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Abstract

Variational Gaussian processes (GPs) approximate exact GP inference by using a
small set of inducing points to form a sparse approximation of the true posterior,
with the fidelity of the model increasing with additional inducing points. Although
the approximation error in principle can be reduced by using more inducing points,
this leads to scaling optimization challenges and computational complexity. To
achieve scalability, inducing point methods typically introduce conditional indepen-
dencies and then approximations to the training and test conditional distributions.
In this paper, we consider an alternative approach to modifying the training and test
conditionals, in which we make them more flexible. In particular, we investigate
decoupling the parametric form of the predictive mean and covariance in the condi-
tionals, and learn independent parameters for predictive mean and covariance. We
derive new evidence lower bounds (ELBO) under these more flexible conditionals,
and provide two concrete examples of applying the decoupled conditionals. Empir-
ically, we find this additional flexibility leads to improved model performance on a
variety of regression tasks and Bayesian optimization (BO) applications.

1 Introduction

Gaussian processes (GPs) are a powerful class of non-parametric probabilistic models [38]. Their
flexibility and ability to make probabilistic predictions make them particularly useful in situations
where uncertainty estimates are important [23, 30, 43, 45, 56]. Although elegant, exact GPs become
intractable for large datasets since the computational cost scales cubically with the size of the dataset.

To overcome this limitation, various sparse approximate GP approaches have been developed, mostly
relying on sparse approximations of the true posterior [28, 29, 36]. Among those, variational GPs
have become increasingly popular because they enable stochastic minibatching and apply to both
regression [17] and classification [18] tasks. However, the approximate posterior and variational
inference leave an unavoidable gap from the exact model. Especially with too few inducing points,
variational GPs could yield suboptimal accuracy performance due to a lack of expressiveness. Using
more inducing points closes this gap in principle, but leads to additional computational complexity
and optimization difficulties [15]. While several works have studied ways of allowing more or better
placed inducing points to improve accuracy of variational GPs, [34, 41, 50, 57], it is nevertheless
challenging to use more than a small fraction of the dataset size in inducing points.

In this work, we take a different approach to improving model expressiveness for better accuracy
of variational GPs through decoupling conditionals. To start, we point out that inducing point
approximations rely on two key conditionals (see Sec. 3.1) – the training and the test conditional,
where the mean and covariance are parameterized by inducing points and kernel hyperparameters.
Typically, prior works have focused on various relaxations of these conditionals that enable significant
computational complexity benefits [36, 44, 46, 47, 48]. In this work, we consider alternative changes
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SVGP with 10 inducing points
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(d) Test NLL: -0.93, lmean: 0.33, lcovar: 0.31

DCSVGP with 100 inducing points (ours)

Figure 1: We compare model fit on a 1D latent function using 100 training samples. Solid curves
with shading area depict the predictive mean and 95% confidence interval. Using 10 inducing points,
in subplot (a) SVGP underfits the latent function with large lengthscale l = 0.85; while in subplot
(b), our DCSVGP model (see Sec. 3.2) fits better and learns different decoupled lengthscales lmean
and lcovar. Using 100 inducing points, in subplot (c) and (d), both models fits well with similar
lengthscales around 0.3. See Sec. 1 for more details.

that increase the flexibility of these conditionals. In Sec. 3.2, we describe two concrete examples of
this idea: decoupling kernel lengthscales and decoupling entire deep feature extractors.

As a simple illustration, Fig. 1 illustrates, for example, how decoupled lengthscales improve model
fitting. Our model DCSVGP (see Sec. 3.2) learns decoupled lengthscales lmean and lcovar for mean
and covariance respectively, and we compare with baseline SVGP (see Sec. 2) which learns one
lengthscale l.

To summarize our contributions: 1) We propose decoupled conditionals in variational GPs to improve
model expressiveness for better accuracy. 2) We show that our idea is compatible with the variational
framework and rigorously derive an ELBO for variational inference with decoupled conditionals.
3) We provide two concrete examples of applying decoupled conditionals and empirically show the
superior performance of our models through extensive regression tasks and BO applications.

2 Background

We assume familiarity with GPs [38] and briefly introduce them for notational clarity. Given
observation locations X = {xi}ni=1 ⊂ Rd, a GP prior induces a multivariate Normal belief for
latent function values f = {f(xi)}: f ∼ N (µX,Knn), where µX,Knn are the mean values and
covariance matrix at data X. Givend observations y = f + ϵ with Gaussian noise ϵ ∼ N (0, σ2I), the
posterior distribution of the function value f∗ at a new data point x∗ is p(f∗|y) = N (µ∗,Σ∗∗), where

µ∗ = µ(x∗) +K∗n(Knn + σ2I)−1(y − µX),

Σ∗∗ = K(x∗,x∗)−K∗n(Knn + σ2I)−1KT
∗n.

Model hyperparameters such as kernel hyperparameters and noise σ are typically estimated by
Maximum Likelihood using standard numerical solvers such as LBFGS [35]. If no approximations
are used, each evaluation to optimize the log marginal likelihood function costs O(n3) flops and
O(n2) memory, thus motivating approximate methods for large training datasets.

2.1 Sparse Gaussian Processes

To overcome the scalability limitations of exact GPs, many authors have proposed a variety of sparse
GPs by introducing inducing points Z = {zi}mi=1 [17, 44, 47, 48, 49]. Inducing points are associated
with inducing values fm, which represent latent function values at Z under the same GP assumption.
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Although inducing values fm are marginalized out in the predictive distribution, they typically reduces
training costs from O(n3) to O(n2m+m3) for each gradient step, where m≪ n.

SGPR. Based on inducing point methods, Sparse Gaussian Process Regression (SGPR) [49]
further introduces variational inference into sparse GPs. Assuming that inducing data is adequate
for inference, Titsias [49] further introduces a variational distribution ϕ(fm) ∼ N (m,S) that
approximates the posterior p(fm|y). Thus, the predictive density can be approximated as

q(f∗) =

∫
p(f∗|fm)p(fm|y)dfm =

∫
p(f∗|fm)ϕ(fm)dfm = N (µf (x

∗), σf (x
∗)2).

Here the predictive mean µf (x
∗) and the latent function variance σf (x∗)2 are:

µf (x
∗) = K∗mK−1

mmm, σf (x
∗)2 = K̃∗∗ +K∗mK−1

mmSK−1
mmKm∗, (1)

where K̃∗∗ = K∗∗−K∗mK−1
mmKT

∗m. The variational distribution ϕ(fm) = N (m,S) is then learned
by maximizing the variational ELBO [18, 21], which is a lower bound on the log marginal likelihood:

log p(y) ≥ Eq(f)[log p(y|f)]− KL[ϕ(fm)||p(fm)],

where q(f) =
∫
p(f |fm)ϕ(fm)dfm, and KL[ϕ(fm)||p(fm)] is the KL divergence [27].

SVGP. To enable data subsampling during training, SVGP [17] avoids analytic solutions to the
ELBO, but rather decomposes the ELBO as a sum of losses over training labels and enables stochastic
gradient descent (SGD) [39] training:

ELBOSVGP =

n∑
i=1

{
logN (yi|µf (xi), σ

2)− σf (xi)
2

2σ2

}
− βKL [ϕ(fm)||p(fm)] , (2)

where µf (·), σf (·)2 are the predictive mean and latent function variance from Eq. 1 respectively, and
β is an optional regularization parameter for the KL divergence and can be tuned in practice [22].

PPGPR. To achieve heteroscedastic modeling and improve predictive variances, the Parametric
Gaussian Process Regressor (PPGPR) [22] targets the preditive distribution directly in the loss
function. It shares the same predictive mean µf (·) and latent function variance σf (·)2 as SVGP, but
uses a slightly different stochastic ELBO loss:

ELBOPPGPR =

n∑
i=1

logN (yi|µf (xi), σ
2 + σf (xi)

2)− βKL[ϕ(fm)||p(fm)].

Whitening. In practice, the variational distribution ϕ(fm) is usually "whitened" to accelerate the
optimization of the variational distribution [32]. Conventionally, the whitened variational distribution
is ϕ̃(fm) = N (m̃, S̃) = N (K

−1/2
mm m,K

−1/2
mm SK

−1/2
mm ), where K

1/2
mm is the square root of Kmm.

With whitening, the KL divergence and predictive distribution in ELBO (Eq. 2) are both simplified:

KL[ϕ(fm)||p(fm)] = KL(ϕ̃(fm)||p0(fm)), where p0(fm) = N (0, I),

µf (xi) = KimK−1/2
mm m̃, σf (xi)

2 = K̃ii +KimK−1/2
mm S̃K−1/2

mm Kmi.

3 Methodology

Here, we present variational GPs with decoupled conditionals. In Sec. 3.1 and 3.2, we introduce
decoupled conditionals under a unifying framework for approximate GPs, followed by two concrete
examples. In Sec. 3.3, we derive an ELBO to do variational inference with decoupled conditionals.

3.1 Conditionals of Approximate GPs

Quinonero-Candela and Rasmussen [36] introduced a unifying framework for sparse GPs. Through
the framework, an approximate GP can be interpreted as "an exact inference with an approximated
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Table 1: Exact and approximate conditionals. See Sec. 3.1 and Sec. 3.2 for details. Here K̃nn =
Knn −KnmK−1

mmKmn and K̃∗∗ = K∗∗ −K∗mK−1
mmKm∗.

Training Conditionals Test Conditionals

DTC q(f |fm) = N (KnmK−1
mmfm, 0) p(f∗|fm) = N (K∗mK−1

mmfm, K̃∗∗)

FITC q(f |fm) = N (KnmK−1
mmfm, diag[K̃nn]) p(f∗|fm) = N (K∗mK−1

mmfm, K̃∗∗)

SVGP p(f |fm) = N (KnmK−1
mmfm, K̃nn) p(f∗|fm) = N (K∗mK−1

mmfm, K̃∗∗)

Ours ψ(f |fm) = N (QnmQ−1
mmfm, K̃nn) ψ(f∗|fm) = N (Q∗mQ−1

mmfm, K̃∗∗)

prior" in contrast to "an approximate inference with an exact prior". With inducing points Z =
{zi}mi=1 and inducing values fm, most sparse GPs approximate the joint Gaussian prior as:

p(f∗, f) =

∫
p(f∗, f |fm)p(fm)dfm ≈

∫
q(f∗|fm)q(f |fm)p(fm)dfm = q(f∗, f),

where dependencies between training data f and test data f∗ are induced by inducing values fm.
Different approximations can be made of the inducing training conditionals q(f |fm) and the inducing
test conditionals q(f∗|fm). Table 1 provides the exact expressions of the two conditionals and
examples of approximations used in various approximate GP methods. For example, the Deterministic
Training Conditional (DTC) approximation uses a deterministic training conditional and the exact
test conditional [44]; The Fully Independent Training Conditional (FITC) approximation uses an
approximate training conditional with diagonal corrections and the exact test conditional [48].

3.2 Decoupled Conditionals and Prediction

In this paper, we consider augmenting the exact conditionals by a more flexible form that decouples
the kernel hyperparameters in the mean and covariance in both conditionals:

training conditional ψ(f |fm) = N (QnmQ−1
mmfm, K̃nn) ≈ p(f |fm),

test conditional ψ(f∗|fm) = N (Q∗mQ−1
mmfm, K̃∗∗) ≈ p(f∗|fm),

(3)

where the Q and K matrices are formed by the same family of kernel functions, but some kernel
hyperparameters are decoupled. See Table 1 for a comparison with other approximations. Decoupled
conditionals improve model flexibility without relying on more inducing points and it applies to
various SVGP-based models. We provide two examples of decoupled models that we will evaluate.

Example 1: Decoupled lenghthscales. By decoupling the kernel lengthscale l into lmean for the
mean and lcovar for the covariance, we enable the model to learn in settings where the function value
changes more rapidly than the variance. In Eq. 3, this corresponds to the Q and K kernel matrices
being formed using separate lengthscales. For example, an RBF kernel gives

Qmm =

[
exp

(
−∥zi − zj∥2

2l2mean

)]
zi,zj∈Z

, Kmm =

[
exp

(
−∥zi − zj∥2

2l2covar

)]
zi,zj∈Z

.

We will denote the application of decoupled lengthscales to SVGP as Decoupled Conditional SVGP
(DCSVGP).

Example 2: Decoupled deep kernel learning. Wilson et al. [53] proposed deep kernel learning
(DKL) which stacks a deep neural network feature extractor h with a GP layer. Combining DKL with
variational GP models is straightforward, with the feature extractor h learned through ELBO with all
other model (hyper)parameters [54]. The feature extractor h can then be decoupled: one hmean for the
mean and one hcovar for the covariance. Again using the RBF kernel as a base example:

Qmm =

[
exp

(
−∥hmean(zi)− hmean(zj)∥2

2l2

)]
zi,zj∈Z

,

Kmm =

[
exp

(
−∥hcovar(zi)− hcovar(zj)∥2

2l2

)]
zi,zj∈Z

.

We denote the application of decoupled deep feature extractors to SVGP as SVGP-DCDKL.
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Prediction. Using decoupled conditionals, the predictive posterior at a new point x∗ is

q(y∗) =

∫
p(y∗|f∗)ψ(f∗|fm)ϕ(fm) dfmdf

∗ = N (y∗|µ̃f (x
∗), σ̃f (x

∗)2 + σ2I),

where the predictive mean µ̃f (x
∗) and latent function variance σ̃f (x∗)2 are similar to Eq. 1:

µ̃f (x
∗) = Q∗mQ−1

mmm, σ̃f (x
∗)2 = K̃∗∗ +Q∗mQ−1

mmSQ−1
mmQm∗. (4)

3.3 The Evidence Lower Bound (ELBO)

In this section, we derive an ELBO for DCSVGP model fitting (other examples of decoupled
models follow the same derivation). All model parameters and hyperparameters are learned by
maximizing the resulting ELBO. Following the standard variational inference [2], we approximate
the true posterior distribution p(f , fm|y) by the variational distribution q(f , fm) and miminize the
KL divergence: minKL(q(f , fm)||p(f , fm|y)). In the standard case, q(f , fm) = p(f |fm)ϕ(fm), but a
decoupled model has q(f , fm) = ψ(f |fm)ϕ(fm) since it further approximates the training conditional
p(f |fm) by a decoupled one ψ(f |fm). This difference leads to the following ELBO for the decoupled
model:

log(p(y)) ≥ ELBO(q) = E[log(p(y|f , fm))]− KL(q(f , fm)||p(f , fm))

=

n∑
i=1

{
logN (yi|µ̃f (xi), σ

2)− σ̃f (xi)
2

2σ2

}
−
∫
ψ(f |fm)ϕ(fm) log

ψ(f |fm)ϕ(fm)

p(f |fm)p(fm)
dfdfm

=

n∑
i=1

{
logN (yi|µ̃f (xi), σ

2)− σ̃f (xi)
2

2σ2

}
− KL(ϕ(fm)||p(fm))−

∫
ψ(f |fm)ϕ(fm) log

ψ(f |fm)

p(f |fm)
dfdfm

=

n∑
i=1

{
logN (yi|µ̃f (xi), σ

2)− σ̃f (xi)
2

2σ2

}
− KL(ϕ(fm)||p(fm))− Eϕ(fm)[KL(ψ(f |fm)||p(f |fm))]︸ ︷︷ ︸

:=Ω

.

We refer to App. A.1 for additional derivation details. Adding regularization parameters β1 and β2 to
the KL divergence terms as is often done in practice, the ELBO for DCSVGP is

ELBODCSVGP =

n∑
i=1

{
logN (yi|µ̃f (xi), σ

2)− σ̃f (xi)
2

2σ2

}
− β1KL [ϕ(fm)||p(fm)]− β2Ω (5)

where the predictive mean µ̃f (xi) and latent function variance σ̃f (xi)
2 are same as Eq. 4

µ̃f (xi) = QimQ−1
mmm, σ̃f (xi)

2 = K̃ii +QimQ−1
mmSQ−1

mmQmi. (6)

The explicit expression of Ω. The Ω term can be computed explicitly (see App. A.1):

Ω = Eϕ(fm)[KL(ψ(f |fm)||p(f |fm))] =
1

2
E[fmTTfm] =

1

2

(
Tr(TS) +mTTm

)
,

where T = AT K̃−1
nnA, A = QnmQ−1

mm −KnmK−1
mm, and ϕ(fm) = N (m,S).

Comparing ELBODCSVGP and ELBOSVGP. The ELBOSVGP in Eq. 2 and ELBODCSVGP in Eq. 5
both consist of an approximate likelihood term and a KL divergence part. There are two differences: 1)
ELBODCSVGP involves different predictive mean µ̃f (xi) and variance σ̃f (xi)

2 derived from decoupled
conditionals, see Eq. 6; 2) ELBODCSVGP contains an additional KL divergence term Ω, which is
an expected KL divergence of the two training conditionals over the variational distribution ϕ(fm),
regularizing the difference between the decoupled conditional ψ(f |fm) and the exact one p(f |fm).

The regularization parameter. In Eq. 5, ELBODCSVGP contains two KL divergence terms with
regularization parameters β1 and β2, respectively. Varying β1 controls the regularization on prior
similarities, same as SVGP, while varying β2 controls the regularization on the difference between
the decoupled conditional and the exact one. In the limit where β2 → +∞, decoupling is disallowed
and DCSVGP degenerates to SVGP. See Sec. 5.2 for more discussion and empirical study.
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Whitening. Decoupling the mean and covariance hyperparameters introduces a challenge where
one can whiten with either K1/2

mm or Q1/2
mm, with the drawback of only simplifying one term. K-

whitening simplifies the KL divergence but leaves the predictive distribution significantly “less linear”,
while Q-whitening does the opposite. For example, the predictive distribution from the two whitening
choices are:

Q-whitening µ̃f (xi) = QimQ−1/2
mm m̄, σ̃f (xi)

2 = K̃ii +QimQ−1/2
mm S̄Q−1/2

mm Qmi,

K-whitening µ̃f (xi) = QimQ−1
mmK1/2

mmm̄, σ̃f (xi)
2 = K̃ii +QimQ−1

mmK1/2
mmS̄K1/2

mmQ−1
mmQmi.

Empirically Q-whitening performs better because a simplified predictive distribution is more favor-
able for model fitting. See App. A.2 for KL divergence terms and derivation details.

4 Related Work

Variational GPs have been successfully extended to various settings [1, 3, 4, 11, 16, 19, 20, 31, 51, 55,
54]. Among these vast enhancements, much attention has been devoted to the study of inducing points,
the core part that leads to an expressiveness-and-complexity trade-off. Many works have studied
better placement of inducing points, including selecting from training data [9, 24, 42, 44, 47, 7, 34]
and from the input domain [40, 50], but typically inducing points are learned as model parameters
[17, 48]. On the other hand, several schemes have been developed to reduce complexity and allow
more inducing points, e.g. Fourier methods [19, 29] and methods that decouple inducing points
used in variational mean and covariance [8, 15, 41]. However, more inducing points could be less
informative under certain data characteristics [6, 16, 50] or result in suboptimal model fitting [15, 57].
Therefore, our work takes a different direction to improve variational GPs via more flexible mean and
covariance modeling rather than replying on more inducing points. The work that is most closely
related to ours is the ODSVGP model [41] that decouples the inducing points for mean and variance to
allow more inducing points used in mean modeling. With similar decoupling idea, we are motivated
by increasing model flexibility rather than reducing model complexity and we simply decouple the
kernel hyperparameters with negligible additional costs.

5 Experiments

We evaluate the performance of decoupled models proposed in Sec. 3.2: DCSVGP (variational GPs
using decoupled lengthscales) and SVGP-DCDKL (variational GPs with deep kernel learning using
decoupled deep feature extractors). Because PPGPR [22] is orthogonal to our decoupling method,
similarly we also evaluate DCPPGPR (decoupled lengthscales) and PPGPR-DCDKL (decoupled
feature extractors). All experiments use an RBF kernel and a zero prior mean and are accelerated
through GPyTorch [14] on a single GPU. Code is available at https://github.com/xinranzhu/
Variational-GP-Decoupled-Conditionals.

5.1 Regression Tasks

We consider 10 UCI regression datasets [10] with up to 386508 training examples and up to 380
dimensions. We present main results with non-ARD RBF kernels, the Q-whitening scheme described
in Sec. 3.3, and set β2 = 1e-3. Results are averaged over 10 random dataset splits. For additional
results with ARD kernels and K-whitening, see App. B.1.4 and B.1.5. For more experiment setup
and training details such as the number of inducing points, we refer to App. B.1.

DCSVGP and DCPPGPR. We first compare DCSVGP to baseline SVGP [17] and ODSVGP [41]
and similarly compare DCPPGPR to PPGPR [22] and ODPPGPR. Table 2 shows the test RMSE
and NLL results. We observe that DCSVGP (and similarly DCPPGPR) yields the lowest RMSE
and NLL on 8 datasets, demonstrating the improved flexibility of our method. We report all learned
lengthscales in App. B.1.1. On the other hand, we also note that on Protein and Elevators, DCPPGPR
slightly overfits with worse test NLL. We show in Sec. 5.2 that increasing β2 resolves this issue.
We also find that decoupling lengthscales generally improves model calibration (see App. B.1.3 for
results and discussions).
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Table 2: Test RMSE and NLL on 10 regression datasets (lower is better). Results are averaged over
10 random train/validation/test splits. Statistical significance is indicated by bold. See the supplement
for standard errors.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP 0.313 0.380 0.294 0.186 0.662 0.089 0.131 0.122 0.511 0.797
ODSVGP 0.321 0.373 0.222 0.175 0.667 0.093 0.087 0.121 0.534 0.794
DCSVGP 0.156 0.379 0.286 0.150 0.604 0.086 0.039 0.121 0.434 0.777

PPGPR 0.306 0.392 0.377 0.282 0.659 0.091 0.205 0.125 0.552 0.780
ODPPGPR 0.333 0.376 0.277 0.394 0.647 0.090 0.092 0.123 0.565 0.778
DCPPGPR 0.178 0.395 0.348 0.226 0.632 0.089 0.042 0.124 0.543 0.779

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP 0.331 0.452 0.207 -0.188 1.013 -1.018 -0.409 -0.683 0.752 1.192
ODSVGP 0.278 0.433 -0.094 -0.354 1.011 -1.029 -0.578 -0.694 0.797 1.187
DCSVGP -0.373 0.450 0.165 -0.502 0.919 -1.047 -1.293 -0.697 0.586 1.166

PPGPR -0.056 0.377 -0.715 -0.772 0.804 -1.606 -0.906 -1.801 0.260 1.112
ODPPGPR -0.064 0.382 -0.842 -0.972 0.812 -1.603 -0.937 -1.791 0.316 1.111
DCPPGPR -0.588 0.403 -0.901 -1.067 0.854 -1.648 -1.574 -1.904 0.227 1.109

Table 3: Test RMSE and NLL on 10 regression datasets (lower is better). Results are averaged over
10 random train/validation/test splits. Statistical significance is indicated by bold. See the supplement
for standard errors.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP-DKL 0.0614 0.343 0.013 0.067 0.598 0.0864 0.0189 0.120 0.329 0.773
SVGP-DCDKL 0.0513 0.343 0.011 0.047 0.577 0.0855 0.0223 0.119 0.288 0.774

PPGPR-DKL 0.0847 0.343 0.030 0.082 0.597 0.0871 0.0176 0.121 0.375 0.771
PPGPR-DCDKL 0.0593 0.346 0.027 0.061 0.594 0.0870 0.0171 0.120 0.350 0.771

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP-DKL -1.388 0.347 -2.590 -1.227 0.905 -1.045 -2.550 -0.712 0.320 1.161
SVGP-DCDKL -1.600 0.348 -2.786 -1.637 0.888 -1.052 -2.379 -0.713 0.173 1.164

PPGPR-DKL -2.324 0.303 -3.096 -1.739 0.712 -1.627 -2.625 -1.951 -0.232 1.098
PPGPR-DCDKL -2.584 0.358 -3.192 -2.186 1.194 -1.650 -2.676 -1.911 -0.340 1.117

SVGP-DCDKL and PPGPR-DCDKL. We then compare SVGP-DCDKL with baseline model
SVGP-DKL [53] and comare PPGPR-DCDKL with baseline model PPGPR-DKL [22]. Here, all
models learn inducing points in the input space rather than in the feature space and we refer to App.
B.1.6 for more discussion on this choice and supporting results. Table 3 shows the test RMSE and
NLL and we observe that SVGP-DCDKL yields better (or equivalent) RMSE and NLL on all datasets
but the Slice dataset; PPGPR-DCDKL always yields better (or equivalent) RMSE and only obtains
worse NLL on 3 datasets due to an overfitting issue similar to DCPPGPR.

5.2 Ablation Study On β2

In Sec. 5.1, we evaluate decoupled models with fixed β2 = 1e-3 and observe mostly superior
performance except for occasional overfiting with DCPPGPR and PPGPR-DCDKL. Here, we study
how the regularization parameter β2 affects model performance. We evaluate DCPPGPR with
β2 ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0} on two datasets–Pol and Protein– that represent our
general findings.

The first row of Fig. 2 shows performance on Pol: DCPPGPR gets lower RMSE and NLL with
decreasing β2, and β2 → 0 is desirable. We also see how the decoupled lengthscales lmean and
lcovar diverge from PPGPR’s lengthscale as β2 decreases. The second row of Fig. 2 shows results
on Protein: DCPPGPR gets better RMSE but worse NLL as β2 decreases and thus overfits when
β2 < 0.1. In this case, β2 = 0.1 is the best. We refer to App. B.2 for more supporting results, and
conclude that 1) small β2 or even 0 is usually ideal and 2) adding back some small regularization
β2 = 0.1 appears to resolve the instances of overfitting we noticed.
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Figure 2: We evaluate DCPPGPR with varying β2 on dataset Pol (first row) and Protein (second row).
Results are averaged over 10 random dataset splits with standard errors included. Solid blue lines
show DCPPGPR with nonzero β2 and green dashed lines show DCPPGPR with β2 = 0. Baseline
PPGPR is shown in orange dotted line. First two columns contain test RMSE and NLL (lower is
better). Last two columns show the learned decoupled lengthscales lmean and lcovar. PPGPR has
equal lmean and lcovar due to no decouling. See Sec. 5.2 for details.
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Figure 3: Optimization performance in terms of objective values on tasks Rover (dim=60), Lunar
(dim=12) and Ranolazine (dim=256) is shown (higher is better). We compare baseline GP models
(SVGP or PPGPR-DKL) with their decoupled counterparts (DCSVGP or PPGPR-DCDKL). Decou-
pling conditionals results in significant improvement on all tasks. See Sec. 5.3 for details.

5.3 Applications to Bayesian Optimization (BO)

In this section, we apply our decoupled variational GPs to BO tasks [13]. We consider 3 real BO tasks:
the rover trajectory planning problem (Rover) [12, 52], the lunar landing reinforcement learning
(Lunar) [12], and a challenging molecule design task Ranolazine MPO (Ranolazine) [5, 33]. We take
TuRBO [12] as the BO algorithm and use different variational GPs in TuRBO. On Rover and Lunar,
we use SVGP with TuRBO and compare SVGP with DCSVGP. On Ranolazine we first reduce the
problem dimension to 256 using a Variational Autoencoder (VAE) [26], then perform BO in the latent
space using PPGPR-DKL with TuRBO [33]. We compare PPGPR-DKL with PPGPR-DCDKL on
Ranolazine. Consistent with our ablation study in Sec. 5.2, we find that β2 = 0 performs the best on
Rover and Ranolazine while Lunar requires more regularization with β2 = 0.1. Fig. 3 summarizes
optimization performance averaged on at least 10 runs – all decoupled models outperform their
coupled counterparts, showing the advantage of decoupling conditionals in BO applications.

5.4 Plausible Extensions

We further explore extensions of decoupled conditionals to achieve more flexible predictive mean
and variance of variational GPs. Beyond decoupling the same parametric form, we could model the
predictive mean and covariance differently for a better fit. Despite lack of theoretical grounding, we
evaluate two possibilities, both targeting a more complex predictive mean than the covariance.

Replace the predictive mean of SVGP by a neural network. In fact, the importance of the
parametric form of the covariance field is mentioned in Jankowiak et al. [22]: "a good ansatz for the
predictive variance is important for good uncertainty prediction". They suggest, but never implement
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Table 4: Test NLL on 10 regression datasets (lower is better). Results are averaged over 10 random
train/validation/test splits. Best ones with statistical significance are bold. See Sec. 5.4 for details.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP 0.331 0.452 0.207 -0.188 1.013 -1.018 -0.409 -0.683 0.752 1.192
DCSVGP -0.373 0.450 0.165 -0.502 0.919 -1.047 -1.293 -0.697 0.586 1.166
NNSVGP -1.050 0.419 -1.231 -0.827 0.895 -1.060 -0.948 -0.725 0.776 1.171

PPGPR -0.056 0.377 -0.715 -0.772 0.804 -1.606 -0.906 -1.801 0.260 1.112
DCPPGPR -0.588 0.403 -0.901 -1.067 0.854 -1.648 -1.574 -1.904 0.227 1.109
NNPPGPR -1.169 0.552 -1.560 -1.074 0.766 -1.514 -1.369 -1.632 0.412 1.113

Table 5: Test RMSE and NLL on 10 regression datasets (lower is better). Results are averaged over
10 random train/validation/test splits. Best ones with statistical significance are bold. See Sec. 5.4 for
details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP-DKL 0.0614 0.343 0.013 0.067 0.598 0.0864 0.0189 0.120 0.329 0.773
SVGP-DCDKL 0.0513 0.343 0.011 0.047 0.577 0.0855 0.0223 0.119 0.288 0.774

SVGP-MeanDKL 0.0576 0.344 0.027 0.048 0.576 0.0859 0.0259 0.119 0.285 0.771
PPGPR-DKL 0.0847 0.343 0.030 0.082 0.597 0.0871 0.0176 0.121 0.375 0.771

PPGPR-DCDKL 0.0593 0.346 0.027 0.061 0.594 0.0870 0.0171 0.120 0.350 0.771
PPGPR-MeanDKL 0.0736 0.344 0.055 0.062 0.594 0.0868 0.0223 0.121 0.349 0.771

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP-DKL -1.388 0.347 -2.590 -1.227 0.905 -1.045 -2.550 -0.712 0.320 1.161
SVGP-DCDKL -1.600 0.348 -2.786 -1.637 0.888 -1.052 -2.379 -0.713 0.173 1.164

SVGP-MeanDKL -1.450 0.349 -1.989 -1.645 0.883 -1.053 -1.777 -0.715 0.163 1.160
PPGPR-DKL -2.324 0.303 -3.096 -1.739 0.712 -1.627 -2.625 -1.951 -0.232 1.098

PPGPR-DCDKL -2.584 0.358 -3.192 -2.186 1.194 -1.650 -2.676 -1.911 -0.340 1.117
PPGPR-MeanDKL -2.362 0.312 -2.831 -2.150 1.048 -1.666 -2.175 -1.906 -0.344 1.099

or evaluate, that one could replace the mean function with a neural network so that inducing points
are only used for variance prediction. We empirically evaluate this idea, denoted as NNSVGP (and
NNPPGPR). With a totally flexible predictive mean, NNSVGP and NNPPGPR yield best test RMSE
over 9 out of 10 datasets (see supplement for the RMSE table). However, with the predictive mean
fully independent of the GP framework, NNSVGP and NNPPGPR yield worse NLL typically. Table
4 reports test NLL, where results are generally mixed.

Simplified deep kernels for covariances. In the DKL setting, instead of using decoupled feature
maps, one could use entirely different neural network architectures for the predictive mean and
covariance. We empirically find that a simpler feature mapping, or even no feature mapping, for the
covariance still make a plausible model with good performance but smaller training cost. We denote
the method with no feature mapping for the covariance as SVGP-MeanDKL and PPGPR-MeanDKL.

We present results in Table 5. We observe SVGP-MeanDKL does not significantly outperform the
decoupled models SVGP-DCDKL, but it improves baseline SVGP-DKL on 8 out of 10 datasets.
PPGPR-MeanDKL performs similarly in terms of the RMSE metric (better than baseline PPGPR-
DKL but worse than PPGPR-DCDKL). However, in terms of NLL, it gives poor uncertainty prediction
(worse NLL). This suggests that it is more beneficial to have different models (decoupled feature
extractors in SVGP-DCDKL) for conditional mean and covariance rather than only modeling the
conditional mean (SVGP-MeanDKL) or having same models (SVGP-DKL), and SVGP-based model
is more robust than the PPGPR-based model in uncertainty prediction.

6 Conclusion

Variational GPs scale approximate GP inference to millions of training examples but may yield
suboptimal accuracy due to lack of model expressiveness or poor model fitting. We propose a simple
idea to improve model expressiveness by decoupling the parametric form of the mean and variance in
the conditionals of variational GPs. We derive an ELBO for our model with decoupled conditionals,
which end up being similar to the ELBO of standard variational GP with an additional a regularization
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term. Our method is simple yet effective, and it applies to various variational GPs. We provide two
concrete examples, one decoupling kernel lengthscales in the basic variational GP setting and one
decoupling the feature mapping in the deep kernel learning setting. Through extensive empirical study,
we show that the decoupled conditionals effectively improve the accuracy of variational GPs in terms
of both mean and uncertainty prediction. We also empirically study two plausible extensions of our
method, motivated by the idea of modeling the mean and variance differently, but we conclude that
they are not as effective as our decoupled models. Current limitations of our work and therefore future
directions include but not limit to: 1) the application of decoupled conditionals to more SVGP-based
models; 2) further generalization of flexible forms of training and testing conditionals that improve
model performance; 3) the application of decoupled variational GP framework to tasks other than
regression or BO, such as classification tasks.
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A Methodology

A.1 The Evidence Lower Bound (ELBO)

Here we privide detailed derivation of the evidence lower bound (ELBO) for the proposed decoupled
SVGP model fitting. The goal of variational learning remains the same:

minKL(q(f , fm)||p(f , fm|y)) = min (E[log(q(f , fm))]− E[log(p(f , fm,y))] + log(p(y))) ,

where in the standard case q(f , fm) = p(f |fm)ϕ(fm), but we further approximate the training
conditional p(f |fm) by a decoupled one ψ(f |fm) and have q(f , fm) = ψ(f |fm)ϕ(fm). Following the
standard variational inference [2], we have the ELBO for decoupled SVGP:

log(p(y)) ≥ ELBO(q) = E[log(p(f , fm,y))]− E[log(q(f , fm))]

= E[log(p(y|f , fm))]− KL(q(f , fm)||p(f , fm)).
(7)

The first likelihood term in Eq. 7 is

E[log(p(y|f , fm))] =

∫ ∫
log(p(y|f , fm))q(f , fm) dfdfm

=

∫
ϕ(fm)

(∫
log(p(y|f , fm))ψ(f |fm) df

)
dfm

=

∫
ϕ(fm)

(∫
log(p(y|f))ψ(f |fm) df

)
dfm

=

n∑
i=1

{
logN (yi|µ̃f (xi), σ

2)− σ̃f (xi)
2

2σ2

}
,

where the predictive mean µ̃f (xi) and latent function variance σ̃f (xi)
2 are

µ̃f (xi) = QimQ−1
mmm, σ̃f (xi)

2 = K̃ii +QimQ−1
mmSQ−1

mmQmi.

The second KL divergence term in Eq. 7 is

KL(q(f , fm)||p(f , fm)) =

∫
ψ(f |fm)ϕ(fm) log

ψ(f |fm)ϕ(fm)

p(f |fm)p(fm)
dfdfm

=

∫
ψ(f |fm)ϕ(fm) log

ψ(f |fm)

p(f |fm)
dfdfm +

∫
ψ(f |fm)ϕ(fm) log

ϕ(fm)

p(fm)
dfdfm

=

∫
ϕ(fm)KL(ψ(f |fm)||p(f |fm)) dfm + KL(ϕ(fm)||p(fm))

= Eϕ(fm)[KL(ψ(f |fm)||p(f |fm))]︸ ︷︷ ︸
:=Ω

+KL(ϕ(fm)||p(fm)).

The KL divergence term is almost the same as that in the standard ELBO, with an additional term
Ω :=

∫
ϕ(fm)KL(ψ(f |fm)||p(f |fm)) dfm.

Analytic expression of Ω We could compute explicitly the analytical expression for the Ω term.
For notational simplicity, let decoupled and exact training conditionals be

ψ(f |fm) = N (QnmQ−1
mmfm, K̃nn) := N (µ1,Σ),

p(f |fm) = N (KnmK−1
mmfm, K̃nn) := N (µ2,Σ).

The Ω term is an expectation of a quadratic form:

Ω =

∫
ϕ(fm)KL(ψ(f |fm)||p(f |fm)) dfm

=
1

2

∫
ϕ(fm)

(
(µ1 − µ2)

TΣ−1(µ1 − µ2)
)
dfm

=
1

2
E[fmTTfm] =

1

2

(
Tr(TS) +mTTm

)
,

(8)

where T = ATΣ−1A, A = QnmQ−1
mm −KnmK−1

mm, and ϕ(fm) = N (m,S).
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A.2 Whitening

In this section, we provide detailed discussion of the whitening scheme used in the decoupled models.
We first present the standard whitening scheme used in variational GP models, then derive two
plausible whitening schemes for decoupled models – the K-whitening and the Q-whitening. We
implemented both ways of whitening for decoupled models, and empirically found that the latter
(Q-whitening) performs better (See Section B.1.5).

A.2.1 The standard whitening

For standard models like SVGP, using the square root of Kmm, the variational distribution is
"whitened" (reparameterized) in the following way:

q̄(fm) = N (m̄, S̄) = N (K−1/2
mm m,K−1/2

mm SK−1/2
mm ).

Under such reparameterization, the KL divergence is equivalent to a simpler form:

KL(q(fm)||p(fm)) =
1

2

[
− log |S|+ log |Kmm|+ Tr(K−1

mmS) +mTK−1
mmm−M

]
=

1

2

[
− log |S̄|+ Tr(K−1/2

mm K−1/2
mm K1/2

mmS̄K1/2
mm) + m̄TK1/2

mmK−1/2
mm K−1/2

mm K1/2
mmm̄−M

]
=

1

2

[
− log |S̄|+ Tr(S̄) + m̄T m̄−M

]
= KL(q̄(fm)||p0(fm)),

where p0(fm) = N (0, I) is the standard Normal, and M is the number of inducing points. Now plug
m̄ and S̄ in the predictive distribution p(f), we have the predictive mean µf (xi) and latent function
variance σf (xi)

2 in simplified forms as well:

µf (xi) = KimK−1/2
mm m̄,

σf (xi)
2 = Kii −KimK−1

mmKmi +KimK−1/2
mm S̄K−1/2

mm Kmi.

A.2.2 The K-whitening

For decoupled models like DCSVGP, we could similarly use the square root of Kmm to whiten the
variational distribution:

q̄(fm) = N (m̄, S̄) = N (K−1/2
mm m,K−1/2

mm SK−1/2
mm ).

Same as the standard whitening, the KL divergence is simplified:

KL(q(fm)||p(fm)) =
1

2

[
− log |S|+ log |Kmm|+ Tr(K−1

mmS) +mTK−1
mmm−M

]
=

1

2

[
− log |S̄|+ Tr(S̄) + m̄T m̄−M

]
= KL(q̄(fm)||p0(fm)),

where p0(fm) = N (0, I) is the standard Normal, and M is the number of inducing points. However,
if we plug m̄ and S̄ in the predictive distribution p(f), the predictive mean µ̃f (xi) and latent function
variance σ̃f (xi)

2 are not simplified in the same way as the standard case:

µ̃f (xi) = QimQ−1
mmK1/2

mmm̄,

σ̃f (xi)
2 = Kii −KimK−1

mmKmi +QimQ−1
mmK1/2

mmS̄K1/2
mmQ−1

mmQmi.

A.2.3 The Q-whitening

For decoupled models like DCSVGP, another plausible way of whitening for decoupled models is to
use the square root of Qmm:

q̄(fm) = N (m̄, S̄) = N (Q−1/2
mm m,Q−1/2

mm SQ−1/2
mm ).
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In this way, the KL divergence term is equivalent to a different form:

KL(q(fm)||p(fm)) =
1

2

[
− log |S|+ log |Kmm|+ Tr(K−1

mmS) +mTK−1
mmm−M

]
=
1

2

[
− log |Q1/2

mmS̄Q1/2
mm|+ log |Kmm|+ Tr(K−1

mmQ1/2
mmS̄Q1/2

mm) + m̄TQ1/2
mmK−1

mmQ1/2
mmm̄−M

]
=
1

2

[
− log |Q1/2

mmS̄Q1/2
mm|+ log |K1/2

mmK1/2
mm|+ Tr(K−1/2

mm K−1/2
mm Q1/2

mmS̄Q1/2
mm) + m̄TQ1/2

mmK−1/2
mm K−1/2

mm Q1/2
mmm̄−M

]
=
1

2

[
− log |S̄|+ log |Q−1/2

mm K1/2
mmK1/2

mmQ−1/2
mm |+ Tr(K−1/2

mm Q1/2
mmS̄Q1/2

mmK−1/2
mm ) + m̄TQ1/2

mmK−1/2
mm K−1/2

mm Q1/2
mmm̄−M

]
=
1

2

[
− log |S̄|+ log |L̄L̄T |+ Tr(L̄−1S̄L̄−T ) + m̄T L̄−T L̄−1m̄−M

]
=
1

2

[
− log |S̄|+ log |K̄|+ Tr(K̄−1S̄) + m̄T K̄−1m̄−M

]
=KL(q̄(fm)||p̄(fm)),

where p̄(fm) = N (0, K̄) and K̄ = L̄L̄T , L̄ = Q
−1/2
mm K

1/2
mm and M is the number of inducing points.

Now plug m̄ and S̄ in the predictive distribution p(f), we have the predictive mean µ̃f (xi) and latent
function variance σ̃f (xi)

2 simplified in a similar way as the standard case:

µ̃f (xi) = QimQ−1/2
mm m̄,

σ̃f (xi)
2 = Kii −KimK−1

mmKmi +QimQ−1/2
mm S̄Q−1/2

mm Qmi.

As discussed in the main paper, it is not surprising that the Q-whitening performs better in practice.
This is because the K-whitening simplifies the KL divergence but leaves the predictive distribution
complicated, while the Q-whitening does the opposite, and a complicated predictive distribution
makes the optimization much harder than a complicated KL divergence term.

B Experiments

B.1 Regression Tasks

Experiment setup Table 6 provides details on the 10 UCI regression datasets [10] and the number
of inducing points used for each dataset. For ODSVGP, since the goal is to use more inducing points
for mean and less for covariance under the same budget, we use the setup in the original paper [41]:
if SVGP uses 4X inducing points, then ODSVGP uses 7X inducing points for mean and 3X inducing
points for covariance. We use the Adam [25] optimizer with a multistep scheduler to train all models
on all datasets, and we train for 300 epochs using training batch size 1024. We selected the best
training hyperparameters for SVGP and use the same ones for all models – learning rate lr = 5e-3
and a multistep learning rate scheduler (multiplicative factor γ = 0.2).

B.1.1 Learned lengthscales

Table 6 also provides learned lengthscales of all models, averaged over 10 random dataset splits, as
supplementary results for Table 2. As is shown in Table 6, we observe how lengthscales are decoupled
in DCSVGP and DCPPGPR – the lengthscale for mean function lmean is typically smaller than the
shared lengthscale l, while the lengthscale for covariance function lcovar is typically larger than the
shared lengthscale l. This is indeed consistent with the motivation of decoupling lengthscales since a
smaller lengthscale for the mean function would typically lead to a better mean fit when the number
of inducing points is limited compare to total training data; when the mean function is well fit, the
lengthscale for the covariance can be larger to further reduce the predictive covariance.

B.1.2 Error bars of main results

Here we provide standard errors of main results Table 2 and Table 3 – see Figure 4 and Figure 5
respectively. Error bars for other similar results, i.e. Tables in the Appendix, are similarly small and
not informative and therefore we avoid redundant results.
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Table 6: We present details on UCI datasets and number of inducing points used in SVGP, DCSVGP,
PPGPR and DCPPGPR here. We also compare the learned lengthscale values (averaged over 10
random dataset splits): lengthscale l of baseline models SVGP, ODSVGP, PPGPR and ODPPGPR,
lengthscales lmean and lcovar of decoupled models DCSVGP and DCPPGPR. We observe that the
lengthscale for mean lmean is typically smaller than the shared lengthscale l, while the lengthscale for
covariance lcovar is typically larger than the shared lengthscale l. See App. B.1 and App. B.1.1 for
more details.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

Total number of data 11250 12449 13034 30000 34297 36620 40125 47706 326155 386508
Input dimension 26 18 17 8 9 20 380 26 3 90
#inducing points 500 500 500 800 800 800 800 800 1000 1000

SVGP l 0.976 1.370 2.330 1.220 0.260 1.150 19.600 2.270 0.120 1.110
ODSVGP l 1.418 1.561 3.162 1.710 0.412 1.726 20.694 2.665 0.158 1.664

DCSVGP lmean 0.291 0.761 1.174 0.673 0.104 0.791 4.956 1.273 0.038 0.346
DCSVGP lcovar 3.304 2.257 3.459 1.721 0.555 3.190 28.112 5.876 0.170 2.124

PPGPR l 0.789 1.060 2.890 1.300 0.200 1.030 21.000 2.510 0.110 0.490
ODPPGPR l 1.079 1.171 3.387 1.825 0.261 1.298 20.536 2.583 0.137 0.591

DCPPGPR lmean 0.290 0.790 1.423 0.797 0.122 0.923 5.053 2.161 0.100 0.349
DCPPGPR lcovar 3.811 1.361 4.556 1.793 0.298 2.122 26.734 4.814 0.138 0.640
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Figure 4: Test RMSE and NLL results with standard errors on UCI datasets, same results as
Table 2 in main paper. We compare DCSVGP to SVGP and ODSVGP and compare DCPPGPR to
PPGPR and ODPPGPR. Row 1 and 2 include RMSE results and row 3 and 4 include NLL results
(same row order as Table 2 in the main paper). See App. B.1.2 for more details.
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Figure 5: Test RMSE and NLL results with standard errors on UCI datasets, same results as Table
3 in main paper. We compare SVGP-DCDKL to SVGP-DKL and compare PPGPR-DCDKL to
PPGPR-DKL. Row 1 and 2 include RMSE results and row 3 and 4 include NLL results (same row
order as Table 3 in the main paper). See App. B.1.2 for more details.
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Figure 6: On dataset Kin40K, we plot z-scores distributions of model prediction (orange curves),
and compare with the standard Normal (black dashed curves). The closer the model predictive
distribution is to the standard Normal, the better the model is calibrated. Clearly, decoupled models
DCSVGP and DCPPGPR are better calibrated compare to their counterparts SVGP and PPGPR,
respectively. Quantitatively, in the titles we show the Wasserstein distance D between the two
distributions, the smaller the better. See App. B.1.3 for more details.

Table 7: Test RMSE and NLL on 10 univariate regression datasets (lower is better) with ARD kernels.
We compare decoupled models DCSVGP and DCPPGPR with their coupled counterparts SVGP and
PPGPR. Results are averaged over 6 random train/validation/test splits. Best ones with statistical
significance are bold. See App. B.1.4 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP 0.167 0.370 0.089 0.166 0.646 0.089 0.111 0.122 0.376 0.794
DCSVGP 0.078 0.366 0.058 0.116 0.590 0.087 0.041 0.120 0.323 0.772

PPGPR 0.166 0.376 0.127 0.240 0.643 0.092 0.150 0.124 0.450 0.779
DCPPGPR 0.084 0.372 0.064 0.163 0.614 0.090 0.047 0.123 0.458 0.776

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP -0.286 0.426 -0.873 -0.315 0.991 -1.027 -0.482 -0.689 0.457 1.188
DCSVGP -1.102 0.414 -1.453 -0.712 0.901 -1.038 -1.279 -0.710 0.289 1.161

PPGPR -0.871 0.359 -1.818 -0.844 0.783 -1.603 -0.919 -1.900 -0.084 1.108
DCPPGPR -1.494 0.392 -2.223 -1.177 0.885 -1.622 -1.505 -1.989 -0.083 1.121

B.1.3 Model Calibration

To study how decoupled conditionals affect model calibration, we evaluate the z-score distribution
from model predictions on all UCI datasets and compare it to the standard Normal. The closer
the z-score distribution from model predictions is to the standard Normal, the better the model is
calibrated. As an example, Figure 6 shows the z-score distributions of SVGP, DCSVGP, PPGPR and
DCPPGPR on the Kin40k dataset. As Figure 6 shows, on the Kin40k dataset, decoupled models
DCSVGP and DCPPGPR are better calibrated compare to their counterparts SVGP and PPGPR,
respectively. Quantitatively, we compute the Wasserstein distance D [37] between the model z-score
distribution and standard Normal (see subtitles in Figure 6 for example), the smaller the better.
Averaged over all 10 UCI datasets, SVGP and DCSVGP both have D = 0.27, PPGPR has D = 0.22
and DCPPGPR has the best D = 0.17. Therefore, we conclude that decoupling conditionals does not
lead to a poorly calibrated model, but can even improve model calibration on average.

B.1.4 ARD kernels

Here we provide additional results on regression tasks using ARD kernels. In Table 2, we show
that decoupled models outperform the baseline models using non-ARD kernels (kernels with one-
dimensional lengthscale). Here, we use ARD kernels (kernels with multi-dimensional lengthscales,
one for each input dimension) for all models and show consistent advantages of using decoupled
models. Table 7 summarizes results, similar to the main results using non-ARD kernels (Table 2 in
main paper), we observe that all decoupled models outperform baseline models.

B.1.5 Whitening of decoupled models

In Section A.2, we discussed two plausible whitening schemes for the decoupled models and claimed
that the Q-whitening is more favorable than the K-whitening due to the simplified predictive
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Table 8: Test RMSE and NLL on 10 univariate regression datasets (lower is better). Using the
DCSVGP model, we compare the K-whitening and Q-whitening discussed in App. A.2. Results
are averaged over 10 random train/validation/test splits. Best ones with statistical significance are
bold. See App. B.1.5 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

K-whitening 0.163 0.380 0.260 0.158 0.635 0.087 0.041 0.119 0.437 0.774
Q-whitening 0.156 0.379 0.286 0.150 0.604 0.086 0.039 0.121 0.434 0.777

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

K-whitening -0.099 0.457 0.083 -0.453 0.966 -1.045 -1.243 -0.703 0.591 1.163
Q-whitening -0.373 0.450 0.165 -0.502 0.919 -1.047 -1.293 -0.697 0.586 1.166

Table 9: Test RMSE and NLL on 10 univariate regression datasets (lower is better). Using the
DCPPGPR model, we compare the K-whitening and Q-whitening discussed in App. A.2. Results
are averaged over 10 random train/validation/test splits. Best ones with statistical significance are
bold. See App. B.1.5 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

K-whitening 0.178 0.387 0.296 0.214 0.659 0.089 0.046 0.123 0.567 0.781
Q-whitening 0.178 0.395 0.348 0.226 0.632 0.089 0.042 0.124 0.543 0.779

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

K-whitening 0.434 0.475 -0.786 -0.941 0.813 -1.638 -1.472 -1.861 0.277 1.112
Q-whitening -0.588 0.403 -0.901 -1.067 0.854 -1.648 -1.574 -1.904 0.227 1.109

Table 10: Test RMSE and NLL on 10 univariate regression datasets (lower is better) using SVGP-
DKL. We compare learning inducing points in the feature space with learning inducing points
in the input space. Results are averaged over 10 random train/validation/test splits. Best ones with
statistical significance are bold. See App. B.1.6 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

feature space 0.0867 0.347 0.067 0.086 0.614 0.0905 0.0237 0.122 0.382 0.772
input space 0.0614 0.343 0.013 0.067 0.598 0.0864 0.0189 0.120 0.329 0.773

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

feature space -1.014 0.361 -1.292 -1.070 0.931 -1.007 -2.214 -0.691 0.464 1.161
input space -1.388 0.347 -2.590 -1.227 0.905 -1.045 -2.550 -0.712 0.320 1.161

distribution. Here, we empirically compare the two whitening schemes and verify such claim. Table
8 summarizes a comparison of the K-whitening and Q-whitening in the DCSVGP model, and we
observe that Q-whitening outperforms K-whitening on 8 out of 10 datasets. Table 9 shows similar
results on the DCPPGPR model.

B.1.6 DKL discussion

In the main paper, we evaluate SVGP-DKL, PPGPR-DKL and their decoupled counterparts SVGP-
DCDKL and PPGPR-DCDKL on 10 UCI datasets, and we choose to learn inducing points in the
input space for all models. Despite the convention of learning inducing points in the feature space,
we found that for baseline models SVGP-DKL and PPGPR-DKL, learning inducing points in the
input space performs better on the UCI datasets, see Table 10 and Table 11.

B.2 Ablation Study on β2

In addition to the ablation study results on DCPPGPR in the main paper, here we provide more
ablation study results on DCSVGP and DCPPGPR with varying β2 values on all datasets. Together
with the representative results shown in the main paper, We obtain the same conclusion that
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Table 11: Test RMSE and NLL on 10 univariate regression datasets (lower is better) using PPGPR-
DKL. We compare learning inducing points in the feature space with learning inducing points
in the input space. Results are averaged over 10 random train/validation/test splits. Best ones with
statistical significance are bold. See App. B.1.6 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

feature space 0.1614 0.346 0.096 0.099 0.620 0.0953 0.0213 0.124 0.481 0.769
input space 0.0847 0.343 0.030 0.082 0.597 0.0871 0.0176 0.121 0.375 0.771

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

feature space -2.169 0.303 -3.054 -1.754 0.764 -1.574 -2.118 -1.956 0.106 1.100
input space -2.324 0.303 -3.096 -1.739 0.712 -1.627 -2.625 -1.951 -0.232 1.098

Table 12: Test RMSE and NLL on 10 regression datasets (lower is better). We compare DCSVGP
with different β2 values. Results are averaged over 10 random train/validation/test splits. Best ones
with statistical significance are bold. We observe that β2 = 0.001 or even β2 = 0 are good choices.
See App. B.2 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

β2 = 1.0 0.255 0.379 0.290 0.158 0.640 0.087 0.039 0.121 0.452 0.780
β2 = 0.001 0.156 0.379 0.286 0.150 0.604 0.086 0.039 0.121 0.434 0.777
β2 = 0 0.155 0.379 0.286 0.151 0.605 0.087 0.039 0.121 0.433 0.778

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

β2 = 1.0 0.120 0.450 0.184 -0.421 0.974 -1.043 -1.274 -0.695 0.632 1.170
β2 = 0.001 -0.373 0.450 0.165 -0.502 0.919 -1.047 -1.293 -0.697 0.586 1.166
β2 = 0 -0.370 0.450 0.165 -0.497 0.920 -1.039 -1.293 -0.698 0.582 1.167

1) β2 = 0.001 or even β2 = 0 are good choices for both DCSVGP and DCPPGPR (see Table
12 and Table 13);

2) on rare cases (only on the Pol and Elevators dataset, see Table 13), DCPPGPR could overfit
and β2 = 0.1 or β2 = 1.0 would fix the issue and improve the prediction performance.

More detailed results and discussions follows.

1D Example Using the same 1D toy example from the main paper, here in Figure 7 we show ablation
study on this 1D example. Consistently, DCSVGP outperforms SVGP with 10 inducing points, and
DCSVGP keeps improving as β2 decreases. We also observe that the decoupled lengthscales lmean
and lcovar differ more and more as β2 decreases and thus allowing the model to better fit mean and
covariance differently.

DCSVGP From Table 12, we observe that, DCSVGP favors small β2 values and β2 = 0.001 or
even β2 = 0 are good choices. The general trend is that DCSVGP performs better as β2 decreases.
To clearly see this trend, in Figure 8 we provide detailed performance study on 3 datasets: the 1D
synthetic dataset, the Pol dataset, and the Song dataset. We observe that both RMSE and NLL
decrease as β2 decreases, and the learned lengthscales differ more and more as β2 decreases to better
model the mean and covariance differently.

DCPPGPR From Table 13, we observe similar trend that DCPPGPR also favors small β2 values
and β2 = 0.001 or β2 = 0 are still good choices. In the main paper, we observe that DCPPGPR
overfits on dataset Elevators and Protein, and on Protein we show how varying β2 improves test NLL
in detail (Figure 2 in the main paper). Here we also observe from Table 13 that regularization with
β2 = 1.0 would fix the issue for both dataset Elevators and Protein. Figure 13 shows how the test
RMSE and NLL change with β2 on the Elevators dataset – we observe that RMSE does not change
much as β2 varies, but NLL decreases as β2 increases, showing how regularization improves test
NLL.
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Figure 7: We compare model fit on a 1D latent function using 100 training samples and 10 inducing
points. Solid curves with shading area depict the predictive mean and 95% confidence interval. In
subplot (a), SVGP underfits the latent function with large lengthscale l = 1.13. From subplot (b) to
(d), DCSVGP fits better and better with decreasing β2 = {1.0, 0.1, 0.01}. We also observe that the
decoupled lengthscales lmean and lcovar differ more and more as β2 decreases and thus allowing the
model to better fit mean and covariance differently. See App. B.2 for more details.

Table 13: Test RMSE and NLL on 10 regression datasets (lower is better). We compare DCPPGPR
with different β2 values. Results are averaged over 10 random train/validation/test splits. Best ones
with statistical significance are bold. We observe that DCPPGPR generally favors small β2 values,
and regularization would fix rare overfiting (on Elevators and Protein). See App. B.2 for more details.

Test RMSE Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

β2 = 1.0 0.258 0.393 0.366 0.233 0.645 0.090 0.044 0.124 0.546 0.778
β2 = 0.001 0.178 0.395 0.348 0.226 0.632 0.089 0.042 0.124 0.543 0.779
β2 = 0 0.177 0.393 0.345 0.227 0.634 0.090 0.043 0.123 0.544 0.779

Test NLL Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

β2 = 1.0 -0.287 0.377 -0.815 -0.987 0.790 -1.616 -1.524 -1.859 0.237 1.108
β2 = 0.001 -0.588 0.403 -0.901 -1.067 0.854 -1.648 -1.574 -1.904 0.227 1.109
β2 = 0 -0.616 0.399 -0.899 -1.065 0.855 -1.635 -1.538 -1.906 0.225 1.110

Table 14: Test RMSE on 10 regression datasets (lower is better). We compare NNSVGP to DCSVGP
and SVGP and compare NNPPGPR to DCPPGPR and PPGPR. Results are averaged over 10
random train/validation/test splits. Best ones with statistical significance are bold. NNSVGP and
NNPPGPR both yield the best test RMSE on 9 out of 10 datasets.

Pol Elevators Bike Kin40k Protein Keggdir Slice Keggundir 3Droad Song

SVGP 0.313 0.380 0.294 0.186 0.662 0.089 0.131 0.122 0.511 0.797
DCSVGP 0.156 0.379 0.286 0.150 0.604 0.086 0.039 0.121 0.434 0.777
NNSVGP 0.069 0.353 0.057 0.103 0.590 0.084 0.019 0.117 0.523 0.778

PPGPR 0.306 0.392 0.377 0.282 0.659 0.091 0.205 0.125 0.552 0.780
DCPPGPR 0.178 0.395 0.348 0.226 0.632 0.089 0.042 0.124 0.543 0.779
NNPPGPR 0.069 0.352 0.057 0.118 0.604 0.085 0.021 0.118 0.623 0.776

B.3 Plausible Extension

RMSE results of NNSVGP We provide the RMSE results of NNSVGP and NNPPGPR here in
Table 14 to support the observation that they yield the best test RMSE on 9 out of 10 datasets.
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Figure 8: We evaluate DCSVGP with varying β2 on the 1D dataset (first row), dataset Pol (second
row) and Song (third row). Solid blue lines show DCSVGP with nonzero β2 and green dashed lines
show DCSVGP with β2 = 0. First two columns contain test metrics, lower the better. Last two
columns show the learned decoupled lengthscales lmean and lcovar. We observe that both RMSE and
NLL decrease as β2 decreases. See App. B.2 for more details.
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Figure 9: We evaluate DCPPGPR with varying β2 on dataset Elevators, similar to Figure 8. We
observe that test RMSE does not change much as β2 varies, but NLL decreases as β2 increases,
showing how regularization improves test NLL. See App. B.2 for more details.
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