
Action Inference by Maximising Evidence: Zero-Shot
Imitation from Observation with World Models

Xingyuan Zhang1, 2∗, Philip Becker-Ehmck1, Patrick van der Smagt1,3, Maximilian Karl1
1Machine Learning Research Lab, Volkswagen Group, 2Technical University of Munich,

3Eötvös Loránd University Budapest
{xingyuan.zhang,philip.becker-ehmck,maximilian.karl}@volkswagen.de

Abstract

Unlike most reinforcement learning agents which require an unrealistic amount
of environment interactions to learn a new behaviour, humans excel at learning
quickly by merely observing and imitating others. This ability highly depends
on the fact that humans have a model of their own embodiment that allows them
to infer the most likely actions that led to the observed behaviour. In this paper,
we propose Action Inference by Maximising Evidence (AIME) to replicate this
behaviour using world models. AIME consists of two distinct phases. In the
first phase, the agent learns a world model from its past experience to understand
its own body by maximising the evidence lower bound (ELBO). While in the
second phase, the agent is given some observation-only demonstrations of an
expert performing a novel task and tries to imitate the expert’s behaviour. AIME
achieves this by defining a policy as an inference model and maximising the
evidence of the demonstration under the policy and world model. Our method
is "zero-shot" in the sense that it does not require further training for the world
model or online interactions with the environment after given the demonstration.
We empirically validate the zero-shot imitation performance of our method on
the Walker and Cheetah embodiment of the DeepMind Control Suite and find it
outperforms the state-of-the-art baselines. Code is available at: https://github.
com/argmax-ai/aime.

1 Introduction

In recent years, deep reinforcement learning (DRL) has enabled intelligent decision-making agents
to thrive in multiple fields [1, 2, 3, 4, 5, 6]. However, one of the biggest issues of DRL is sample
inefficiency. The dominant framework in DRL is learning from scratch [7]. Thus, most algorithms
require an incredible amount of interactions with the environment [1, 2, 3].

In contrast, cortical animals such as humans are able to quickly learn new tasks through just a few
trial-and-error attempts, and can further accelerate their learning process by observing others. An
important difference between biological learning and the DRL framework is that the former uses
past experience for new tasks. When we try a novel task, we use previously learnt components and
generalise to solve the new problem efficiently. This process is augmented by imitation learning [8],
which allows us to replicate similar behaviours without direct observation of the underlying muscle
movements. If the DRL agents could similarly harness observational data, such as the abundant
online video data, the sample efficiency may be dramatically improved [9]. The goal of the problem is
related to the traditional well-established Learning from Demonstration (LfD) field from the robotics
community [10, 11], but instead of relying on knowledge from the engineers and researchers, e.g.
mathematical model of robot’s dynamic or primitives, we aim to let the robots learn by itself.

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/argmax-ai/aime
https://github.com/argmax-ai/aime

𝑠𝑠𝑡𝑡

𝑜𝑜𝑡𝑡

𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡+1

𝑜𝑜𝑡𝑡+1

Embodiment
dataset

{𝑜𝑜1, 𝑎𝑎1, 𝑜𝑜2, 𝑎𝑎2 … }

𝑠𝑠𝑡𝑡

𝑜𝑜𝑡𝑡

𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡+1

𝑜𝑜𝑡𝑡+1

Demonstration
dataset

{𝑜𝑜1, 𝑜𝑜2, 𝑜𝑜3 … }

𝑎𝑎𝑡𝑡+1

𝑠𝑠𝑡𝑡+2

𝑜𝑜𝑡𝑡+2

𝑠𝑠𝑡𝑡+2

𝑎𝑎𝑡𝑡+1

𝑜𝑜𝑡𝑡+2

Transfer Parameters 𝜙𝜙, 𝜃𝜃
Phase 1: Model Learning Phase 2: Imitation Learning

𝐽𝐽 𝑜𝑜1:𝑇𝑇 , 𝑠𝑠0:𝑇𝑇 , 𝑎𝑎0:𝑇𝑇−1 = 𝐽𝐽𝑟𝑟𝑟𝑟𝑟𝑟(𝑜𝑜1:𝑇𝑇 , 𝑠𝑠0:𝑇𝑇 , 𝑎𝑎0:𝑇𝑇−1) + 𝐽𝐽𝐾𝐾𝐾𝐾(𝑜𝑜1:𝑇𝑇 , 𝑠𝑠0:𝑇𝑇 , 𝑎𝑎0:𝑇𝑇−1)

∇𝜙𝜙,𝜃𝜃𝐽𝐽 ∇𝜓𝜓𝐽𝐽

𝑞𝑞𝜙𝜙
𝑝𝑝𝜃𝜃
𝜋𝜋𝜓𝜓

𝑜𝑜𝑡𝑡

𝑎𝑎𝑡𝑡

𝑜𝑜𝑡𝑡+1

Figure 1: Overview of AIME algorithm. In phase 1, both observations and actions are provided by
the embodiment dataset and the agent learns a variational world model to model the evidence of
observations conditioned on the actions. Then the learnt model weights are frozen and transferred to
phase 2. In phase 2, only the observations are provided by the demonstration dataset, so the agent
needs to infer both states and actions. The action inference is achieved by the policy model which
samples actions given a state. The grey lines indicate the world model parameters are frozen in phase
2. Both phases are optimised toward the same objective, i.e. the ELBO.

However, directly learning a model from observation-only sequences [12, 13] is insufficient for both
biological and technical systems. Without knowing the actions that lead to the observations, the
observation sequences are highly stochastic and multi-modal [14]. Trying to infer these unknown
actions without prior knowledge of the world is difficult due to the problem of attributing which parts
of the observations are influenced by the actions and which parts are governed by normal system
evolution or noise.

Therefore, in this work, we hypothesise that in order to make best use of observation-only sequences,
an agent has to first understand the notion of an action. This can be achieved by learning a model
from an agent’s past experiences where both the actions and their consequences, i.e. observations, are
available. Given such a learnt model which includes a causal model of actions and their effects, it
becomes feasible for an agent to infer an action sequence leading to given observation-only data.

In this work, we propose a novel algorithm, Action Inference by Maximising Evidence (AIME), to
try to replicate the imitation ability of humans. The agent first learns a world model from its past
experience by maximising the evidence of these experiences. After receiving some observation-only
demonstrations of a novel task, the agent tries to mimic the demonstrator by finding an action sequence
that makes the demonstration most likely under the learnt model. This procedure is shown in Figure 1.

Our contribution can be summarised as follows:

• We propose AIME, a novel method for imitation from observation. AIME first learns a
world model by maximising the evidence of its past experience, then considers the policy as
an action inference model and imitates by maximising the evidence of demonstration.

• We conduct experiments with a variety of datasets and tasks to demonstrate the superior
performance of AIME compared with other state-of-the-art methods. The results showcase
the zero-shot transferability of a learnt world model.

2 Problem formulation

Consider an MDP problem defined by the tuple {S,A, T,R}, where S is the state space, A is the
action space, T : S × A → S is the dynamic function and R : S → R is the reward function. A
POMDP adds partial observability upon an MDP with two components: the observation space O and
the emission function Ω : S → O. The six components of a POMDP can be categorised into three
groups: S, A and T define the embodiment of our agent, O and Ω define the sensors of our agent and

2

R itself defines the task. The goal is to find a policy π : S → A which maximises the accumulated
reward, i.e.

∑
t rt.

In this paper, we want to study imitation learning within a fixed embodiment across different tasks.
We presume the existence of two datasets for the same embodiment:

• Embodiment dataset Dbody contains trajectories {o0, a0, o1, a1 . . . } that represent past
experiences of interacting with the environment. This dataset provides information about
the embodiment for the algorithm to learn a model. For example, in this paper, the dataset is
a replay buffer filled while solving some tasks with the same embodiment. But in general, it
may be any collection of past experiences of the embodiment.

• Demonstration dataset Ddemo contains a few expert trajectories {o0, o1, o2 . . . } of the
embodiment solving a certain task defined by Rdemo. The crucial difference between this
dataset and the embodiment dataset is that the actions are not provided anymore since they
are not observable from a third-person perspective.

The goal of our agent is to use information in Dbody to learn a policy π from Ddemo which can solve
the task defined by Rdemo as well as the expert who generated Ddemo. For simplicity, we assume
that the two datasets share the same observation space O and the emission model Ω.

3 Methodology

In this section, we describe our proposed method, AIME, in detail. AIME consists of two phases. In
the first phase, the knowledge of the embodiment is learnt through a form of world model; while in
the second phase, this knowledge is used to imitate the expert.

3.1 Phase 1: Model Learning

In the first phase, we need to learn a model to understand our embodiment. We achieve this by
learning a world model. As an analogy to a language model, we define a world model as a probability
distribution over sequences of observations. The model can be either unconditioned or conditioned
on other factors such as previous observations or actions. For phase 1, the model needs to be the
conditional distribution, i.e. p(o1:T |a0:T−1), to model the effect of the actions. When given an
observation sequence, the likelihood of this sequence under the model is referred to as evidence.

In this paper, we consider variational world models where the observation is governed by a Markovian
hidden state. In the literature, this type of model is also referred to as a state-space model (SSM)
[15, 16, 17, 18, 19, 20]. Such a variational world model involves four components, namely

encoder zt = fϕ(ot),

posterior st ∼ qϕ(st|st−1, at−1, zt),

prior st ∼ pθ(st|st−1, at−1),

decoder ot ∼ pθ(ot|st).

fϕ(ot) is the encoder to extract the features from the observation; qϕ(st|st−1, at−1, zt) and
pθ(st|st−1, at−1) are the posterior and the prior of the latent state variable; while pθ(ot|st) is
the decoder that decodes the observation distribution from the state. ϕ and θ represent the parameters
of the inference model and the generative model respectively.

Typically, a variational world model is trained by maximising the ELBO which is a lower bound
of the log-likelihood, or evidence, of the observation sequence, i.e. log pθ(o1:T |a0:T−1). Given a
sequence of observations, actions, and states, the objective function can be computed as

J(o1:T , s0:T , a0:T−1) = Jrec(o1:T , s0:T , a0:T−1) + JKL(o1:T , s0:T , a0:T−1), (1)

where Jrec(o1:T , s0:T , a0:T−1) =

T∑
t=1

log pθ(ot|st), (2)

JKL(o1:T , s0:T , a0:T−1) =

T∑
t=1

−DKL[qϕ(st|st−1, at−1, fϕ(ot))||pθ(st|st−1, at−1)]. (3)

3

The objective function is composed of two terms: the first term Jrec is the likelihood of the observation
under the inferred state, which is usually called the reconstruction loss; while the second term JKL is
the KL divergence between the posterior and the prior distributions of the latent state. To compute
the objective function, we use the re-parameterisation trick [21, 22] to autoregressively sample the
inferred states from the observation and action sequence.

Combining all these, we formally define the optimisation problem for this phase as

ϕ∗, θ∗ = argmax
ϕ,θ

E{o1:T ,a0:T−1}∼Dbody,s0:T∼qϕ [J(o1:T , s0:T , a0:T−1)]. (4)

3.2 Phase 2: Imitation Learning

In the second phase, we want to utilise the knowledge of the world model from the first phase to
imitate the expert behaviour from the demonstration dataset Ddemo in which only sequences of
observations but no actions are available. We derive our algorithm from two different perspectives.

The Bayesian derivation Since the actions are unknown in the demonstration, instead of modelling
the conditional evidence in phase 1, we need to model the unconditional evidence, i.e. log pθ(o1:T).
Thus, we also need to model the actions as latent variables together with the states. In this way, the
reconstruction term Jrec will stay the same as eq. (2), while the KL term will be defined on the joint
distribution of states and actions, i.e.

JKL(o1:T , s0:T , a0:T−1) =

T∑
t=1

−DKL[qϕ,ψ(st, at−1|st−1, fϕ(ot))||pθ,ψ(st, at−1|st−1)]. (5)

If we choose the action inference model in the form of a policy, i.e. πψ(at|st), and share it in both
posterior and prior, then the new posterior and prior can be factorised as

qϕ,ψ(st, at−1|st−1, fϕ(ot)) = πψ(at−1|st−1)qϕ(st|st−1, at−1, fϕ(ot)) (6)
and pθ,ψ(st, at−1|st−1) = πψ(at−1|st−1)pθ(st|st−1, at−1) (7)

respectively. When we plug them into the eq. (5), the policy term cancels and we will get a similar
optimisation problem with phase 1 as

ψ∗ = argmax
ψ

Eo1:T∼Ddemo,{s0:T ,a0:T−1}∼qϕ∗,ψ [J(o1:T , s0:T , a0:T−1)]. (8)

The main difference between eq. (4) and eq. (8) is where the action sequence is coming from. In
phase 1, the action sequence is coming from the embodiment dataset, while in phase 2, it is sampled
from the policy instead since it is not available in the demonstration dataset.

The control derivation From another perspective, we can view phase 2 as a control problem. One
crucial observation is that, as shown in eq. (1), given a trained world model, we can evaluate the
lower bound of the evidence of any observation sequence given an associated action sequence as the
condition. In a deterministic environment where the inverse dynamics model is injective, the true
action sequence that leads to the observation sequence is the most likely under the true model. In
general, the true action sequence may not necessarily be the most likely under the model. This is,
however, a potential benefit of our approach. We are mainly interested in mimicking the expert’s
demonstration and may be better able to do so with a different action sequence.

Thus, for each observation sequence that we get from the demonstration dataset, finding the missing
action sequence can be considered as a trajectory-tracking problem and can be tackled by planning.
To be specific, we can find the missing action sequence by solving the optimisation problem

a∗0:T−1 = argmax
a0:T−1

Eo1:T∼Ddemo,s0:T∼qϕ∗ [J(o1:T , s0:T , a0:T−1)]. (9)

If we solve the above optimisation problem for every sequence in the demonstration dataset, the
problem will be converted to a normal imitation learning problem and can be solved with standard
techniques such as behavioural cloning. We can also view this as forming an implicit inverse dynamics
model (IDM) by inverting a forward model w.r.t. the actions.

To make it more efficient, we use amortised inference. We directly define a policy πψ(at|st) under
the latent state of the world model. By composing the learnt world model and the policy, we can form

4

Algorithm 1: AIME
Data: Embodiment dataset Dbody, Demonstration dataset Ddemo, Learning rate α
Phase 1: Model Learning
Initialise world model parameters ϕ and θ
while model has not converged do
{o1:T , a0:T−1} ∼ Dbody

s0 ← 0
for t = 1 : T do

st ∼ qϕ(st|st−1, at−1, fϕ(ot))
Compute objective function J from eq. (1)
Update model parameters ϕ← ϕ+ α∇ϕJ , θ ← θ + α∇θJ

Phase 2: Imitation Learning
Initialise policy parameters ψ
while policy has not converged do

o1:T ∼ Ddemo

s0 ← 0
for t = 1 : T do

at−1 ∼ πψ(at−1|st−1)
st ∼ qϕ(st|st−1, at−1, fϕ(ot))

Compute objective function J from eq. (1)
Update policy parameters ψ ← ψ + α∇ψJ

a new generative model of the state sequence by the chain of st → at → st+1 → at+1 . . . → sT .
Then we will get the same optimisation problem as eq. (8).

To sum up, in AIME, we use the same objective function – the ELBO – in both phases with the only
difference being the source of the action sequence. We provide the pseudo-code for the algorithm in
Algorithm 1 with the colour highlighting the different origins of the actions between the two phases.

4 Experiments

To test our method, we need multiple environments sharing an embodiment while posing different
tasks. Therefore, we consider Walker and Cheetah embodiment from the DeepMind Control Suite
(DMC Suite) [23]. Officially, the Walker embodiment has three tasks: stand, walk and run. While the
Cheetah embodiment only has one task, run, we add three new tasks, namely run backwards, flip and
flip backwards, inspired by previous work [24]. Following the common practice in the benchmark
[19], we repeat every action two times when interacting with the environment. For both embodiments,
the true state includes both the position and the velocity of each joint and the centre of mass of the
body. In order to study the influence of different observation modalities, we consider three settings for
each environment: MDP uses the true state as the observation; Visual uses images as the observation;
LPOMDP uses only the position part of the state as the observation, so that information-wise it is
identical to the Visual setting but the information is densely represented in a low-dimensional form.

To generate the embodiment and demonstration datasets, we train a Dreamer [19] agent in the
Visual setting for each of the tasks for 1M environment steps. We take the replay buffer of these
trained agents as the embodiment datasets Dbody, which contain 1000 trajectories, and consider
the converged policy as the expert to collect another 1000 trajectories as the demonstration dataset
Ddemo. We only use 100 trajectories for the main experiments, and the remaining trajectories are
used for an ablation study. The performance of the policy is measured by accumulated reward. The
exact performance of the demonstration dataset can be found in Appendix D. Besides the above
embodiment datasets, we also study two datasets generated by purely exploratory behaviour. First,
we use a random policy that samples uniformly from the action space to collect 1000 trajectories, and
we call this the random dataset. Second, we train a Plan2Explore [24] agent for 1000 trajectories and
label its replay buffer as the p2e dataset. Moreover, for the Walker embodiment, we also merge all the
above datasets except the run dataset to form a mix dataset. This resembles a practical setting where
one possesses a lot of experience with one embodiment and uses all of it to train a single foundational
world model.

5

Figure 2: Performances on Walker. Each column indicates one task and its associated demonstration
dataset, while each row indicates the embodiment datasets used to train the model. The title of each
figure is named according to Dbody → Ddemo. Numbers are computed by averaging among 100
trials and then normalised to the percentage of the expert’s performance. Error bars are showing one
standard deviation. The last row and column are averaged over the corresponding task or dataset. The
error bar is large for them due to aggregating performance distributed in a large range.

4.1 Benchmark results

We mainly compare our method with BCO(0) [25]. BCO(0) first trains an IDM from the embodiment
dataset and then used the trained IDM to label the demonstration dataset and then uses Behavioural
Cloning (BC) to recover the policy. We do not compare with other methods since they either require
further environment interactions [26, 27] or use a goal-conditional setting [28] which does not suit the
locomotion tasks. More details about related works can be found in Section 5. The implementation
details can be found in Appendix B.

The main results of our comparison are shown in Figure 2 and Figure 3. Overall, we can see that
AIME largely outperforms BCO(0) in all the environment settings on Walker and on POMDP settings
on Cheetah. AIME typically achieves the lowest performance on the Visual setting, but even that is
comparable with BCO(0)-MDP which can access the true states. We attribute the good performance
of AIME to two reasons. First, the world model has a better data utilisation rate than the IDM because
the world model is trained to reconstruct whole observation sequences, while the IDM only takes

6

Figure 3: Performances on Cheetah. Each column indicates one task and its associated demonstration
dataset, while each row indicates the embodiment datasets used to train the model. The title of each
figure is named according to Dbody → Ddemo. runb and flipb are short hands for run backwards and
flip backwards. Numbers are computed by averaging among 100 trials and then normalised to the
percentage of the expert’s performance. Error bars are showing one standard deviation. The last row
and column are averaged over the corresponding task or dataset. The error bar is large for them due
to aggregating performance distributed in a large range.

short clips of the sequence and only predicts the actions. Thus, the world model has less chance to
overfit, learns better representations and provides better generalisation. Second, by maximising the
evidence, our method strives to find an action sequence that leads to the same outcome, not to recover
the true actions. For many systems, the dynamics are not fully invertible. For example, if a human
applies force to the wall, since the wall does not move, one cannot tell how much force is applied
by visual observation. The same situation applies to the Walker and Cheetah when certain joints are
locked due to the singular pose. This same phenomenon is also discussed in [28].

We also find that, comparing with the Walker experiments, the performance on Cheetah is lower and
the improvement offered by AIME is smaller. We think it is because the setup for Cheetah is much
harder than Walker. Although the tasks sound similar from the names, e.g. flip and flip backward,
due to the asymmetrical structure of the embodiment, the behaviour for solving the tasks can be quite
different. The difference limits the amount of knowledge that can be transferred from the embodiment
dataset to the demonstrations. Moreover, some tasks are built to be hard for imitation. For example,
in the demonstration of the flip tasks, the cheetah is "flying" in the air and the actions taken there is
not relevant for solving the tasks. That leaves only a few actions in the sequence that are actually
essential for solving the task. We think this is more challenging for AIME since it needs to infer
a sequence of actions, while BCO(0) is operating on point estimation. That is, when the first few
actions cannot output reasonable actions to start the flip, then the later actions will create a very noisy

7

gradient since none of them can explain the "flying". In general, poorly modelled regions of the world
may lead to noisy gradients for the time steps before it. On the other hand, we can also find most
variants achieve a good performance on the run backward demonstration dataset, which is mainly
due to low expert performance (see Appendix D) for the task that makes imitation easy. Last but
not least, since we follow the common practise for the benchmark [19], the Cheetah embodiment is
operated on 50Hz which is much higher than the 20Hz used in Walker. Higher frequency of operation
makes the effect of each individual action, i.e. change in the observation, more subtle and harder to
distinguish, which poses an additional challenge for the algorithms.

Influence of different datasets As expected, for almost all the variants of methods, transferring within
the same task is better than transferring between different tasks. In these settings, BCO(0)-MDP is
comparable with AIME. However, AIME shines in cross-task transfer. Especially when transferring
between run and walk tasks and transferring from stand to run on Walker, AIME outperforms the
baselines by a large margin, which indicates the strong generalisability of a forward model over
an inverse model. We also find that AIME makes substantially better use of exploratory data. On
Walker, AIME largely outperforms baselines when using the p2e dataset as the embodiment dataset
and outperforms most variants when using the random dataset as the embodiment dataset. Moreover,
when transferring from the mix dataset, except for the MDP version, AIME outperforms other
variants that train the world model on just any single individual task dataset of the mixed dataset.
This showcases the scalability of a world model to be trained on a diverse set of experiences, which
could be more valuable in real-world scenarios.

Influence of observation modality Compared with BCO(0), AIME is quite robust to the choice of
observation modality. We can see a clear ladder pattern with BCO(0) when changing the setting from
hard to easy, while for AIME the result is similar for each modality. However, we can still notice
a small difference when comparing LPOMDP and Visual settings. Although these observations
provide the same information, we find AIME in the LPOMDP setting performs better than in the
Visual setting in most test cases. We attribute it to the fact that low-dimension signals have denser
information and offer a smoother landscape in the evidence space than the pixels so that it can
provide a more useful gradient to guide the action inference. Surprisingly, although having access to
more information, AIME-MDP performs worse than AIME-LPOMDP on average. The biggest gaps
happen when transferring from exploratory datasets, i.e. the p2e dataset on Walker and the random
dataset on Cheetah. We conjecture this to the fact the world model is not trained well with the default
hyper-parameters, but we defer further investigation to future work.

4.2 Ablation studies

In this section, we conduct some ablation studies to investigate how AIME’s performance is influenced
by different components and design choices. We will mainly focus on using the mix embodiment
dataset and transfer to run task, which represents a more realistic setting where we want to use
experience from multiple tasks to transfer to a new task.

Sample efficiency and scalability To test these properties, we vary the number of demonstrations
within {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. We also include BC with the true action as an
oracle baseline. The results are shown in Figure 4. BCO(0) struggles with low-data scenarios and
typically needs at least 10 to 20 demonstrations to surpass the performance of a random policy. In
contrast, AIME demonstrates continual improvement with as few as 2 trajectories. And surprisingly,
thanks to the generalisation ability of the world model, AIME even outperforms oracle BC when
the demonstrations are limited. These demonstrate the superior sample efficiency of the method.
Moreover, the performance of AIME keeps increasing as more trajectories are provided beyond 100,
which showcases the scalability of the method.

Objective function The objective function, i.e. ELBO, consists of two terms, the reconstruction
term Jrec and the KL term JKL. To investigate the role that each term plays in AIME, we retrain two
variants of AIME by removing either of the terms. As we can see from Figure 5, removing either
term will negatively impact the results. When we compare the two variants, only using the KL term
is better in settings with low-dimensional signals, while using only the reconstruction term yields a
slightly better result for the high-dimensional image signal. But on all settings, the performance of
using only the KL term is very close to the one that use both terms. This suggests that the latent state
in the world model has already mostly captured the essential part of the environment. Although it is

8

100 101 102 103

Number of Demonstrations
0

20

40

60

80

100

120

No
rm

al
ise

d
Re

tu
rn

s

MDP
BC (oracle)
BCO(0)
AIME
random

100 101 102 103

Number of Demonstrations
0

20

40

60

80

100

120

No
rm

al
ise

d
Re

tu
rn

s

LPOMDP
BC (oracle)
BCO(0)
AIME
random

100 101 102 103

Number of Demonstrations
0

20

40

60

80

100

120

No
rm

al
ise

d
Re

tu
rn

s

Visual
BC (oracle)
BCO(0)
AIME
random

Figure 4: Ablation of the number of demonstrations on mix→ run transfer on the Walker embodiment.
The performance is shown as the normalised returns over 3 seeds and 100 trials for each seed. The
shaded region represents one standard deviation.

MDP LPOMDP Visual
0

20

40

60

80

100

No
rm

al
ise

d
Re

tu
rn

s

BCO(0)
AIME
AIME w/o Rec
AIME w/o KL
IIDM
AIME w/ IDM

Figure 5: Ablation studies on mix→ run transfer on the Walker embodiment. Numbers are computed
by averaging among 3 seeds and 100 trials for each seed, and then normalised to the percentage of
the expert’s performance. Error bars are showing one standard deviation.

still worse than using both terms, it sheds some light on the potential of incorporating decoder-free
models [29] into the AIME framework.

Components Compared with the BCO(0) baseline, AIME consists of two distinct modifications:
one is to use an SSM to integrate sequences and train the policy upon its latent representation; the
other is to form an implicit IDM via gradients rather than training an IDM explicitly. We design two
baselines to investigate the two components. First, to remove the SSM, we train a forward dynamics
model directly on the observations of the embodiment dataset and use that as an implicit IDM for
imitation on the demonstration dataset. We term this variant IIDM. Second, we train a separate
IDM upon the trained latent state of the world model and use that to guide the policy learning in
phase 2. The detailed derivation of the IDM formulation can be found in Appendix C. Figure 5
clearly demonstrates the significance of the latent representation for performance. Without the latent
representation, the results are severely compromised across all settings. However, when compared to
BCO(0), the IIDM does provide assistance in the high-dimensional Visual setting, where training
an IDM directly from the observation space can be extremely challenging. While having IDM on
the latent representation leads to a better performance comparing with BCO(0), but it still performs
worse than AIME, especially on the POMDP settings.

5 Related works

Imitation learning from observations Most previous works on imitation learning from only ob-
servation can be roughly categorised into two groups, one based on IDMs [25, 9, 30, 28] and one
based on generative adversarial imitation learning (GAIL) [31, 26, 27]. The core component of the
first group is to learn an IDM that maps a state transition pair to the action that caused the transition.
[25, 9] use the IDM to label the expert’s observation sequences, then solve the imitation learning
problem with standard BC. [30, 28] extend the IDM to a goal-conditioned setting in which the IDM
is trained to be conditioned on a future frame as the goal instead of only the next frame. During
deployment, the task is communicated on the fly by the user in the form of key-frames as goals. The

9

setup mainly suits for the robot manipulation tasks in their paper since the user can easily specify
the goals by doing the manipulation himself, but not suits for the locomotion tasks, in which it is
not clear what a long-term goal of observation is and also not practical set the next observation as
the goal and demonstrate that in a high frequency by the user. Different from these methods, our
approach uses a forward model to capture the knowledge of the embodiment. In the second group
of approaches, the core component is a discriminator that distinguishes the demonstrator’s and the
agent’s observation trajectories. Then the discriminator serves as a reward function, and the agent’s
policy is trained by RL [31]. As a drawback, in order to train this discriminator the agent has to
constantly interact with the environment to produce negative samples. Different from these methods,
our method does not require further interactions with the environment, enabling zero-shot imitation
from the demonstration dataset. Besides the majority, there are also works [32, 33] don’t strictly
fit to the two groups. [32] also use forward model like us by learning a latent action policy and a
forward dynamic based on the latent action. However, it still needs online environment interactions to
calibrate the latent actions to the real actions. [33] is hybrid method that uses both of the components
and focus on a setting that the demonstrations are coming from a different embodiment.

Reusing learnt components in decision-making Although transferring pre-trained models has
become a dominant approach in natural language processing (NLP) [34, 35, 36] and has been getting
more popular in computer vision (CV) [37, 36], reusing learnt components is less studied in the
field of decision-making [7]. Most existing works focus on transferring policies [38, 9, 7]. On
the other hand, the world model, a type of powerful perception model, that is purely trained by
self-supervised learning lies behind the recent progress of model-based reinforcement learning
[39, 17, 19, 40, 41, 42, 43, 44]. However, the transferability of these world models is not well-studied.
[24] learns a policy by using a pre-trained world model from exploration data and demonstrates
superior zero-shot and few-shot abilities. We improve upon this direction by studying a different
setting, i.e. imitation learning. In particular, we communicate the task to the model by observing the
expert while [24] communicates the task by a ground truth reward function which is less accessible
in a real-world setting.

6 Discussion & conclusion

In this paper, we present AIME, a model-based method for imitation from observations. The core of
the method exploits the power of a pre-trained world model and inverses it w.r.t. action inputs by
taking the gradients. On the Walker and Cheetah embodiments from the DMC Suite, we demonstrate
superior performance compared to baselines, even when some baselines can access the true state. The
results showcase the zero-shot ability of the learnt world model.

Although AIME performs well, there are still limitations. First, humans mostly observe others with
vision. Although AIME works quite well in the Visual setting, there is still a gap compared with
the LPOMDP setting where the low-dimensional signals are observed. We attribute this to the fact
that the loss surface of the pixel reconstruction loss may not be smooth enough to allow the gradient
method to find an equally good solution. Second, in this paper, we only study the simplest setting
where both the embodiment and sensor layout are fixed across tasks. On the other hand, humans
observe others in a third-person perspective and can also imitate animals whose body is not even
similar to humans’. Relaxing these assumptions will open up possibilities to transfer across different
embodiments and even directly from human videos. Third, for some tasks, even humans cannot
achieve zero-shot imitation by only watching others. This may be due to the task’s complexity or
completely unfamiliar skills. So, even with proper instruction, humans still need to practise in the
environment and learn something new to solve some tasks. This motivates an online learning phase 3
as an extension to our framework. We defer these topics to future work.

We hope this paper demonstrates the great potential of transferring a learnt world model, incentivises
more people to work in this direction and encourages researchers to also share their learnt world
model to contribute to the community.

Acknowledgments and Disclosure of Funding

We want to acknowledge Elie Aljalbout for the insightful discussion during the initial stage of the
project and Botond Cseke for mathematical support.

10

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[2] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, January
2016.

[3] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354.

[4] Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim, Juhyeok Mun, Jeong Hyun
Lee, and Jemin Hwangbo. Learning quadrupedal locomotion on deformable terrain. Science
Robotics, 8(74):eade2256, 2023.

[5] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand, 2019.

[6] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[7] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Belle-
mare. Reincarnating reinforcement learning: Reusing prior computation to accelerate progress.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[8] Marco Iacoboni. Imitation, empathy, and mirror neurons. Annual review of psychology,
60:653–70, 10 2008.

[9] Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): Learning to act by
watching unlabeled online videos. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[10] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos. Robot learning manipulation
action plans by "watching"; unconstrained videos from the world wide web. Proceedings of the
AAAI Conference on Artificial Intelligence, 29(1), Mar. 2015.

[11] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: extracting reusable task knowledge
from visual observation of human performance. IEEE Transactions on Robotics and Automation,
10(6):799–822, Dec 1994.

11

[12] Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning
with action-free pre-training from videos. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 19561–19579. PMLR, 17–23 Jul 2022.

[13] Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg,
Youngwoon Lee, Danijar Hafner, and Pieter Abbeel. Video Prediction Models as Rewards for
Reinforcement Learning, 2023.

[14] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey Levine.
Stochastic variational video prediction. In International Conference on Learning Representa-
tions, 2018.

[15] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. Advances in
neural information processing systems, 28, 2015.

[16] Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. In International
Conference on Learning Representations, 2017.

[17] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565, 2019.

[18] Philip Becker-Ehmck, Jan Peters, and Patrick Van Der Smagt. Switching linear dynamics for
variational Bayes filtering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 553–562. PMLR, 09–15 Jun 2019.

[19] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2020.

[20] Alexej Klushyn, Richard Kurle, Maximilian Soelch, Botond Cseke, and Patrick van der Smagt.
Latent matters: Learning deep state-space models. Advances in Neural Information Processing
Systems, 34:10234–10245, 2021.

[21] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings, 2014.

[22] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Eric P. Xing and Tony Jebara,
editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of
Proceedings of Machine Learning Research, pages 1278–1286, Bejing, China, 22–24 Jun 2014.
PMLR.

[23] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks
for continuous control. Software Impacts, 6:100022, 2020.

[24] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In ICML, 2020.

[25] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In
International Joint Conferences on Artificial Intelligence, pages 4950–4957, 2018.

[26] Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observa-
tion, 2018.

12

[27] Chenhao Li, Marin Vlastelica, Sebastian Blaes, Jonas Frey, Felix Grimminger, and Georg
Martius. Learning agile skills via adversarial imitation of rough partial demonstrations. In 6th
Annual Conference on Robot Learning, 2022.

[28] Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu,
Evan Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation.
In ICLR, 2018.

[29] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model
predictive control. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 8387–8406. PMLR,
17–23 Jul 2022.

[30] Ashvin Nair, Dian Chen, Pulkit Agrawal, Phillip Isola, Pieter Abbeel, Jitendra Malik, and Sergey
Levine. Combining self-supervised learning and imitation for vision-based rope manipulation.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), page 2146–2153.
IEEE Press, 2017.

[31] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

[32] Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent
policies from observation. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pages 1755–1763. PMLR, 09–15 Jun 2019.

[33] Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Re-
inforcement learning with videos: Combining offline observations with interaction. In Jens
Kober, Fabio Ramos, and Claire Tomlin, editors, Proceedings of the 2020 Conference on Robot
Learning, volume 155 of Proceedings of Machine Learning Research, pages 339–354. PMLR,
16–18 Nov 2021.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[35] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[36] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa
Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric
Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr,
Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack
Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishnan
Srinivasan, Alex Tamkin, Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang,
William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga,

13

Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia
Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation models,
2021.

[37] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16000–16009, 2022.

[38] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017.

[39] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

[40] Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt. Learning to fly
via deep model-based reinforcement learning. arXiv preprint arXiv:2003.08876, 2020.

[41] Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. In International Conference on Learning Representations, 2021.

[42] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2023.

[43] Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model based reinforcement learning
for atari. In International Conference on Learning Representations, 2020.

[44] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[46] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. 2014.

[47] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls of
heteroscedastic uncertainty estimation with probabilistic neural networks. In International
Conference on Learning Representations, April 2022.

[48] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus), 2015.

[49] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[50] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[51] Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and
Yee Whye Teh. Challenges and Opportunities in Offline Reinforcement Learning from Visual
Observations. Transactions on Machine Learning Research, 2023.

[52] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

14

A Computational resources

On a GTX 1080Ti graphics card, AIME typically requires 10 hours of training for phase 1 and 5
hours of training for phase 2 with MDP and LPOMDP setups. The required time nearly doubled
when running with Visual settings, due to heavier visual backbones and rendering. We conduct
experiments on a shared local cluster which uses A100 and RTX8000 GPUs. The newer GPUs can
slightly improve the training speeds but not much since the main computational bottleneck is the
recurrent structure. In terms of one GTX 1080Ti, it will require roughly 50 GPU days to produce the
benchmark results.

B Implementation and training details

We implement all listed methods in PyTorch [45].

For the world model, we use RSSM [17, 19], which offers state-of-the-art performances by splitting
the latent state to be a combination of deterministic and stochastic components. The RSSM implemen-
tation is largely following Dreamer-v1 [19] with continuous stochastic and deterministic variables.
Although newer versions of Dreamer [41, 42] offer some new tricks to improve performance, we
initially choose not to use them for the sake of simplicity. We use a slightly larger state space for
our experiment with 512 deterministic and 128 stochastic dimensions and find it generally eases
the policy training process to collect the datasets. For the Visual setting, the encoder and decoder
are implemented with CNNs. The decoder output a Gaussian distribution with the mean output by
CNN and a fixed variance of 1. For the low-dimensional settings, the encoder is implemented as
an identity function while the decoders are Gaussian distributions with both the mean and variance
parameterised by MLPs. The deterministic part of the state is implemented as a GRU cell [46]. For
the default hyper-parameters, we do not use any free nats [19], KL scaling [19] and KL balancing
[41] tricks in the literature to relax the constraint of the KL term. When decoding low-dimensional
signals, we sometimes observed the decoder yielding a degenerate solution as found in [47]. We use
their β-nll to remedy this problem, and since it re-weights the reconstruction term, we re-weight the
KL term accordingly to maintain the balance.

Without further mention, all the CNN encoders and decoders above are implemented as in [39, 17],
while all the MLPs are with 2 hidden layers and 128 units of each layer with ELU [48] activation
function. All the components are trained with Adam optimiser with a learning rate of 1e−3. For the
stochastic policy, the output distribution is modelled by a TanhGaussian distribution [49] with both
the mean and variance parameterised by neural networks.

For AIME, we consider 100 gradient steps as an epoch. For phase 1, the model is trained for 1000
epochs, while for phase 2 we train the policy for 500 epochs. Both the final model and policy are
from the last epoch without any early stopping criteria.

When training the world model on the Cheetah dataset, we find the default hyper-parameters cannot
stably train a good world model. Thus, we adapt the implementation to exactly the same network
structure as the origin repository. Specifically, the decoders of low-dimensional observations are also
with a fixed variance of 1 and all the MLPs are widened to 512 neurons in each hidden layer and
equipped with Layer Normalisation [50]. For the hyper-parameters, the learning rate is decreased
to 3e−4, and we use free nats of 1.0 and KL balancing of 0.8 to mitigate the collapse and unstable
problem of the KL term. For the LPOMDP setting, we also set the KL scaling parameter β = 0.0002
to relax the constraint. One thing that needs to mention is, while the tricks about the KL term are
helpful for model training, they hurt the results in phase 2. It could be because, in phase 2, the model
is frozen, so that no-more stability issues will be encountered. So in this case it is better to optimise
the policy with the true ELBO.

To be strict with our setup of the two phases, we retrain the world model after data collection for all
the experiments. However, one can also directly use the world model from the trained dreamer agent.
We empirically find these models yield similar results with the world model retrained afterwards on
the same reply buffer. One caveat is that, although it is tempting to also reuse the trained policy as
initialisation in phase 2, we found it is actually harmful to the performance. We conjecture that it is
due to learnt policies being stuck in some local minima that they are unable to escape.

15

For the BCO(0) baseline, the IDM and policy are built by using the same network architecture with
the world model to make a fair comparison. The observations are first processed by the encoder
network, and then get stacked to deal with the temporal information. An MLP is used to decode the
stacked representation to the output distribution. We stack 5 consecutive in this work. We did a grid
search about the width, depth of the MLP and also the number of stacking frames and didn’t find any
increase of the performance. Following the original paper, we split the datasets by 7 : 3, and choose
the finial model based on the validation loss.

C AIME with IDM

In this section, we introduce an alternative variant of AIME which also uses IDM. Recall that in the
Bayesian derivation, we factorised both the posterior and prior of the joint distribution of state and
action with a shared policy network, as in eq. (6) and eq. (7). Alternatively, we can re-factorise the
posterior with IDM, that is

qϕ,θ(st, at−1|st−1, fϕ(ot)) = qϕ(at−1|st−1, fϕ(ot))qϕ(st|st−1, at−1, fϕ(ot)). (10)

One thing that needs to be noticed here is that the IDM is not in the familiar form of qϕ(at−1|st−1, st).
This is because the latent state in the world model is action dependent so the familiar form is non-
casual in the world model. But we should highlight here that this non-casual structure is a result of
the model we used in phase 1 since we want to reuse the knowledge learnt there. For example, one
can also factorise the joint posterior as

qϕ(st, at−1|st−1, fϕ(ot)) = qϕ(at−1|st−1, st)qϕ(st|st−1, fϕ(ot)). (11)

However, in this case, the model is different for phase 1. In this section, we stick to using
the factorisation in eq. (10). Since a new IDM component is introduced, the objective of both
phase 1 and phase 2 need to be modified. For phase 1, since actions are available in the dataset,
the IDM can be treated as a decoder and trained by maximising likelihood. That is, we add
Jp1
IDM(τ (T)) =

∑T−1
t=0 log qϕ(at|st, fϕ(ot+1)) to the objective function. For phase 2, since actions

are not available, the IDM serves as the posterior and guides the prior policy through a KL divergence,
i.e. Jp2

IDM(τ (T)) =
∑T−1
t=0 −DKL[qϕ(at|st, fϕ(ot+1))||πψ(at|st)].

One caveat about this formulation is that, in phase 1, the IDM forms a loop on the graphical model. In
order to stabilise the training process, we detach the gradient from the IDM to the rest of the network.

D Dataset details

Here we provide extra information about the datasets. The expert return which we normalised against
is shown in Table 1 and Table 2.

Table 1: Average expert return of each demonstration dataset of Walker.

Ddemo Average return

stand 957.87 (max: 1000)
walk 943.79 (max: 1000)
run 604.10 (max: 1000)

Table 2: Average expert return of each demonstration dataset of Cheetah.

Ddemo Average return

run 888.65 (max: 1000)
run backwards 218.50 (max: 500)
flip 485.79 (max: 500)
flip backwards 379.91 (max: 500)

16

Table 3: Result on V-D4RL main datasets. Embodiment datasets are marked on the left, and the
demonstration datasets are chosen to be the expert dataset for each task in the origin environment.
Values are averaged over 100 trajectories and reported as accumulated reward divided by 10, as
suggested in the V-D4RL paper.

BCO(0) AIME

walker-random 2.11± 0.91 12.36± 4.69
walker-medium_replay 6.54± 6.56 10.18± 4.33
walker-mix 5.32± 5.23 8.49± 3.60

cheetah-random 0.01± 0.01 9.48± 4.72
cheetah-medium_replay 15.47± 7.38 31.47± 16.14
cheetah-mix 16.08± 6.61 40.27± 11.52

E Experiments on V-D4RL datasets

We provide here some additional results of AIME on V-D4RL datasets [51] to showcase that AIME
can also work with datasets collected by non-model-based methods. V-D4RL provides multiple
different datasets for the Walker and Cheetah embodiments from DMC Suite, and it is original
designed for offline RL with visual inputs. The datasets are collected by running a few model-free
RL methods and either keep the replay buffer or rollout from a policy checkpoints. Since our setting
requires a bit more exploration in the embodiment datasets to understand the embodiment, we choose
to use their random and medium_replay datasets as the embodiment datasets. The expert datasets are
used as the demonstration datasets. Same as what we did for the Walker embodiment in the main text,
we also mix the two embodiment datasets for each embodiment to form a mix dataset.

The results on these datasets are shown in Table 3. We can see that the performance of both BCO(0)
and AIME is generally low, but AIME still outperform BCO(0) which proves AIME can also handle
datasets generated by model-free methods. The low performance is due to a more constrained setup of
the task, i.e. less amount of embodiment data and less diversity. Except the cheetah-medium_replay
having 400 trajectories, the other three datasets provided by V-D4RL have only 200 trajectories,
which is much less than the 1000 trajectories in the main experiments. Moreover, it is already shown
from Figure 2 and Figure 3 that random datasets do not help much in learning a model, and intuitively
the medium_replay dataset is better but still does not contain enough information to solve the task.

We also conduct experiments on the V-D4RL distracting datasets, to test the performance of AIME
on distracting datasets. For the Walker embodiment, the benchmark provides random datasets with a
distraction level of easy, medium, and hard. We also merge these three levels to form a mix dataset.
Moreover, we also merge this mix dataset with the mix dataset in the second experiment to form a
total_mix dataset. We treat these five datasets as the embodiment dataset and the expert dataset as the
demonstration dataset. For the Cheetah embodiment, the benchmark provides medium and expert
datasets with a distraction level of easy, medium, and hard. We subsample the medium datasets to get
200 trajectories from each level, then merge that with the mix dataset in the second experiment to
form a total_mix dataset. Then the algorithms are using this total_mix dataset as the embodiment
dataset and the expert dataset as the demonstration dataset.

As we can see from the result from Table 4, although we still outperform the BCO(0) baseline, AIME
is impacted significantly by the distractions. This behaviour is expected since the world model is
trained with reconstruction loss. It is not easy to handle observations with distractions. A potential
solution to this problem is to freeze only the dynamics part of the world model and allowing encoders
and decoders to fine-tune their parameters in the second phase. We leave these improvements for our
future works.

F Additional plots

In this section, we will present some additional plots to complement the main text and provide further
insights.

17

Table 4: Result on V-D4RL distracting datasets. Embodiment datasets are marked on the left, and the
demonstration datasets are chosen to be the expert dataset for each task in the origin environment.
Values are averaged over 100 trajectories and reported as accumulated reward divided by 10, as
suggested in the V-D4RL paper.

BCO(0) AIME

walker-easy 2.10± 0.88 4.73± 2.54
walker-medium 2.15± 0.87 3.94± 0.99
walker-hard 2.15± 0.97 4.16± 1.98
walker-mix 2.12± 0.86 3.81± 2.07
walker-total_mix 2.15± 0.71 12.66± 4.51

cheetah-total_mix 16.61± 7.28 32.40± 14.52

Additional to Figure 2 and Figure 3, we also provide detailed profile plots in Figure 6 and Figure 7
as recommended in [52]. We can see that AIME is normally more stable w.r.t. the performance by
having a smaller decay region. It is clearly shown on such tasks as walk→ walk and run→ run on
Walker where BCO(0)-MDP has some trails with very low performance, while all variants of AIME
maintain decent performance.

0

50

100

tri

al
s >

 p

 random --> stand random --> walk random --> run

0

50

100

tri

al
s >

 p

 p2e --> stand p2e --> walk p2e --> run

0

50

100

tri

al
s >

 p

 stand --> stand stand --> walk stand --> run

0

50

100

tri

al
s >

 p

 walk --> stand walk --> walk walk --> run

0

50

100

tri

al
s >

 p

 run --> stand run --> walk run --> run

0 20 40 60 80 100
Relative expert performance (p)

0

50

100

tri

al
s >

 p

 mix --> stand

0 20 40 60 80 100
Relative expert performance (p)

 mix --> walk

0 20 40 60 80 100
Relative expert performance (p)

 mix --> run

Method
BCO(0)-Visual
BCO(0)-LPOMDP
BCO(0)-MDP
AIME-Visual
AIME-LPOMDP
AIME-MDP

Figure 6: Performance distributions of each method on Walker tasks.

We also present some representative training curves of AIME’s phase 2 from our experiments in
Figure 8. The first three figures show the transfer from the mix dataset to the run task in the three
settings which are the typical success cases of AIME. During the course of training, ELBO is
maximised towards convergence and the MSE between the generated actions and the true actions
decreases. We can also see that for the MDP and LPOMDP settings, the converged ELBO is lower
than the ELBO when evaluated with the true action sequence, indicating there is still space for
improvement. However, for the Visual setting, the converged ELBO exceeds the one with true actions,
which should be attributed to the over-fitting of the world model from phase 1. The last three figures

18

0

50

100

tri

al
s >

 p

 random --> run random --> runb random --> flip random --> flipb

0

50

100

tri

al
s >

 p

 p2e --> run p2e --> runb p2e --> flip p2e --> flipb

0

50

100

tri

al
s >

 p

 run --> run run --> runb run --> flip run --> flipb

0

50

100

tri

al
s >

 p

 runb --> run runb --> runb runb --> flip runb --> flipb

0

50

100

tri

al
s >

 p

 flip --> run flip --> runb flip --> flip flip --> flipb

0 20 40 60 80 100
Relative expert performance (p)

0

50

100

tri

al
s >

 p

 flipb --> run

0 20 40 60 80 100
Relative expert performance (p)

 flipb --> runb

0 20 40 60 80 100
Relative expert performance (p)

 flipb --> flip

0 20 40 60 80 100
Relative expert performance (p)

 flipb --> flipb

Method
BCO(0)-Visual
BCO(0)-LPOMDP
BCO(0)-MDP
AIME-Visual
AIME-LPOMDP
AIME-MDP

Figure 7: Performance distributions of each method on Cheetah tasks.

show the transfer from the random dataset to the three tasks in the Visual settings which we consider
as failure cases. For the stand and walk tasks, none of the metrics are converging. For the run task,
we can observe a severe over-fitting starting from the beginning of the training, and the MSE keeps
increasing. We conjecture these are all due to the less well-trained world models.

19

0 200 400

1500

1000

500

0

ELBO

AIME
true_action

0 200 400

800

1000

1200

1400

1600

rec term

AIME
true_action

0 200 400

2400

2200

2000

1800

1600

KL term

AIME
true_action

0 200 400

0.45

0.50

0.55

0.60

0.65

0.70

action mse
AIME

0 200 400
0

20

40

60

80

100
normalised returns

AIME

AIME-MDP mix -> run training curve

0 100 200 300 400 500

0

500

1000

1500

ELBO

AIME
true_action

0 100 200 300 400 500

1900

2000

2100

2200

2300

rec term

AIME
true_action

0 100 200 300 400 500
2000

1800

1600

1400

1200

1000

800
KL term

AIME
true_action

0 100 200 300 400 500

0.55

0.60

0.65

0.70

0.75

action mse
AIME

0 100 200 300 400 500
0

20

40

60

80
normalised returns

AIME

AIME-LPOMDP mix -> run training curve

0 200 400

5.662

5.661

5.660

5.659

5.658

5.657

1e5 ELBO

AIME
true_action

0 200 400

5.6530

5.6525

5.6520

5.6515
1e5 rec term

AIME
true_action

0 200 400
900

800

700

600

500
KL term

AIME
true_action

0 200 400

0.70

0.75

0.80

0.85

action mse
AIME

0 200 400
0

20

40

60

80
normalised returns

AIME

AIME-Visual mix -> run training curve

0 200 400

5.688

5.686

5.684

5.682

5.680

5.678
1e5 ELBO

AIME
true_action

0 200 400
5.682

5.680

5.678

5.676

5.674
1e5 rec term

AIME
true_action

0 200 400

800

700

600

500

400
KL term

AIME
true_action

0 200 400
0.8

1.0

1.2

1.4

1.6

1.8

2.0
action mse

AIME

0 200 400

10

20

30

40
normalised returns

AIME

AIME-Visual random -> stand training curve

0 200 400

5.688

5.686

5.684

5.682

5.680

1e5 ELBO
AIME
true_action

0 200 400

5.680

5.679

5.678

5.677

5.676

5.675

5.674 1e5 rec term
AIME
true_action

0 200 400

900

800

700

600

500
KL term

AIME
true_action

0 200 400
1.0

1.2

1.4

1.6

1.8

2.0
action mse

AIME

0 200 400

2.5

5.0

7.5

10.0

12.5

15.0
normalised returns

AIME

AIME-Visual random -> walk training curve

0 200 400

5.688

5.686

5.684

5.682

5.680

1e5 ELBO

AIME
true_action

0 200 400
5.6745

5.6740

5.6735

5.6730

5.6725

5.6720

5.6715 1e5 rec term

AIME
true_action

0 200 400
1400

1200

1000

800

KL term

AIME
true_action

0 200 400

1.35

1.40

1.45

1.50

1.55

action mse

AIME
0 200 400

4

6

8

10

12
normalised returns

AIME

AIME-Visual random -> run training curve

Figure 8: Samples of training curve in phase 2 of AIME. The first three showcase the typical
successful training curves, while the remaining three demonstrate the failure cases. The true_action
is referring to evaluating the trajectories with the true action sequence.

20

	Introduction
	Problem formulation
	Methodology
	Phase 1: Model Learning
	Phase 2: Imitation Learning

	Experiments
	Benchmark results
	Ablation studies

	Related works
	Discussion & conclusion
	Computational resources
	Implementation and training details
	AIME with idm
	Dataset details
	Experiments on V-D4RL datasets
	Additional plots

