 68 295 ± 67 294 ± 85 289 ± 112 294 ± 82 293 ± 76 287 ± 95 296 ± 84
D(m) 192 ± 50 213 ± 44 209 ± 54 196 ± 61 186 ± 61 186 ± 44 207 ± 69 215 ± 54

HAVE ER 319 ± 71 322 ± 96 327 ± 87 304 ± 102 336 ± 76 315 ± 82 316 ± 88 341 ± 78
D(m) 212 ± 52 217 ± 53 229 ± 51 222 ± 69 223 ± 44 209 ± 68 218 ± 63 239 ± 55

Table 2: Test performance of different models in Fig. 4. Table notations are the same as in Table 1.
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Figure 5: Visualization of modality weights during testing. Note that only weights of RGB frames
are drawn and the weights of event signals are one minus RGB frame weights at any time step.

vidual modality is vulnerable to failure under extreme weather conditions. For example, the episode
reward trained with RGB frame under ClearNight weather is pretty poor as shown in Fig. 4. Second,
directly fusing the two modalities with GVE generally improves performance. However, the perfor-
mance gain is limited, and in some cases even close to the results of using a single modality (e.g., in
WetNight and ClearNoon). This might be caused by the heterogeneity of multi-modal data, which
leads to difficulty in determining the target reward. Third, in most cases, LVE performs significantly
higher than single modality or GVE-based agents, showing better cooperation of different modality
data. Finally, our full method with task-contextual re-fusion clearly outperforms all other models
thanks to the synergistic interplay of GVE and LVE at the reward/task-level.

Visualization To further obtain an intuitive understanding of our approach, we visualize the modal-
ity weights obtained by HAVE in Fig. 5 using RGB frames and event signals under two different
weather conditions. The following observations can be made: 1) at the beginning, all vehicles have
zero initial speed. As a result, no valid event signal is generated and the weights of RGB modality
are nearly 1.0. 2) After speeding up, the weights of event signals are continuously increasing, espe-
cially when there are many moving vehicles ahead. 3) However, when the agent is facing complex
background (such as road fences and clear roads without close vehicles), the event signals mainly
consist of background noise, and the weights of RGB frames will raise again. The varying modality
weights show that our approach can indeed adjust modality contributions under different situations,
which serves as a key advantage over previous multi-modal RL methods.
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5 Conclusion and Limitation

We have studied the representational capacity of value functions in multi-modal vision-based RL
problems. We hypothesize that the limitation of feature-level fusion methods may come from un-
clear contributions for different modalities under a single value function. To mitigate this, we have
presented a novel Hierarchical Adaptive Value Estimation (HAVE) framework to reconcile both
feature-level and value-level fusion in a task/reward-driven manner. Our approach represents one of
the first explorations of modality-specific and hierarchical value estimation for multi-modal vision-
based RL tasks. Extensive experiment results demonstrate the effectiveness of our approach. How-
ever, one limitation of our work is that we mainly focus on the value estimation of multiple visual
modalities, while the effectiveness of other forms of modalities (e.g., audio, text) is not verified.
In our future work, we will consider utilizing both visual and other modalities, forming a more
generalized multi-modal RL framework.
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