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Abstract

Autoregressive and Masked Transformers are incredibly effective as generative
models and classifiers. While these models are most prevalent in NLP, they also
exhibit strong performance in other domains, such as vision. This work contributes
to the exploration of transformer-based models in synthetic data generation for
diverse application domains. In this paper, we present TabMT, a novel Masked
Transformer design for generating synthetic tabular data. TabMT effectively ad-
dresses the unique challenges posed by heterogeneous data fields and is natively
able to handle missing data. Our design leverages improved masking techniques to
allow for generation and demonstrates state-of-the-art performance from extremely
small to extremely large tabular datasets. We evaluate TabMT for privacy-focused
applications and find that it is able to generate high quality data with superior
privacy tradeoffs.

1 Introduction
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Figure 1: Diagram of
TabMT. m is the mask
token, pi is the masking
probability of the ith row

Generative models have attracted significant attention in the field of deep
learning due to their ability to synthesize high-quality data and learn
the underlying structure of complex datasets. Such models have been
successfully applied to various data types including images [18], text[8],
and tabular data [12]. This work concentrates on tabular data, which is
prevalent in numerous fields like healthcare, finance, and social sciences.
The heterogeneous nature of tabular data, characterized by its diverse
data types, distributions, and relationships, presents distinct challenges
not present in other domains.

The development of effective synthetic tabular data generators is crucial
for numerous reasons including: privacy preservation, data augmentation,
model interpretability, and anomaly detection. Prior work in this domain
has produced a myriad of generative models, including Generative Adver-
sarial Networks (GANs)[28][25], Variational Autoencoders (VAEs)[25],
Autoregressive Transformer[22] [1], and Diffusion models[12]. Although
these existing models strive to address the challenges associated with tab-
ular data generation, there is still room for exploration and improvement.
Specifically, we demonstrate improvements in robustness, scalability,
privacy preservation, and handling of missing data.

Transformers [23], originally designed for natural language processing
(NLP) tasks, have lead to significant advancements in a variety of appli-
cations. Their powerful capacity for modeling complex dependencies and
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generalizing across applications has spurred researchers to extend transformers to other data types,
such as images[11][4] and audio[17].

In this paper, we investigate transformers as synthetic tabular data generators, further expanding their
cross-domain applicability. We specifically examine Masked Transformers (MT), originally developed
to produce strong text embeddings [5], and successfully generalized across many domains[9][3][10].
We explore their utility as tabular data generators. We show Masked Transformers make robust and
scalable tabular generators, achieving state-of-the-art performance across a wide array of datasets.

Our key contributions are as follows:

1. We propose TabMT, see Figure 1, a simple but effective Masked Transformer design for
generating tabular data, that is general enough to work across many tasks and scenarios.

2. We provide a comprehensive evaluation of TabMT, demonstrating state-of-the-art perfor-
mance when compared to existing generative model families, including GANs, VAEs,
Autoregressive Transformers, and Diffusion models. We also showcase its scalability from
very small to very large tabular datasets.

3. We highlight the applicability of our model in privacy-focused applications, illustrating
TabMTs ability to arbitrarily trade-off privacy and quality through temperature scaling.
Furthermore, our model’s masking procedure enables it to effectively handle missing data,
thereby increasing privacy and model applicability in real-world use cases.

2 Related Work

Language modeling: Transformer[23] based Language Modeling[5][8] learns Human language via
token prediction. Given a context of either previous tokens in time, or a random subset tokens within
a window, the model is tasked with predicting the remaining tokens. Using either an autoregressive
model or masked model, respectively. Both these paradigms have shown success across a wide range
of tasks and domains.[9][4][17][26][3] Masked Language models are traditionally used for their
embeddings, although some papers have explored masked generation of content[3]. Our work builds
on Masked Training and demonstrates its effectiveness for modeling and generating tabular data.

Deep Tabular Generators: Deep learning models are increasingly utilized for generating synthetic
tabular data. Synthetic data is particularly important for tabular data as it is often subject to privacy
requirements. Additionally, tabular datasets are often hard to acquire, and usually smaller than
datasets in other domains. These conditions increase the importance and challenges associated with
generating tabular data. Deep Tabular Generators have been constructed using essentially all Deep
Generative model families Autoencoders[25], GANs[25][28][27][7], and AR transformers [22] [1]
[16]. Our work uses Masked Transformers and demonstrates superior performance when compared
to prior deep tabular generators.

Netflow Generators: Netflow data is a specific type of tabular data that captures network communi-
cation events and is commonly used for network traffic analysis, intrusion detection, and cybersecurity
applications. Netflow datasets are typically extremely large, with complex rules between fields, and a
high number of possible values per field. Generating realistic synthetic netflow data is crucial for
developing and testing network monitoring tools and security algorithms. There have been several
models developed specifically for netflow generation [21] [24] [15]. We demonstrate that our general
tabular data generator handily outperforms domain specific models.

3 Method

TabMTs structure is particularly well suited for generating tabular data, for a number of reasons.

1. TabMT accounts for patterns bidirectionally between fields. Tabular data lacks ordering,
meaning bidirectional learning likely produces better understanding and embeddings within
the model.

2. A “prompt” to a tabular generator is not likely sequential. TabMT’s masking procedure
allows for arbitrary prompts to the model during generation. This is unique as most other
generators have very limited conditioning capabilities.
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3. Missing data is far more common in tabular data than in other domains. TabMT is able to
learn missing values by setting their masking probability to 1. Other generators require that
we impute data separately before we can generate high-quality cleaned samples.

These structural advantages come from TabMT’s novel masked generation procedure.
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Figure 2: A row of data being sampled from TabMT. Fields are sampled in a random order and field
values are sampled according to the predicted distributed.

Below we outline how we construct TabMT from the original masked training procedure outlined in
BERT[5] and the justifications behind our design choices. We also outline the specific changes we
make to allow for heterogeneous data types. A naive adaptation of BERT’s masking procedure would
look as follows. Given an n by l dataset F of categorical and numerical features, for each row Fi,
the transformer is provided with a set of unmasked fields Fu

i and a set of masked fields Fm
i . Each

field in the masked set Fm
i has its value replaced with a mask token. The model is then tasked with

predicting the original value for all masked tokens. The row Fi is partitioned into the unmasked and
masked sets by conducting a Bernoulli trial on each field, Fi,j , such that P (Fi,j ∈ Fm

i ) = 0.15.

The BERT masking procedure produces a strong embedding model, but not a strong generator. To
create a strong generative model we make two key changes: sample our masking probability from a
uniform distribution and predict masked values in a random order during generation. To understand
why these changes are effective, we can look at the distribution of masked sets. As a result of the
repeated Bernoulli trials during masking, the size of the masked set for each row |Fm

i | will follow
a Binomial distribution. However, when generating data one field Fi,j at a time, the model will
inference on masked subset sizes (0, . . . , l− 1), once each. We would like the training distribution of
|Fm

i | to be uniform, matching the uniform distribution encountered when generating data. With a
fixed masking probability P (Fi,j ∈ Fm

i ) = pm we will instead encounter a Binomial distribution
centered around pm · l. However, if we sample our masking probability pm for each row Fi such that
P (pm = p) ∼ U(0, 1), we will train uniformly across subset sizes:

P (|Fm
i | = k) =

∫ 1

0

(
l

k

)
pk(1− p)l−kdp =

l!

k!(l − k)!

k!(l − k)!

(l + 1)!
=

1

l + 1
. (1)

Fixing this train and inference mismatch is critical to forming a strong generator. A traditional
autoregressive generator would generate fields (Fi,0, . . . ,Fi,l−1), sequentially. However, tabular data,
unlike language, does not have an inherent ordering. Generating fields in a fixed order introduces
another mismatch between training and inference. During training Fm

i will take on the distribution

P (Fm
i = s) =

1(
l
|s|
)
· l
. (2)

When generating in a fixed order, the model will infer across l distinct subsets and no others. However,
if we instead infer in a random order, then at generation step 0 ≤ t < l, the distribution of Fm

i will be
given by

P (Fm
i = s) =

t! · (l − t)!

l!
=

1(
l
t

) . (3)

Since we encounter each t exactly once, this overall distribution is identical to the masking distribution
encountered during training, fixing the discrepancy caused by generating fields in a fixed order.

A transformer model will typically have an input embedding matrix E ∈ Rk×d, where k is the
number of unique input tokens and d is the transformer width. Because tabular data is heterogeneous,
we instead construct l embedding matrices, one for each field. Each embedding matrix will have a
different number of unique tokens k.
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For categorical fields we use a standard embedding matrix initialized with a normal distribution. For
each continuous field we construct an ordered embedding O ∈ Rk×d from its unordered embedding
matrix E and two endpoint vectors l,h ∈ Rd.

To construct each ordered embedding matrix O, we first we quantize the values of the continuous field.
Our default quantizer is K-Means. We consider the maximum number of clusters a hyper-parameter.
Let v ∈ Rk be the vector of ordered cluster centers. We construct an vector of ratios r ∈ Rk using
min max normalization such that

ri =
vi −min(v)

max(v)−min(v)
. (4)

We use the ratio vector r to construct each ordered embedding in O:

Oi = Ei + ri · l + (1− ri) · h. (5)

This structure allows the transformer to both take advantage of the ordering of the properties and add
unordered embedding information to each cluster. The unordered embeddings are useful in attention,
multi-modal distributions, and encoding semantic separation between close values. We use this same
structure to construct a dynamic linear layer at the output during prediction. This can be converted to
a traditional linear layer once the model is trained.

Relying too heavily on the unordered embeddings might negate the benefit of our ordered embedding,
as information isn’t effectively shared between close values. To address this, we bias TabMT to rely
on the ordering of embeddings. For continuous fields, we zero-init the unordered embedding matrix
E. Whereas, the endpoint vectors l and h use a normal distribution with 0.05 standard deviation.
Because entries in matrix O are not independent of each other, to sharpen the output distribution, the
network must either rely on matrix E or increase magnitude of the endpoint vectors. This can reduce
use of the priors encoded by O or cause instability. To combat this, we include a learned temperature
which can sharpen the predicted distribution using a single parameter per field instead. Each field’s
predicted distribution ŷ ∈ Rk is given by

ŷ =
ez/(τl·τu)∑
j e

z/(τl·τu)
, (6)

where z ∈ Rk is a vector of logits, τl is the learned temperature, and τu is the user-defined temperature.
See Figure 1 for an overall diagram of these components. Figure 2 shows the generation of a single
sample. Detailed pseudocode is available in the Appendix.

4 Evaluation

In this section, we present a comprehensive evaluation of TabMT’s effectiveness across an exten-
sive range of tabular datasets. Our analysis involves a thorough comparison with state-of-the-art
approaches, encompassing nearly all generative model families. To ensure a robust assessment, we
evaluate across several dimensions and metrics.

Datasets: For our data quality and privacy experiments we use the same list of datasets and data
splits as TabDDPM[12]. These 15 datasets range in size from ∼ 400 samples to ∼ 150, 000 samples.
They contain continuous, categorical, and integer features. The datasets range from 6 to 50 columns.
For our scaling experiments we use the CIDDS-001[20] dataset, which consists of Netflow traffic
from a simulated small business network. A Netflow consists of 12 attributes, which we post-process
into 16 attributes; see the Appendix for more details. This dataset is extremely large with over 30
million rows and field cardinalities in the tens of thousands. Other datasets listed all have cardinalities
below 50. Unlike our other benchmarks, we purposely do not quantize the continuous variables here
to further test the scaling of our model. In other words, every unique value is treated as a separate
category in our prediction process.

Prior Methods: We select four techniques to compare against, one from each each major family of
deep generative models.

• TVAE[25] is one of the first deep tabular generation papers introducing two models, a GAN
and a VAE. We compare against their VAE because it is the strongest VAE tabular generator
we are aware of.
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• CTABGAN+[28], at the time of writing, is the state-of-the-art for GAN-based tabular
synthesis.

• TabDDPM[12] adapts diffusion models to tabular data, with the strongest results of all prior
work.

• RealTabFormer[22] is a recent work on adapting autoregressive transformers to tabular
and relational data. This method is most similar to our technique, however, they use an
autoregressive transformer which demonstrates worse results than our masked transformer.

4.1 Data Quality

We use the CatBoost variant of ML Efficiency (MLE)[27][12] for evaluating the quality of our
synthetic data. This metric trains a CatBoost[6] model on the synthetic data instead of a weak
ensemble. The CatBoost model is able to detect subtle patterns in the data, that weak classifiers
cannot. This is a holistic metric that accounts for both diversity and quality of samples. For a fair
comparison we use the the standard hyper-parameter tuning budget of 50 trials[28][25]. Our full
search space is provided in the Appendix. Each data quality experiment was conducted using a single
A10 GPU each. For evaluation, we generate scores and standard deviations1 on the test set, training a
CatBoost model 10 times on 5 samples of synthetic data.

Table 1: MLE and standard deviations across techniques. The highest MLE score for each dataset is
highlighted in bold. F1 is used for classification. R2 is used for regression tasks. *: the source paper
[22] cites a ∼ 3% higher test accuracy using the real train set over what other papers achieve, likely
because they used a different split or version of this dataset.

DS TVAE CTabGAN+ RealTab. TabDDPM TabMT Real

AB 0.433±0.008 0.467±0.004 0.504±0.011 0.550±0.010 0.535±0.004 0.556±0.004
AD 0.781±0.002 0.772±0.003 0.811±0.002 0.795±0.001 0.814±0.001 0.815±0.002
BU 0.864±0.005 0.884±0.005 0.928±0.003∗ 0.906±0.003 0.908±0.002 0.906±0.002
CA 0.752±0.001 0.525±0.004 0.808±0.003 0.836±0.002 0.838±0.002 0.857±0.001

CAR 0.717±0.001 0.733±0.001 - 0.737±0.001 0.738±0.001 0.738±0.001
CH 0.732±0.006 0.702±0.012 - 0.755±0.006 0.741±0.005 0.740±0.009
DI 0.714±0.039 0.734±0.020 0.732±0.027 0.740±0.020 0.769±0.018 0.785±0.013
FB 0.685±0.003 0.509±0.011 0.771±0.004 0.713±0.002 0.798±0.002 0.837±0.001
GE 0.434±0.006 0.406±0.009 - 0.597±0.006 0.605±0.008 0.636±0.007
HI 0.638±0.003 0.664±0.002 - 0.722±0.001 0.727±0.001 0.724±0.001
HO 0.493±0.006 0.504±0.005 - 0.677±0.010 0.619±0.004 0.662±0.003
IN 0.784±0.010 0.797±0.005 - 0.809±0.002 0.811±0.003 0.814±0.001
KI 0.824±0.003 0.444±0.014 - 0.833±0.014 0.876±0.011 0.907±0.002
MI 0.912±0.001 0.892±0.002 - 0.936±0.001 0.938±0.001 0.934±0.000
WI 0.501±0.012 0.798±0.021 - 0.904±0.009 0.881±0.009 0.898±0.006

MLE scores are presented in Table 1; note that we match or exceed state-of-the-art on 11 of 15
datasets. To gain a qualitative understanding of data quality we visualize the distribution of correlation
errors; see Figure 3. To calculate the correlation errors, we first compute the correlation ri,j between
each pair of fields (i, j). To compute correlations involving categorical columns, we convert them to
one-hot vectors. We then compute the correlation between columns on the synthetic data r̂i,j . The
correlation error is the absolute difference between these two values |ri,j − r̂i,j |. These errors should
approach zero because we expect the correlations between columns in the synthetic data to be the
same as those in the real data. Erroneous and missing correlations appear as non-zero values in the
histograms of Figure 3.

1For comparison, we use the same error reporting method as prior work, however, we plan to present a
thorough coverage of more accurate error estimation for generative models in future work.
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Figure 3: A comparison of Correlation Error Histograms between TabMT (Green) vs TabDDPM
(Purple) and TabMT (Green) vs CTabGAN+ (Purple). A good generator should have correlation
errors distributed close to zero (the left of the plot). We can see TabMT’s correlation errors are
consistently distributed closer to zero than either TabDDPM or CTabGAN+.

4.2 Privacy and Sample Novelty

Maintaining privacy of the original data is a key application for synthetic tabular data. Machine
learning is increasingly being used across a wide range of areas to produce valuable insights. Si-
multaneously, there is a rapid rise in both regulation and privacy concerns that need to be addressed.
In Section 4.1 we demonstrated that data produced by TabMT is high enough quality to produce
strong classifiers. Now we evaluate our model for privacy. This evaluation complements our quality
evaluation and verifies that our model is generating novel data. Novelty means data is not substantially
similar to samples encountered during training. A high-quality non-private model can trivially be
formed by directly reproducing the training set exactly. None of this data is novel, but it is high
quality. By ensuring our model is both private and high quality, we verify that our model has learned
the distribution of the data, and not simply memorized the training set. Memorization is a larger issue
in tabular data due to smaller dataset sizes and increased privacy concerns.

To evaluate privacy and novelty we adopt the median Distance to the Closest Record (DCR) score.
To calculate the DCR of a synthetic sample, we find the nearest neighbor in the real training set by
Euclidean distance. We report the median of this distance across our synthetic samples. Data with
higher DCR scores will be more private and more novel. There is an inherent trade off between
privacy and quality. Higher quality samples will tend to be closer to points in the training set and vice
versa.

While models such as CTabGAN+[28] and TabDDPM[12] have a fixed trade-off between privacy and
quality after training. TabMT can trade-off between quality and privacy using temperature scaling.
By walking along the Pareto curve of our model, using temperature scaling, we can controllably tune
the privacy and novelty of our generated data per application. By increasing a field’s temperature, its
generated values become more novel and private, but they are also less faithful to the underlying data
distribution. The trade off between the quality and privacy here form a Pareto front for TabMT on
each dataset.

We use a separate temperature for each field and perform a search to estimate the Pareto front. Each
search was conducted using a single A10 GPU each. Search details are available in the Appendix.
In Table 2, we compare TabMT’s DCR and corresponding MLE scores to that of TabDDPM. We
are always able to attain a higher DCR score, and in most cases a higher MLE score as well. This
falls in line with recent results in other domains showing diffusion models are less private than other
generative models[2]. A comparison with CTabGAN+ is available in the Appendix, compared to
CTabGAN+ we obtain both higher privacy and MLE scores in all tested cases. Figure 4 shows the
Pareto fronts of TabMT across several datasets.

4.3 Missing Data

Real world data is often missing many values that make training difficult. When a row has a missing
value we must either drop the row, or find a method to impute the missing value. Other techniques such
as the RealTabformer[22] or TabDDPM[12] cannot natively handle real world missing data, and must
either use a different imputation technique or drop the corresponding rows. Our masking procedure
allows TabMT to natively handle arbitrary missing data. To demonstrate this, we randomly drop 25%
of values from the dataset, ensuring nearly every row is permanently missing data. Nevertheless, our
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Table 2: DCR score comparison between TabDDPM and TabMT. Corresponding MLE scores are in
parentheses.

DS TabDDPM TabMT
AB 0.050(0.550) 0.249(0.533)
AD 0.104(0.795) 1.01(0.811)
BU 0.143(0.906) 0.165(0.908)
CA 0.041(0.836) 0.117(0.832)

CAR 0.012(0.737) 0.041(0.737)
CH 0.157(0.755) 0.281(0.758)
DI 0.204(0.740) 0.243(0.740)
FB 0.112(0.713) 0.252(0.787)

DS TabDDPM TabMT
GE 0.059(0.597) 0.234(0.599)
HI 0.449(0.722) 0.483(0.727)
HO 0.086(0.677) 0.151(0.607)
IN 0.041(0.809) 0.061(0.816)
KI 0.189(0.833) 0.335(0.868)
MI 0.022(0.936) 0.026(0.936)
WI 0.016(0.904) 0.063(0.881)

0.77 0.78 0.79 0.80 0.81 0.82
Validation Score

1.0

1.1

1.2

1.3

1.4

1.5

Pr
iv

ac
y 

Sc
or

e

AD

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Validation Score

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pr
iv

ac
y 

Sc
or

e

CA

0.731 0.732 0.733 0.734 0.735 0.736 0.737
Validation Score

0.04

0.05

0.06

0.07

0.08

0.09

Pr
iv

ac
y 

Sc
or

e

CAR

0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79
Validation Score

0.32

0.34

0.36

0.38

0.40

Pr
iv

ac
y 

Sc
or

e

CH

0.55 0.60 0.65 0.70 0.75
Validation Score

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Pr
iv

ac
y 

Sc
or

e

DI

0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900
Validation Score

0.4

0.5

0.6

0.7

Pr
iv

ac
y 

Sc
or

e

KI

Figure 4: Pareto Fronts of TabMT balancing the tradeoff between privacy (DCR) and data quality
(Validation Score). While some datasets have a smooth transition the temperature changes, others
have a sharp drop-off.

model is still able to train, producing synthetic rows with no missing values in them. This facilitates
training on real world data.Table 3 shows our accuracy when training with missing data.

Table 3: MLE of TabMT when training with 25% of values missing. Delta represents the difference
in MLE from training with no missing values.

DS MLE Delta

AD 0.813 -0.001
KI 0.868 -0.008

Additionally, our model can be arbitrarily conditioned to produce any subset of the data distribution
at no additional cost, allowing us to more effectively augment underrepresented portions of data.
Prior art is largely incapable of conditioning when producing outputs.

4.4 Scaling

In this section, we examine the performance of our model when scaling to very large datasets. We
use the CIDDS-001 dataset[20] as our benchmark dataset. We do not use anomalous traffic from the
dataset, and randomly select 5% of the dataset as the validation set for reporting results. The results
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in this section, together with those in Section 4.1, demonstrate that TabMT is both sample-efficient
enough to learn with just a few hundred samples, while remaining general enough to scale to over
thirty million samples. We train three model sizes on this dataset and compute metrics on the resulting
samples. The model topologies are outlined in Table 4. Each model was trained on a single A10 GPU
with the exception of TabMT-L which was trained using 4 V100s. We use the AdamW[14] optimizer
with a learning rate of 0.002 and weight decay of 0.01, a batch size of 2048 and a cosine annealing
learning rate schedule for 350,000 training steps and 10000 warm-up steps.

Table 4: Model topologies used in scaling experiments. The large model sizes here demonstrate we
can scale well in terms of model size and dataset size.

Model Width Depth Heads

TabMT-S 64 12 4
TabMT-M 384 12 8
TabMT-L 576 24 12

Because ML Efficiency and DCR are very costly to compute on a dataset of this scale, we instead
adapt Precision and Recall[13] to the tabular domain. The original definitions of these metrics[13]
rely on vision models to produce the embeddings used. We find our masking procedure produces
strong embeddings for each sample, so we use the embeddings produced by TabMT-S. Specifically,
we average the embeddings across the fields to produce 64 dimensional for each flow. We used a
fixed neighborhood size of k = 3. We include an additional diversity metric defined as the average
set coverage across all properties of the generated data. Results in Table 5 demonstrate strong scaling
and performance across model sizes. We can see Precision and Recall are both very close to that of
the validation set. Sample diversity and quality both scale as model size increases.

Table 5: Precision, Recall, and Diversity metrics for all tested models. TabMT outperforms
NFGAN[21] on all metrics

Source Validation Set NFGAN TabMT-S TabMT-M TabMT-L

Precision(%) 90.42 77.64 82.58 85.77 88.10
Recall(%) 90.58 63.32 91.88 91.82 91.12

Diversity(%) 100.0 46.97 89.81 90.56 99.43

We compare against the prior state-of-the-art NetflowGAN, or NFGAN[21]. This GAN was tuned
specifically for this dataset. It is trained in two phases. First IP2Vec[19] is trained to produce
Netflow embeddings. These embeddings are then used as targets for the generator during GAN
training. Results from NFGAN are shown in Table 5. We can see that NFGAN obtains reasonably
high precision, but poor recall and diversity. This is because the model suffers from mode collapse,
producing samples in only a small portion of the full distribution.

Netflow has both correlations between the fields and complex invariants between fields. We can
measure the violation rate of these invariants to understand how well our model is detecting patterns
within the data. We measure against seven invariants proposed in [21]. As shown in Table 6 TabMT
produces substantially more diverse data, while achieving a median 20x improvement in violation
probability over NFGAN.

5 Limitations and Future Work

TabMT presents strong results even on large datasets, but our Transformer backbone means TabMT is
slower than more lightweight methods built around small MLPs, or GANs which can produce a row in
a single inference. Searching temperatures also adds time if optimal privacy is needed. Additionally,
we must quantize continuous fields, while we outperform methods which do not quantize fields, this
could pose issues in some applications. Future work might examine learning across tabular datasets,
alternative masking procedures and networks to improve speed, or integration with diffusion models
to better tackle continuous fields.
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Table 6: Error rates on netflow invariant tests. *: because we construct embeddings per field, our
model cannot violate check 5. These tests check structural rules reflected in Netflow, such as the fact
that two public ip addresses cannot communicate to each other.

NFGAN TabMT-S TabMT-M TabMT-L

TCP Flags 2.33e-03 4.63e-04 2.16e-04 6.54e-06
Private IPs 2.00e-04 7.25e-05 2.67e-05 1.14e-05
TCP Port 3.00e-04 9.32e-05 3.94e-05 1.47e-05

DNS 1.60e-03 2.34e-03 1.56e-03 2.05e-04
Valid Values* 2.00e-03 0.00e-00 0.00e-00 0.00e-00

NetBios 7.43e-01 4.73e-03 4.64e-03 1.27e-03
Packet Ratios 5.10e-03 2.28e-03 1.79e-03 1.16e-03

Broader Impact Synthetic data generation allows for privacy preservation, protecting sensitive
data while still enabling data analysis. High Quality synthetic data may ease the pressure to resort
to unethical methods of collection such as relying on underpaid labor. With this in mind, trading
off data for additional compute does mean that the additional compute will contribute to increased
CO2 emissions. Additionally, synthetic data carries the risk of misuse, such as the potential for
manipulating results or research findings with fabricated data. All experiments were conducted using
cloud A10 or V100 GPUs. For algorithm design and experiment result generation roughly 410 GPU
days of compute were used.

6 Conclusion

In this paper, we outlined a novel Masked Transformer design and training procedure, TabMT, for
generating synthetic tabular data. Through a comprehensive series of benchmarks we demonstrate
that our model achieves state-of-the-art generation quality. This quality is verified at scales that
are orders of magnitude larger than prior work and with missing data present. Our model achieves
superior privacy and is able to easily trade off between privacy and quality. Our model is a substantial
advancement compared to previous work, due to its scalability, missing data robustness, privacy-
preserving generation, and superior data quality.
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