
CROSSCODEEVAL: A Diverse and Multilingual
Benchmark for Cross-File Code Completion

Yangruibo Ding1∗ Zijian Wang2,∗ Wasi Uddin Ahmad2,∗

Hantian Ding2 Ming Tan2 Nihal Jain2 Murali Krishna Ramanathan2

Ramesh Nallapati2 Parminder Bhatia2 Dan Roth2 Bing Xiang2
1Columbia University 2AWS AI Labs

yrbding@cs.columbia.edu {zijwan,wuahmad}@amazon.com
https://crosscodeeval.github.io

Abstract

Code completion models have made significant progress in recent years, yet current
popular evaluation datasets, such as HumanEval and MBPP, predominantly focus
on code completion tasks within a single file. This over-simplified setting falls short
of representing the real-world software development scenario where repositories
span multiple files with numerous cross-file dependencies, and accessing and
understanding cross-file context is often required to complete the code correctly.
To fill in this gap, we propose CROSSCODEEVAL, a diverse and multilingual
code completion benchmark that necessitates an in-depth cross-file contextual
understanding to complete the code accurately. CROSSCODEEVAL is built on a
diverse set of real-world, open-sourced, permissively-licensed repositories in four
popular programming languages: Python, Java, TypeScript, and C#. To create
examples that strictly require cross-file context for accurate completion, we propose
a straightforward yet efficient static-analysis-based approach to pinpoint the use of
cross-file context within the current file.
Extensive experiments on state-of-the-art code language models like CodeGen and
StarCoder demonstrate that CROSSCODEEVAL is extremely challenging when the
relevant cross-file context is absent, and we see clear improvements when adding
these context into the prompt. However, despite such improvements, the pinnacle
of performance remains notably unattained even with the highest-performing
model, indicating that CROSSCODEEVAL is also capable of assessing model’s
capability in leveraging extensive context to make better code completion. Finally,
we benchmarked various methods in retrieving cross-file context, and show that
CROSSCODEEVAL can also be used to measure the capability of code retrievers.

1 Introduction

Language models for code (code LMs), such as Codex (Chen et al., 2021), CodeGen (Nijkamp
et al., 2023b,a), and StarCoder (Li et al., 2023), have demonstrated their power to enhance developer
productivity through their promising results in code completion tasks. To evaluate these models,
researchers propose multiple code completion evaluation benchmarks, (e.g., Chen et al., 2021; Lu
et al., 2021; Athiwaratkun et al., 2023; Austin et al., 2021), where the model is asked to complete
the code given the context in the current file. However, such an evaluation setting is over-simplified,
and it is not able to reflect the model’s capability in code completion accurately. Specifically, in the
realm of modern software development, repositories consist of multiple files, each interwoven with

∗ Equal Contribution. Work done while Yangruibo Ding was an intern at AWS AI Labs.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://crosscodeeval.github.io

Figure 1: Code LM fails to complete a Python test case since the in-file context (left figure) does
not provide sufficient information. The function name from the current file indicates that the
completing function is a test case for convert_camel_to_snake, so with only such context, the
model hallucinates wrong completion as convert_camel_to_snake. However, the failure is not
due to the model’s capacity, but the necessary cross-file context is not present (right figure). When
the class CaseConverter is present in the prompt, the model generates camel_to_snake correctly.

extensive cross-file dependencies, i.e., contextual information from other source code files within the
same repository. A significant drawback of most existing benchmarks is their tendency to overlook
these complex dependencies. As a result, they fall short of providing a comprehensive evaluation of
code completion models within realistic real-world scenarios.

Figure 1 illustrates the limitation of common code completion evaluation sets with a real example.
The developer is writing a test case for a class, CaseConverter, implemented within the current
repository. CodeGen-2B-mono (Nijkamp et al., 2023b), a large Python code LM, fails to complete
the API call if only the current file context is present.

Motivated by such examples and to fill in the need of evaluating code completion in realistic software
development with numerous intervening cross-file context dependencies, we propose CROSSCODEE-
VAL, a diverse and multilingual benchmark to evaluate code language models’ ability to use cross-file
context for code completion. This new dataset is composed of 10k examples from 1k repositories in
4 languages. Unlike existing datasets where the correct answer could be predicted with only context
from the current file, CROSSCODEEVAL strictly requires cross-file context to correctly complete the
missing code (§2.2). CROSSCODEEVAL’s examples are carefully curated from existing open-sourced
repositories with a series of quality filters, and we ensure CROSSCODEEVAL has minimal overlap
with the training data from existing code LMs, eliminating the confounder of data leakage and
memorization in result interpretation (§2.1 & 2.3).

We conducted a comprehensive evaluation of popular public and proprietary code LMs: CodeGen
(Nijkamp et al., 2023b,a) and StarCoder (Li et al., 2023) in various sizes from 350M to 16B
parameters, and OpenAI’s GPT-3.5-Turbo in §3. Empirical results reveal that when given only
the current-file context, these models yield suboptimal results. Remarkably, incorporating cross-file
context into the prompt significantly enhances the performance of these code LMs, even in a zero-
shot setting. This underscores that CROSSCODEEVAL effectively serves its goal as a benchmark
aimed at evaluating cross-file code completion. Moreover, even when providing cross-file context in
the prompt, the performance of the most powerful models remains notably imperfect, highlighting
that CROSSCODEEVAL is also instrumental in assessing a model’s ability for leveraging extensive
context in code completion. Lastly, we benchmarked various retrieval methods from sparse to dense,
demonstrating that CROSSCODEEVAL can additionally serve as a benchmark for code retrieval.

2 CROSSCODEEVAL: A Benchmark for Cross-File Code Completion

CROSSCODEEVAL is a diverse and multilingual scope completion dataset in four popular languages:
Python, Java, TypeScript, and C# where examples include code prompts ending in an imagined cursor
position and references include the code token sequences from the cursor position to the end of the
statement. CROSSCODEEVAL examples have a key property - the statement to be completed must

2

Figure 2: We replace the third import statement, which is from the same repository, with an empty
class. Consequently, camel_to_snake in the last line becomes an undefined name in the modified
file. Thereby, we know this method in the original file is defined only in the cross-file context.

have at least one use of local API (classes, variables, and methods defined in the software repository).
Next, we briefly describe how we collect the software repositories (§2.1), select a subset of them
for CROSSCODEEVAL construction (§2.2), post-processing and quality control process (§2.3), and
CROSSCODEEVAL statistics and future scope for extending the dataset (§2.4).

2.1 Dataset Collection

We collect permissively licensed repositories from GitHub. To mitigate potential data leakage issues,2
we focus on repos that were created recently and not forks. Specifically, we collected repos created
between 2023-03-05 to 2023-06-15 on 2023-09-01. The time span ensures sufficient data collected
with no overlap with the training data of many existing code LMs released before mid-2023, no
matter whether the data is publicly available or not. We limit repos to contain the four languages we
study and we keep only repos with zipped file size < 1MB and number of stars >= 3. Then we filter
out repos that have fewer than 10 or more than 50 source code files. Finally, we remove the repos
with at least one source code file that exactly matches one of the code files in the commonly used
Stack (Kocetkov et al., 2022) dataset. As a result, we ended up with 471, 239, 193, and 99 repos,
respectively.

2.2 Dataset Generation

We propose a static-analysis-based method to identify code fragments that require cross-file context
automatically. Our approach is illustrated in Fig 2. First, we find all intra-project imports in the
original file. Next, an empty class is created for each imported name to replace the import statement.
Since the imported name now refers to an empty class, any subsequent call to its member function or
attribute will raise an undefined name error. We leverage static analysis to catch such errors in the
modified file, which precisely correspond to the names in the original file that can only be resolved
by cross-file context. We map the location of undefined names back to the original file to determine
the split point of the prompt and the reference.

To increase the variety in the dataset, we randomly select a tree-sitter3 token in the same line before
the cross-file entity to be the cursor location, splitting the code to a prompt and a reference. It is
often the case that the same cross-file API is called multiple times in a file, and there is a chance for
models to infer the API name from previous calls even without cross-file context. Therefore, if the
same undefined name is reported at multiple places in a file, we keep only the first occurrence. In this
work, we focus on instantiating our approach in the four popular programming languages, while the
idea can be generalized to other languages in principle. Specifically, for Python, we use Pylint4

to detect undefined names; for Java, we use javac compiler; for TypeScript, we use tsc compiler;

2Overlapping between CROSSCODEEVAL and data used to pretrain code LMs.
3https://tree-sitter.github.io/tree-sitter/
4Pylint is a static code analyzer for Python: https://pylint.readthedocs.io/en/latest/

3

https://tree-sitter.github.io/tree-sitter/
https://pylint.readthedocs.io/en/latest/

for C#, we use csc compiler from the mono5 image. We use tree-sitter to identify full statements to
construct reference completions in Python. For Java, TypeScript, and C#, we consider statements
ending with either “;”, “{”, or “}”. See Appendix A for more details.

2.3 Post-processing and Quality Control

We designed a series of rule-based and model-based post-processing filters to ensure the quality of the
dataset. We filter examples if (1) fewer than N lines of code (lines not including import statements,
where N = 10, 20, 30, 5 for Python, Java, TypeScript, and C#) in the prompt, (2) too short (< 3
tokens), or long (> 30 tokens) reference. We exclude examples if the references are found verbatim
in any other source code file within the repository (i.e., cross-file). We further discard examples with
duplicate references. The filtering steps collectively remove 15%-20% of the examples.

Moreover, to ensure that the reference isn’t predictably inferred solely from the current file (possibly
owing to strong clues in function names and comments), we feed the examples (input prompts)
to starcoderbase-1B model (Li et al., 2023) to complete the statement and remove the exact
matches. This step results in the removal of <10% of the generated examples. As an ancillary
benefit, this further safeguards that the examples are not seen by publicly available code LMs while
CROSSCODEEVAL is constructed based on repositories that do not overlap with the Stack and possibly
other private pre-training datasets created prior to 2023. Finally, we perform human annotations on a
subsample of the resulting CROSSCODEEVAL and found that the dataset has a satisfactory quality to
serve the goal of cross-file code completion. See Appendix B for more details.

2.4 Dataset Statistics, Scope, and Future Extensions

Feature Python Java TypeScript C#

Repositories 471 239 193 99
Files 1368 745 779 642
Examples 2665 2139 3356 1768
Avg. # lines in prompt 90.6 106.7 116.5 71.1
Avg. # tokens in prompt 938.9 995.3 944.9 584.1
Avg. # lines in reference 1.0 1.1 1.7 1.7
Avg. # tokens in reference 13.2 14.5 17.4 12.5

Table 1: CROSSCODEEVAL statistics.

Statistics We present the statis-
tics of CROSSCODEEVAL in Ta-
ble 1. We use the StarCoder tok-
enizer (Li et al., 2023) to compute
the number of tokens.

Scope In addition to prompts
and references, we include the
code lines that follow the refer-
ences from the original source
code files in CROSSCODEEVAL
examples. Given the source code
lines to the left (prompt or prefix) and right (suffix) of the references, CROSSCODEEVAL can be used
to evaluate code LMs for their fill-in-the-middle (FIM) capabilities (Bavarian et al., 2022).

Future Extensions CROSSCODEEVAL currently supports four popular languages. As our method
is generalizable, CROSSCODEEVAL can potentially be extended to other languages. Additionally, we
advise future code LM pre-training datasets should explicitly exclude CROSSCODEEVAL to minimize
the effect of memorization.

3 Experiments

3.1 Models

We benchmark CROSSCODEEVAL with popular public and proprietary large language models.

CodeGen (Nijkamp et al., 2023b,a) is a series of generative code LMs. CodeGen supports left-only
context. CodeGen2.5 notably supports fill-in-the-middle and further improves the performance via
multi-epoch training. We benchmarked CodeGen models at various sizes from 350M to 16B.

StarCoder (Li et al., 2023) is a generative multi-query-based code LM with 15.5B model parameters
trained on The Stack dataset (Kocetkov et al., 2022). It supports up to 8k tokens. We also benchmarked
its base version with at varied sizes: 1B, 3B, and 7B.

5Mono is an open-source implementation of the .NET Framework: https://www.mono-project.com/

4

https://www.mono-project.com/

Figure 3: An illustrative example to showcase the use of in-file context, retrieved cross-file context,
and retrieved context using reference in prompts. While the baseline prompting uses in-file context
only, “Retrieval” and “Retrieval w/ Ref.” prompting uses retrieved contexts by prepending them to
the in-file context.

GPT-3.5-turbo (Ouyang et al., 2022) is one of the most powerful models developed by OpenAI. It
was trained with comprehensive text and code data and supports up to 4k max sequence length. Its
model weight remains proprietary and is accessible exclusively via APIs.

3.2 Evaluation Metrics

In evaluating the performance of code language models, we report performance in two main categories:
code match and identifier match (Ding et al., 2022).

Code Match The code match metric directly compares the generated code with the reference and
is measured using exact match (EM) and edit similarity (ES). These metrics help to assess the overall
accuracy of the code completion process, taking into account elements such as identifiers, keywords,
operators, delimiters, and literals.

Identifier Match This metric evaluates the model’s ability to predict the correct application
programming interfaces (APIs). To perform this evaluation, we first parse the code and extract the
identifiers from the model prediction and reference, resulting in two ordered lists of identifiers. We
then compare the predicted identifiers with the reference and report the results in EM and F1 score.

3.3 Experimental Setup

Our evaluation framework is based on the Transformers (Wolf et al., 2020) library. All the experiments
are conducted with the zero-shot setting, and no training is involved. We use the same set of
hyperparameters for code generation across all models. We set the maximum sequence length to
2,048 for the CodeGen family, 4096 for GPT-3.5-turbo, and 8,192 for the StarCoder family. We use a
maximum generation length of 50 and the rest as the prompt.

We explore greedy search and nucleus sampling (Holtzman et al., 2020) with reranking (Hossain
et al., 2020). We found there is no significant difference between the two, and we present the greedy
search results in the main paper and refer readers to Appendix D.2 for nucleus sampling.

We post-process model predictions to extract statements.6 For Python, we iteratively parse the
concatenation of prompt and n completion tokens (e.g., n = 1, 2, . . . , 50) until the sequence becomes

6We apply the same post-processing on the references before calculating the evaluation metrics.

5

parseable (no syntax error) and the (n+ 1)-th completion token is a newline character.7 For Java,
TypeScript, and C#, we consider statements ending with “;”, “{” and “}”, instead of a new line.

Only In-File Context In standard practice, pre-trained language models are utilized to perform
code completion in a zero-shot manner by taking into account the provided code context. Following
the practice, we conduct experiments using the code LMs (3.1), where they are provided code context
from the current file. As shown in Figure 3, the baseline prompt includes only in-file context.

Retreived Cross-file Context Inspired by the effectiveness of the recently proposed retrieve-and-
generate (RG) framework for repository-level code completion (Zhang et al., 2023), we adopt it for
cross-file context retrieval.8 In the RG framework, the retrieval database is constructed by iteratively
scanning the files in the repository and extracting contiguous M lines (in all our experiments,
M = 10) of non-overlapping code fragments, which are the candidates for cross-file context retrieval.
The query for the retrieval is built using the last N lines (we set N = 10) of the in-file context. We
use BM25 (Robertson et al., 2009) to calculate the similarity between the query and the candidates
(cross-file context chunks), and use the top-5 similar code snippets as the cross-file context, see
“Retrieval Context" in Figure 3. We consider a maximum of 512 BPE tokens for such context, and the
rest of the tokens will be truncated. Figure 3 illustrates9 the retrieved context and the corresponding
prompt for the model to complete. Given the in-file context as a query, the RG framework successfully
retrieves the class definition of CaseConverter that is in another file for utilities. We further wrap
the class definition into a template as code comment and use it as the cross-file context. To build the
retrieval prompt, we prepend the retrieved context to the in-file context.

Retrieval with Reference To quantify the upper bound impacts of cross-file context retrieved by
the RG framework, we devise “retrieval with reference" for comparison. In this setting, we make use
of not only the in-file context (as in standard retrieval setting) but also the reference to retrieve the
cross-file context. Specifically, the query is constructed by using the last N lines of the concatenation
of the in-file context and the reference completion, instead of the in-file context only in the standard
retrieval setting. We prepend the retrieved context (i.e., “Retrieval w/ Ref. Context") to in-file context
to construct the prompt for this setting.

Note that the Retrieval w/ Ref. context could not be applied to the realistic code completion, as the
reference completion is unknown. We use it as an estimation of the upper bound model performance
with the RG framework. Also, the model’s performance in this setting is not optimal, as it can still be
limited by imperfect retrieval and the model’s capability in making use of retrieved code, and we
perform additional benchmarking and analysis on retrieval methods later in §3.5.

3.4 Results

We present results in Table 2 and additional results in Table 7. We see that all models perform poorly
when the prompt includes only the in-file context. For example, the best-performing StarCoder
model at 15.5B size only reports 8.82% code exact match in Python. Even a large code LM
struggles to achieve promising performance in completing CROSSCODEEVAL samples with only
in-file context since it could not provide sufficient clues for code completion. This shows the design
of CROSSCODEEVAL that cross-file context is necessary to complete the code correctly.

The performance improves dramatically when the cross-file context is added to the prompts across
all models and sizes. Figure 4 shows the significant improvements resulting from the inclusion of
cross-file context in CodeGen and StarCoder models. Looking at Table 2, we see that the StarCoder
model reports up to 3.0× and 4.5× better exact code match when including retrieved and retrieved
with reference context respectively. The results underline the limitation of existing datasets that only
consider the in-file context to evaluate code LMs, making these datasets insufficient in reflecting
models’ best capacity in real-world scenarios. In contrast, CROSSCODEEVAL maintains the cross-file

7We manually verified that this is required to extract full statements in Python.
8We tried to use the code made publicly available by the authors of Zhang et al. (2023) but failed to execute

them with the provided instructions. As a result, we implemented the RG approach by ourselves. Note that,
unlike Zhang et al. (2023), we perform only 1-step retrieval augmented generation.

9For the convenience of illustration, we remove the irrelevant code snippets from the retrieved context to
avoid confusion. In practice, the retrieved context spans across a fixed length of lines, which includes useful
information as well as its surrounding lines. More implementation details are in Appendix C.

6

contexts for code completion samples, providing resources to both identify the model’s best capacity
and analyze the model’s behavior when seeing a more comprehensive context.

Model
Code Match

Python Java TypeScript C#
EM ES EM ES EM ES EM ES

CodeGen25-7B 7.73 59.34 10.43 62.05 7.81 57.56 4.36 58.99
+ Retrieval 14.52 64.40 16.88 64.35 12.57 60.08 13.01 63.86
+ Retrieval w/ Ref. 19.17 67.46 20.20 66.17 15.35 62.73 17.87 66.14

StarCoder-15.5B 8.82 61.08 9.96 63.25 6.35 51.22 4.47 59.80
+ Retrieval 15.72 66.28 17.48 66.10 8.31 44.87 13.57 65.00
+ Retrieval w/ Ref. 21.01 68.66 19.92 67.75 11.02 46.67 20.08 67.97

GPT-3.5-turbo 4.88 52.58 12.30 63.52 6.38 53.78 3.56 56.48
+ Retrieval 10.77 54.92 19.12 65.61 10.94 55.83 11.82 62.40
+ Retrieval w/ Ref. 15.72 58.88 22.72 68.50 14.15 58.40 17.65 66.07

Model
Identifier Match

Python Java TypeScript C#
EM F1 EM F1 EM F1 EM F1

CodeGen25-7B 14.26 46.02 16.60 51.43 12.46 47.75 7.69 33.81
+ Retrieval 22.96 53.68 24.03 55.48 17.85 51.27 17.36 43.56
+ Retrieval w/ Ref. 28.33 57.95 27.91 57.87 21.51 55.38 21.78 47.63

StarCoder-15.5B 15.72 48.16 18.28 53.23 11.86 43.53 8.54 34.33
+ Retrieval 24.77 55.57 25.95 57.74 14.09 39.50 18.04 44.38
+ Retrieval w/ Ref. 30.24 59.46 29.73 60.47 17.55 42.18 24.38 49.09

GPT-3.5-turbo 10.09 39.18 18.93 52.52 10.76 44.78 5.77 30.25
+ Retrieval 17.37 44.43 26.74 56.57 16.69 48.15 15.44 41.24
+ Retrieval w/ Ref. 23.49 50.14 31.79 60.52 20.65 51.54 21.72 47.21

Table 2: Performance of various code LMs on CROSSCODEEVAL.“Retrieval” and “Retrieval w/ Ref.”
mean we construct the prompt by prepending the retrieved cross-file context retrieved with the prompt
and the prompt + reference (see §3.3 for details). The performance with no cross-file context (first
row in each section) is generally poor. When prompts are augmented with cross-file context (middle
row in each section), the performance increases significantly. The use of reference completion in
formulating the query for cross-file context retrieval (last row in each section) shows the upper bound
of the retrieve-and-generate (RG) approach. Results of other models are in Table 7.

3.5 Analysis and Discussions

Improved vs. Degraded Code Completions Table 3 presents changes in the number of correct
completions (based on exact match to the references) across different prompt settings. The results
suggest that all models follow a trend that the performance improves with better cross-file context
(In-file → Retrieval → Retrieval w/ Ref.). However, the variation of correct/incorrect generation
is significant; for example, when changing from Retrieval to Retrieval w/ Ref. with StarCoder in
CROSSCODEEVAL Python, we see 327 correct generations changed to incorrect, and 468 generations
changed the other way around. Upon manual inspections, we see that the retrieval of the correct
cross-file context plays a huge role, as the quality of the retrieval directly correlates with whether
the model is able to generate correctly. This effect is further enhanced by the fact that the retrieval
happens in fixed lines of code that do not often follow code structure, making it difficult for the model
to digest, especially at zero-shot settings, echoing results from Zhang et al. (2023). This highlights
that the current best models are still imperfect in leveraging extensive context to make better code
completion. Further, it calls for additional studies in optimizing the retrieval methods for code: we
show benchmarking with various retrieval methods later in the section.

7

Model Python Java

In-file → Ret. → Ret.
w/ Ref In-file → Ret. → Ret.

w/ Ref

CodeGen-350M +72 −68
+182 +186 −166

+237 +257 +75 −71
+145 +149 −135

+158 +172

CodeGen-16.1B +183 −162
+311 +332 −259

+371 +444 +150 −133
+233 +250 −209

+251 +292

CodeGen25-7B +206 −172
+353 +387 −306

+430 +511 +223 −179
+317 +361 −277

+348 +432

StarCoder +235 −192
+376 +419 −327

+468 +560 +213 −167
+328 +374 −300

+352 +426

Model TypeScript C#

In-file → Ret. → Ret.
w/ Ref In-file → Ret. → Ret.

w/ Ref

CodeGen-350M +93 −85
+127 +135 −128

+168 +175 +16 −16
+58 +58 −51

+108 +115

CodeGen-16.1B +151 −140
+226 +237 −218

+289 +308 +32 −29
+95 +98 −85

+138 +151

CodeGen25-7B +262 −226
+386 +422 −341

+434 +515 +77 −62
+215 +230 −189

+275 +316

StarCoder +213 −198
+264 +279 −241

+338 +376 +79 −66
+227 +240 −195

+310 +355

Table 3: The numbers of correct code completions using different code generation models on the
CROSSCODEEVAL benchmark. “In-file" refers to the prompts being constructed only with in-file
context, and “Retrieval" and “Ret. w/ Ref" refer to the prompts being constructed with the retrieved
contexts described in §3.3.

Figure 4: Performance of models in various sizes.

Scalability of Model Performance Figure 4
visualizes how the performance of CodeGen and
StarCoder scales w.r.t. model sizes. We see the
performance increases following the power law
in all settings as expected (Kaplan et al., 2020).
However, again the performance is far from per-
fect even with the best performing model with
the best context retrieved.

Locations of Retrieved Cross-file Context To
identify relevant cross-file context, we retrieve
code snippets from other files of the repository.
To understand which files contribute to the cross-
file context, we further conduct a study on the
retrieved code snippets. To analyze the code snip-
pets retrieved for each prompt, we examine the
files to determine whether they meet the follow-
ing criteria: (1) they are imported by the target
file, (2) they are located in the same directory as
the target file, (3) they have a similar name to
the target file (with filename sharing at least one token, assuming snake-case or CamelCase style
filenames), and (4) they include at least one API import within the project, similar to the target file.
Our analysis shows that most of the code snippets are sourced from files that are either from the same
directory with the target file (Python: 49.0%, Java: 37.8%, TypeScript: 51.3%, C#: 51.7%), or have
similar names (Python:33.4%, Java:44.5%, TypeScript: 24.9%, C#: 39%). We also observed that
target files and cross-files often share at least one intra-project API import statement. This result
aligns with the findings of Zhang et al. (2023).

Identifier Overlap with Retrieved Cross-file Context Identifiers are a significant part of pro-
gramming language constructs that cover API mentions in a source code. Therefore, we examine
the distribution of the retrieved cross-file contexts for examples in CROSSCODEEVAL that include
mentions of identifiers that are also present in the references. In Figure 5, we show the distribution
and the identifier exact match performance achieved by the best performing code LM, StarCoder.
In general, it is evident that an increased ratio of identifier overlap results in higher performance,

8

(a) Python (b) Java

(c) TypeScript (d) C#

Figure 5: Distribution of the examples according to identifier overlap between the retrieved cross-file
context and the reference completion. We also show the corresponding identifier exact match scores.

Model Retriever
Code Match

Python Java TypeScript C#
EM ES EM ES EM ES EM ES

CodeGen25-7B - 7.73 59.34 10.43 62.05 7.81 57.56 4.36 58.99
+ Retrieval BM25 14.52 64.40 16.88 64.35 12.57 60.08 13.01 63.86
+ Retrieval w/ Ref. BM25 19.17 67.46 20.20 66.17 15.35 62.73 17.87 66.14
+ Retrieval UniXCoder 13.73 64.21 15.61 63.67 12.10 59.82 12.39 63.82
+ Retrieval w/ Ref. UniXCoder 18.01 66.46 18.19 65.23 14.84 61.66 16.46 65.20
+ Retrieval OpenAI ada 14.82 65.00 17.77 64.48 12.75 60.02 14.71 65.35
+ Retrieval w/ Ref. OpenAI ada 18.39 66.80 20.94 66.27 15.58 62.65 20.43 68.65

StarCoder-15.5B - 8.82 61.08 9.96 63.25 6.35 51.22 4.47 59.80
+ Retrieval BM25 15.72 66.28 17.48 66.10 8.31 44.87 13.57 65.00
+ Retrieval w/ Ref. BM25 21.01 68.66 19.92 67.75 11.02 46.67 20.08 67.97
+ Retrieval UniXCoder 15.87 66.07 16.83 66.09 7.87 44.67 11.93 63.90
+ Retrieval w/ Ref. UniXCoder 19.32 68.33 19.45 67.51 10.28 46.85 16.63 66.30
+ Retrieval OpenAI ada 16.47 66.72 17.53 65.98 8.43 45.08 15.39 66.21
+ Retrieval w/ Ref. OpenAI ada 20.53 68.50 21.69 68.11 11.83 47.31 23.49 70.56

Table 4: Evaluation results of various sparse and neural methods in retrieving cross-file context.
Identifier Match results are in Table 9.

demonstrating a positive correlation. This calls for an investigation into retrieval techniques, with a
particular emphasis on key terms like identifiers for cross-file context retrieval.

CROSSCODEEVAL as Code Retrieval Benchmark The observations above (e.g., imperfect upper
bound performance and identifier overlap) underscore the critical role of the code retrieval method.
Given the strong dependency that the correct prediction requires an accurate retrieval of relevant
cross-file context, we propose to use CROSSCODEEVAL as a code retrieval benchmark. We perform
experiments with different retrievers from sparse (BM25 as we used in the rest of the experiments) to
neural (UniXCoder (Guo et al., 2022) and OpenAI embedding10). For UniXCoder, we use a max

10We use text-embedding-ada-002.

9

sequence length of 256 per 10-line chunk and for OpenAI embedding we use 8,000. We use the
cosine similarity of the embedding of the prompt and the chunks to retrieve top 5 chunks.

Table 4 shows the results with these retrieval methods. On one hand, we see BM25 provides a
strong baseline and, in most of the cases, can outperform UniXCoder-based retriever. On the other
hand, retrieving with OpenAI’s ada embedding is generally better than both BM25 and UniXCoder,
especially for Java and C#. Nonetheless, the performance with the best performing retriever is still
suboptimal (< 20 EM in all languages), calling for future development of better code retriever.

4 Related Works

The advent of code language models (LMs) (Feng et al., 2020; Ahmad et al., 2021; Wang et al., 2021;
Guo et al., 2022) have bolstered the automation of software engineering applications. Among them,
code completion has got the most attention, and as a result, generative AI powered by large language
models for code (Chen et al., 2021; Xu et al., 2022; Wang and Komatsuzaki, 2021; Black et al., 2021,
2022; Nijkamp et al., 2023b; Fried et al., 2023; Li et al., 2022; CodeGeeX, 2022; Allal et al., 2023;
Li et al., 2023; Nijkamp et al., 2023a) has become a reality. Benchmark datasets have been playing
a pivotal role in advancing the field of generative AI for code. A large pool of recent works (Chen
et al., 2021; CodeGeeX, 2022; Austin et al., 2021; Athiwaratkun et al., 2023; Cassano et al., 2023;
Hendrycks et al., 2021; Raychev et al., 2016; Lu et al., 2021; Allamanis and Sutton, 2013; Puri et al.,
2021; Husain et al., 2019; Clement et al., 2021; Ding et al., 2023; Wang et al., 2023; Lu et al., 2022)
developed benchmarks to facilitate the evaluation of code LMs. These benchmarks typically assess
code completion ability given in-file context – code prompts containing code snippets from current
files (where the user is writing code). Therefore, the capability of these code LMs to generate code
that requires software repository-level context has been left unexplored until recently.

A few recent works proposed repository-level code generation frameworks and benchmarks (Shri-
vastava et al., 2023; Ding et al., 2022; Pei et al., 2023; Zhang et al., 2023). While these works
share high-level insights with CROSSCODEEVAL, highlighting the importance of cross-file context,
their focus is mainly on proposing a new approach to incorporate such contexts, and datasets are
collected to evaluate their own approaches rather than being carefully crafted as a benchmark to
evaluate the code LMs in general. For example, Shrivastava et al. (2023) and Ding et al. (2022)
only collect data for one single programming language, and Pei et al. (2023) narrows the completion
scope to only function arguments. As a comparison, CROSSCODEEVAL comprehensively includes
four different programming languages (Python, Java, Typescript, and C#) and targets evaluating the
general code completion capacity of code LMs rather than a specific type of application. REPOEVAL
(Zhang et al., 2023) is a concurrent work building repository-level code completion benchmark
in Python, constructed from 16 GitHub repositories. These repositories are limited in a domain
(mainly academia/research work), some of them overlap with popular code pre-training datasets
(such as The Stack (Kocetkov et al., 2022)), and some are with non-permissive licenses. In contrast,
CROSSCODEEVAL is derived from a diverse pool of permissively licensed GitHub repositories in 4
popular languages (§2.4). Furthermore, CROSSCODEEVAL does not overlap with The Stack to avoid
data leakage, minimizing potential memorization issues during evaluations.

5 Conclusion

We introduce CROSSCODEEVAL, a diverse and multilingual benchmark for cross-file code completion.
CROSSCODEEVAL necessitates cross-file contextual understanding to complete the code accurately.
We use a static-analysis-based method to identify cross-file context usages in code, and take steps
to ensure the dataset is of high quality and has minimal data leakage with the pre-training dataset
of popular code LMs. We experiment with popular code language models and results show that the
inclusion of cross-file context significantly improves their accuracy in code completion, demonstrating
that CROSSCODEEVAL is an effective benchmark assessing cross-file code completion capabilities.
Moreover, even the top-performing model with the best retrieval method still exhibits great room
for improvement, highlighting the need for further advancements in leveraging extensive context for
code completion and better code retriever. In both directions, CROSSCODEEVAL stands as a pivotal
benchmark. We envision CROSSCODEEVAL could fill in the gap of evaluating code completion that
requires cross-file context and promote future research in all dimensions in this direction.

10

Acknowledgments

We would like to thank Ramana Keerthi and Akhilesh Bontala for their help in data collection, and
Bryan McWhorter for various legal consultations.

References

Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W., 2021. Unified pre-training for program under-
standing and generation, in: Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Association for
Computational Linguistics, Online. pp. 2655–2668. URL: https://aclanthology.org/2021.
naacl-main.211, doi:10.18653/v1/2021.naacl-main.211.

Allal, L.B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C.M., Muennighoff, N., Mishra,
M., Gu, A., Dey, M., et al., 2023. Santacoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 URL: https://arxiv.org/abs/2301.03988.

Allamanis, M., Sutton, C., 2013. Mining source code repositories at massive scale using language
modeling, in: Proceedings of the 10th Working Conference on Mining Software Repositories,
IEEE Press. p. 207–216. URL: https://dl.acm.org/doi/pdf/10.5555/2487085.2487127.

Athiwaratkun, B., Gouda, S.K., Wang, Z., Li, X., Tian, Y., Tan, M., Ahmad, W.U., Wang, S.,
Sun, Q., Shang, M., Gonugondla, S.K., Ding, H., Kumar, V., Fulton, N., Farahani, A., Jain,
S., Giaquinto, R., Qian, H., Ramanathan, M.K., Nallapati, R., Ray, B., Bhatia, P., Sengupta,
S., Roth, D., Xiang, B., 2023. Multi-lingual evaluation of code generation models, in: The
Eleventh International Conference on Learning Representations. URL: https://openreview.
net/forum?id=Bo7eeXm6An8.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry, M.,
Le, Q., et al., 2021. Program synthesis with large language models. ArXiv preprint abs/2108.07732.
URL: https://arxiv.org/abs/2108.07732.

Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F., 2014. The plastic surgery hypothesis, in:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Association for Computing Machinery, New York, NY, USA. p. 306–317. URL:
https://doi.org/10.1145/2635868.2635898, doi:10.1145/2635868.2635898.

Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey, C., Tworek, J., Chen, M., 2022. Efficient
training of language models to fill in the middle. arXiv preprint arXiv:2207.14255 URL: https:
//arxiv.org/abs/2207.14255.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao, L., Golding, L., He, H., Leahy, C., McDonell,
K., Phang, J., Pieler, M., Prashanth, U.S., Purohit, S., Reynolds, L., Tow, J., Wang, B., Weinbach,
S., 2022. GPT-NeoX-20B: An open-source autoregressive language model, in: Proceedings of
BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language
Models, Association for Computational Linguistics, virtual+Dublin. pp. 95–136. URL: https:
//aclanthology.org/2022.bigscience-1.9, doi:10.18653/v1/2022.bigscience-1.9.

Black, S., Gao, L., Wang, P., Leahy, C., Biderman, S., 2021. GPT-Neo: Large Scale Autoregres-
sive Language Modeling with Mesh-Tensorflow URL: https://doi.org/10.5281/zenodo.
5297715, doi:10.5281/zenodo.5297715.

Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D., Yee, M.H., Zi, Y.,
Anderson, C.J., Feldman, M.Q., Guha, A., Greenberg, M., Jangda, A., 2023. Multipl-e: A scalable
and polyglot approach to benchmarking neural code generation. IEEE Transactions on Software
Engineering 49, 3675–3691. doi:10.1109/TSE.2023.3267446.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., et al., 2021. Evaluating large language models trained on code. ArXiv preprint
abs/2107.03374. URL: https://arxiv.org/abs/2107.03374.

11

https://aclanthology.org/2021.naacl-main.211
https://aclanthology.org/2021.naacl-main.211
http://dx.doi.org/10.18653/v1/2021.naacl-main.211
https://arxiv.org/abs/2301.03988
https://dl.acm.org/doi/pdf/10.5555/2487085.2487127
https://openreview.net/forum?id=Bo7eeXm6An8
https://openreview.net/forum?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/2635868.2635898
http://dx.doi.org/10.1145/2635868.2635898
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://aclanthology.org/2022.bigscience-1.9
https://aclanthology.org/2022.bigscience-1.9
http://dx.doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://dx.doi.org/10.5281/zenodo.5297715
http://dx.doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2107.03374

Clement, C., Lu, S., Liu, X., Tufano, M., Drain, D., Duan, N., Sundaresan, N., Svyatkovskiy,
A., 2021. Long-range modeling of source code files with eWASH: Extended window access
by syntax hierarchy, in: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, Online and Punta Cana, Domini-
can Republic. pp. 4713–4722. URL: https://aclanthology.org/2021.emnlp-main.387,
doi:10.18653/v1/2021.emnlp-main.387.

CodeGeeX, 2022. https://github.com/THUDM/CodeGeeX.

Ding, H., Kumar, V., Tian, Y., Wang, Z., Kwiatkowski, R., Li, X., Ramanathan, M.K., Ray, B., Bhatia,
P., Sengupta, S., et al., 2023. A static evaluation of code completion by large language models.
arXiv preprint arXiv:2306.03203 .

Ding, Y., Wang, Z., Ahmad, W.U., Ramanathan, M.K., Nallapati, R., Bhatia, P., Roth, D., Xiang, B.,
2022. Cocomic: Code completion by jointly modeling in-file and cross-file context. arXiv preprint
arXiv:2212.10007 URL: https://arxiv.org/abs/2212.10007.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang,
D., Zhou, M., 2020. CodeBERT: A pre-trained model for programming and natural languages,
in: Findings of the Association for Computational Linguistics: EMNLP 2020, Association for
Computational Linguistics, Online. pp. 1536–1547. URL: https://aclanthology.org/2020.
findings-emnlp.139, doi:10.18653/v1/2020.findings-emnlp.139.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih, S., Zettlemoyer,
L., Lewis, M., 2023. Incoder: A generative model for code infilling and synthesis, in: The
Eleventh International Conference on Learning Representations. URL: https://openreview.
net/forum?id=hQwb-lbM6EL.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J., 2022. Unixcoder: Unified cross-modal
pre-training for code representation, in: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 7212–7225.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns, C., Puranik, S.,
He, H., Song, D., Steinhardt, J., 2021. Measuring coding challenge competence with APPS, in:
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2). URL: https://openreview.net/forum?id=sD93GOzH3i5.

Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y., 2020. The curious case of neural
text degeneration, in: International Conference on Learning Representations. URL: https:
//openreview.net/forum?id=rygGQyrFvH.

Hossain, N., Ghazvininejad, M., Zettlemoyer, L., 2020. Simple and effective retrieve-edit-rerank
text generation, in: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, Online. pp. 2532–2538. URL: https:
//aclanthology.org/2020.acl-main.228, doi:10.18653/v1/2020.acl-main.228.

Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M., 2019. Codesearchnet challenge:
Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436 URL: https:
//arxiv.org/abs/1909.09436.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., Amodei, D., 2020. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 .

Kocetkov, D., Li, R., Allal, L.B., Li, J., Mou, C., Ferrandis, C.M., Jernite, Y., Mitchell, M., Hughes,
S., Wolf, T., et al., 2022. The stack: 3 tb of permissively licensed source code. arXiv preprint
arXiv:2211.15533 URL: https://arxiv.org/abs/2211.15533.

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W., 2012. Genprog: A generic method for automatic
software repair. IEEE Trans. Softw. Eng. 38, 54–72. URL: https://doi.org/10.1109/TSE.
2011.104, doi:10.1109/TSE.2011.104.

12

https://aclanthology.org/2021.emnlp-main.387
http://dx.doi.org/10.18653/v1/2021.emnlp-main.387
https://github.com/THUDM/CodeGeeX
https://arxiv.org/abs/2212.10007
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2020.acl-main.228
https://aclanthology.org/2020.acl-main.228
http://dx.doi.org/10.18653/v1/2020.acl-main.228
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/2211.15533
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/TSE.2011.104

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D., Callison-Burch, C., Carlini, N., 2022.
Deduplicating training data makes language models better, in: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, Dublin, Ireland. pp. 8424–8445. URL: https://aclanthology.
org/2022.acl-long.577, doi:10.18653/v1/2022.acl-long.577.

Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C., Li, J.,
Chim, J., et al., 2023. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161
URL: https://arxiv.org/abs/2305.06161.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Lago, A.D., et al., 2022. Competition-level code generation with alphacode. ArXiv
preprint abs/2203.07814. URL: https://arxiv.org/abs/2203.07814.

Lu, S., Duan, N., Han, H., Guo, D., Hwang, S.w., Svyatkovskiy, A., 2022. ReACC: A retrieval-
augmented code completion framework, in: Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association for Computa-
tional Linguistics, Dublin, Ireland. pp. 6227–6240. URL: https://aclanthology.org/2022.
acl-long.431, doi:10.18653/v1/2022.acl-long.431.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C., Drain, D., Jiang,
D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M., GONG, M., Zhou, M., Duan,
N., Sundaresan, N., Deng, S.K., Fu, S., LIU, S., 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and generation, in: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1). URL: https:
//openreview.net/forum?id=6lE4dQXaUcb.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., Zhou, Y., 2023a. Codegen2: Lessons for
training llms on programming and natural languages. arXiv preprint arXiv:2305.02309 URL:
https://arxiv.org/abs/2305.02309.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong, C., 2023b.
Codegen: An open large language model for code with multi-turn program synthesis, in: Interna-
tional Conference on Learning Representations. URL: https://openreview.net/forum?id=
iaYcJKpY2B_.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal,
S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A.,
Welinder, P., Christiano, P.F., Leike, J., Lowe, R., 2022. Training language models to follow
instructions with human feedback, in: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho,
K., Oh, A. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc..
pp. 27730–27744. URL: https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Pei, H., Zhao, J., Lausen, L., Zha, S., Karypis, G., 2023. Better context makes better code language
models: A case study on function call argument completion, in: Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI Press. URL: https://doi.org/10.1609/aaai.v37i4.25653,
doi:10.1609/aaai.v37i4.25653.

Puri, R., Kung, D.S., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby, J., Chen, J.,
Choudhury, M., Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S., Finkler, U., Malaika, S.,
Reiss, F., 2021. Codenet: A large-scale AI for code dataset for learning a diversity of coding tasks,
in: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2). URL: https://openreview.net/forum?id=6vZVBkCDrHT.

Raychev, V., Bielik, P., Vechev, M., 2016. Probabilistic model for code with decision trees,
in: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Association for Computing Machinery,
New York, NY, USA. p. 731–747. URL: https://doi.org/10.1145/2983990.2984041,
doi:10.1145/2983990.2984041.

13

https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
http://dx.doi.org/10.18653/v1/2022.acl-long.577
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2203.07814
https://aclanthology.org/2022.acl-long.431
https://aclanthology.org/2022.acl-long.431
http://dx.doi.org/10.18653/v1/2022.acl-long.431
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://arxiv.org/abs/2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v37i4.25653
http://dx.doi.org/10.1609/aaai.v37i4.25653
https://openreview.net/forum?id=6vZVBkCDrHT
https://doi.org/10.1145/2983990.2984041
http://dx.doi.org/10.1145/2983990.2984041

Robertson, S., Zaragoza, H., et al., 2009. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval 3, 333–389.

Shrivastava, D., Larochelle, H., Tarlow, D., 2023. Repository-level prompt generation for large
language models of code, in: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett,
J. (Eds.), Proceedings of the 40th International Conference on Machine Learning, PMLR. pp.
31693–31715. URL: https://proceedings.mlr.press/v202/shrivastava23a.html.

Wang, B., Komatsuzaki, A., 2021. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax.

Wang, S., Li, Z., Qian, H., Yang, C., Wang, Z., Shang, M., Kumar, V., Tan, S., Ray, B., Bhatia, P.,
Nallapati, R., Ramanathan, M.K., Roth, D., Xiang, B., 2023. ReCode: Robustness evaluation
of code generation models, in: Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Toronto, Canada. pp. 13818–13843. URL: https://aclanthology.org/2023.acl-long.
773, doi:10.18653/v1/2023.acl-long.773.

Wang, Y., Wang, W., Joty, S., Hoi, S.C., 2021. CodeT5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation, in: Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, Association for Computational Linguistics,
Online and Punta Cana, Dominican Republic. pp. 8696–8708. URL: https://aclanthology.
org/2021.emnlp-main.685, doi:10.18653/v1/2021.emnlp-main.685.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu,
C., Le Scao, T., Gugger, S., Drame, M., Lhoest, Q., Rush, A., 2020. Transformers: State-
of-the-art natural language processing, in: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, Association for Computational
Linguistics, Online. pp. 38–45. URL: https://aclanthology.org/2020.emnlp-demos.6,
doi:10.18653/v1/2020.emnlp-demos.6.

Xu, F.F., Alon, U., Neubig, G., Hellendoorn, V.J., 2022. A systematic evaluation of large language
models of code, in: Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, Association for Computing Machinery, New York, NY, USA. p. 1–10. URL:
https://doi.org/10.1145/3520312.3534862, doi:10.1145/3520312.3534862.

Zhang, F., Chen, B., Zhang, Y., Liu, J., Zan, D., Mao, Y., Lou, J.G., Chen, W., 2023. Repocoder:
Repository-level code completion through iterative retrieval and generation. arXiv preprint
arXiv:2303.12570 URL: https://arxiv.org/abs/2303.12570.

14

https://proceedings.mlr.press/v202/shrivastava23a.html
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2023.acl-long.773
https://aclanthology.org/2023.acl-long.773
http://dx.doi.org/10.18653/v1/2023.acl-long.773
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
http://dx.doi.org/10.18653/v1/2021.emnlp-main.685
https://aclanthology.org/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3520312.3534862
http://dx.doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2303.12570

CROSSCODEEVAL: A Diverse and Multilingual Benchmark for
Cross-File Code Completion

Appendices

A More Details of CROSSCODEEVAL Generation

A.1 Python

We presented a Python example in Figure 2, Section 2.2 in the main paper. Here we describe the static
analysis part in detail. Recall that the purpose of static analysis is to detect undefined members in the
modified file whose imports are replaced by empty classes. Hence, there’s no need to include project-
level information at this stage, and we only run Pylint on the standalone file. We restrict the output
types to be error only and ignore other types such as warnings and coding conventions. In the example
in Figure 2, Section 2.2, the Pylint output for the modified file is “test_utils.py:10:8: E1101:
Class ‘CaseConverter’ has no ‘camel_to_snake’ member (no-member)”. We collect
all the errors of type E1101 and use them to identify locations of cross-file context usage.

A.2 Java

Instead of using static analysis tool, we directly leverage Java default compiler to extract the undefined
member functions in the modified file, whose belonging class, originally imported from another
project file, is replaced by an empty class. Figure 6 shows the work flow of the cross-file method
extraction. Specifically, we can parse the new errors with the ∧ mark in the modified code to locate
the calls of the cross-file function. An illustration is provided in Figure 7.

A.3 TypeScript

We go through the following steps to create examples from TypeScript repositories.

1. Extract import statements from source files (files with “.ts” or “.tsx” extension) and identify
the dependencies. For example, a file fileA.ts having the import statement import
module_name from ‘../fileB.ts’; depends on ../fileB.ts. (../fileB.ts is a
cross-file for fileA.ts)

2. Identify the cross-file lines by modifying the source code, followed by compiling the project
using tsc.11 We make the following two types of modifications.

• Removing the import statement and checking the compilation output message for
“error TS2304: Cannot find name ‘X’.”.

• Removing the import statement and adding a dummy class “class module_name {}”
and checking the compilation output message for “error TS2339: Property ‘X’
does not exist on type ‘Y’.”.

3. From the compiler error message, we use the line numbers to form references for examples.

A.4 C#

For C# repositories, the example generation procedure follows two steps. In the first step, we pick
a source code file from a C# repository and replace the original class with a dummy one. Then,
we run the C# mono compiler on all C# files and gather the compilation errors. In the next step,
we compare the compiler error messages before and after the substitution in step-1 to locate the
cross-file references based on the incremental errors, and extract the line numbers for references in
CROSSCODEEVAL examples. We repeat the process for each source code file within a repository.

11https://www.typescriptlang.org/docs/handbook/compiler-options.html

15

Figure 6: Java data creation: 1) given a original code file, we create an adapted version by replacing
an imported class found in the project directory and generating a dummy class accordingly. 2) Run
javac on both versions. New javac error points of the modified code are actually the method calls
of the original code, where the definitions are in another file in the project. A pair of prompt and
ground truth completion is generated accordingly.

Figure 7: By comparing javac errors of original Java code and modified code, we find the cross-file
entities and create the prompt and ground truth.

B Human Annotation for Quality Control

To assess the quality and further improve CROSSCODEEVAL, we conducted human annotation. We
randomly sampled 100 and 50 examples from CROSSCODEEVAL Python and Java sets, respectively.
Six authors annotated 50 example each, and each example was annotated by two annotators with
significant experience in the targeted language. Three questions were asked in the annotation:

1. Does the reference contain any name that requires looking at the associated cross-file? [Pay
attention to: while answering, think if looking at the associated cross-file helps you knowing

16

more info about a name mentioned in the reference.]
Choose from A: Yes. / B: No, I already know everything about all the names mentioned in
the reference. / C: Reference does not contain any such name.

2. Can you predict the reference given only the current-file context? [Pay attention to: while
answering, think if you can guess the reference given the current-file context.]
Choose from A: No, I cannot predict. / B: I possibly can predict but it may not exactly match
the reference. / C: I can predict the reference.

3. Will you prefer to remove the example from the dataset? [Pay attention to: Is the example
good enough to be included in the dataset? Use your best judgment to make a decision.]
Choose from A: No. / B: Maybe. / C: Yes.

Q1 Q2 Q3
Python 98% 89% 88%
Java 100% 84% 76%

Table 5: Agreement scores for the annotation questions in Python and Java, respectively.

Q1 Q2 Q3
A B C A B C A B C

Python 99% 1% 0% 88.5% 9.5% 2% 91.5% 6% 2.5%
Java 100% 0% 0% 88% 10% 2% 80% 13% 7%

Table 6: Distribution of annotation answers to each question in Python and Java.

We calculated the agreement score12 and summarize the distribution of the annotations in Tables 5
& 6. Overall, we see great agreement scores in most of the questions in both languages, suggesting
annotators have consensus in these questions. Looking at the distribution of annotation answers,
we see that in almost 100% cases, the references contain names that necessities cross-file informa-
tion (Q1), and only at 2% that the reference can be predicted with only current-file context (Q2).
Both together suggest that CROSSCODEEVAL serves its purpose to be a dedicated cross-file code
completion benchmark that accurately reflects model’s capability in cross-file context understanding.
Besides, we see 2.5% and 7% examples that annotators think should be removed from the dataset
(Q3). A closer look reveals that many of such examples contain long strings in the reference, e.g.,
Chat.sendClientSystemMessage("Available scripts:");, which cannot be predicted eas-
ily and also led to disagreement between annotators. We plan to improve the dataset by filtering out
examples with long string in the reference in the next data revision.

C Retrieve-and-Generate Modeling Details

We present Figure 8 to illustrate more details regarding the Retrieve-and-Generate (RG) framework.

Cross-file Context Retrieval As we have introduced in Section 3.3, the query will be constructed
using the in-file context, i.e., the last 10 code lines before the cursor position, and the goal is to find
the relevant cross-file context – a similar operation of the deposit that has been implemented in the
class Bank. The code snippets in other files are chunked as code snippets with 10 lines as candidates
for similarity calculation, and the most similar candidate of the in-file context turns out to be lines
5-14 in “Relevant Cross-file Context" of Figure 8. Since the in-file context is left context and the
target completion is the following code, correspondingly, the retrieved context will be the following
lines of the similar candidate, i.e., line 15-23 in “Relevant Cross-file Context". We can see that line
15 gives a direct hint that helps with the prediction.

Cross-file Context Retrieved w/ Reference As an upper bound estimate, the query for the oracle
context will be constructed by the last 10 lines of concatenating the in-file context and the target
completion. Consequently, the most similar candidate is lines 8-17 in “Relevant Cross-file Context",

12Given we only have limited examples and annotations per example, and the annotation is relatively sparse,
we didn’t include other inter-coder agreement metrics like Krippendorff’s α or Cohen’s κ.

17

Figure 8: An illustration demonstrating the context retrieval.

which, different from the cross-file context, will be directly used as the oracle context, since the query
already contains the target completion rather than just left context. Again, it includes the direct hint,
line 15, for the code completion.

D Additional Evaluation Results and Ablations

D.1 Evaluation with Additional Models

Beyond the results in Table 2 of the main paper, we further evaluate more code LMs, including more
variants of CodeGen and StarcoderBase. The results are shown in Table 7.

18

Model
Code Match

Python Java TypeScript C#

EM ES EM ES EM ES EM ES

CodeGen-350M 2.70 52.94 3.51 54.92 2.77 46.60 0.90 42.64
+ Retrieval 6.98 56.91 6.97 56.87 4.02 48.07 3.28 45.35
+ Retrieval w/ Ref. 9.64 59.31 8.04 57.75 5.21 50.25 6.50 48.58

CodeGen-2.7B 4.92 55.75 5.89 58.86 3.84 50.77 1.36 48.04
+ Retrieval 9.64 60.02 10.00 61.20 6.47 52.61 4.24 52.19
+ Retrieval w/ Ref. 13.28 62.65 11.73 62.50 7.81 54.79 7.35 54.78

CodeGen-6.1B 5.40 55.41 5.19 58.89 3.75 49.87 1.47 45.34
+ Retrieval 10.58 60.36 8.88 61.06 6.14 51.58 4.64 47.53
+ Retrieval w/ Ref. 14.07 62.80 11.03 61.76 8.22 54.01 7.13 48.98

CodeGen-16.1B 6.87 57.64 7.01 60.49 4.50 52.24 1.81 45.28
+ Retrieval 12.46 62.66 11.69 62.16 7.06 54.11 5.54 48.25
+ Retrieval w/ Ref. 16.66 65.31 13.65 63.50 9.18 56.54 8.54 49.63

StarCoderBase-1B 0.19 54.78 0.19 57.17 0.06 42.00 0.11 57.65
+ Retrieval 8.18 60.06 7.48 59.71 3.64 40.07 8.94 62.32
+ Retrieval w/ Ref. 12.83 63.37 10.38 62.06 6.79 42.47 15.16 65.56

StarCoderBase-3B 4.77 57.54 5.66 60.26 3.55 46.74 3.62 59.27
+ Retrieval 11.74 62.99 12.39 62.33 6.73 43.89 11.99 64.65
+ Retrieval w/ Ref. 16.66 65.91 14.91 64.83 9.62 46.39 18.04 66.86

StarCoderBase-7B 6.75 59.83 8.74 62.84 5.13 49.31 4.86 59.71
+ Retrieval 13.28 64.76 15.61 65.19 8.25 45.73 14.20 65.65
+ Retrieval w/ Ref. 18.95 67.41 18.70 67.76 11.95 47.91 20.64 67.95

Model
Identifier Match

Python Java TypeScript C#

EM F1 EM F1 EM F1 EM F1

CodeGen-350M 7.92 38.51 9.40 43.36 5.07 34.44 1.98 21.07
+ Retrieval 13.70 44.34 13.32 46.47 7.06 37.09 5.83 26.67
+ Retrieval w/ Ref. 17.49 48.14 14.68 47.90 8.85 39.75 8.88 31.27

CodeGen-2.7B 11.14 42.42 12.62 47.94 7.51 39.71 3.96 24.92
+ Retrieval 17.22 48.96 18.19 51.43 10.91 42.96 8.03 31.85
+ Retrieval w/ Ref. 21.54 52.40 20.06 53.19 12.96 45.58 11.43 36.50

CodeGen-6.1B 10.92 42.22 12.48 48.38 6.76 39.13 3.90 23.20
+ Retrieval 17.90 49.41 17.25 51.79 10.31 42.29 8.26 30.01
+ Retrieval w/ Ref. 22.40 53.14 19.45 53.12 12.87 45.72 12.10 34.20

CodeGen-16.1B 13.28 44.98 14.40 49.97 8.76 41.95 4.13 23.49
+ Retrieval 20.53 51.95 19.50 52.97 12.13 44.65 9.33 31.08
+ Retrieval w/ Ref. 25.37 55.76 22.21 54.98 15.14 48.02 12.67 35.08

StarCoderBase-1B 6.79 39.70 7.71 45.18 4.71 33.58 4.02 30.32
+ Retrieval 15.91 47.87 15.57 49.64 8.13 33.45 13.01 39.38
+ Retrieval w/ Ref. 21.61 52.95 19.54 52.57 11.80 36.55 18.83 44.81

StarCoderBase-3B 11.48 43.63 14.12 49.13 8.76 39.18 7.30 32.55
+ Retrieval 19.81 51.66 21.18 53.03 11.83 37.95 16.06 42.45
+ Retrieval w/ Ref. 25.40 55.89 24.36 56.09 15.08 41.09 21.95 47.03

StarCoderBase-7B 13.92 46.65 16.88 52.18 10.04 42.15 8.71 34.04
+ Retrieval 22.29 54.14 24.92 56.70 13.92 40.25 18.16 44.55
+ Retrieval w/ Ref. 28.26 58.14 29.64 59.99 17.79 43.40 24.04 49.12

Table 7: Evaluation of additional code LMs on CROSSCODEEVAL (cf. Table 2)

19

D.2 Nucleus Sampling w/ Re-ranking

Though the main results in this benchmark are reported with greedy search, we further conduct
experiments to explore the effects of sampling and reranking. To this end, we apply the nucleus
sampling (Holtzman et al., 2020) then mean-log-likelihood reranking (Hossain et al., 2020) during
the code generation. The experiments are conducted with temperature of 0.2 for the token probability
scaling. For the nucleus sampling, we set the top-p to be 0.95, and for the mean-log-likelihood
reranking, we generate top-5 prediction under the sampling setting and compute the mean log-
likelihood of each generation to pick the most probable prediction.

The results are shown in Table 8. Compared to the main results (Table 2 in the main paper), we notice
the results are quite comparable, and the difference is marginal. The cross-file and oracle context
bring equivalent improvement to the greedy search setting. The results empirically reveal that (1) the
performance difference of sampling with re-ranking and greedy decoding is marginal, and (2) the
cross-file context is helpful regardless of the sampling/search algorithms.

Model
Code Match

Python Java TypeScript C#

EM ES EM ES EM ES EM ES

CodeGen25-7B 8.14 59.72 10.47 62.54 7.90 57.69 3.90 59.73
+ Retrieval 14.60 64.56 17.63 64.49 13.32 60.35 13.29 64.55
+ Retrieval w/ Ref. 19.51 67.67 20.48 66.92 15.79 62.88 18.21 66.46

StarCoder-15.5B 8.93 61.43 10.66 63.97 6.05 51.95 4.64 60.52
+ Retrieval 15.68 66.70 17.58 66.73 8.76 45.78 14.03 65.70
+ Retrieval w/ Ref. 21.35 69.44 20.20 68.49 11.65 47.32 19.97 68.32

Model
Identifier Match

Python Java TypeScript C#

EM F1 EM F1 EM F1 EM F1

CodeGen25-7B 14.60 46.13 17.16 52.04 12.40 47.73 7.47 34.52
+ Retrieval 22.81 53.72 25.15 55.99 18.18 51.72 17.36 43.88
+ Retrieval w/ Ref. 28.78 58.20 28.94 58.98 21.99 55.53 22.12 47.78

StarCoder-15.5B 15.91 48.08 19.07 54.08 11.50 44.13 8.31 34.58
+ Retrieval 24.62 55.75 26.46 58.46 14.78 40.59 18.33 44.55
+ Retrieval w/ Ref. 30.77 60.01 30.53 61.07 18.15 42.90 24.15 49.26

Table 8: Performance of code LMs on CROSSCODEEVAL with temperature-based nucleus sampling.
(cf. Table 2 in the main body of the paper).

D.3 Additional Results of Code Retrieval

Table 9 presents identifier match results of various retrieval methods for cross-file context.

D.4 Qualitative Analysis

To illustrate the quality of the retrieved cross-file context and in which ways they are helping to
maximize the code LMs’ capacity, we provide two qualitative examples in Figure 9 and 10.

In Figure 9, we can see that the cross-file context provides retrieves the code snippets with a similar
context to the cursor position. By capturing the repetitiveness of the repository (Le Goues et al.,
2012; Barr et al., 2014), the cross-file context helps the code LMs adapt the existing, repetitive coding
patterns to complete the programs. Specifically, the retrieved context also defines a function named
step(), with a similar goal of generating a token, and it provides a direct reference for completing
the API call.

20

Model Retriever
Identifier Match

Python Java TypeScript C#
EM F1 EM F1 EM F1 EM F1

CodeGen25-7B - 14.26 46.02 16.60 51.43 12.46 47.75 7.69 33.81
+ Retrieval BM25 22.96 53.68 24.03 55.48 17.85 51.27 17.36 43.56
+ Retrieval w/ Ref. BM25 28.33 57.95 27.91 57.87 21.51 55.38 21.78 47.63
+ Retrieval UnixCoder 22.74 53.13 22.67 54.63 17.43 51.04 16.63 42.98
+ Retrieval w/ Ref. UnixCoder 26.90 56.53 25.57 56.69 20.74 53.79 20.36 45.74
+ Retrieval OpenAI Ada 23.53 54.17 25.01 55.67 18.06 51.67 19.30 46.08
+ Retrieval w/ Ref. OpenAI Ada 27.95 56.59 28.33 58.39 21.57 55.07 24.73 51.51

StarCoder-15.5B - 15.72 48.16 18.28 53.23 11.86 43.53 8.54 34.33
+ Retrieval BM25 24.77 55.57 25.95 57.74 14.09 39.50 18.04 44.38
+ Retrieval w/ Ref. BM25 30.24 59.46 29.73 60.47 17.55 42.18 24.38 49.09
+ Retrieval UnixCoder 20.41 46.66 19.26 47.30 15.55 45.91 15.61 38.86
+ Retrieval w/ Ref. UnixCoder 25.25 55.42 25.90 57.88 13.32 39.13 16.23 42.36
+ Retrieval OpenAI Ada 25.55 56.23 26.65 57.68 14.15 39.99 19.98 46.45
+ Retrieval w/ Ref. OpenAI Ada 29.64 58.64 30.86 60.73 18.12 42.77 27.96 53.53

Table 9: Identifier Match evaluation results of various methods in retrieving cross-file context (cf.
Table 4).

Different from Figure 9, Figure 10 no longer retrieves the similar usage of predicting APIs, and
rather, it retrieves the implementation details of the cross-file dependencies. Concretely, the cross-file
context collects the member function, store_by_text, of class EntitySessionStorage, which
is imported by the current completing file and instantiated as self.entity_repository. Without
such cross-file context, the model hallucinates a wrong function usage that is not defined in class
EntitySessionStorage. In contrast, when the cross-file is prepended to the prompt, the model
successfully predicts the ground truth, empirically revealing the limitation of existing datasets by
only feeding the current-file context, which will consequently underestimate code LMs’ capacity.

E Limitations

Zero-shot Evaluation Our benchmarking was done in a zero-shot fashion. We didn’t perform
the few-shot study as the max sequence length of most benchmarked models is quite limited for
prepending additional examples to the prompt. Thus, the performance will be limited as the format
of cross-file context is never seen by the model during both training and prompting. We hope that
CROSSCODEEVAL encourages future research to investigate methods for efficiently retrieving and
incorporating cross-file context into the model.

Cross-file Context Retrieval Quality Prepending cross-file context to the prompt has shown
significant improvement to the code LM’s performance. However, as we have analyzed and identified
in Section 3.5, the RG retrieval framework is not perfect. Due to its fixed length of context window
and token-based similarity calculation, RG sometimes retrieves useless information and fails to help
code LMs for better generation. As for future work, we are expecting a more advanced retrieval
approach to replace RG for more accurate cross-file context.

Memorization Code LMs were trained on a vast amount of unlabeled code. There is no way we
could ensure that all models didn’t see the evaluation data in the past. We take our best effort by
excluding popular packages from annotation (see Section 2.1). Despite that, we suggest researchers
and practitioners be cautious in interpreting the results with potential memorization in mind. Future
research in incorporating cross-file context may also consider deduplicating the training data with
CROSSCODEEVAL, e.g., through methods in Lee et al. (2022).

21

Figure 9: Qualitative Example 1: the cross-file context provides a similar usage of the predicting API.

22

Figure 10: Qualitative Example 2: the cross-file context provides the definition of the predicting API.

23

	Introduction
	CrossCodeEval: A Benchmark for Cross-File Code Completion
	Dataset Collection
	Dataset Generation
	Post-processing and Quality Control
	Dataset Statistics, Scope, and Future Extensions

	Experiments
	Models
	Evaluation Metrics
	Experimental Setup
	Results
	Analysis and Discussions

	Related Works
	Conclusion
	More Details of CrossCodeEval Generation
	Python
	Java
	TypeScript
	C#

	Human Annotation for Quality Control
	Retrieve-and-Generate Modeling Details
	Additional Evaluation Results and Ablations
	Evaluation with Additional Models
	Nucleus Sampling w/ Re-ranking
	Additional Results of Code Retrieval
	Qualitative Analysis

	Limitations

