
Supplementary Material

A Data Modeling

In this section, we provide further details for our data modeling. Our diffusion model generates full
environment transitions i.e., a concatenation of states, actions, rewards, next states, and terminals
where they are present. For the purposes of modeling, we normalize each continuous dimension
(non-terminal) to have 0 mean and 1 std. We visualize the marginal distributions over the state, action,
and reward dimensions on the standard halfcheetah medium-replay dataset in Figure 8 and observe
that the synthetic samples accurately match the high-level statistics of the original dataset.

We note the difficulties of appropriately modeling the terminal variable which is a binary variable
compared to the rest of the dimensions which are continuous for the environments we investigate.
This is particularly challenging for “expert” datasets where early termination is rare. For example,
walker2d-expert only has ⇡ 0.0001% terminals. In practice, we find it sufficient to leave the terminals
un-normalized and round them to 0 or 1 by thresholding the continuous diffusion samples in the
middle at 0.5. A cleaner treatment of this variable could be achieved by leveraging work on diffusion
with categorical variables [31].

Figure 8: Histograms of the empirical marginal distribution of samples from SYNTHER in blue on the
halfcheetah medium-replay dataset against the original data in orange. Dashed lines indicate the mean ± one
standard deviation in the original dataset. SYNTHER faithfully reproduces the high-level statistics of the dataset.

16

A.1 Data Compression

An immediate advantage of sampling data from a generative model is compression. In Table 5,
we compare the memory requirements of SYNTHER and the original data by the number of 32-bit
floating point numbers used by each for some sample D4RL [21] datasets. For the original data, this
simply scales linearly with the size of the dataset. On other hand, SYNTHER amortizes this in the
number of parameters in the denoising network, resulting in a high level of dataset compression, at
the cost of sampling speed. This property was also noted in the continual learning literature with
generative models summarizing previous tasks [64]. As we discuss in Appendix B.3, sampling is fast
with 100K transitions taking around 90 seconds to generate.

Table 5: SYNTHER provides high levels of dataset compression without sacrificing downstream performance in
offline reinforcement learning. Statistics shown are for the standard D4RL MuJoCo walker2d datasets which has
a transition dimension of 42, and the residual denoiser used for evaluation on these environments in Section 4.1.
Figures are given to 1 decimal place.

Dataset # FP32s in
Original Dataset

Diffusion
Parameters Compression

mixed 12.6M
6.5M

1.9⇥
medium 42M 6.5⇥
medium-expert 84M 12.9⇥

B Hyperparameters

B.1 TVAE and CTGAN

In Section 3.1, we compared SYNTHER to the VAE and GAN baselines, TVAE and CTGAN. As these
algorithms have not been used for reinforcement learning data before, we performed a hyperparameter
search [42] across the following spaces:

Table 6: Hyperparameter search space for TVAE. We highlight the default choice in bold.
Parameter Search Space
no. layers { 1, 2, 3, 4 }
width { 64, 128, 256, 512 }
batch size { 250, 500, 1000 }
embedding dim { 32, 64, 128, 256 }
loss factor { 0.02, 0.2, 2, 20}

Table 7: Hyperparameter search space for CTGAN. We highlight the default choice in bold.
Parameter Search Space
no. layers { 1, 2, 3, 4 }
width { 64, 128, 256, 512 }
batch size { 250, 500, 1000 }
embedding dim { 32, 64, 128, 256 }
discriminator steps { 1, 2}

These ranges are similar to those listed in Tables 10 and 11 of Kotelnikov et al. [42]. We used 30
trials along with the default.

B.2 Denoising Network

The formulation of diffusion we use in our paper is the Elucidated Diffusion Model (EDM, Karras
et al. [38]). We parametrize the denoising network D✓ as an MLP with skip connections from the
previous layer as in Tolstikhin et al. [69]. Thus each layer has the form given in Equation (3).

xL+1 = linear(activation(xL)) + xL (3)

The hyperparameters are listed in Table 8. The noise level of the diffusion process is encoded by a
Random Fourier Feature [57] embedding. The base size of the network uses a width of 1024 and

17

depth of 6 and thus has ⇡ 6M parameters. We adjust the batch size for training based on dataset size.
For online training and offline datasets with fewer than 1 million samples (medium-replay datasets)
we use a batch size of 256, and 1024 otherwise.

For the following offline datasets, we observe more performant samples by increasing the width up
to 2048: halfcheetah medium-expert, hopper medium, and hopper medium-expert. This raises the
network parameters to ⇡ 25M, which remains fewer parameters than the original data as in Table 5.
We provide ablations on the depth and type of network used in Table 10.

Table 8: Default Residual MLP Denoiser Hyperparameters.
Parameter Value(s)
no. layers 6
width 1024
batch size { 256 for online and medium-replay, 1024 otherwise }
RFF dimension 16
activation relu
optimizer Adam
learning rate 3⇥ 10�4

learning rate schedule cosine annealing
model training steps 100K

B.3 Elucidated Diffusion Model

For the diffusion sampling process, we use the stochastic SDE sampler of Karras et al. [38] with
the default hyperparameters used for the ImageNet, given in Table 9. We use a higher number of
diffusion timesteps at 128 for improved sample fidelity. We use the implementation at https://
github.com/lucidrains/denoising-diffusion-pytorch which is released under an Apache
license.

Table 9: Default ImageNet-64 EDM Hyperparameters.
Parameter Value
no. diffusion steps 128
�min 0.002
�max 80
Schurn 80
Stmin 0.05
Stmax 50
Snoise 1.003

The diffusion model is fast to train, taking approximately 17 minutes for 100K training steps on a
standard V100 GPU. It takes approximately 90 seconds to generate 100K samples with 128 diffusion
timesteps.

C SYNTHER Ablations

We consider ablations on the number of generated samples and type of denoiser used for our offline
evaluation in Section 4.1.

C.1 Size of Upsampled Dataset

In our main offline evaluation in Section 4.1, we upsample each dataset (which has an original size
of between 100K to 2M) to 5M. We investigate this choice for the walker medium-replay dataset in
Figure 9 and choose 10 levels log-uniformly from the range [50K, 5M]. Similarly to He et al. [26],
we find that performance gains with synthetic data eventually saturate and that 5M is a reasonable
heuristic for all our offline datasets.

18

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

Figure 9: Ablations on the number of samples generated by SYNTHER for the offline walker medium-replay
dataset. We choose 10 levels log-uniformly from the range [50K, 5M]. We find that performance eventually
saturates at around 5M samples.

C.2 Network Ablations

We ablate the hyperparameters of the denoising network, comparing 3 settings of depth from {2, 4, 6}
and analyze the importance of skip connections. The remaining hyperparameters follow Appendix B.2.
We choose the hopper medium-expert dataset as it is a large dataset of 2M. As we can see in Table 10,
we see a positive benefit from the increased depth and skip connections which leads to our final
choice in Table 8.

Table 10: Ablations on the denoiser network used for SYNTHER on the hopper medium-expert dataset. We
observe that greater depth and residual connections are beneficial for downstream offline RL performance. We
show the mean and standard deviation of the final performance averaged over 4 seeds.

Network Depth Eval. Return

MLP
2 86.8±18.7
4 89.9±17.9
6 100.4± 6.9

Residual MLP
2 78.5±11.3
4 99.3±14.7
6 101.1±10.5

D RL Implementation

For the algorithms in the offline RL evaluation in Section 4.1, we use the ‘Clean Offline Reinforcement
Learning’ (CORL, Tarasov et al. [67]) codebase. We take the final performance they report for the
baseline offline evaluation. Their code can be found at https://github.com/tinkoff-ai/CORL
and is released under an Apache license.

For the online evaluation, we consider Soft Actor-Critic (SAC, Haarnoja et al. [24]) and use the
implementation from the REDQ [12] codebase. This may be found at https://github.com/
watchernyu/REDQ and is released under an MIT license. We use the ‘dmcgym’ wrapper for the
DeepMind Control Suite [70]. This may be found at https://github.com/ikostrikov/dmcgym
and is released under an MIT license.

D.1 Data Augmentation Hyperparameters

For the data augmentation schemes we visualize in Figure 1a, we define:

1. Additive Noise [45]: adding ✏ ⇠ N (0, 0.1) to st and st+1.
2. Multiplicative Noise [45]: multiplying st and st+1 by single number ✏ ⇠ Unif([0.8, 1.2]).

19

https://github.com/tinkoff-ai/CORL
https://github.com/watchernyu/REDQ
https://github.com/watchernyu/REDQ
https://github.com/ikostrikov/dmcgym

3. Dynamics Noise [8]: multiplying the next state delta st+1 � st by ✏ ⇠ Unif([0.5, 1.5]) so
that st+1 = st + ✏ · (st+1 � st).

D.2 Online Running Times

Our online implementation in Section 4.2 uses the default training hyperparameters in Appendix B.2
to train the diffusion model every 10K online steps, and generates 1M transitions each time. On
the 200K DMC experiments, ‘SAC (SynthER)’ takes ⇡ 21.1 hours compared to ⇡ 22.7 hours with
REDQ on a V100 GPU. We can further break down the running times of ‘SAC (SynthER)’ as follows:

• Diffusion training: 4.3 hours

• Diffusion sampling: 5 hours

• RL training: 11.8 hours

Therefore, the majority of training time is from reinforcement learning with an update-to-data ratio
(UTD) of 20. We expect the diffusion training may be heavily sped-up with early stopping, and leave
this to future work. The default SAC algorithm with UTD=1 takes ⇡ 2 hours.

E Further Offline Results

In this section, we include additional supplementary offline experiments to those presented in
Section 4.1.

E.1 AntMaze Data Generation

We further verify that SYNTHER can generate synthetic data for more complex environments such as
AntMaze [21]. This environment replaces the 2D ball from Maze2D with the more complex 8-DoF
“Ant” quadruped robot, and features: non-Markovian policies, sparse rewards, and multitask data. In
Table 11, we see that SYNTHER improves the TD3+BC algorithm where it trains (on the ‘umaze’
dataset) and achieves parity otherwise.

Table 11: We show synthetic data from SYNTHER achieves at least parity for more complex offline environments
like AntMaze-v2, evaluated with the TD3+BC algorithm. We show the mean and standard deviation of the final
performance averaged over 6 seeds.

Environment TD3+BC [22]
Original SynthER

AntMaze
umaze 70.8±39.2 88.9±4.4
medium-play 0.3±0.4 0.5±0.7
large-play 0.0±0.0 0.0±0.0

E.2 Offline Data Mixtures

In Section 4.1, we considered exclusively training on synthetic data. We present results in Table 12
with a 50-50 mix of real and synthetic data to confirm that the two are compatible with each other,
similar to Section 4.2. We do so by including as many synthetic samples as there are real data. As
we stated before, we do not expect an increase in performance here due to the fact that most D4RL
datasets are at least 1M in size and are already sufficiently large.

Table 12: We verify that the synthetic data from SYNTHER can be mixed with the real data for offline
evaluation. The 50-50 mix achieves parity with the original data, same as the synthetic data. We show the mean
and standard deviation of the final performance averaged over 8 seeds.

Environment TD3+BC [22] IQL [41]
Original SYNTHER 50-50 Original SYNTHER 50-50

locomotion average 59.0±4.9 60.0±5.1 59.2±3.7 62.1±3.5 63.7±3.5 62.7±5.1

20

F Latent Data Generation with V-D4RL

We provide full details for the experiments in Section 4.3 that scale SYNTHER to pixel-based
environments by generating data in latent space for the DrQ+BC [50] and BC algorithms. Concretely,
for the DrQ+BC algorithm, we consider parametric networks for the shared CNN encoder, policy,
and Q-functions, f⇠, ⇡�, and Q✓ respectively. We also use a random shifts image augmentation,
aug. Therefore, the Q-value for a state s and action a is given by Q✓(f⇠(aug(s)), a). The policy is
similarly conditioned on an encoding of an augmented image observation.

The policy and Q-functions both consist of an initial ‘trunk’ which further reduces the dimensionality
of the CNN encoding to dfeature = 50, followed by fully connected layers. We represent this as
⇡� = ⇡fc

� � ⇡trunk
� and Q✓ = Qfc

✓ � Qtrunk
✓ . This allows us to reduce a pixel-based transition to a

low-dimensional latent version. Consider a pixel-based transition (s, a, r, s0) where s, s0 2 R84⇥84⇥3.
Let h = f⇠(aug(s)) and h0 = f⇠(aug(s0)). The latent transition we generate is:

(⇡trunk
� (h), Qtrunk

✓ (h), a, r,⇡trunk
� (h0), Qtrunk

✓ (h0))

This has dimension 4 ·dfeature + |a|+1 and includes specific supervised features for both the actor and
the critic; we analyze this choice in Appendix F.1. For example, on the ‘cheetah-run’ environment
considered in V-D4RL, since |a| = 6, the overall dimension is 207 which is suitable for our residual
MLP denoising networks using the same hyperparameters in Table 8. This allows us to retain the fast
training and sampling speed from the proprioceptive setting but now in pixel space.

To obtain a frozen encoder f⇠ and trunks ⇡trunk
� , Qtrunk

✓ , we simply train in two stages. The first
stage trains the original algorithm on the original data. The second stage then retrains only the
fully-connected portions of the actor and critic, ⇡fc

� and Qfc
✓ , with synthetic data. Thus, our approach

could also be viewed as fine-tuning the heads of the networks. The procedure for the BC algorithm
works the same but without the critic.

We use the official V-D4RL [50] codebase for the data and algorithms in this evaluation. Their
code can be found at https://github.com/conglu1997/v-d4rl and is released under an MIT
license.

F.1 Ablations On Representation

We analyze the choice of low-dimensional latent representation we use in the previous section, in
particular, using specific supervised features for both the actor and critic. We compare this against
using actor-only or critic-only features for both the actor and critic, which corresponds to a choice of
⇡trunk
� = Qtrunk

✓ , in Table 13. We note that both perform worse with an especially large drop-off for
the critic-only features. This may suggest that non-specific options for compressing the image into
low-dimensional latents, for example, using auto-encoders [40], could be even less suitable for this
task.

Table 13: Ablations on the latent representation used for SYNTHER on the V-D4RL cheetah expert
dataset. We observe that separate specific supervised features are essential for downstream perfor-
mance with a particularly large decrease if we only used critic features for the actor and critic. We
show the mean and standard deviation of the final performance averaged over 4 seeds.

Latent Representation Eval. Return
Actor and Critic (Ours) 52.3±7.0
Actor Only 43.5±7.3
Critic Only 16.0±2.8

21

https://github.com/conglu1997/v-d4rl

	Introduction
	Background
	Reinforcement Learning
	Offline Reinforcement Learning
	Diffusion Models

	Synthetic Experience Replay
	Offline SynthER
	Online SynthER

	Empirical Evaluation
	Offline Evaluation
	Upsampling for Small Datasets
	Scaling Network Size

	Online Evaluation
	Scaling to Pixel-Based Observations

	Related Work
	Conclusion
	Data Modeling
	Data Compression

	Hyperparameters
	TVAE and CTGAN
	Denoising Network
	Elucidated Diffusion Model

	SynthER Ablations
	Size of Upsampled Dataset
	Network Ablations

	RL Implementation
	Data Augmentation Hyperparameters
	Online Running Times

	Further Offline Results
	AntMaze Data Generation
	Offline Data Mixtures

	Latent Data Generation with V-D4RL
	Ablations On Representation

