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Abstract

Input-Convex Neural Networks (ICNNs) are networks that guarantee convexity
in their input-output mapping. These networks have been successfully applied
for energy-based modelling, optimal transport problems and learning invariances.
The convexity of ICNNs is achieved by using non-decreasing convex activation
functions and non-negative weights. Because of these peculiarities, previous ini-
tialisation strategies, which implicitly assume centred weights, are not effective
for ICNNs. By studying signal propagation through layers with non-negative
weights, we are able to derive a principled weight initialisation for ICNNs. Con-
cretely, we generalise signal propagation theory by removing the assumption that
weights are sampled from a centred distribution. In a set of experiments, we
demonstrate that our principled initialisation effectively accelerates learning in
ICNNs and leads to better generalisation. Moreover, we find that, in contrast to
common belief, ICNNs can be trained without skip-connections when initialised
correctly. Finally, we apply ICNNs to a real-world drug discovery task and show
that they allow for more effective molecular latent space exploration.

1 Introduction

Input-Convex Networks. Input-Convex Neural Networks (ICNNs) are networks for which each
output neuron is convex with respect to the inputs. The convexity is a result of using non-decreasing
convex activation functions and weight matrices with non-negative entries (Amos et al., 2017).
ICNNs were originally introduced in the context of energy modelling (Amos et al., 2017). Also
in other contexts, ICNNs have proven to be useful. E.g. Sivaprasad et al. (2021) show that ICNNs
can be used as regular classification models, Makkuva et al. (2020) rely on the convexity to model
optimal transport mappings, and Nesterov et al. (2022) illustrate how ICNNs can be used to learn
invariances by simplifying the search for level sets — i.e. inputs for which the output prediction re-
mains unchanged. ICNNs have also been used in model predictive control, where recently an input-
convex variant of LSTMs was proposed to reduce convergence time while ensuring closed-loop
stability (Wang and Wu, 2023). Despite their successful application for various tasks, convergence
can be notably slow (Sivaprasad et al., 2021, Fig. 1 (d)). We hypothesize that this slow training is the
result of poor initialisation of the positive weights in ICNNs. This poor initialisation leads to distri-
bution shifts that make learning harder, as illustrated in Figure 1. Therefore, we propose a principled
initialisation strategy for layers with non-negative weight matrices (cf. Chang et al., 2020).

Importance of initialisation strategies. Initialisation strategies have enabled faster and more stable
learning in deep networks (LeCun et al., 1998; Glorot and Bengio, 2010; He et al., 2015). The goal
of a good initialisation strategy is to produce similar statistics in every layer. This can be done in the
forward pass (LeCun et al., 1998; Mishkin and Matas, 2016; Klambauer et al., 2017; Chang et al.,
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Figure 1: Illustration of the effects due to good signal propagation in hidden layers. Blue and red
connections depict negative and positive weights, respectively. The top row shows histograms of
pre-activations in each hidden layer. The bottom row displays the feature correlation matrices for
these layers. Small visualisations on the left depict the input distribution.

2020) or during back-propagation (Glorot and Bengio, 2010; Hoedt et al., 2018; Defazio and Bottou,
2021). It is also important to account for the effects due to non-linearities in the network (Saxe et al.,
2014; He et al., 2015; Klambauer et al., 2017; Hoedt et al., 2018). However, there are no initialisation
strategies for non-negative weight matrices, which are a key component of ICNNs (Amos et al.,
2017). We derive an initialisation strategy that accounts for the non-negative weights in ICNNs by
generalising the signal propagation principles that underlie modern initialisation strategies.

Signal propagation. The derivation of initialisation strategies typically builds on the signal prop-
agation framework introduced by Neal (1995). This signal propagation theory has been used and
expanded in various ways (Saxe et al., 2014; Poole et al., 2016; Klambauer et al., 2017; Martens
et al., 2021). One critical assumption in this traditional signal propagation theory is that weights
are sampled from a centred distribution, i.e. with zero mean. In ICNNs, this is not possible be-
cause some weight matrices are constrained to be non-negative (Amos et al., 2017). Therefore, we
generalise the traditional signal propagation theory to allow for non-centred distributions.

Skip-connections in ICNNs. Architectures of ICNNs typically include skip-connections (Amos
et al., 2017; Sivaprasad et al., 2021; Makkuva et al., 2020; Nesterov et al., 2022). The skip-
connections in ICNNs were introduced to increase their representational power (Amos et al., 2017).
Although it is possible to study signal propagation with skip-connections (e.g. Yang and Schoen-
holz, 2017; Brock et al., 2021; Hoedt et al., 2022), they are typically built on top of existing results
for plain networks. Therefore, we limit our theoretical results to ICNNs without skip-connections.
However, we find that ICNNs without skip-connections can be successfully trained, indicating that
skip-connections might not be necessary for representational power. We show that with our initiali-
sation, we are able to train an ICNN to the same performance as a non-convex baseline without skip-
connections. This confirms the hypothesis that good signal propagation can replace skip-connections
(Martens et al., 2021; Zhang et al., 2022).

Contributions. Our contributions1 can be summarised as follows:

• We generalise signal propagation theory to include weights without zero mean (Section 2).
• We derive a principled initialisation strategy for ICNNs from our new theory (Section 3).
• We empirically demonstrate the effectiveness of our initialisation strategy (Section 5.1).
• We apply ICNNs in a real-world drug-discovery setting (Sections 5.2 and 5.3).

2 Generalising Signal Propagation

In this section, we revisit the traditional signal propagation theory (Neal, 1995), which assumes
centred weights. This provides us with a framework to study signal propagation in standard fully-
connected networks. We then expand this framework to enable the study of networks where weights
do not have zero mean to derive a weight initialisation strategy for ICNNs (Section 3).

1Code for figures and experiments can be found at https://github.com/ml-jku/convex-init
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2.1 Background: Traditional Signal Propagation

When studying signal propagation in a network, the effect of a neural network layer on character-
istics of the signal, such as its mean or variance, are investigated. The analysis of the vanishing
gradient problem (Hochreiter, 1991) can also be considered as signal propagation theory where the
norm of the delta-errors is tracked throughout layers in backpropagation. Typically, the network is
assumed to be a repetitive composition of the same layers (e.g. fully-connected or convolutional).
This allows to reduce the analysis of an entire network to a single layer and enables fixed-point anal-
yses (e.g. Klambauer et al., 2017; Schoenholz et al., 2017). In our work, we focus on fully-connected
networks, f : RN → RM , with some activation function ϕ : R → R that is applied element-wise
to vectors. We study the propagation of pre-activations2 (cf. Saxe et al., 2014; He et al., 2015; Poole
et al., 2016) throughout the network:

s = Wϕ(s−) + b. (1)

Here, W ∈ RM×N and b ∈ RM are the weight matrix and bias vector, respectively. The notation
s− is used to indicate the pre-activations from the preceding layer, such that s− ∈ RN .

The first two moments of the signal can be expressed in terms of the randomness arising from the pa-
rameters. At initialisation time, the weight parameters are considered identically and independently
distributed (i.i.d.) random variables wij ∼ Dw. The weight distribution is often assumed to be uni-
form or Gaussian, but the exact shape does not matter in wide networks (Golikov and Yang, 2022,
Principle 2). The bias parameters, on the other hand, are commonly ignored in the analysis, which is
justified when ∀i : bi = 0. The pre-activations are also random variables due to the randomness of
the parameters. If we assume the weights to be centred, such that E[wij ] = 0, and Var[wij ] = σ2

w,
the first two moments of the pre-activations are given by

E[si] = E
[∑

k

wikϕ
(
s−k

)
+ bi

]
= 0 (2)

E
[
s2i
]
= E

[(∑
k

wikϕ(s
−
k ) + bi

)2
]
= Nσ2

w E
[
ϕ(s−1 )

2
]
. (3)

Note that the variance is independent of the index, i, in the pre-activation vector and thus ∀k :
E
[
ϕ(s−k )

2
]
= E

[
ϕ(s−1 )

2
]
. Moreover, it can be shown (see Appendix A) that ∀i ̸= j : E[sisj ] = 0,

i.e. features within a pre-activation vector are uncorrelated in expectation.

Signal propagation theory has been used to derive initialisation and normalisation methods (LeCun
et al., 1998; Glorot and Bengio, 2010; He et al., 2015; Klambauer et al., 2017). Initialisation methods
often aim at having pre-activations with the same mean and variance in every layer of the network.
Because the mean is expected to be zero in every layer, the focus lies on keeping the variance of the
pre-activations constant throughout the network, i.e. ∀i, j : E

[
s2i
]
= E

[
s−j

2]
= σ2

∗. Plugging this
into Eq. (3), we obtain the fixed-point equation

σ2
∗ = Nσ2

w varpropϕ(σ
2
∗). (4)

Here, varpropϕ is a function that models the propagation of variance through the activation
function, ϕ, assuming zero mean inputs. E.g. varpropReLU(σ

2) = 1
2σ

2 (He et al., 2015) or
varproptanh(σ

2) ≈ σ2 (LeCun et al., 1998; Glorot and Bengio, 2010). We refer to Appendix A.3
for a more detailed discussion on propagation through activation functions.

This shows how modern initialisation methods are a solution to a fixed-point equation of the variance
propagation. Our goal is to apply the same principles to find an initialisation strategy for the non-
negative weights in ICNNs. However, Eq. (4) heavily relies on the assumption that the weights
are centred, i.e. µw = 0. This assumption is impossible to satisfy for the non-negative weights
in ICNNs, unless all weights are set to zero. If µw ̸= 0, the mean of the pre-activations is no
longer zero by default (as in Eq. 2). Furthermore, also the propagation of variance and covariance is
affected. Therefore, we extend the signal propagation theory to accurately describe the effects due
to non-centred weights.

2a common alternative is to consider the (post-)activations (see Hoedt et al., 2018)
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2.2 Generalised Signal Propagation

We generalise the traditional signal propagation theory by lifting a few assumptions from the tradi-
tional approach. Most notably, the weights are no longer drawn from a zero-mean distribution, such
that E[wij ] = µw ̸= 0. Additionally, we include the effects due to bias parameters, which will give
us extra options to control the signal propagation. Similar to the weights, we assume bias parameters
to be i.i.d. samples from some distribution with mean E[bi] = µb and variance Var[bi] = σ2

b . By
re-evaluating the expectations in Eq. (2) and Eq.(3), we arrive at the following results:

E[si] = Nµw E[ϕ(s−1 )] + µb (5)

E[sisj ] = δij
(
Nσ2

w E
[
ϕ(s−1 )

2
]
+ σ2

b

)
+ µ2

w

∑
k,k′

Cov[ϕ(s−k ), ϕ(s
−
k′)] + E[si]E[sj ], (6)

where δij is the Kronecker delta. We refer to Appendix A.2 for a full derivation. Note that mean
and variance are still independent of the index, i. Therefore, we can continue to assume ∀k :
E
[
ϕ(s−k )

n
]
= E

[
ϕ(s−1 )

n
]
.

There are a few crucial differences between the traditional approach and our generalisation. First,
the expected value of the pre-activations is no longer zero by default. This also means that the second
moment, E

[
s2i
]
, does not directly model the variance of the pre-activations in our setting. Secondly,

the propagation of the second moment has an additional term that incorporates effects due to the
covariance structure of pre-activations in the previous layer. Finally, the off-diagonal elements of
the feature covariance matrix, Cov[si, sj ] = Ei ̸=j [sisj ] − E[si]E[sj ], are not necessarily zero and
also depend on the variance. This interaction between on- and off-diagonal elements in the feature
covariance matrix makes it harder to ensure stable propagation.

Similar to Eq. (3), Eq. (6) depends on the variance propagation through the activation function.
In addition, our generalised propagation theory involves the covariance propagation through the
activation function. The covariance propagation through the ReLU function has been studied in
prior work (Cho and Saul, 2009; Daniely et al., 2016) and can be specified as follows:

E[ReLU(s1)ReLU(s2)] =
σ2

2π

(√
1− ρ2 + ρ arccos(−ρ)

)
, (7)

with (s1, s2) ∼ N
(
(0, 0),

(
1 ρ
ρ 1

)
σ2

)
and correlation ρ. Note that this expression implicitly de-

scribes the propagation of the squared mean (ρ = 0) and the second raw moment (ρ = 1). We will
assume ϕ = ReLU for the remainder of our analysis. A derivation for the propagation through the
leaky ReLU activation function (Maas et al., 2013) can be found in Appendix A.3.

With our generalised propagation theory, the effects due to µw ̸= 0 become apparent. As expected,
the pre-activations no longer have zero mean by default. Furthermore, the covariance plays a signif-
icant role in the signal propagation. This shows that we also have to stabilise mean and covariance
on top of the variance propagation to derive our principled initialisation.

3 Principled Initialisation of ICNNs

With our generalised signal propagation theory, we will now derive a principled initialisation strat-
egy for ICNNs. First, we set up fixed point equations for mean, variance and correlation using our
generalised framework. By solving these fixed point equations for µw, σ

2
w, µb and σ2

b we obtain our
principled initialisation.

3.1 Background: Input-Convex Neural Networks

Neural networks for which all input-output mappings are convex, are called Input-Convex Neural
Networks (ICNNs) (Amos et al., 2017). In general, neural networks are functions that are con-
structed by composing one or more simpler layers or components. A function composition f ◦ g is
convex if both f and g are convex, where f additionally has to be non-decreasing in every output.
Therefore, ICNNs are created by enforcing that every layer is convex and non-decreasing (Amos
et al., 2017). A direct consequence is that only convex, non-decreasing activation functions can be
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used in ICNNs — e.g. softplus (Dugas et al., 2001), ReLU (Nair and Hinton, 2010), LReLU (Maas
et al., 2013), ELU (Clevert et al., 2016).

Fully-connected and convolutional layers are affine transformations, which are trivially convex. To
make these layers non-decreasing for building ICNNs, their weights have to be non-negative (Amos
et al., 2017). This can be done by replacing negative values with zero after every update. The
non-negativity constraint does not apply to bias parameters. Another notable exception are direct
connections from the input layer (Amos et al., 2017). This means that the first layer and any skip-
connections from the input can have unconstrained weights. Amos et al. (2017) argue that these
skip-connections are necessary for representational power. We limit our analysis to networks without
skip-connections. Our experiments (see Section 5) show that ICNNs with our proposed initialisation
do not require skip-connections for efficient training.

3.2 (Co-)Variance Fixed Points

To set up the fixed-point equation for the second moments (Eq. 6), we need to be able to propagate
through the ReLU non-linearity. However, the analytical results from Eq. (7) only hold if the pre-
activations have zero mean. Therefore, we look for a configuration that makes the mean (Eq. 5) of
the pre-activations zero. Because we cannot enforce µw = 0, we make use of the bias parameters to
obtain centred pre-activations:

µb = −Nµw E[ϕ(s−1 )]. (8)
This also allows us to refer to the second moments as the (co-)variance. Note that we approximate
the pre-activations with Gaussians to use Eq. (7) at this point and for the remainder of the analy-
sis. Figure 1c suggests that this Gaussian assumption generally does not hold in ICNNs (see also
Appendix A.3). Nevertheless, our experiments (see Section 5) suggest that the approximation is
sufficiently good to derive an improved initialisation strategy for ICNNs. Furthermore, Figure 6b
indicates that the use of random initial bias parameters (cf. Appendix C.3) causes pre-activations to
be (slightly) more Gaussian.

The propagation of the second moment described by Eq. (6) consists of two parts. The first part
describes the off-diagonal entries, for which the dynamics are given by

Covi ̸=j [si, sj ] = µ2
w

∑
k,k′

Cov[ϕ(s−k ), ϕ(s
−
k′)] = Nµ2

w

(
Var[ϕ(s−1 )]+(N−1)Cov[ϕ(s−1 ), ϕ(s

−
2 )]

)
.

Here, we rewrite the sum assuming that the pre-activations are identically distributed. This is pos-
sible because the covariance does not depend on the indices i or j. For further details, we refer
to Appendix A.2 The second part models the on-diagonal entries, i.e. the variance, which can be
simplified in a similar way

Var[si] = Nσ2
w E[ϕ(s−1 )] + σ2

b +Cov[s1, s2].

By plugging the ReLU moments from Eq. (7) into these results in Appendix B.2, we obtain the
desired fixed-point equations in terms of variance and correlation:

ρ∗ = µ2
w

1

2π
N
(
π −N + (N − 1)

(√
1− ρ2∗ + ρ∗ arccos(−ρ∗)

))
(9)

σ2
∗ = Nσ2

w

1

2
σ2
∗ + σ2

b + ρ∗σ
2
∗. (10)

with ρ∗ = 1
σ2
∗
Cov[s−1 , s

−
2 ] =

1
σ2
∗
Covi ̸=j [si, sj ] and σ2

∗ = Var[s−1 ] = Var[si].

3.3 Weight Distribution for ICNNs

To obtain the distribution parameters for the initial weights, we solve the fixed point equations in
Eq. (9) and Eq.(10) for σ2

b , σ2
w and µ2

w. Because this system is over-parameterised, we choose to
set σ2

b = 0. An analysis for σ2
b > 0 can be found in Appendix C.3. This leads to the following

initialisation parameters for ICNNs:

σ2
w =

2

N
(1− ρ∗) (11)

µ2
w =

2π

N
ρ∗

(
π −N + (N − 1)

(√
1− ρ2∗ + ρ∗ arccos(−ρ∗)

))−1

. (12)
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Note that these solutions only depend on the correlation, ρ∗, and not on the variance, σ2
∗. For a

stability analysis of these fixed points, we refer to Appendix B.4.

Although our initialisation (Eq. 12 and 11) is entirely defined by the correlation between features,
ρ = Cov[s1,s2]

Var[s1]
, not all solutions are admissible. For example, uncorrelated features (ρ = 0) are only

possible if µw = 0. This means that features in ICNNs must have non-zero correlation. On the other
hand, perfect correlation (ρ = 1) would mean that all features point in the same direction, which is
not desirable. Therefore, we choose ρ∗ = 1

2 as a compromise to obtain the following initialisation
parameters for our experiments in Section 5:

µw =

√
6π

N
(
6(π − 1) + (N − 1)(3

√
3 + 2π − 6)

) σ2
w =

1

N

µb =

√
3N

6(π − 1) + (N − 1)(3
√
3 + 2π − 6)

σ2
b = 0.

We refer to appendix C.4 for a discussion on different choices for ρ∗.

For the first layer, which can also have negative weights, we use LeCun et al. (1998) initialisation.
For the non-negative weights in an ICNNs, we need to sample from a distribution with non-negative
support. The lower bound of a uniform distribution with our suggested mean and variance is negative
for any N > 1 and thus not useful. Also, sampling from a Gaussian distribution is not practical
because its support includes negative values. Eventually, we propose to sample from a log-normal
distribution with parameters

µ̃w = ln(µ2
w)−

1

2
ln(σ2

w + µ2
w) σ̃w

2 = ln(σ2
w + µ2

w)− ln(µ2
w).

This ensures that sampled weights are non-negative and have the desired mean and variance. Note
that other positive distributions with sufficient degrees of freedom should also work.

One advantage of the log-normal distribution is that sampling is simple and efficient. It suffices to
sample w̃ij ∼ N (µ̃w, σ̃w

2) to compute wij = exp
(
w̃ij

)
. In the original ICNN (Amos et al., 2017),

the exponential function is only used to make the initial weights positive. However, if weights
are re-parameterised using the exponential function, initial weights can be directly sampled from a
Gaussian distribution. This setting is studied in Appendix C.5.

4 Related Work

Input-convex neural networks. Input-Convex Neural Network (ICNN) were originally designed in
the context of energy models (Amos et al., 2017). We focus on the fully convex ICNNs variant
and use gradient descent for optimisation instead of the proposed bundle-entropy method. In their
implementation, Amos et al. (2017) use projection methods to keep weights positive, i.e. negative
values are set to zero after every update. However, also other projection methods can be used to
keep the weights positive (e.g. Sivaprasad et al., 2021). Instead of projecting the weights onto the
non-negative reals after every update, it is also possible to use a reparameterisation of the weights.
E.g. Nesterov et al. (2022) square the weights in the forward pass. Note that a reparameterisation
can have an effect on the learning dynamics because it is an inherent part of the forward pass. An-
other alternative is to use regularisation to impose a soft non-negativity constraint on the weights
(Makkuva et al., 2020). Similar to (Sivaprasad et al., 2021), we directly train an ICNN, but we
do not observe the same generalisation benefits. On the other hand, Sankaranarayanan and Ren-
gaswamy (2022) point out that restricting the network to be convex decreases their capacity. They
propose to use the difference of two ICNNs to allow modelling non-convex functions (c.f. Yuille
and Rangarajan, 2001). However, we did not find the convexity restriction to cause any problems in
our experiments. Nesterov et al. (2022) use ICNNs to simplify the computation of level sets to learn
invariances. We adopt this experiment setting to highlight the potential of ICNNs. Optimization.
While training the parameters of an ICNN is unrelated to convex optimisation, Bengio et al. (2005)
showed how training a neural network together with the number of hidden neurons can be seen as a
convex optimisation problem. This work was continued by Bach (2017), who established a connec-
tion between this convex optimisation and automatic feature selection. Signal propagation theory.
The study of signal propagation is concerned with tracking statistics of the data throughout multiple
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layers of the network. In his thesis, Neal (1995) computed how the first two moments propagate
through a two-layer network to study networks as Gaussian processes. This is similar to how mod-
ern initialisation strategies have been derived (e.g. LeCun et al., 1998; He et al., 2015). A similar
approach has been taken to incorporate the propagation of gradients for initialisation (Glorot and
Bengio, 2010). The idea to explicitly account for the effects of activation functions can be attributed
to (Saxe et al., 2014). All of these analyses assume that weights are initialised from a zero-mean
distribution, which is not possible in ICNNs. Mishkin and Matas (2016) empirically compute the
variance for the weights. This approach is more robust to deviations, but nevertheless requires adap-
tations to account for weights with non-zero mean. There is also a significant body of work that
studies signal propagation in terms of mean field theory (Poole et al., 2016). In these works, the
correlation between samples is included in the analysis (Poole et al., 2016). In our work, we find
that the correlation between features plays an important role. Schoenholz et al. (2017) applied the
mean field analysis to the backward dynamics and introduced the concept of depth scales to quantify
how deep signals can propagate. The mean field theory was also applied to convolutional networks
to derive the delta-orthogonal initialisation (Xiao et al., 2018). We refer to (Martens et al., 2021) for
a general overview of signal propagation.

5 Experiments

We evaluate our principled initialisation strategy by training ICNNs on three sets of experiments.
In our first experiments, we investigate the effect of initialisation on learning dynamics and gener-
alisation in ICNNs on multiple permuted image datasets. We also include non-convex networks in
these experiments to illustrate that ICNNs with our principled initialisation can be trained as well as
regular networks. However, we would like to stress that non-convex networks are expected to outper-
form ICNNs because they are not constrained to convex decision boundaries. Moreover, we assess
whether ICNNs using our initialisation are able to match the performance of regular fully-connected
networks in toxicity prediction without the need for skip-connections. Finally, we explore ICNNs
as a tool for more controlled latent space exploration of a molecule auto-encoder system. This illus-
trates a setting where regular networks can no longer be used. Details on the computing budget are
provided in the Appendix.

5.1 Computer vision benchmarking datasets

As an illustrative first set of experiments, we use computer vision benchmarks to assess the effects
of our principled initialisation strategy. Concretely, we trained fully-connected ICNNs on MNIST
(Bottou et al., 1994), CIFAR10 and CIFAR100 (Krizhevsky, 2009), to which we refer as permuted
image benchmarks (cf. Goodfellow et al., 2014).

In our comparison, we consider four different types of methods: (1) a classical non-convex network
without skip-connections and default initialisation (cf. He et al., 2015). (2) an ICNN, “ICNN”, with-
out skip connections and default initialisation (3) an ICNN, “ICNN + skip”, with skip connections
and default initialisation (4) an ICNN, “ICNN + init”, without skip connections and our proposed
initialisation. All networks use ReLU activation functions. The non-negativity constraint in ICNNs
is implemented by setting negative weights to zero after every update (cf. Amos et al., 2017). Note
that skip-connections in ICNNs introduce additional parameters to allow for additional representa-
tional power (cf. Amos et al., 2017).

Training dynamics. Settings. In the first experiment, we analyze the training dynamics during the
first ten epochs of training. Similar to Chang et al. (2020), we fixed the number of neurons in each
layer to the input size, and the number of hidden layers to five. We refer to Appendix C.2 for results
with different depths. The learning rate for the Adam optimiser was obtained by manually tuning
on the non-convex baseline. Results. We found that ICNNs with our principled initialisation ex-
hibit similar learning behaviour as the non-convex baseline, while ICNNs without our initialisation
strategy can not decrease the loss to the level of the baseline on CIFAR10 and CIFAR100. Figure 2
shows the learning curves for our different methods on three permuted image benchmarks.

Generalisation. Settings. In our next experiment, the effects of our principled initialisation on the
generalisation capabilities of ICNNs is investigated. To this end, we train our three ICNN variants
and the non-convex baseline on the permuted image benchmarks again, but focus on the test perfor-
mance this time. To this end we perform a grid-search to find the hyper-parameters that attain the
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Figure 2: Training loss curves of ICNN variants with the same architecture on the MNIST, CIFAR10
and CIFAR100 datasets. ”ICNN“ input-convex network with default initialisation. ”ICNN + skip“:
same settings, but with skip connections. ”ICNN + init“ our principled initialisation for ICNNs w/o
skip connections. ”non-convex“: a regular non-convex network. Each curve represents the median
performance over ten runs and shaded regions indicate the inter-quartile range. The inset figures
provide a view of the loss curves zoomed in. Note that ICNN losses do decrease before the plateau.

Figure 3: Test set metrics of compared methods on the (a) MNIST and (b) CIFAR10 datasets. Each
curve displays the median performance over ten runs. Shaded regions represent the inter-quartile
range over the ten runs. On MNIST, all methods can be successfully trained and exhibit similar per-
formance. On CIFAR 10, ICNNs with our proposed initialisation outperform other ICNNs variants.

best accuracy after 25 epochs of training on a random validation split, for each of the four compared
methods. The grid consists of multiple architectures with at least one hidden layer, learning rate for
Adam, L2-regularisation and whitening pre-processing transforms (details in Appendix C.2). Re-
sults. On the MNIST dataset, all variants reach similar accuracy values, which we attribute to the
simplicity of the prediction problem. However, on CIFAR10 the initialisation strategy leads to better
generalisation already in early epochs and — compared to the respective ICNNs variants without
our initialisation — improves generalisation overall (see Figure 3). The ICNN with our initialisation
almost matches the accuracy values of non-convex nets.

5.2 Toxicity Prediction

To test ICNNs in a real-world setting, in a different application domain, we consider the binary
multi-task problem of toxicity prediction in drug discovery. More specifically, we train ICNNs on
the Tox21 challenge data (Huang et al., 2016; Mayr et al., 2016; Klambauer et al., 2017). The
input data consists of so-called SMILES representations of small molecules. The target variables
are binary labels for twelve different measurements or assays indicating whether a molecule induces
a particular toxic effect on human cells. During pre-processing, SMILES strings were converted to
Continuous and Data-Driven Descriptors (CDDDs) (Winter et al., 2019), which are 512-dimensional
numerical representations of the molecules. The choice of these particular descriptors is motivated
by CDDDs properties of being decodeable into valid molecules (see Section 5.3). Hyper-parameters
were selected by a manual search on the non-convex baseline. We ended up using a fully-connected
network with two hidden layers of 128 neurons and ReLU activations. The network was regularised
with fifty percent dropout after every hidden layer, as well as seventy percent dropout of the inputs.
The results in Table 1 show that our initialisation significantly outperforms ICNNs with standard
initialization (p-value 2.6e-13, binomial test) and ICNNs with skip connections (p-value 5.5e-14).
Furthermore, results are close to the performance of traditional, non-convex networks.
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Table 1: Area under the ROC curve on the test set for each of the twelve tasks in the Tox21 data.
Each value represents the median performance over 10 runs and error bars is the maximum distance
to the boundary of the interval defined by the (0.05, 0.95) quantiles. Of all variants of ICNNs,
the variant with our proposed initialisation, “ICNN+init (ours)”, performs best matching almost the
predictive quality of traditional non-convex neural networks.

NR.AhR NR.AR NR.AR.LBD NR.Aromatase NR.ER NR.ER.LBD
ICNN+init (ours) 91.29± 0.58% 81.84± 2.43% 81 .36 ± 3.58% 82 .40 ± 1.09% 78.37± 0.80% 77.85± 0.90%
ICNN 90.56± 0.63% 81 .28 ± 4.82% 78.14± 3.15% 80.46± 1.74% 77.30± 0.78% 78 .15 ± 1.02%
ICNN+skip 89.83± 0.21% 68.12± 1.74% 74.17± 2.20% 78.95± 0.45% 76.95± 0.48% 81.92± 1.16%

non-convex 91 .01 ± 0.65% 79.21± 1.73% 86.19± 2.50% 83.63± 0.34% 77 .88 ± 1.13% 74.32± 1.59%

SR.ATAD5 SR.HSE SR.MMP SR.p53 NR.PPARγ SR.ARE AVG
ICNN+init (ours) 77.01± 1.67% 80 .05 ± 1.36% 93 .69 ± 0.27% 81.10± 0.46% 77.46± 2.50% 76.80± 0.33% 80 .57 ± 11.84%
ICNN 74.25± 3.26% 78.64± 1.42% 93.19± 0.59% 81 .32 ± 0.43% 75.00± 1.73% 76.11± 0.82% 78.33± 13.42%
ICNN+skip 75 .93 ± 1.26% 78.23± 0.50% 75.40± 0.88% 78.25± 0.93% 92.09± 0.41% 79.32± 0.97% 78.29± 12.56%

non-convex 78.93± 1.68% 80.12± 2.57% 93.99± 0.39% 82.17± 0.96% 82 .70 ± 1.21% 78 .30 ± 0.90% 81.31± 11.03%

Figure 4: Example of two level set trajectories of a Tox21 model. The leftmost molecule represents
the starting molecule with low toxicity (top: “NR.AR”, bottom: “NR.ER.LBD”). The rightmost
molecule represents the target molecule. All intermediary molecules are samples on the level set
between the starting molecule and the target molecule and exhibit different drug-likeness (“QED”).
In this way, one predicted molecular property can be kept fixed while another property is optimized.

5.3 Latent space exploration of molecular spaces

In this experiment, we exploit the intrinsic property of ICNNs that level sets, i.e. the set of all inputs
that map to the same output, can be parameterised (Nesterov et al., 2022). These level sets provide
an opportunity in drug discovery to keep one molecular property, such as low toxicity, fixed while
optimizing another property, such as drug-likeness. To demonstrate this application, we randomly
chose reference molecules with low toxicity and followed the according level set in the direction of
another randomly chosen target molecules. Since the input space of the ICNN that predicts toxicity
(see above) possesses a decoder model from (Winter et al., 2019), the numeric representations of
the molecules on the level set can be decoded into molecular structures. The obtained trajectories
in Figure 4 demonstrate that the predicted toxicity of the molecules remain constant, while different
QED scores, which measure drug-likeness, are obtained by traversing the level set from the reference
molecule to the target molecule.

6 Conclusion and Discussion

We demonstrated how signal propagation theory can be generalised to include weights without zero
mean. By controlling the propagation of correlation through the network, we derived an initialisation
strategy that promotes a stable propagation of signals. We empirically verified that this steady prop-
agation leads to improved learning. Finally, we showed that ICNNs can be trained to a comparable
level as regular networks on the Tox21 data using CDDDs.

Our initialisation approximates the distribution of pre-activations with Gaussians, which falls short
of agreement with the observed data, but has been sufficient to improve the initialisation of ICNNs.
A possible way forward is to use the central limit theorem for weakly dependent variables. In Ap-
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pendix C.3, we also observed that random bias initialisation leads to pre-activations with a more
Gaussian distribution. Appendix A.5 also includes an analysis for convolutional layers, but profi-
cient empirical results with input-convex convolutional networks are still to be made. We conjecture
that this is due to the more complicated covariance structure in convolutional layers. We also in-
cluded a signal propagation analysis for back-propagation in Appendix A.4. However, incorporating
insights from this analysis into an initialisation method is also left for future work. We envision that
our initialisation strategy will make it easier to incorporate ICNNs or other networks with non-
negative weights.

Acknowledgments and Disclosure of Funding

We thank Sepp Hochreiter for pointing us in the direction of input-convex networks and their in-
teresting properties. Special thanks go to Niklas Schmidinger for his help with experiments on
convolutional networks.

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported
by the Federal State Upper Austria. We thank the projects AI-MOTION (LIT-2018-6-
YOU-212), DeepFlood (LIT-2019-8-YOU-213), Medical Cognitive Computing Center (MC3),
INCONTROL-RL (FFG-881064), PRIMAL (FFG-873979), S3AI (FFG-872172), DL for Gran-
ularFlow (FFG-871302), EPILEPSIA (FFG-892171), AIRI FG 9-N (FWF-36284, FWF-36235),
AI4GreenHeatingGrids(FFG- 899943), INTEGRATE (FFG-892418), ELISE (H2020-ICT-2019-
3 ID: 951847), Stars4Waters (HORIZON-CL6-2021-CLIMATE-01-01). We thank Audi.JKU
Deep Learning Center, TGW LOGISTICS GROUP GMBH, Silicon Austria Labs (SAL), FILL
Gesellschaft mbH, Anyline GmbH, Google, ZF Friedrichshafen AG, Robert Bosch GmbH, UCB
Biopharma SRL, Merck Healthcare KGaA, Verbund AG, GLS (Univ. Waterloo) Software Com-
petence Center Hagenberg GmbH, TÜV Austria, Frauscher Sensonic, TRUMPF and the NVIDIA
Corporation.

References
Amos, B., Xu, L., and Kolter, J. Z. (2017). Input convex neural networks. In Proceedings of the

34th International Conference on Machine Learning, volume 70, pages 146–155. PMLR.

Bach, F. (2017). Breaking the curse of dimensionality with convex neural networks. Journal of
Machine Learning Research, 18(19):1–53.

Bengio, Y., Roux, N., Vincent, P., Delalleau, O., and Marcotte, P. (2005). Convex neural networks.
In Advances in Neural Information Processing Systems, volume 18, pages 123–130. MIT Press.

Bottou, L., Cortes, C., Denker, J., Drucker, H., Guyon, I., Jackel, L., LeCun, Y., Muller, U.,
Sackinger, E., Simard, P., and Vapnik, V. (1994). Comparison of classifier methods: a case
study in handwritten digit recognition. In Proceedings of the 12th IAPR International Conference
on Pattern Recognition, volume 2, pages 77–82, Jerusalem, Israel. IEEE.

Brock, A., De, S., and Smith, S. L. (2021). Characterizing signal propagation to close the perfor-
mance gap in unnormalized ResNets. In International Conference on Learning Representations,
volume 9, virtual. arXiv: 2101.08692.

Chang, O., Flokas, L., and Lipson, H. (2020). Principled weight initialization for hypernetworks. In
International Conference on Learning Representations, volume 8.

Cho, Y. and Saul, L. (2009). Kernel methods for deep learning. Advances in neural information
processing systems, 22.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and Accurate Deep Network Learning
by Exponential Linear Units (ELUs). In International Conference on Learning Representations,
volume 4, San Juan, Puerto Rico. arXiv: 1511.07289.

Daniely, A., Frostig, R., and Singer, Y. (2016). Toward Deeper Understanding of Neural Networks:
The Power of Initialization and a Dual View on Expressivity. In Advances in Neural Information
Processing Systems, volume 29, pages 2253–2261, Barcelona, Spain. Curran Associates, Inc.

10



Defazio, A. and Bottou, L. (2021). Beyond Folklore: A Scaling Calculus for the Design and Initial-
ization of ReLU Networks. arXiv: 1906.04267.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia, R. (2001). Incorporating Second-Order
Functional Knowledge for Better Option Pricing. In Advances in Neural Information Processing
Systems, volume 13, pages 472–478, Vancouver, BC, Canada. MIT Press.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9, pages 249–256.

Golikov, E. and Yang, G. (2022). Non-gaussian tensor programs. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K., editors, Advances in Neural Information Processing Systems, volume 35.

Goodfellow, I. J., Mirza, M., Da, X., Courville, A. C., and Bengio, Y. (2014). An Empirical Inves-
tigation of Catastrophic Forgeting in Gradient-Based Neural Networks. In International Confer-
ence on Learning Representations, volume 2.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Master’s thesis, Tech-
nical University Munich, Munich, Germany.

Hoedt, P.-J., Hochreiter, S., and Klambauer, G. (2018). Characterising activation functions by their
backward dynamics around forward fixed points. NeurIPS workshop on Critiquing and Correcting
Trends in Machine Learning.

Hoedt, P.-J., Hochreiter, S., and Klambauer, G. (2022). Normalization is dead, long live normaliza-
tion! In ICLR Blog Track. https://iclr-blog-track.github.io/2022/03/25/unnormalized-resnets/.

Huang, R., Xia, M., Nguyen, D.-T., Zhao, T., Sakamuru, S., Zhao, J., Shahane, S. A., Rossoshek,
A., and Simeonov, A. (2016). Tox21Challenge to Build Predictive Models of Nuclear Receptor
and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs.
Frontiers in Environmental Science, 3.

Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S. (2017). Self-normalizing neural net-
works. Advances in neural information processing systems, 30.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images. Technical report,
Canadian Institute for Advanced Research.

LeCun, Y., Bottou, L., Orr, G. B., and Müller, K. R. (1998). Efficient BackProp. In Orr, G. B. and
Müller, K.-R., editors, Neural Networks: Tricks of the Trade, Lecture Notes in Computer Science,
pages 9–50. Springer, Berlin, Heidelberg, 1 edition.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier Nonlinearities Improve Neural Network
Acoustic Models. In Workhop for Deep Learning for Audio, Speech and Language Processing at
ICML, Atlanta, GA, USA.

Makkuva, A., Taghvaei, A., Oh, S., and Lee, J. (2020). Optimal transport mapping via input convex
neural networks. In Proceedings of the 37th International Conference on Machine Learning,
volume 119, pages 6672–6681. PMLR.

Martens, J., Ballard, A., Desjardins, G., Swirszcz, G., Dalibard, V., Sohl-Dickstein, J., and Schoen-
holz, S. S. (2021). Rapid training of deep neural networks without skip connections or normal-
ization layers using Deep Kernel Shaping. arXiv: 2110.01765.

Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). Deeptox: toxicity prediction
using deep learning. Frontiers in Environmental Science, 3:80.

Mishkin, D. and Matas, J. (2016). All you need is a good init. In International Conference on
Learning Representations, volume 4.

11



Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning, pages 807–814, Madi-
son, WI, USA. Omnipress.

Neal, R. M. (1995). Bayesian Learning for Neural Networks. PhD thesis, University of Toronto.

Nesterov, V., Torres, F. A., Nagy-Huber, M., Samarin, M., and Roth, V. (2022). Learning invariances
with generalised input-convex neural networks.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponential expressivity
in deep neural networks through transient chaos. In Advances in Neural Information Processing
Systems, volume 29, pages 3360–3368.

Sankaranarayanan, P. and Rengaswamy, R. (2022). CDiNN – convex difference neural networks.
Neurocomputing, 495:153–168.

Saxe, A., McClelland, J., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In International Conference on Learning Representa-
tions, volume 2.

Schoenholz, S. S., Gilmer, J., Ganguli, S., and Sohl-Dickstein, J. (2017). Deep information propa-
gation. In International Conference on Learning Representations.

Sivaprasad, S., Singh, A., Manwani, N., and Gandhi, V. (2021). The curious case of convex neural
networks. In Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., and Lozano, J. A., editors, Machine
Learning and Knowledge Discovery in Databases. Research Track, Lecture Notes in Computer
Science, pages 738–754. Springer International Publishing.

Wang, Z. and Wu, Z. (2023). Input convex lstm: A convex approach for fast Lyapunov-based model
predictive control. arXiv preprint arXiv:2311.07202.

Winter, R., Montanari, F., Noé, F., and Clevert, D.-A. (2019). Learning continuous and data-
driven molecular descriptors by translating equivalent chemical representations. Chemical Sci-
ence, 10(6):1692–1701. Publisher: The Royal Society of Chemistry.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and Pennington, J. (2018). Dynamical
isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural
networks. In Proceedings of the 35th International Conference on Machine Learning, volume 80,
pages 5393–5402. PMLR.

Yang, G. and Schoenholz, S. (2017). Mean field residual networks: On the edge of chaos. Advances
in neural information processing systems, 30.

Yuille, A. L. and Rangarajan, A. (2001). The concave-convex procedure (cccp). In Advances in
Neural Information Processing Systems, volume 13, pages 1033–1040.

Zhang, G., Botev, A., and Martens, J. (2022). Deep learning without shortcuts: Shaping the kernel
with tailored rectifiers. In International Conference on Learning Representations, volume 10,
virtual.

12


	Introduction
	Generalising Signal Propagation
	Background: Traditional Signal Propagation
	Generalised Signal Propagation

	Principled Initialisation of ICNNs
	Background: Input-Convex Neural Networks
	(Co-)Variance Fixed Points
	Weight Distribution for ICNNs

	Related Work
	Experiments
	Computer vision benchmarking datasets
	Toxicity Prediction
	Latent space exploration of molecular spaces

	Conclusion and Discussion

