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1 Synthetic Generators1

We generated datasets from Binary Summary Markov Models (SuMM) where the generating dy-2

namics is characterized by the instantiation of binary parental states for a specific look-back window3

[1]. We describe the parameters used in our experiments to generate four temporal event datasets4

namely synth-1, synth-2, synth-3, synth-4 over labels A,B,C,D and E in our paper. The graphs are5

shown in Figure 1. In summary, BSuMM-1 generates synth-1 and synth-2; and BSuMM-2 generates6

synth-3 and synth-4 respectively.7

The parameters for BSuMM-1 are the following probabilities: pA = {B = 0 : 0.2, B = 1 : 0.6}8

pB = {B = 0 : 0.6, B = 1 : 0.2, } pC = 0.15, pD = 0.025, pE = 0.025, respectively. In synth-1,9

we use a window of 2 and in synth-2, we use a window of 4. The window determines the binary10

instantiation of the parental states for a particular event type. For example, in synth-1, for eventA, if11

an event ofB is observed in the previous window of 2, the probability of observingA for the current12

position is 0.6 otherwise it is 0.2. Noting the probabilities of all events sum up to 1, at each position,13

we generate an event from a categorical distribution. Similarly the parameters for BSuMM-2 are the14

following probabilities: pA = {(B = 0, C = 0) : 0.6, (B = 0, C = 1) : 0.2, (B = 1, C = 0) :15

0.7, (B = 1, C = 1) : 0.4} pB = {(B = 0, C = 0) : 0.2, (B = 0, C = 1) : 0.6, (B = 1, C = 0) :16

0.1, (B = 1, C = 1) : 0.4} pC = 0.15, pD = 0.025 and pE = 0.025 respectively. In synth-3, we17

use a window of 2 and in synth-4, we use a window of 4.18

(a) BSuMM-1 (b) BSuMM-2

Figure 1: Two BSuMM graphs are used to generated the four synthetic datasets: BSuMM-1 generates synth-1
and synth-2; and BSuMM-2 generates synth-3 and synth-4 respectively.

2 Real Application Dataset Details19

The 5 real-world applications cover various domains. A descriptive summary of the 5 datasets used20

in our experiment are given in Table 1. Further details about the curation of Beigebooks, Diabetes21

and LinkedIn follow [1]. The Defi dataset provides user-level cryptocurrency trading history under22

a specific protocol called Aave. The original curated dataset from early work [2] includes times-23

tamp, transaction type and coin type for each transaction. To ensure relevance and applicable to our24

temporal event sequence, we remove unnecessary features for our study, specifically timestamp and25

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



coin type, and thus resulting in a dataset that contains only sequences of events of the following26

transaction types: borrow, repay, deposit, redeem, liquidation and swap.27

Dataset M K N

BeigeBooks 15 260 2370
Diabetes 13 65 20210
LinkedIn 10 1000 2212
Defi 6 500 17258
LLM-Generated Event Sequences 50 243 1398

Table 1: Dataset summary: # of event labels (M ), # of sequences (K) and # of events (N ).

3 Model Implementation and Training28

Our implementation of PC-TES model is based on the code adaptation from [3], and can be found29

in the Supplementary Material. We transformed the original temporal point process model, known30

as the Transformer Hawkes Process, into a vanilla Transformer for Event Sequence (TES) model31

by replacing the temporal encoding with position encoding. In addition, similar to natural language32

understanding tasks, we minimize the negative log-likelihood of event sequences (event token) for33

TES (details in Section 5). We incorporate loss terms associated with incompatibility to generalize34

to our PC-TES model.35

To train our model, we utilize stochastic gradient descent and employ the Adam optimizer for opti-36

mization. The default transformer architecture used for training is specified as follows: the number37

of layers in the multi-headed self-attention module (n layer), the dimension of the value vector38

after attention (d model), the number of attention heads (n head), the hidden layer size of the feed-39

forward neural network (d inner), the dimension of the value vector (d v), the dimension of the key40

vector (d k), and the dropout rate.41

Experimental parameters for all datasets are provided in Table 2, which correspond to the results42

obtained during our experiments. It is important to note that the final parameters were selected43

based on the best performance of the model, determined by the minimum loss on the dev subset44

during evaluation. All experiments were conducted on a private server equipped with a TITAN RTX45

GPU.46

Table 2: Hyperparameters for PC-TES for all datasets in the experiments. Synth represents all datasets gener-
ated by BSuMM, namely synth-1, synth-2, synth-3,synth-4

Parameter Value Synth Beigebooks Diabetes LinkedIn Defi LLM-generated event sequences

batch size 32 32 16 32 16 32
n head 4 4 6 4 6 4
n layers 4 4 6 4 6 4
d model 64 128 128 64 128 256
d inner 128 256 256 128 256 512
d v 64 256 128 64 128 256
d k 64 256 128 64 128 256
dropout 0.1 0.1 0.1 0.1 0.1 0.1
epoch 500 500 500 500 500 500
learning rate 0.0006 0.0002 0.0006 0.0004 0.0006 0.0001
α 10 0.001 1 0.001 0.1 0.001

4 Baseline Model Implementation Details47

We provide details about the implementation of the baseline models.48

k-th order Markov chain (kMC). We implement a simple kth order Markov chain over k =49

{1, 2, 3, 4}. Prior work has shown that prediction performance deteriorates on these event sequence50

datasets beyond k = 4 [1]. Only the results for the best performing k is shown in the tables.51
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To ensure that the model learns probabilities that are not 0 while evaluating the test set, we take52

a Bayesian approach to parameter learning using a Dirichlet prior with a single hyper-parameter53

αD. We use the following hyper-parameter grid to choose the optimal hyper-parameter using the54

train/dev sets: αD ∈ {0.1, 1, 5, 10}.55

Summary Markov models (BSuMM and OSuMM). We learn binary and ordinal summary56

Markov models using the score-based approach in [1]. We use the following hyper-parameter57

grids to choose optimal hyper-parameters using the train/dev sets: Dirichlet hyper-parameter58

αD ∈ {0.1, 1, 5, 10}, look-back κ ∈ {1, 3, 5, 10}, complexity penalty γ ∈ {0.1, 0.5, 1}.59

Transformer for Event Sequences (TES). We implement with Pytorch aB-block attention-based60

transformer network to model the dynamics and seek to maximize the log-likelihood of event se-61

quences D in Equation 1:62

logpθ(D) =

K∑
k=1

Nk∑
i=1

logp∗θ(li) (1)

We use an un-modified history representation H(B) from theBth block and the generated labels can63

be modeled via a multinomial distribution:64

θψ(li+1 = m|H(B)(i)) =
exp(Wm,:H

(B)(i) + bm)∑M
m=1 exp(Wm,:H(B)(i) + bm)

(2)

where Wm,: is the mth row of the corresponding trainable weight matrix and bm is mth entry of65

the corresponding bias term. We perform prediction experiments and hyperparameters are selected66

from the best performing model from dev set, similarly to PC-TES as shown in Table 2.67

Probabilistic Attention-to-Influence Neural Model (PAIN). PAIN is an innovative model that68

has been recently introduced to analyze temporal event sequences [4]. One of its key strengths is69

its ability to capture intricate instance-wise interactions between events, while also uncovering the70

influencers for each event type of interest. To accomplish this, PAIN leverages event sequence data71

and a prior distribution on type-wise influence. Through the proposed approach, PAIN efficiently72

learn an approximate posterior for type-wise influence by employing an attention-to-influence trans-73

formation with variational inference. Furthermore, this method goes on to model the conditional74

likelihood of sequences by sampling from the derived posterior. This sampling strategy enables the75

model to selectively focus attention on the event types that have the most significant impact on the76

overall sequence. A minor modification is made to make a fair comparision in our study, the origin77

random vector V is changed to a binary random matrix A which describes the pairwise interactions78

between all pairs of events, and thus the modified variational loss is:79

L(ω, ψ;D) = Eqω [log
p(A)

qω(A|D)
] + Eqω [logθψ(D|A)] (3)

where p(A) qω(A|D) are the prior and posterior paramterized by the ω network, and θψ(D|A) is80

the loglikelihood term given a sampled matrix A ∼ qω(A|D). The prior used in our experiment is81

p(A) =
∏
XY p(AXY = 1) = 0.2 for any X,Y ∈ L where L is the label set. Training details are82

consistent with the setting described in the paper [4].83

5 Synthetic Experiments with Other Causal Pairs84

We provide additional results on synthetic experiments where we use a different set of causal pair85

statements. For synthetic experiments synth-1, synth-2, we consider the causal pair (B,B) with86

ground truth B ↘ B as injected knowledge. For synthetic experiments synth-3, synth-4, we con-87

sider 3 additional causal pairs (B,B), (C,A), (B,A) with ground truth B ↘ B, C ↘ A and88

B ↗ A as injected knowledge, respectively. Results in Table 3 show that the overall knowledge in-89

jection via our approached significantly boosts predictive performance in all cases. Yet different sets90

of causal pair statements may enhance differently partial due to the optimization trajectory which91

we will explore in the future.92
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Table 3: Next event prediction loglikelihood on 4 synthetic datasets. Italics indicates improvement over TES;
bold indicates the best performance.

Dataset BSuMM OSuMM kMC PAIN TES PC-TES (C ↗ B) (B ↗ A) (C ↘ A) (B ↘ B)

Synth-1 -382.82(4.67) -373.85(6.37) -364.60(6.47) -141.06(5.11) -107.81(2.85) -107.19(3.01) N/A N/A -112.04(3.60)
Synth-2 -371.13(6.36) -370.66(5.12) -350.37(7.45) -137.94(8.42) -114.01(2.31) -111.89(1.52) N/A N/A -110.78(2.15)
Synth-3 -358.25(7.23) -359.678(12.30) -378.97(5.64) -131.20(12.79) -119.99(2.29) -113.58(3.81) -103.02(3.35) -102.87(3.45) -103.02(3.36)
Synth-4 -363.36(6.93) -361.82(5.45) -371.75(6.35) -134.09(13.39) -113.95(3.05) -113.15(3.66) -105.52(3.62) -105.31(3.67) -105.51(3.63)

6 Causal Inference Assumptions93

Our approach builds upon the well-established potential outcomes framework [5], and its extensions94

to incorporate time-varying treatments and outcomes [6]. This framework has been widely utilized95

in previous studies that share a similar objective to ours in observational longitudinal studies [6, 7,96

8, 9]. To identify a counterfactual outcome distribution over time, or more precisely, the average97

w-step-ahead potential outcome conditioned on history as defined in Definition 1 in the main text,98

it is necessary to make three standard assumptions regarding the data generating mechanism. These99

assumptions are crucial for establishing causal inference and enable us to estimate the potential100

outcomes in the presence of time-varying treatments and outcomes. Without loss of generality we101

consider w = 1 for a sequence k and a causal pair (z,y), namely the 1-step-ahead potential outcome102

conditioned on history. For ease of notation, let Zi be binary random variable - Zi is 1 if li = z103

else is 0, Y ∗
i be the outcome defined in Definition 1, namely the probability of occurrence (at least104

once) of event Y in the next window w = 1 at position/time i. Let Hi be a random trajectory that105

generates the history. Let Y ∗
i+1[Zi = 1] be the potential outcome under binary treatment at i.106

Assumption 1 (Consistency). When a specific unit (such as a user or patient) receives a given107

sequence of treatments denoted as li = z, it follows that the potential outcome Y ∗
i+1 under the108

treatment sequence li = z is equal to the observed outcome. In other words, the potential outcome109

aligns with the factual outcome for the patient when considering the specific condition li = z.110

Assumption 2 (Sequential Overlap). Throughout the entire history space over time, there is111

always a non-zero probability of both receiving and not receiving any treatment: 0 < p(Zi =112

1|Hi−1 = hi−1) < 1 for all i ∈ {1, ..., Nk} for some realization of history hi−1.113

Assumption 3 (Sequential Ignorability). Conditioned on the observed history, the current treat-114

ment is independent of the potential outcome: Zi ⊥ Y ∗
i+1[Zi]|Hi−1 for all i ∈ {1, ..., Nk}. This115

independence implies that there are no unobserved confounding factors that simultaneously influ-116

ence both the occurrence of the outcome Yi and the treatment assignment Zi.117
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