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Abstract

As it is empirically observed that Vision Transformers (ViTs) are quite insensitive
to the order of input tokens, the need for an appropriate self-supervised pretext
task that enhances the location awareness of ViTs is becoming evident. To address
this, we present DropPos, a novel pretext task designed to reconstruct Dropped
Positions. The formulation of DropPos is simple: we first drop a large random
subset of positional embeddings and then the model classifies the actual position
for each non-overlapping patch among all possible positions solely based on their
visual appearance. To avoid trivial solutions, we increase the difficulty of this task
by keeping only a subset of patches visible. Additionally, considering there may be
different patches with similar visual appearances, we propose position smoothing
and attentive reconstruction strategies to relax this classification problem, since
it is not necessary to reconstruct their exact positions in these cases. Empirical
evaluations of DropPos show strong capabilities. DropPos outperforms supervised
pre-training and achieves competitive results compared with state-of-the-art self-
supervised alternatives on a wide range of downstream benchmarks. This suggests
that explicitly encouraging spatial reasoning abilities, as DropPos does, indeed
contributes to the improved location awareness of ViTs. The code is publicly
available at https://github.com/Haochen-Wang409/DropPos.

1 Introduction

Learning extensible visual representations without any human annotations, known as self-supervised
learning (SSL), has become a research hotspot in the field of computer vision [7,9,26,27,29,47,59,62]
since it enables efficient transfer to various downstream benchmarks. To achieve this goal, researchers
carefully design visual pretext tasks to produce appropriate supervision using only images [3, 18, 46,
52, 62, 69, 70]. Two popular approaches among these are contrastive learning (CL) [62] and masked
image modeling (MIM) [3], both of which have demonstrated promising scaling behavior of vision
models, particularly Vision Transformers (ViTs) [21]. Despite the success of these methods, ViTs are
found to be relatively insensitive to the order of input tokens [13, 43, 67], leading to the hypothesis
that they tend to model the relationship between a set of unordered input tokens. Therefore, a natural
question arises: beyond the current CL and MIM paradigms, whether a pretext task that explicitly
enhances the positional awareness of ViTs can further improve their representation learning abilities?
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Figure 1: Comparison between different pretext tasks. (a) Contrastive learning aims to maximize
the agreement between different views of one image. (b) Masked image modeling predicts specific
contents of masked patches. (c) DropPos reconstructs positions solely based on visual appearance.

To answer this question, we begin by revisiting the forward procedure of ViTs. A sequence of
positional embeddings (PEs) [51] is added to patch embeddings to preserve position information.
Intuitively, simply discarding these PEs and requesting the model to reconstruct the position for
each patch naturally becomes a qualified location-aware pretext task. By forcing the model only
to utilize visual appearance for position reconstruction, the model is supposed to learn the shape
relationships and layouts of image contents, thereby improving the ability to encode spatial visual
content. However, despite the simplicity and intuitiveness of this idea, position-related methods such
as [18, 44] have fallen far behind. We identify several difficulties in designing this type of paradigm:

(i) Discarding all PEs brings discrepancies between pre-training and fine-tuning because the model
has never been exposed to any PEs during pre-training. (ii) Strengths of ViTs in modeling long-range
dependencies may cause them to solve the task superficially, leading to trivial solutions that fail to
learn highly semantic representations by solving this simple task. (iii) Patches with similar visual
appearances may result in confusing reconstruction targets, making it crucial to decide which position
to reconstruct precisely.

Driven by this analysis, we present a novel, straightforward, and highly effective pretext task for
self-supervised visual representation learning: reconstructing Dropped Positions (DropPos). DropPos
tackles the above issues systematically: (i) To address discrepancies, simply dropping a large subset
of PEs instead of discarding all of them works effectively. (ii) To avoid trivial solutions, we only keep
a subset of patches visible during pre-training, forcing ViTs to reconstruct the position of each visible
patch with only partial inputs. (iii) To prevent ViTs from being overwhelmed by this particular task,
we propose to relax this problem using position smoothing and attentive reconstruction strategies.

DropPos can be easily formulated into a simple patch-wise classification problem. Here is how it
works: First, input patches are randomly masked and a large subset of PEs corresponding to these
visible patches is dropped. Then, ViTs are tasked with classifying the positions of visible patches
among all possible candidates, relying on partial observations and a few anchors (i.e., patches with
unmasked PEs). Fig. 1 illustrates two benefits of DropPos: (i) requiring less prior knowledge of data
augmentation techniques compared to CL, and (ii) eliminating the need for a careful selection of
target representation [39] and mask strategy [8, 54, 56] as MIM does.

We conducted extensive experiments to evaluate the performance of DropPos in comparison to
state-of-the-art alternatives across various downstream tasks. With only 800 epochs of pre-training,
DropPos achieves 84.2% top-1 accuracy on ImageNet-1K [48] validation set using ViT-B/16 [21],
outperforming MAE [28] pre-trained with 1600 epochs by +0.6%. Moreover, on COCO [38] object
detection/segmentation, and ADE20k [71] semantic segmentation benchmarks, which requires more
abilities of spatial reasoning, DropPos surpasses MAE [28] consistently.

2 Related work

Self-supervised learning. The key challenge of self-supervised learning is the design of pretext
tasks [18, 28, 32, 42, 44, 45, 50, 54, 69], i.e., how to produce appropriate supervision signals using
only images. Among them, contrastive learning [5, 9, 26, 29, 58, 60, 62, 66] has been popular recently,
which seeks to maximize agreement between different views of the same images. Nevertheless, the
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performance of contrastive-related methods highly depends on carefully-designed data augmentation
techniques [5, 6, 9, 11, 12, 72]. Another mainstream is masked image modeling [1, 3, 10, 28, 54, 56],
which involves predicting specific contents masked patches [2, 3, 19, 20, 28, 54, 64, 72]. Unlike
these methods, DropPos offers a novel alternative for self-supervised ViTs: reconstructing dropped
positions based on only visual clues. In this way, the model is urged to learn the spatial arrangement
of local image patches, contributing to better localization abilities, which is important for spatial
reasoning recognition tasks, e.g., segmentation [22, 53, 55, 57, 58] and video understanding [17, 25].

Position prediction in self-supervised learning. Doersch et al. [18] first split an image into
3×3 grids and train a network to predict the relative position of paired patches from the same
image. This problem is formulated as an 8-way classification. Noroozi and Favaro [44] extended
this approach to solve “jigsaw puzzles” by urging the model to predict the order of shuffled non-
overlapping crops. These approaches were originally developed using ConvNets [33] and thus
lacked the ability to learn long-range dependencies, which is crucial for position prediction. Very
recently, Zhai et al. [67] revisited this type of pretext task in the scope of Transformers [51] by
pre-training ViTs [21] to predict patch positions solely based on their visual appearance, while
discarding positional embeddings. However, these pre-trained models have never been exposed to
positional embeddings, leading to discrepancies between pre-training and fine-tuning, and thus their
performances are significantly inferior to state-of-the-art alternatives [6,13,28,54]. Sameni et al. [49]
come up with an auxiliary position-related objective and combine it with the popular contrastive
learning paradigm. Caron et al. [4] extended this idea by predicting the relative location of a query
(i.e., local crop) to the corresponding reference (i.e., global crop). However, [4] only examined the
effectiveness on segmentation benchmarks [15, 24, 41, 71]. In contrast, DropPos incorporates a novel
dropped position reconstruction objective and thus achieves competitive performances on a variety of
downstream tasks, including classfication [48], detection [38], and segmentation [38, 71].

Positional embeddings in Vision Transformers. In the standard forward procedure of ViTs [21],
learnable positional embeddings (PEs) are added with patch embeddings. Improving PEs and
introducing more inductive bias into ViTs has become an active research area [23]. This is because
some research shows that ViTs are surprisingly robust against permutations of the order of input
patches. For instance, Chen et al. [13] demonstrate that the model performs well in classification
even with no position embedding, suggesting that ViTs have not fully leveraged the positional
information. Additionally, Naseer et al. [43] shows that ViTs are much less susceptible to patch
shuffling perturbations than ConvNets. Therefore, we propose DropPos, a novel self-supervised
pretext task that explicitly makes ViTs location-aware and promotes the emergence of spatial features.

3 Method

Preliminary: Vision Transformers. Given an image I ∈ RH×W×C , it is first reshaped into a
sequence of patches Ip ∈ RN×(P 2C), where (H,W ) indicates the spatial resolution, C is the number
of channels, P is the patch size, and N = HW/P 2 is the number of patches. A linear projection is
then applied to Ip, mapping it to D dimensions to get patch embeddings x ∈ RN×D. Also, a [CLS]
token xcls ∈ RD is used to aggregate the information. Position embeddings p ∈ R(N+1)×D are
added to the patch embeddings to retain positional information. Then, z = [xcls;x]⊕ p is the input
of transformer blocks [51] which consists of a stack of multi-head self-attention mechanisms, where
⊕ denotes element-wise plus. In particular, p0 denotes the position embeddings of the [CLS] token,
which will never be dropped.

3.1 DropPos

Fig. 2 illustrates our proposed DropPos. We first randomly generate a binary patch mask M ∈
{0, 1}N , where 1 means visible and 0 means masked, respectively. Note that the [CLS] token, i.e.,
z0, is always visible in our setting, and thus the length of M is N instead of N + 1 for simplicity.
Given a pre-defined mask ratio γ ∈ (0, 1), M is supposed to subject to

N−1∑
i=0

Mi = (1− γ)N, (1)

which means there are γN masked patches in total. It is worth noticing that we use patch masks
to increase the difficulty of the pretext task, which is quite different from building a pretext task to
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Figure 2: Illustration of DropPos. We first mask a large random subset of input images. Then,
positional embeddings of visible patches are randomly dropped and [MASK] tokens are introduced.
A lightweight projector is adopted to reconstruct those dropped positions. A simple patch-wise
classification objective is adopted and gray position targets do not contribute to training.

recover input images in MIM [3, 28]. Then, we denote xvis = gather(x,M) ∈ R(1−γ)N×D to be
the visible tokens, and position embeddings (PEs) for these unmasked tokens are randomly dropped,
where gather(·, ·) means only those unmasked patches (i.e., Mi = 1) are reserved. To address
possible discrepancies, we aim to drop a subset of PEs of these visible patches instead of simply
discarding all of them. Thus, we randomly generate a binary positional mask Mpos ∈ {0, 1}(1−γ)N .
Given a pre-defined position mask ratio γpos ∈ (0, 1), Mpos is supposed to subject to

(1−γ)N−1∑
i=0

Mi
pos = (1− γpos)(1− γ)N, (2)

which indicates that the model is supposed to reconstruct γpos(1 − γ)N dropped positions based
on remaining (1 − γpos)(1 − γ)N anchor patches and the [CLS] token. PEs for visible patches
pvis = gather(p1:N ,M) are gathered first. Then, we aim to obtain the final PEs p′ ∈ R(1−γ)N×D

by replacing those dropped positions with a learnable [MASK] token:

p′
i =


p0, if i = 0,

pi−1
vis , if Mi−1

pos = 1,

pmask, otherwise,

(3)

where i = 0, 1, . . . , (1− γ)N is the patch index, and pmask ∈ RD is the [MASK] token. Finally, the
input of the Transformer encoder is z′ = [xcls;xvis]⊕ p′ ∈ R[(1−γ)N+1]×D.

Algorithm 1 Pseudo-Code of DropPos.

# x: embedded patch tokens
# gamma/gamma_pos: patch/position mask ratio
# mask_token: learnable [MASK] token

# patch masking , [CLS] token is kept visible
ids_vis , _ = masking(x, gamma)
x_vis = gather(x, ids_vis)
# position dropping for visible patches
pos_embed = gather(pos_embed , ids_vis)
ids_keep , ids_res = masking(pos_embed , gamma_pos)
pos_embed = gather(pos_embed , ids_keep)
# concat with mask tokens
pos_embed = cat([pos_embed , mask_token ])
# restore
pos_embed = gather(pos_embed , ids_res)
# add to patch tokens for forward pass
return x_vis + pos_embed

Implementation. Pre-training ViTs us-
ing our DropPos can be implemented
efficiently and requires few specialized
operations. The process involves three
stages prior to forwarding features to the
encoder. First, we randomly mask a
subset of embedded patch tokens. Fol-
lowing MAE [28], the list of tokens is
shuffled randomly, and the last portion
of the list is removed. Next, positional
embeddings of those unmasked patches
are randomly dropped using the same
masking operation. Then, positional mask
tokens are introduced to obtain the final
positional embeddings, which are added
to the patch tokens finally and encoded
by ViTs followed by a lightweight decoder. A simple classification objective is applied to those
unmasked patches introduced as follows.
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3.2 Pre-training DropPos

DropPos is pre-trained by reconstructing dropped positions. Concretely, as illustrated in Fig. 2 and
presented in Sec. 3.1, an ViT [21] fθ parameterized by θ, takes z′ as input. A lightweight decoder
gψ parameterized by ψ then projects fθ(z′) to patch-wise position predicitons o = gψ(fθ(z

′)) ∈
R(1−γ)N×N . We omit the [CLS] token here for simplicity. For each visible patch i ∈ {0, 1, . . . , (1−
γ)N − 1}, softmax(oi) ∈ RN represents the probability density function of the predicted positions.
Next, we have to produce appropriate ground truths, i.e., the actual position for each visible patch.
To this end, we gather positions via y = gather([0, 1, . . . , N − 1],M) ∈ R(1−γ)N , where vector
[0, 1, . . . , N −1] is naturally the actual position for all patches before masking (w/o the [CLS] token).
Overall, the objective is simply the vanilla cross-entropy loss given true positions yij :

L = −
(1−γ)N−1∑

i=0

N−1∑
j=0

(1−Mi
pos) · one_hot(yij) · log

[
exp(oij)∑(1−γ)N−1

k=0 exp(oik)

]
. (4)

Only patches with dropped positions, i.e., orange patches in Fig. 2, contribute to this objective, which
is reflected by the term (1−Mi

pos) in Eq. (4). Next, several techniques are proposed to prevent ViTs
from being overwhelmed by this particular task, making them pay more attention to model spatial
dependencies instead of simply reconstructing positions.

Position smoothing. Considering that different categories (i.e., positions) are not completely
independent under this setting, the classification problem in Eq. (4) is relaxed when the model
has predictions close to the actual position. Specifically, a weight matrix w ∈ (0, 1)N×N is defined
to measure similarities between different patches:

w(i, j) = exp

(
−dist(i, j)

σ2

)
, (5)

where dist(i, j) means the Euclidean distance between patch i and j, and σ is a hyper-parameter.
The matrix then should be normalized by w∗(i, j) = w(i, j)/

(∑N−1
k=0 w(i, k)

)
. Here, w∗

i ∈ RN

indicates the smoothed ground truth when the actual position is i. Overall, the smoothed objective is:

Lsmooth = −
(1−γ)N−1∑

i=0

N−1∑
j=0

(1−Mi
pos) · w∗(yij , j) · log

[
exp(oij)∑(1−γ)N−1

k=0 exp(oik)

]
. (6)

Furthermore, we relax the problem in Eq. (6) by setting a large σ at the early stage, and we gradually
decay the value of σ to produce a challenging pretext task. A simple linearly decay is performed:

σt =
t

T
(σT − σ0) + σ0, (7)

where t and T denote the iteration and the number of total steps, respectively. σ0 and σT are the
initial value and final value of σ, respectively. We set σ0 = 1 and σT = 0 by default.

Attentive reconstruction. Since there may be different patches that share similar visual appearance
(e.g., two blue patches that represent the sky), it is not necessary to reconstruct their exact positions.
Simply swapping these patches still maintains reasonable visual coherence. Therefore, we leverage
the feature similarities between the [CLS] token and patch tokens to be an extra weight of Eq. (6):

Lattn
smooth = −

(1−γ)N−1∑
i=0

N−1∑
j=0

(1−Mi
pos) ·Ayij

· w∗(yij , j) · log
[

exp(oij)∑(1−γ)N−1
k=0 exp(oik)

]
, (8)

where A ∈ RN denotes the similarity matrix. Concretely, Ai means the affinity between the [CLS]
token and patch token i. Let fcls ∈ RD and f ∈ RN×D be the features output by the encoder fθ, and
thus the affinity Ai is computed by

Ai =
exp(cos(fcls, fi)/τ)∑N−1
j=0 exp(cos(fcls, fj)/τ)

, (9)

where τ indicates the temperature parameter and is set to 0.1 by default.
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Table 1: Ablation study of patch mask ratio γ. Note that “γ = 0” means that the whole image is
visible. We report the averaged top-1 accuracy of position predictions.

γ
ImageNet-1K COCO detection COCO segmentation ADE20k

fine-tune position APb APb
50 APb

75 APm APm
50 APm

75 mIoU aAcc

0.00 81.94 59.79 34.10 52.80 37.17 31.24 50.27 33.03 31.66 75.86
0.25 82.02 79.62 37.05 56.23 40.18 33.60 53.51 35.84 32.80 76.92
0.50 82.78 87.27 38.45 57.83 41.87 34.88 55.14 37.50 36.33 78.25
0.75 82.96 87.83 42.14 61.99 46.38 37.93 59.23 40.76 40.68 80.14
0.90 82.81 65.12 41.06 60.92 44.57 37.04 58.23 39.62 40.30 80.09

Table 2: Ablation study of position patch mask ratio γpos. Note that “γpos = 1” means that we
do not provide any reference patch, i.e., all visible patches are randomly shuffled. We report the
averaged top-1 accuracy of position predictions.

γpos
ImageNet-1K COCO detection COCO segmentation ADE20k

fine-tune position APb APb
50 APb

75 APm APm
50 APm

75 mIoU aAcc

0.25 82.71 65.19 37.98 57.65 41.39 34.61 54.79 36.93 36.15 78.16
0.50 82.86 86.70 39.23 58.77 42.99 35.60 56.23 37.89 37.82 78.60
0.75 82.96 87.83 42.14 61.99 46.38 37.93 59.23 40.76 40.68 80.14
1.00 82.66 19.44 41.48 61.50 45.18 37.41 58.81 39.92 39.98 80.19

4 Experiments

Pre-training. We perform self-supervised pre-training on the ImageNet-1K [48] training set with a
resolution of 224×224. By default, we take ViT-B/16 [72] as the backbone and perform 200 epochs
of pre-training. The decoder is a stack of Transformer [51] and has a depth of 2 and a width of 512.
Patch mask ratio γ and position mask ratio γpos are both 0.75 by default. Our implementation is
based on HPM [54]. Details can be found in Supplementary Material.

Evaluation. We perform supervised training to evaluate our DropPos with end-to-end fine-tuning on
ImageNet-1K [48] for classification. By default, 100 epochs of fine-tuning are performed following
common practices [28, 54] for ViT-B/16 [21]. We report top-1 validation accuracy of a single
224×224 crop. As for COCO [38], following previous methods [28, 54], we take Mask R-CNN [30]
with FPN [37] as the detector. We perform end-to-end fine-tuning on COCO [38] for 1× schedule
with 1024×1024 resolution. We report APb for object detection and APm for instance segmentation,
respectively. Our implementation is based on detectron2 [61] and ViTDet [36]. For ADE20k [71],
following previous methods [28, 54], we take UperNet [63] as the decoder and perform end-to-end
fine-tuning on ADE20k [71] with 512×512 resolution for 80k iterations. We take mIoU [24] as the
main evaluation metric. Our implementation is based on mmsegmentation [14].

4.1 Ablation studies

In Tabs. 1 to 4, we take the ViT-B/16 [21] pre-trained with 200 epochs on ImageNet-1K [48] as
the backbone. We highlight the default settings of our DropPos. Concretely, if not specified, the
default setting is γ = 0.75, γpos = 0.75, σ0 = 1, σT = 0, and τ = 0.1. By default, 100 epochs
of fine-tuning on ImageNet-1K [48], 1× schedule fine-tuning on COCO [38], and 80k iterations
fine-tuning on ADE20k [71] are performed.

To evaluate the performance on the pretext task, i.e., reconstructing dropped positions, we also report
the averaged top-1 accuracy of position predictions on the ImageNet-1K validation set in Tabs. 1 to 4.
We vary γ ∈ {0, 0.25, 0.5, 0.75} and γpos ∈ {0.25, 0.5, 0.75, 0.95} when measuring the position
prediction accuracy, and average the position accuracy among 16 different cases.

Main properties. Illustrated by Tabs. 1 to 4, we find sufficient evidence to support the three
difficulties claimed in Sec. 1. (i) In Tab. 1, ViTs fail to learn highly semantic representations by
simply solving the position reconstruction task, because the performances of γ = 0 significantly lag
behind. (ii) Discrepancies between pre-training and fine-tuning are revealed in Tab. 2 by setting
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Table 3: Ablation study of σ. “σ = 0” means no position smoothing. “→” denotes a linear decay
schedule is performed on σ. We report the averaged top-1 accuracy of position predictions.

σ
ImageNet-1K COCO detection COCO segmentation ADE20k

fine-tune position APb APb
50 APb

75 APm APm
50 APm

75 mIoU aAcc

0 82.85 88.81 40.32 59.89 43.90 36.45 57.09 38.88 38.32 79.22
1 82.91 87.13 40.19 59.76 43.81 36.30 57.06 38.87 38.60 79.17
2 82.79 69.48 40.16 59.94 43.92 36.32 57.32 38.88 38.69 79.30

1 → 0 82.96 87.83 42.14 61.99 46.38 37.93 59.23 40.76 40.68 80.14
2 → 0 82.88 87.65 40.46 60.03 44.21 36.53 57.20 39.30 38.79 79.43

Table 4: Ablation study of attentive reconstruction. “τ = ∞” indicates no attentive reconstruction.
We report the averaged top-1 accuracy of position predictions.

τ
ImageNet-1K COCO detection COCO segmentation ADE20k

fine-tune position APb APb
50 APb

75 APm APm
50 APm

75 mIoU aAcc

∞ 82.84 88.66 40.56 60.48 44.15 36.78 57.64 39.46 38.38 79.36
0.1 82.96 87.83 42.14 61.99 46.38 37.93 59.23 40.76 40.68 80.14
0.5 82.86 87.78 40.73 60.33 44.77 36.71 57.72 39.38 38.80 79.62

γpos = 1, where we observe performance deterioration. (iii) Deciding which position to reconstruct
precisely is crucial because by setting σ = 0 in Tab. 3 and τ = ∞ in Tab. 4, ViTs have better position
predictions task but perform worse on downstream tasks.

Performance on the position reconstruction task. In general, a positive correlation is observed
between the accuracy of the downstream task and the averaged accuracy of predicted positions,
indicating that the averaged accuracy of position predictions is a reliable indicator of how well the
model is trained. However, there are some exceptions, i.e., σ = 0 in Tab. 3 and τ = ∞ in Tab. 4,
where the model reconstructs more precise positions but performs worse on downstream benchmarks,
indicating that deciding which position to reconstruct precisely is crucial.

Please refer to Supplementary Material for the detailed performance of the position reconstruction
task, where we provide more evidence to support the three difficulties proposed in Sec. 1.

Patch mask ratio γ. We vary the patch mask ratio γ from 0 to 0.75 in Tab. 1. When γ = 0, the
entire image is visible during pre-training, resulting in nearly perfect position predictions and making
the task too simple for self-supervised learning (see Supplementary Material for details). However,
the averaged accuracy of position predictions is quite low since the accuracy deteriorates quickly
as we enlarge γ during evaluation. Adopting a larger γ for pre-training leads to better performance,
especially on detection and segmentation benchmarks. Therefore, we can conclude that patch masking
is essential in DropPos to prevent trivial solutions. However, deterioration is observed when γ = 0.9.
This is because the model may be under-fitted using this extremely difficult pretext task.

Position mask ratio γpos. We study the effectiveness of the position mask ratio γpos in Tab. 2.
DropPos appears to be more robust against different γpos than γ. However, an appropriate γpos is
still necessary. A small γpos leads to trivial solutions even if we have a large γ, while an extremely
large γpos, e.g., γpos = 1, results in discrepencies between pre-training and fine-tuning.

Position smoothing. By setting different values of σ0 and σT , we study the effectiveness of position
smoothing. By setting σ = 0, we remove the position smoothing strategy, and the model tends to be
overwhelmed by this position reconstruction task, leading to high accuracy in position prediction
but poor performance on downstream tasks. However, when σ is too large, the smoothed positions
become noisy, contributing to poor performance on both downstream tasks and position reconstruction.
Additionally, equipped with a linear decay schedule of σ, DropPos is gradually guided, bringing
improvements on both downstream tasks and position reconstruction.

Attentive reconstruction. Attentive reconstruction is studied in Tab. 4 by setting different values of
temperature τ , where τ = ∞ means no attentive reconstruction. Without attentive reconstruction,
DropPos is able to obtain better position predictions but performs worse on downstream tasks. This
is because we do not have to reconstruct the exact positions when different patches share similar
visual appearances. This phenomenon can be mitigated by setting an appropriate τ . A large τ leads
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Table 5: Comparison with previous methods on ImageNet-1K classification. All methods are
evaluated by fine-tuning. The resolution of images is fixed to 224×224. † means our implementation.
‡ means the result is borrowed from [28].

method venue eff. ep. ViT-B ViT-L

supervised - 80.9† 82.6‡

MAE [28] [CVPR’22] 200 82.2† 83.3‡

DropPos [Ours] 200 83.0 83.7

Contrastive Learning
DINO‡ [6] [ICCV’21] 1600 82.8 -
MoCo v3‡ [13] [ICCV’21] 600 83.2 84.1

Masked Image Modeling
BEiT‡ [3] [ICLR’22] 800 83.2 85.2
MAE‡ [28] [CVPR’22] 1600 83.6 85.9
SimMIM [64] [CVPR’22] 800 83.8 -
SemMAE [34] [NeurIPS’22] 800 83.4 -
LocalMIM [56] [CVPR’23] 1600 84.0 -
HPM [54] [CVPR’23] 800 84.2 85.8

Masked Image Modeling + Contrastive Learning
iBOT [72] [ICLR’22] 1600 84.0 -
BootMAE [19] [ECCV’22] 800 84.2 85.9

Position Reconstructing
DropPos [Ours] 800 84.2 85.8

Table 6: Comparison with previous methods on downstream tasks. All methods take the ViT-
B/16 [21] as the backbone and utilize Mask R-CNN [30] on COCO [38] object detection and instance
segmentation, and UperNet [63] on ADE20k [71] semantic segmentation, respectively. ‡ means the
result is borrowed from [28]. † indicates our implementation, including pre-training and supervised
fine-tuning, while ♯ represents we reproduce fine-tuning using the official pre-trained backbone. We
perform 1× schedule of fine-tuning on COCO using ViTDet [36], and 80k iterations of fine-tuning
on ADE20k using mmsegmentation [14].

method venue eff. ep. COCO detection COCO segmentation ADE20k

APb APb
50 APb

75 APm APm
50 APm

75 mIoU aAcc

MAE† [28] [CVPR’22] 200 40.1 60.5 44.1 36.4 57.8 39.3 40.5 80.1
DropPos [Ours] 200 42.1 62.0 46.4 37.9 59.2 40.8 40.7 80.1

MoCo v3♯ [13] [ICCV’21] 600 43.7 65.7 47.7 39.1 62.0 41.8 44.7 81.5
MAE♯ [28] [CVPR’22] 1600 47.3 68.2 52.5 42.4 65.3 45.6 47.0 82.7
BootMAE♯ [19] [ECCV’22] 800 47.3 67.9 52.1 42.3 65.0 45.8 47.3 83.0
SemMAE♯ [34] [NeurIPS’22] 800 45.6 66.2 55.2 40.9 63.3 44.4 44.9 82.0
LocalMIM♯ [56] [CVPR’23] 1600 47.4 67.7 52.2 42.2 64.8 45.5 47.1 83.1
DropPos [Ours] 800 47.7 68.3 52.8 42.6 65.3 46.2 47.8 82.8

to noisy position ground truths, leading to poor performance on both downstream tasks and position
reconstruction, which is the same as a large σ.

4.2 Comparisons with previous results

We compare our proposed DropPos with the supervised pre-training baseline and a wide range of self-
supervised methods, including (i) contrastive learning methods [6, 13], (ii) masked image modeling
methods [3, 28, 34, 54, 56, 64], and (iii) their combinations [19, 72]. Effective pre-training epoch is
used for fair comparison following [54, 72] since it accounts for the actual trained images/views. The
detailed definition can be found in Supplementary Material. All methods are pre-trained with the
same resolution, i.e., 224×224 on ImageNet-1K [48].

ImageNet-1K classification. We compare our DropPos with state-of-the-art alternatives on the
ImageNet-1K [48] classification benchmark in Tab. 5. Notably, with only 200 epochs pre-training,
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Figure 3: Qualitative results of position reconstruction. We evaluate position predictions with
different γ but fix γpos = 0.95. Black patches are masked during inference. The positions of those
white patches are wrongly predicted, while the remaining patches are predicted correctly. For each
tuple, we show results under (a) γ = 0, (b) γ = 0.25 , (c) γ = 0.5, (d) γ = 0.75, and (e) the original
image. DropPos manages to reconstruct precise positions.

Table 7: An in-depth analysis about whether the improved position sensitivity benefits downstream
tasks or not. We freeze the backbone and train an extra linear patch classification head. 75% of
position embeddings are randomly masked during linear probing. We can conclude that image
classification indeed needs better location awareness and thus designing a position prediction pretext
task is crucial and worth studying.

method venue Position prediction ImageNet-1K
Pre-trained Fine-tuned Top-1

MoCo v3 [13] [ICCV’21] 43.2 78.0 ↑ 34.8 83.2
MAE [28] [CVPR’22] 63.1 82.5 ↑ 19.4 83.6
DropPos [ours] 77.3 88.0 ↑ 10.7 84.2

DropPos achieves 83.0% and 83.7% using ViT-B/16 and ViT-L/16 as the backbone, surpassing the
supervised baseline by +1.1%, and MAE [28] by +0.8% and +0.4% respectively. This empirical
evidence demonstrates that enhancing the location awareness of ViTs indeed brings better visual
representations. Furthermore, with 800 epochs of pre-training, DropPos manages to achieve
competitive results compared with the state-of-the-art. Specifically, it achieves 84.2% and 85.8%
using ViT-B/16 and ViT-L/16, respectively. Strikingly, DropPos reaches competitive results with
BootMAE [19], which combines contrastive learning and masked image modeling.

COCO object detection and segmentation. We fine-tune Mask R-CNN [30] on COCO [38] with
1× schedule, i.e., 12 epochs, using the configuration of ViTDet [36]. We take ViT-B/16 [21] as the
backbone for all entries in Tab. 6. We regard APb and APm as the main metric for object detection
and instance segmentation, respectively. For further comparison, we additionally report APb

50 and
APb

75 for object detection, and APm
50 and APm

75 for instance segmentation. With only 200 epochs of
pre-training, DropPos achieves 42.1% APb and 37.9% APm, outperforming MAE [28] by +2.0%
and +1.5%, respectively. Note that these improvements appear to be more significant than those on
the classification benchmark shown in Tab. 5, indicating that DropPos indeed contributes to better
spatial reasoning abilities of ViTs. With 800 epochs of pre-training, DropPos achieves 47.7% APb

and 42.6% APm, surpassing MAE [28] by +0.4% and +0.2%, respectively.

ADE20k semantic segmentation. We fine-tune UperNet [63] on ADE20k [71] with 80k iterations.
We take ViT-B/16 [21] as the backbone for all entries in Tab. 6 and search for the optimal learning
rate for each entry. We regard mIoU as the main metric for semantic segmentation. We additionally
report aAcc for further comparison. With only 200 epochs of pre-training, DropPos achieves 40.7%
mIoU, outperforming MAE [28] by +0.2%. With 800 epochs of pre-training, DropPos achieves
47.8% mIoU, surpassing MAE [28] by +0.8%.

Qualitative results. We load DropPos with 200 epochs of pre-training and provide qualitative results
on this position reconstruction task in Fig. 3. DropPos manages to reconstruct the exact positions
of most patches even in extreme circumstances, i.e., γ = 0.75 and γpos = 0.95. This suggests that
DropPos, as a self-supervised pretext task, indeed makes ViTs location-aware.

4.3 Analysis

To explore whether the improved position sensitivity results in better feature representation and
benefits to downstream tasks or not, we propose a metric to evaluate the position sensitivity.

9



Specifically, we freeze the backbone and train an extra linear position prediction head using the
vanilla cross-entropy loss. Top-1 accuracies of position predictions before and after fine-tuning are
reported in Tab. 7, and 75% of position embeddings are randomly masked during training. Higher
values mean the model is better at modeling the position relationship. The top-1 accuracy on the
ImageNet-1K [48] validation set after fine-tuning is also reported.

As shown in Tab. 7, the backbone performs better in position prediction after fine-tuning, indicating
that image classification indeed needs strong abilities in modeling spatial relationships. It means that
better position sensitivity corresponds to better performances on downstream tasks. This evidence
suggests that our motivation, i.e., enhancing the location awareness of ViTs, is reasonable, and the
topic is worth studying. By designing a position prediction pretext task, the backbone pre-trained by
DropPos has better position modeling abilities, performing better on a variety of downstream tasks.

5 Conclusion

In this paper, we present DropPos, a novel, simple, and effective self-supervised pretext task that
enhances the location awareness of ViTs. By masking patch tokens first and dropping positional
embeddings next, ViTs are requesting to classify the position of each visible patch among all
candidates based on partial visual appearance and a few anchor patches. In this way, we manage
to avoid (i) discrepancies between pre-training and fine-tuning, (ii) trivial solutions, and (iii)
reconstructing precise positions when unnecessary, resulting in improved spatial reasoning and
understanding abilities of ViTs. Experiments across various benchmarks demonstrate the efficacy of
DropPos, where DropPos consistently achieves competitive results compared with previous methods.

Discussion. Due to limited computational resources, we do not use DropPos to pre-train larger ViTs,
e.g., ViT-H/14. Despite these limitations, a growing need to design a pretext task that effectively
uncovers the representation learning capabilities of vision models is becoming evident. We hope our
DropPos will inspire future work. Additionally, how to enhance location awareness of vision models
for spatial reasoning tasks in a supervised manner is also valuable to study.
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Supplementary Material

In this supplementary material, we first provide mode implementation details for reproducibility in
Sec. A. Next, we provide more experiments in Sec. B. Finally, in Sec. C, we evaluate the performance
of the position reconstruction task using pre-trained models under different settings, and we provide
more evidence to support the proposed three difficulties in Sec. 1.

A Implementation details

ViT architecture. We follow the standard vanilla ViT [21] architecture used in MAE [28] as the
backbone, which is a stack of Transformer blocks [51]. Following MAE [28], we use the fixed 2D
sine-cosine positional embeddings during pre-training. For the downstream classification task, we
use features globally averaged from the encoder output for both end-to-end fine-tuning.

Effective training epochs. Following iBOT [72], we take the effective training epochs as the metric
of the training schedule, due to extra computation costs brought by the multi-crop [5] augmentation,
which is a widely used technique for contrastive methods. Specifically, the effective training epochs
are defined as the actual pre-training epochs multiplied with a scaling factor r. For instance, DINO [6]
is trained with 2 global 224×224 crops and 10 local 96×96 crops, and thus r = 2+(96/224)2×10 ≈
4. More details and examples can be found in [72].

A.1 ImageNet classification

For all experiments in this paper, we take ImageNet-1K [48], which contains 1.3M images for 1K
categories, as the pre-trained dataset. By default, we take ViT-B/16 [21] as the backbone and it is
pre-trained 200 epochs followed by 100 epochs of end-to-end fine-tuning. Implementation details can
be found in the following table. Most of the configurations are borrowed from MAE [28]. The linear
learning rate scaling rule is adopted: lr = lrbase × batch_size / 256. For supervised training from
scratch, we simply follow the fine-tuning setting without another tuning. For ViT-B/16, pre-training
and fine-tuning are conducted with 64 and 32 2080Ti GPUs, respectively. For ViT-L/16, pre-training
and fine-tuning are conducted with 32 and 16 Tesla V100 GPUs, respectively.

config pre-training fine-tuning
optimizer AdamW AdamW
base learning rate 1.5e-4 1e-3
weight decay 0.05 0.05
momentum β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.999
layer-wise lr decay 1.0 0.8
batch size 4096 1024
learning rate schedule cosine decay cosine decay
warmup epochs 10 (ViT-B/16), 40 (ViT-L/16) 5
training epochs 200 100 (ViT-B/16), 50 (ViT-L/16)
augmentation RandomResizedCrop RandAug (9, 0.5) [16]
label smoothing - 0.1
mixup [68] - 0.8
cutmix [65] - 1.0
drop path [31] - 0.1

A.2 COCO object detection and segmentation

We take Mask R-CNN [30] with FPN [37] as the object detector. Following [28] and [54], to obtain
pyramid feature maps for matching the requirements of FPN [37], whose feature maps are all with a
stride of 16, we equally divide the backbone into 4 subsets, each consisting of a last global-window
block and several local-window blocks otherwise, and then apply convolutions to get the intermediate
feature maps at different scales (stride 4, 8, 16, or 32).

We perform end-to-end fine-tuning on COCO [38] for 1× schedule with 1024×1024 resolution,
where 88,750 iterations of training with a batch size of 16 are performed. We simply follow the
configuration of ViTDet [36], where the learning rate is 3e-4 and decays at the 78,889-th and 85,463-th
iteration by a factor of 10. Experiments are conducted on 8 Tesla V100 GPUs.
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Table S1: Ablation study of the initialization of the positional encoding. Fixed sin-cos position
embeddings achieve the best performance.

initialization learnable ImageNet ADE20k
Top-1 Acc mIoU

sin-cos % 82.96 40.68
sin-cos ✓ 82.81 39.37
random ✓ 82.48 38.72

Table S2: The performance when DropPos is equipped with Swin Transformers [40]. 200
epochs of pre-training and 100 epochs of fine-tuning are performed based on the implementation of
UM-MAE [35]. We can conclude that DropPos works with Swin [40].

method backbone ImageNet-1K

UM-MAE [35] Swin-Tiny [40] 82.04
DropPos Swin-Tiny [40] 82.73

A.3 ADE20k semantic segmentation

We take UperNet [63] as the segmentation decoder following the code of [3, 14, 54]. Fine-tuning
on ADE20k [71] for 80k iterations is performed. Specifically, each iteration consists of 16 images
with 512×512 resolution. The AdamW optimizer is adopted with an initial learning rate of 7e-4
and a weight decay of 0.05 with ViT-B. We apply a polynomial learning rate schedule with the first
warmup of 1500 iterations following common practice [3, 14, 54]. When fine-tuning using backbones
pre-trained with different methods, we search for the optimal learning rate or simply follow their
official implementation for a fair comparison. Specifically, the learning rate is 1e-4 for [13, 28, 34],
4e-4 for [19, 56], respectively. All experiments are conducted on 8 Tesla V100 GPUs.

B More Experiments

The initialization of the positional encoding. DropPos uses fixed 2D sin-cos position embeddings
by default. We ablate the initialization of position embeddings in Tab. S1 and it demonstrates that
fixed sin-cos position embeddings achieve the best performance.

DropPos with Swin Transformers [40]. To verify the scaling property and the generalization
of DropPos, we provide experiments when DropPos is equipped with the Swin Transformer. We
follow the implementation of UM-MAE [35] and pre-train a Swin-Tiny [40] from scratch using
DropPos. All models are pre-trained with 200 epochs and fine-tuned with 100 epochs, following the
configuration of UM-MAE [35]. From Tab. S2, we can conclude that DropPos still works on Swin
Transformers [40], and thus enhancing the location awareness of vision transformers is still worth
studying.

C Performance of position reconstruction

In this section, we evaluate the performance of the position reconstruction task using pre-trained
models under different settings. Specifically, we vary γ ∈ {0, 0.25, 0.5, 0.75} and γpos ∈
{0.25, 0.5, 0.75, 0.95} when measuring the position prediction accuracy. We report performance
under different evaluation settings as well as the averaged accuracy among 16 different cases. From
Tabs. S3 to S5, we find evidence to support the three difficulties for designing an appropriate position-
related pretext task introduced in Sec. 1: (i) discrepancies between pre-training and fine-tuning, (ii)
failing to learn highly semantic representations by solving this simple position reconstruction task,
and (iii) difficult to decide which patch positions to reconstruct precisely.

We study the effectiveness of different values of γ during pre-training in Tab. S3. Interestingly, we
find evidence for failing to learn highly semantic representations by solving this simple position
reconstruction task. As illustrated by Tab. S3a, the pre-trained model performs extremely well when
we set γ = 0 for evaluation but fails to keep this trend when we enlarge γ. This indicates that given
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Table S3: Top-1 accuracy of position reconstruction using ViT-B/16 [21] pre-trained with different
mask ratio γ. We underline the special parameter different from our default settings. Default settings
are highlighted in color. “Avg. acc” is the averaged top-1 accuracy over 16 different cases. We
evaluate the performance using the same pre-trained model under different γ and γpos. Larger γ and
γpos indicates a more challenging task.

(a) Pre-training with γ = 0 (Avg. acc: 59.79).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.37 99.26 99.15 98.34 99.03
0.25 87.97 87.45 86.20 70.79 83.10
0.50 55.37 55.11 49.84 22.96 45.82
0.75 12.99 14.85 12.85 4.21 11.23

(b) Pre-training with γ = 0.25 (Avg. acc: 79.62).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.24 99.26 99.18 98.92 99.15
0.25 98.67 98.81 98.63 97.21 98.33
0.50 93.96 93.62 90.01 62.11 84.93
0.75 50.02 47.79 35.03 11.46 36.08

(c) Pre-training with γ = 0.5 (Avg. acc: 87.27).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.33 99.23 99.13 98.85 99.14
0.25 99.05 98.95 98.78 98.20 98.75
0.50 94.60 95.94 94.28 83.31 92.03
0.75 78.77 72.75 59.54 25.59 59.16

(d) Pre-training with γ = 0.75 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 97.19 98.69 98.20 92.30 96.60
0.25 96.78 98.26 97.66 91.05 95.93
0.50 97.26 96.82 95.66 89.12 94.72
0.75 79.94 78.10 68.73 40.24 66.75

Table S4: Top-1 accuracy of position reconstruction using ViT-B/16 [21] pre-trained with different
positional mask ratio γpos. We underline the special parameter different from our default settings.

(a) Pre-training with γpos = 0.25 (Avg. acc: 65.19).

γ
γpos 0.25 0.50 0.75 0.95

0.00 96.52 89.38 59.29 14.58
0.25 96.62 91.27 66.00 19.17
0.50 95.58 91.10 72.07 21.69
0.75 80.56 73.72 57.89 17.66
avg. 92.32 86.37 63.81 18.28

(b) Pre-training with γpos = 0.5 (Avg. acc: 86.70).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.98 98.81 98.24 92.80
0.25 98.59 98.34 97.51 89.73
0.50 96.63 95.85 93.40 74.38
0.75 81.94 76.70 64.87 30.44
avg. 94.04 92.43 88.51 71.84

(c) Pre-training with γpos = 0.75 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24
avg. 92.79 92.97 90.06 78.18

(d) Pre-training with γpos = 1 (Avg. acc: 19.44).

γ
γpos 0.25 0.50 0.75 0.95

0.00 15.57 23.24 20.41 23.59
0.25 12.51 21.10 24.30 29.41
0.50 7.76 14.18 25.56 45.01
0.75 3.34 6.00 12.53 26.45
avg. 9.80 16.13 20.70 31.12

the strength of ViTs in modeling long-range dependencies, they have easily solved this task in a
superficial way, and thus pre-training with γ = 0 becomes trivial for ViTs. To this end, an appropriate
γ is necessary to increase the difficulty of the pretext task and avoid trivial solutions.

We study the effectiveness of different values of γpos during pre-training in Tab. S4, and we find
evidence for discrepancies between pre-training and fine-tuning. As shown by Tab. S4d, the model
fails to reconstruct accurate positions given some visible anchors. This is because the model has
never been exposed to any positional embeddings (PEs) during pre-training. Therefore, providing
some anchors is necessary to address discrepancies. Also, it may help the model focus on modeling
relative relationships instead of simply reconstructing absolute positions.
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Table S5: Top-1 accuracy of position reconstruction using ViT-B/16 [21] pre-trained with different
(i) σ and (ii) τ . We underline the special parameter different from our default settings.

(a) Pre-training with σ = 0 (Avg. acc: 88.81).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.48 98.74 98.29 94.37
0.25 98.06 98.31 97.76 93.48
0.50 96.06 96.08 94.48 85.49
0.75 82.19 78.64 69.39 41.23

(b) Pre-training with σ = 1 (Avg. acc: 87.13).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.03 98.50 97.93 91.40
0.25 96.63 98.04 97.33 89.69
0.50 94.30 95.58 93.68 81.47
0.75 79.14 77.06 67.43 38.89

(c) Pre-training with σ = 2 (Avg. acc: 69.48).

γ
γpos 0.25 0.50 0.75 0.95

0.00 78.45 78.81 78.19 72.33
0.25 78.03 78.41 77.68 70.49
0.50 76.14 76.27 74.53 63.52
0.75 63.75 61.21 53.30 30.47

(d) Pre-training with σ = 1 → 0 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24

(e) Pre-training with σ = 2 → 0 (Avg. acc: 87.65).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.63 98.61 97.93 91.30
0.25 97.22 98.19 97.46 89.96
0.50 94.99 95.85 94.06 82.50
0.75 80.33 77.92 68.42 40.11

(f) Pre-training with τ = ∞ (Avg. acc: 88.66).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.66 98.31 97.72 91.22
0.25 98.54 98.17 97.46 91.00
0.50 96.85 96.20 94.52 84.64
0.75 83.57 79.30 70.04 42.29

(g) Pre-training with τ = 0.1 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24

(h) Pre-training with τ = 0.5 (Avg. acc: 87.78).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.68 97.94 97.82 91.78
0.25 97.83 97.91 97.53 91.01
0.50 96.44 96.06 94.52 84.49
0.75 80.16 77.16 66.01 40.18

We study the effectiveness of different values of γpos during pre-training in Tab. S4, and we find
evidence for hard to decide which patch positions to reconstruct precisely. As shown by Tabs. S5a
and S5f, the model achieves higher position prediction accuracy but performs worse on downstream
tasks (please refer to Tabs. 3 and 4 for downstream performances). Therefore, to prevent being
overwhelmed by this particular position reconstruction task, techniques for relaxing the patch-wise
classification problem become necessary, i.e., position smoothing, and attentive reconstruction.
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