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Abstract

We propose a novel framework for analyzing the dynamics of distribution shift in
real-world systems that captures the feedback loop between learning algorithms and
the distributions on which they are deployed. Prior work largely models feedback-
induced distribution shift as adversarial or via an overly simplistic distribution-shift
structure. In contrast, we propose a coupled partial differential equation model that
captures fine-grained changes in the distribution over time by accounting for com-
plex dynamics that arise due to strategic responses to algorithmic decision-making,
non-local endogenous population interactions, and other exogenous sources of dis-
tribution shift. We consider two common settings in machine learning: cooperative
settings with information asymmetries, and competitive settings where a learner
faces strategic users. For both of these settings, when the algorithm retrains via
gradient descent, we prove asymptotic convergence of the retraining procedure to
a steady-state, both in finite and in infinite dimensions, obtaining explicit rates in
terms of the model parameters. To do so we derive new results on the convergence
of coupled PDEs that extends what is known on multi-species systems. Empirically,
we show that our approach captures well-documented forms of distribution shifts
like polarization and disparate impacts that simpler models cannot capture.

1 Introduction

In many machine learning tasks, there are commonly sources of exogenous and endogenous dis-
tribution shift, necessitating that the algorithm be retrained repeatedly over time. Some of these
shifts occur without the influence of an algorithm; for example, individuals influence each other to
become more or less similar in their attributes, or benign forms of distributional shift occur [Qui+].
Other shifts, however, are in response to algorithmic decision-making. Indeed, the very use of a
decision-making algorithm can incentivize individuals to change or mis-report their data to achieve
desired outcomes— a phenomenon known in economics as Goodhart’s law. Such phenomena have
been empirically observed, a well-known example being in [CC11], where researchers observed
a population in Columbia strategically mis-reporting data to game a poverty index score used for
distributing government assistance. Works such as [Mil+20; Wil+21], which investigate the effects of
distribution shift over time on a machine learning algorithm, point toward the need for evaluating the
robustness of algorithms to distribution shifts. Many existing approaches for modeling distribution
shift focus on simple metrics like optimizing over moments or covariates [DY10; LHL21; BBS09].
Other methods consider worst-case scenarios, as in distributionally robust optimization [AZ22;
LFG22; DN21; Kuh+19]. However, when humans respond to algorithms, these techniques may not
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be sufficient to holistically capture the impact an algorithm has on a population. For example, an
algorithm that takes into account shifts in a distribution’s mean might inadvertently drive polarization,
rendering a portion of the population disadvantaged.

Motivated by the need for a more descriptive model, we present an alternative perspective which
allows us to fully capture complex dynamics that might drive distribution shifts in real-world systems.
Our approach is general enough to capture various sources of exogenous and endogenous distribution
shift including the feedback loop between algorithms and data distributions studied in the literature on
performative prediction [Per+20; IYZ21; Ray+22; Nar+22; MPZ21], the strategic interactions studied
in strategic classification [Har+16; Don+18], and also endogenous factors like intra-population
dynamics and distributional shifts. Indeed, while previous works have studied these phenomena in
isolation, our method allows us to capture all of them as well as their interactions. For example,
in [Zrn+21], the authors investigate the effects of dynamics in strategic classification problems—
but the model they analyze does not capture individual interactions in the population. In [IYZ21],
the authors model the interaction between a population that repeatedly responds to algorithmic
decision-making by shifting its mean. Additionally, [Ray+22] study settings in which the population
has both exogenous and endogenous distribution shifts due to feedback, but much like the other cited
work, the focus remains on average performance. Each of these works fails to account for diffusion
or intra-population interactions that can result in important qualitative changes to the distribution.

Contributions. Our approach to this problem relies on a detailed non-local PDE model of the data
distribution which captures each of these factors. One term driving the evolution of the distribution
over time captures the response of the population to the deployed algorithm, another draws on models
used in the PDE literature for describing non-local effects and consensus in biological systems to
model intra-population dynamics, and the last captures a background source of distribution shift.
This is coupled with an ODE, lifted to a PDE, which describes the training of a machine learning
algorithm results in a coupled PDE system which we analyze to better understand the behaviors that
can arise among these interactions.

In one subcase, our model exhibits a joint gradient flow structure, where both PDEs can be written as
gradients flows with respect to the same joint energy, but considering infinite dimensional gradients
with respect to the different arguments. This mathematical structure provides powerful tools for
analysis and has been an emerging area of study with a relatively small body of prior work, none
of which related to distribution shifts in societal systems, and a general theory for multi-species
gradient flows is still lacking. We give a brief overview of the models that are known to exhibit
this joint gradient flow structure: in [DS20] the authors consider a two-species tumor model with
coupling through Brinkman’s Law. A number of works consider coupling via convolution kernels
[FF13; Giu+22; JPZ22; CHS18; DT20; Dou+23] and cross-diffusion [LY22; AB21; MKB14],
with applications in chemotaxis among other areas. In the models we consider here, the way the
interaction between the two populations manifests is neither via cross-diffusion, nor via the non-local
self-interaction term. A related type of coupling has recently appeared in [HPS22; HPS23], however
in the setting of graphs. Recent work [Dom+21] provides particle-based methods to approximately
compute the solution to a minimax problem where the optimization space is over measures; following
that work, [WC23] provides another particle-based method using mirror descent-ascent to solve a
similar problem. Other recent work [Lu23] proves that a mean-field gradient ascent-descent scheme
with an entropy annealing schedule converges to the solution of a minimax optimization problem
with a timescale separation parameter that is also time-varying; in contrast, our work considers fixed
timescale separation setting. [GG23] show that the mean-field description of a particle method for
solving minimax problems has proveable convergence guarantees in the Wasserstein-Fisher-Rao
metric. Each of these references considers an energy functional that is linear in the distribution of
each species respectively; our energy includes nonlinearities in the distributions via a self-interaction
term as well as diffusion for the population. Moreover, the above works introduce a gradient flow
dynamic as a tool for obtaining and characterizing the corresponding steady states, whereas in our
setting we seek to capture the time-varying behavior that models distributions shifts. In the other
subcase, we prove exponential convergence in two competitive, timescale separated settings where the
algorithm and strategic population have conflicting objectives. We show numerically that retraining in
a competitive setting leads to polarization in the population, illustrating the importance of fine-grained
modeling.
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2 Problem Formulation

Machine learning algorithms that are deployed into the real world for decision-making often become
part of complex feedback loops with the data distributions and data sources with which they interact.
In an effort to model these interactions, consider a machine learning algorithm that has loss given by
L(z, x) where x ∈ Rd are the algorithm parameters and z ∈ Rd are the population attributes, and the
goal is to solve

argmin
x∈X

E
z∼ρ

L(z, x),

where X is the class of model parameters and ρ(z) is the population distribution. Individuals have an
objective given by J(z, x) in response to a model parameterized by x, and they seek to solve

argmin
z∈Rd

J(z, x).

When individuals in the population and the algorithm have access to gradients, we model the
optimization process as a gradient-descent-type process. Realistically, individuals in the population
will have nonlocal information and influences, as well as external perturbations, the effects of
which we seek to capture in addition to just minimization. To address this, we propose a partial
differential equation (PDE) model for the population, that is able to capture nonlocal interactions
between individuals on the level of a collective population. To analyse how the population evolves
over time, a notion of derivative in infinite dimensions is needed. A natural, and in this context
physically meaningful, way of measuring the dissipation mechanism for probability distributions is
the Wasserstein-2 metric (see Definition 4). The following expression appears when computing the
gradient of an energy functional with respect to the Wasserstein-2 topology.
Definition 1. [First Variation] For a map G : P(Rd) 7→ R and fixed probability distribution
ρ ∈ P(Rd), the first variation of G at the point ρ is denoted by δρG[ρ] : Rd → R, and is defined via
the relation ∫

δρG[ρ](z)ψ(z)dz = lim
ϵ→0

1

ϵ
(G(ρ+ ϵψ)−G(ρ))

for all ψ ∈ C∞
c (Rd) such that

∫
dψ = 0, assuming that G is regular enough for all quantities to

exist.

Here, P(Rd) denotes the space of probability measures on the Borel sigma algebra. Using the first
variation, we can express the gradient in Wasserstein-2 space, see for example [Vil03, Exercise 8.8].
Lemma 1. The gradient of an energy G : P2(Rd) → R in the Wasserstein-2 space is given by

∇W2G(ρ) = −div (ρ∇δρG[ρ]) .

Here, P2(Rd) denotes the set of probability measures with bounded second moments, also see
Appendix A.2. As a consequence, the infinite dimensional steepest descent in Wasserstein-2 space
can be expressed as the PDE

∂tρ = −∇W2G(ρ) = div (ρ∇δρG[ρ]) . (1)

All the coupled gradient flows considered in this work have this Wasserstein-2 structure. In particular,
when considering that individuals minimize their own loss, we can capture these dynamics via a
gradient flow in the Wasserstein-2 metric on the level of the distribution of the population. Then for
given algorithm parameters x ∈ Rd, the evolution for this strategic population is given by

∂tρ = div

(
ρ∇δρ

[
E

z∼ρ
J(z, x) + E(ρ)

])
, (2)

where E(ρ) is a functional including terms for internal influences and external perturbations. In
real-world deployment of algorithms, decision makers update their algorithm over time, leading to an
interaction between the two processes. We also consider the algorithm dynamics over time, which we
model as

ẋ = −∇x

[
E

z∼ρ
L(z, x)

]
. (3)
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In this work, we analyze the behavior of the dynamics under the following model. The algorithm
suffers a cost f1(z, x) for a data point z under model parameters x in the strategic population, and a
cost f2(z, x) for a data point in a fixed, non-strategic population. The strategic population is denoted
by ρ ∈ P , and the non-strategic population by ρ̄ ∈ P . The algorithm aims to minimize

E
z∼ρ

L(z, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 ,

where the norm is the vector inner product ∥x∥2 = ⟨x, x⟩ and β > 0 weights the cost of updating the
model parameters from its initial condition.

We consider two settings: (i) aligned objectives, and (ii) competing objectives. Case (i) captures the
setting in which the strategic population minimization improves the performance of the algorithm,
subject to a cost for deviating from a reference distribution ρ̃ ∈ P . This cost stems from effort
required to manipulate features, such as a loan applicant adding or closing credit cards. On the
other hand, Case (ii) captures the setting in which the strategic population minimization worsens the
performance of the algorithm, again incurring cost from distributional changes.

2.1 Case (i): Aligned Objectives

In this setting, we consider the case where the strategic population and the algorithm have aligned
objectives. This occurs in examples such as recommendation systems, where users and algorithm
designers both seek to develop accurate recommendations for the users. This corresponds to the
population cost

E
z∼ρ,x∼µ

J(z, x) =

∫∫
f1(z, x)dρ(z)dµ(x) + αKL(ρ | ρ̃),

where KL(· | ·) denotes the Kullback-Leibler divergence. Note that the KL divergence introduces
diffusion to the dynamics for ρ. The weight α > 0 parameterizes the cost of distribution shift to the
population. To account for nonlocal information and influence among members of the population, we
include a kernel termE(ρ) = 1

2

∫
ρW ∗ρdz, where (W ∗ρ)(z) =

∫
W (z− z̄)dρ(z̄) is a convolution

integral and W is a suitable interaction potential.

2.2 Case (ii): Competing Objectives

In settings such as online internet forums, where algorithms and users have used manipulative
strategies for marketing [Del06], the strategic population may be incentivized to modify or mis-report
their attributes. The algorithm has a competitive objective, in that it aims to maintain performance
against a population whose dynamics cause the algorithm performance to suffer. When the strategic
population seeks an outcome contrary to the algorithm, we model strategic population cost as

E
z∼ρ,x∼µ

J(z, x) = −
∫∫

f1(z, x)dρ(z)dµ(x) + αKL(ρ | ρ̃).

A significant factor in the dynamics for the strategic population is the timescale separation between
the two "species"—i.e., the population and the algorithm. In our analysis, we will consider two cases:
one, where the population responds much faster than the algorithm, and two, where the algorithm
responds much faster than the population. We illustrate the intermediate case in a simulation example.

3 Results

We are interested in characterizing the long-time asymptotic behavior of the population distribution,
as it depends on the decision-makers action over time. The structure of the population distribution
gives us insights about how the decision-makers actions influences the entire population of users.
For instance, as noted in the preceding sections, different behaviors such as bimodal distributions or
large tails or variance might emerge, and such effects are not captured in simply looking at average
performance. To understand this intricate interplay, one would like to characterize the behavior of
both the population and the algorithm over large times. Our main contribution towards this goal is a
novel analytical framework as well as analysis of the long-time asymptotics.
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A key observation is that the dynamics in (2) and (3) can be re-formulated as a gradient flow; we lift
x to a probability distribution µ by representing it as a Dirac delta µ sitting at the point x. As a result,
the evolution of µ will be governed by a PDE, and combined with the PDE for the population, we
obtain a system of coupled PDEs,

∂tρ = div

(
ρ∇zδρ

[
E

z∼ρ,x∼µ
J(z, x) + E(ρ)

])
∂tµ = div

(
µ∇xδµ

[
E

z∼ρ,x∼µ
L(z, x)

])
,

where δρ and δµ are first variations with respect to ρ and µ according to Definition 1. The natural
candidates for the asymptotic profiles of this coupled system are its steady states, which - thanks
to the gradient flow structure - can be characterized as ground states of the corresponding energy
functionals. In this work, we show existence and uniqueness of minimizers (maximizers) for the
functionals under suitable conditions on the dynamics. We also provide criteria for convergence and
explicit convergence rates. We begin with the case where the interests of the population and algorithm
are aligned, and follow with analogous results in the competitive setting. We show convergence
in energy, which in turn ensures convergence in a product Wasserstein metric. For convergence in
energy, we use the notion of relative energy and prove that the relative energy converges to zero as
time increases.
Definition 2 (Relative Energy). The relative energy of a functional G is given by G(γ|γ∞) =
G(γ)−G(γ∞), where G(γ∞) is the energy at the steady state.

Since we consider the joint evolution of two probability distributions, we define a distance metric W
on the product space of probability measures with bounded second moment.

Definition 3 (Joint Wasserstein Metric). The metric over P2(Rd)×P2(Rd) is called W and is given
by

W ((ρ, µ), (ρ̃, µ̃))2 =W2(ρ, ρ̃)
2 +W2(µ, µ̃)

2

for all pairs (ρ, µ), (ρ̃, µ̃) ∈ P2(Rd)×P2(Rd), and where W2 denotes the Wasserstein-2 metric (see
Definition 4). We denote by W(Rd) := (P2(Rd)× P2(Rd),W ) the corresponding metric space.

3.1 Gradient Flow Structure

In the case where the objectives of the algorithm and population are aligned, we can write the
dynamics as a gradient flow by using the same energy functional for both species. Let Ga(ρ, µ) :
P(Rd)× P(Rd) 7→ [0,∞] be the energy functional given by

Ga(ρ, µ) =

∫∫
f1(z, x)dρ(z)dµ(x) +

∫∫
f2(z, x)dρ̄(z)dµ(x) + αKL(ρ|ρ̃) + 1

2

∫
ρW ∗ ρ

+
β

2

∫
∥x− x0∥2 dµ(x).

This expression is well-defined as the relative entropy KL(ρ | ρ̃) can be extended to the full set
P(Rd) by setting Ga(ρ, µ) = +∞ in case ρ is not absolutely continuous with respect to ρ̃.

In the competitive case we define Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] by

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(x, z

′)dρ̄(z′)− αKL(ρ|ρ̃)− 1

2

∫
ρW ∗ ρ+ β

2
∥x− x0∥2 .

In settings like recommender systems, the population and algorithm have aligned objectives; they
seek to minimize the same cost but are subject to different dynamic constraints and influences,
modeled by the regularizer and convolution terms. In the case where the objectives are aligned, the
dynamics are given by

∂tρ = div (ρ∇zδρGa[ρ, µ])

∂tµ = div (µ∇xδµGa[ρ, µ]) .
(4)

Note that (4) is a joint gradient flow, because the dynamics can be written in the form

∂tγ = div (γ∇δγGa(γ)) ,
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where γ = (ρ, µ) and where the gradient and divergence are taken in both variables (z, x). We
discuss the structure of the dynamics (4) as well as the meaning of the different terms appearing in
the energy functional Ga in Appendix A.1.

In other settings, such as credit score reporting, the objectives of the population are competitive with
respect to the algorithm. Here we consider two scenarios; one, where the algorithm responds quickly
relative to the population, and two, where the population responds quickly relative to the algorithm.
In the case where the algorithm can immediately adjust optimally (best-respond) to the distribution,
the dynamics are given by

∂tρ = −div
(
ρ (∇zδρGc[ρ, x]) |x=b(ρ)

)
,

b(ρ) := argmin
x̄

Gc(ρ, x̄) .
(5)

Next we can consider the population immediately responding to the algorithm, which has dynamics

d

dt
x = −∇xGc(ρ, x)|ρ=r(x) ,

r(x) := argmin
ρ̂∈P

−Gc(ρ̂, x) .
(6)

In this time-scale separated setting, model (5) represents a dyamic maximization of Gc with respect
to ρ in Wasserstein-2 space, and an instantaneous minimization of Gc with respect to the algorithm
parameters x. Model (6) represents an instantaneous maximization of Gc with respect to ρ and a
dynamic minimization of Gc with respect to the algorithm parameters x. The key results on existence
and uniqueness of a ground state as well as the convergence behavior of solutions depend on convexity
(concavity) of Ga and Gc. The notion of convexity that we will employ for energy functionals in
the Wasserstein-2 geometry is (uniform) displacement convexity, which is analogous to (strong)
convexity in Euclidean spaces. One can think of displacement convexity for an energy functional
defined on P2 as convexity along the shortest path in the Wasserstein-2 metric (linear interpolation in
the Wasserstein-2 space) between any two given probability distributions. For a detailed definition
of (uniform) displacement convexity and concavity, see Section A.2. In fact, suitable convexity
properties of the input functions f1, f2,W and ρ̃ will ensure (uniform) displacement convexity of the
resulting energy functionals appearing in the gradient flow structure, see for instance [Vil03, Chapter
5.2].

We make the following assumptions in both the competitive case and aligned interest cases. Here,
Id denotes the d× d identity matrix, Hess (f) denotes the Hessian of f in all variables, while ∇2

xf
denotes the Hessian of f in the variable x only.

Assumption 1 (Convexity of f1 and f2). The functions f1, f2 ∈ C2(Rd × Rd; [0,∞)) satisfy for all
(z, x) ∈ Rd × Rd the following:

• There exists constants λ1, λ2 ≥ 0 such that Hess (f1) ⪰ λ1 I2d and ∇2
xf2 ⪰ λ2 Id;

• There exist constants ai > 0 such that x · ∇xfi(z, x) ≥ −ai for i = 1, 2;
Assumption 2 (Reference Distribution Shape). The reference distribution ρ̃ ∈ P(Rd) ∩ L1(Rd)

satisfies log ρ̃ ∈ C2(Rd) and ∇2
z log ρ̃(z) ⪯ −λ̃ Id for some λ̃ > 0.

Assumption 3 (Convex Interaction Kernel). The interaction kernel W ∈ C2(Rd; [0,∞)) is convex,
symmetric W (−z) =W (z), and for some D > 0 satisfies

z · ∇zW (z) ≥ −D, |∇zW (z)| ≤ D(1 + |z|) ∀ z ∈ Rd .

We make the following observations regarding the assumptions above:

• The convexity in Assumption 3 can be relaxed and without affecting the results outlined
below by following a more detailed analysis analogous to the approach in [CMV03].

• If f1 and f2 are strongly convex, the proveable convergence rate increases, but without strict
or strong convexity of f1 and f2, the regularizers KL(ρ|ρ̃) and

∫
∥x− x0∥22 dx provide the

convexity guarantees necessary for convergence.

For concreteness, one can consider the following classical choices of input functions to the evolution:

• Using the log-loss function for f1 and f2 satisfies Assumption 1.
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• Taking the reference measure ρ̃ to be the normal distribution satisfies Assumption 2, which
ensures the distribution is not too flat.

• Taking quadratic interactions W (z) = 1
2 |z|

2 satisfies Assumption 3.
Remark 1 (Cauchy-Problem). To complete the arguments on convergence to equilibrium, we require
sufficient regularity of solutions to the PDEs under consideration. In fact, it is sufficient if we can
show that equations (4), (5), and (6) can be approximated by equations with smooth solutions. Albeit
tedious, these are standard techniques in the regularity theory for partial differential equations,
see for example [CMV03, Proposition 2.1 and Appendix A], [OV00], [Vil03, Chapter 9], and the
references therein. Similar arguments as in [DV00] are expected to apply to the coupled gradient
flows considered here, guaranteeing existence of smooth solutions with fast enough decay at infinity,
and we leave a detailed proof for future work.

3.2 Analysis of Case (i): Aligned Objectives

The primary technical contribution of this setting consists of lifting the algorithm dynamics from an
ODE to a PDE, which allows us to model the system as a joint gradient flow on the product space of
probability measures. The coupling occurs in the potential function, rather than as cross-diffusion or
non-local interaction as more commonly seen in the literature for multi-species systems.

Theorem 2. Suppose that Assumptions 1-3 are satisfied and let λa := λ1 +min(λ2 + β, αλ̃) > 0.
Consider solutions γt := (ρt, µt) to the dynamics (4) with initial conditions satisfying γ0 ∈ P2(Rd)×
P2(Rd) and Ga(γ0) <∞. Then the following hold:

(a) There exists a unique minimizer γ∞ = (ρ∞, µ∞) of Ga, which is also a steady state for
equation (4). Moreover, ρ∞ ∈ L1(Rd), has the same support as ρ̃, and its density is
continuous.

(b) The solution γt converges exponentially fast in Ga(· | γ∞) and W ,

Ga(γt | γ∞) ≤ e−2λatGa(γ0 | γ∞) and W (γt, γ∞) ≤ ce−λat for all t ≥ 0 ,

where c > 0 is a constant only depending on γ0, γ∞ and the parameter λa.

Proof. (Sketch) For existence and uniqueness, we leverage classical techniques in the calculus
of variations. To obtain convergence to equilibrium in energy, our key result is a new HWI-type
inequality, providing as a consequence generalizations of the log-Sobolev inequality and the Talagrand
inequality. Together, these inequalities relate the energy (classically denoted by H in the case of the
Boltzmann entropy), the metric (classically denoted byW in the case of the Wasserstein-2 metric) and
the energy dissipation (classically denoted by I in the case of the Fisher information)1. Combining
these inequalities with Gronwall’s inequality allows us to deduce convergence both in energy and in
the metric W .

3.3 Analysis of Case (ii): Competing Objectives

In this setting, we consider the case where the algorithm and the strategic population have goals in
opposition to each other; specifically, the population benefits from being classified incorrectly. First,
we will show that when the algorithm instantly best-responds to the population, then the distribution
of the population converges exponentially in energy and in W2. Then we will show a similar result
for the case where the population instantly best-responds to the algorithm.

In both cases, we begin by proving two Danskin-type results (see [Dan67; Ber71]) which will be used
for the main convergence theorem, including convexity (concavity) results. To this end, we make the
following assumption ensuring that the regularizing component in the evolution of ρ is able to control
the concavity introduced by f1 and f2.
Assumption 4 (Upper bounds for f1 and f2). There exists a constant Λ1 > 0 such that

∇2
zf1(z, x) ⪯ Λ1Id for all (z, x) ∈ Rd × Rd ,

and for any R > 0 there exists a constant c2 = c2(R) ∈ R such that

sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) < c2 .

1Hence the name HWI inequalities.
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Equipped with Assumption 4, we state the result for a best-responding algorithm.

Theorem 3. Suppose Assumptions 1-4 are satisfied with αλ̃ > Λ1. Let λb := αλ̃ − Λ1. Define
Gb(ρ) := Gc(ρ, b(ρ)). Consider a solution ρt to the dynamics (5) with initial condition ρ0 ∈ P2(Rd)
such that Gb(ρ0) <∞. Then the following hold:

(a) There exists a unique maximizer ρ∞ of Gb(ρ), which is also a steady state for equation (5).
Moreover, ρ∞ ∈ L1(Rd), has the same support as ρ̃, and its density is continuous.

(b) The solution ρt converges exponentially fast to ρ∞ with rate λb in Gb(· | ρ∞) and W2,

Gb(ρt | ρ∞) ≤ e−2λbtGa(ρ0 | ρ∞) and W2(ρt, ρ∞) ≤ ce−λbt for all t ≥ 0 ,

where c > 0 is a constant only depending on ρ0, ρ∞ and the parameter λb.

Proof. (Sketch) The key addition in this setting as compared with Theorem 2 is proving that Gb(ρ)
is bounded below, uniformly displacement concave and guaranteeing its smoothness via Berge’s
Maximum Theorem. This is non-trivial as it uses the properties of the best response b(ρ). A central
observation for our arguments to work is that δρGb[ρ] = (δρGc[ρ, x]) |x=b(ρ). We can then conclude
using the direct method in the calculus of variations and the HWI method.

Here, the condition that αλ̃ must be large enough corresponds to the statement that the system must
be subjected to a strong enough regularizing effect.

In the opposite case, where ρ instantly best-responds to the algorithm, we show Danskin-like results
for derivatives through the best response function and convexity of the resulting energy in x which
allows to deduce convergence.

Theorem 4. Suppose Assumptions 1-4 are satisfied with αλ̃ > Λ1, and that r(x) is differentiable (as
shown by example conditions in Lemmas 27 and 28). Define Gd(x) := Gc(r(x), x). Then it holds:

(a) There exists a unique minimizer x∞ of Gd(x) which is also a steady state for (6).

(b) The vector x(t) solving the dynamics (6) with initial condition x(0) ∈ Rd converges
exponentially fast to x∞ with rate λd := λ1+λ2+β > 0 in Gd and in the Euclidean norm:

∥x(t)− x∞∥ ≤ e−λdt∥x(0)− x∞∥ ,
Gd(x(t))−Gd(x∞) ≤ e−2λdt (Gd(x(0))−Gd(x∞))

for all t ≥ 0.

These two theorems illustrate that, under sufficient convexity conditions on the cost functions, we
expect the distribution ρ and the algorithm x to converge to a steady state. In practice, when the
distributions are close enough to the steady state there is no need to retrain the algorithm.

While we have proven results for the extreme timescale cases, we anticipate convergence to the
same equilibrium in the intermediate cases. Indeed, it is well known [Bor09] (especially for systems
in Euclidean space) that for two-timescale stochastic approximations of dynamical systems, with
appropriate stepsize choices, converge asymptotically, and finite-time high probability concentration
bounds can also be obtained. These results have been leveraged in strategic classification [Zrn+21]
and Stackelberg games [FCR20; FR21; Fie+21]. We leave this intricate analysis to future work.

In the following section we show numerical results in the case of a best-responding x, best-responding
ρ, and in between where x and ρ evolve on a similar timescale. Note that in these settings, the
dynamics do not have a gradient flow structure due to a sign difference in the energies, requiring
conditions to ensure that one species does not dominate the other.

4 Numerical Examples

We illustrate numerical results for the case of a classifier, which are used in scenarios such as loan
or government aid applications [CC11], school admissions [PS13], residency match [Ree18], and
recommendation algorithms [LSW10], all of which have some population which is incentivized
to submit data that will result in a desirable classification. For all examples, we select classifiers
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of the form x ∈ R, so that a data point z ∈ R is assigned a label of 1 with probability q(z, x) =
(1 + exp (−b⊤z + x))−1 where b > 0. Let f1 and f2 be given by

f1(z, x) = − log(1− q(z, x)) , f2(z, x) = − log q(z, x).

Note that Hess (f1) ⪰ 0 and ∇2
xf2 ⪰ 0, so λ1 = λ2 = 0. Here, the strictness of the convexity

of the functional is coming from the regularizers, not the cost functions, with ρ̃ a scaled normal
distribution. We show numerical results for two scenarios with additional settings in the appendix.
First we illustrate competitive interests under three different timescale settings. Then we simulate the
classifier taking an even more naïve strategy than gradient descent and discuss the results. The PDEs
were implemented based on the finite volume method from [CCH15].

4.1 Competitive Objectives

In the setting with competitive objectives, we utilize Gc(ρ, x) with W = 0, f1 and f2 as defined
above with b = 3 fixed as it only changes the steepness of the classifier for d = 1, and α = 0.1 and
β = 0.05. In Figure 1, we simulate two extremes of the timescale setting; first when ρ is nearly
best-responding and then when x is best-responding. The simulations have the same initial conditions
and end with the same distribution shape; however, the behavior of the strategic population differs in
the intermediate stages. When ρ is nearly best-responding, we see that the distribution quickly shifts

Figure 1: When x versus ρ best-responds, we observe the same final state but different intermediate
states. Modes appear in the strategic population which simpler models cannot capture.

mass over the classifier threshold. Then the classifier shifts right, correcting for the shift in ρ, which
then incentivizes ρ to shift more mass back to the original mode. In contrast, when x best-responds,
the right-hand mode slowly increases in size until the system converges.

Figure 2 shows simulation results from the setting where ρ and x evolve on the same timescale. We
observe that the distribution shift in ρ appears to fall between the two extreme timescale cases, which
we expect. We highlight two important observations for the competitive case. One, a single-mode

Figure 2: In this experiment the population and classifier have similar rates of change, and the
distribution change for ρ exhibits behaviors from both the fast ρ and fast x simulations; the right-hand
mode does not peak as high as the fast ρ case but does exceed its final height and return to the
equilibrium.

distribution becomes bimodel, which would not be captured using simplistic metrics such as the
mean and variance. This split can be seen as polarization in the population, a phenomenon that
a mean-based strategic classification model would not capture. Two, the timescale on which the
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classifier updates significantly impacts the intermediate behavior of the distribution. In our example,
when x updated slowly relative to the strategic population, the shifts in the population were greater
than in the other two cases. This suggests that understanding the effects of timescale separation are
important for minimizing volatility of the coupled dynamics.

4.2 Naïve Behavior

In this example, we explore the results of the classifier adopting a non-gradient-flow strategy, where
the classifier chooses an initially-suboptimal value for x and does not move, allowing the strategic
population to respond. All functions and parameters are the same as in the previous example. When

(a) Both species minimize their respective losses;
when the classifier uses a naïve strategy, the final
performance is better for the classifier and uni-
formly worse for the population.

(b) The classifier selects a suboptimal initial condi-
tion x = 2.2, instead of x = 1.5 which minimizes
the initial loss, and then does not move in response
to the population.

Figure 3: Although the classifier starts with a larger cost by taking the naive strategy, the final loss
is better. This illustrates how our model can be used to compare robustness of different strategies
against a strategic population.

comparing with the gradient descent strategy, we observe that while the initial loss for the classifier
is worse for the naive strategy, the final cost is better. While this results is not surprising, because
one can view this as a general-sum game where the best response to a fixed decision may be better
than the equilibrium, it illustrates how our method provides a framework for evaluating how different
training strategies perform in the long run against a strategic population.

5 Future Directions, Limitations, and Broader Impact

Our work presents a method for evaluating the robustness of an algorithm to a strategic population,
and investigating a variety of robustness using our techniques opens a range of future research
directions. Our application suggests many questions relevant to the PDE literature, such as: (1)
Does convergence still hold with the gradient replaced by an estimated gradient? (2) Can we prove
convergence in between the two timescale extremes? (3) How do multiple dynamic populations
respond to an algorithm, or multiple algorithms? In the realm of learning algorithms, our framework
can be extended to other learning update strategies and presents a way to model how we can design
these update strategies to induce desired behaviors in the population.

A challenge in our method is that numerically solving high-dimensional PDEs is computationally
expensive and possibly unfeasible. Here we note that in many applications, agents in the population
do not alter more than a few features due to the cost of manipulation. We are encouraged by the
recent progress using deep learning to solve PDEs, which could be used in our application.

Broader Impacts Modeling the full population distribution rather than simple metrics of the distri-
bution is important because not all individuals are affected by the algorithm in the same way. For
example, if there are tails of the distribution that have poor performance even if on average the model
is good, we need to know how that group is advantaged or disadvantaged relative to the rest of the
population. Additionally, understanding how people respond to algorithms offers an opportunity to
incentivise people to move in a direction that increases social welfare.
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A General structure and preliminaries

In this section, we give more details on the models discussed in the main article, and introduce definitions and
notation that are needed for the subsequent proofs.

A.1 Structure of the dynamics

For the case of aligned objectives, the full coupled system of PDEs (4) can be written as

∂tρ = α∆ρ+ div

(
ρ∇z

(∫
f1dµ− α log ρ̃+W ∗ ρ

))
, (7a)

∂tµ = div

(
µ∇x

(∫
f1dρ+

∫
f2dρ̄+

β

2
∥x− x0∥2

))
. (7b)

In other words, the population ρ in (7a) is subject to an isotropic diffusive force with diffusion coefficient α > 0,
a drift force due to the time-varying confining potential

∫
f1dµ(t)− α log ρ̃, and a self-interaction force via the

interaction potential W . If we consider the measure µ to be given and fixed in time, this corresponds exactly
to the type of parabolic equation studied in [CMV03]. Here however the dynamics are more complex due to
the coupling of the confining potential with the dynamics (7b) for µ(t) via the coupling potential f1. Before
presenting the analysis of this model, let us give a bit more intuition on the meaning and the structure of these
dynamics.

In the setting where µ represents a binary classifier, we can think of the distribution ρ̄ as modelling all those
individuals carrying the true label 1, say, and the distribution ρ(t) as modelling all those individuals carrying
a true label 0, say, where 0 and 1 denote the labels of two classes of interest. The term

∫
f1(z, x)µ(t,dx)

represents a penalty for incorrectly classifying an individual at z with true label 0 when using the classifier
µ(t, x). In other words,

∫
f1(z, x)µ(t,dx) ∈ [0,∞) is increasingly large the more z digresses from the correct

classification 0. Similarly,
∫
f1(z, x)ρ(t, dz) ∈ [0,∞) is increasingly large if the population ρ shifts mass to

locations in z where the classification is incorrect. The terminology aligned objectives refers to the fact that
in (7) both the population and the classifier are trying to evolve in a way as to maximize correct classification.
Analogously, the term

∫
f2(z, x)ρ̄(dz) is large if x would incorrectly classify the population ρ̄ that carries the

label 1. A natural extension of the model (7) would be a setting where also the population carrying labels 1
evolves over time, which is simulated in Section E.2. Most elements of the framework presented here would
likely carry over the setting of three coupled PDEs: one for the evolution of ρ(t), one for the evolution of ρ̄(t)
and one for the classifier µ(t).

The term
α∆ρ− αdiv (ρ∇ log ρ̃) = αdiv (ρ∇δρKL(ρ | ρ̃))

forces the evolution of ρ(t) to approach ρ̃. In other words, it penalizes (in energy) deviations from a given
reference measure ρ̃. In the context of the application at hand, we take ρ̃ to be the initial distribution ρ(t = 0).
The solution ρ(t) then evolves away from ρ̃ over time due to the other forces that are present. Therefore, the
term KL(ρ | ρ̃) in the energy both provides smoothing of the flow and a penalization for deviations away from
the reference measure ρ̃.

The self-interaction termW ∗ρ introduces non-locality into the dynamics, as the decision for any given individual
to move in a certain direction is influenced by the behavior of all other individuals in the population. The choice
of W is application dependent. Very often, the interaction between two individuals only depends on the distance
between them. This suggests a choice of W as a radial function, i.e. W (z) = ω(|z|). A choice of ω : R → R
such that ω′(r) > 0 corresponds to an attractive force between individuals, whereas ω′(r) < 0 corresponds to a
repulsive force. The statement |z|ω′(|z|) = z · ∇zW (z) ≥ −D in Assumption 3 therefore corresponds to a
requirement that the self-interaction force is not too repulsive. Neglecting all other forces in (7a), we obtain the
non-local interaction equation

∂tρ = div (ρ∇W ∗ ρ)
which appears in many instances in mathematical biology, mathematical physics, and material science, and it
is an equation that has been extensively studied over the past few decades, see for example [Car+11; BCY12;
CCH14; BCL09; BLL12; CMV06; CFG23] and references therein. Using the results from these works, our
assumptions on the interaction potential W can be relaxed in many ways, for example by allowing discontinuous
derivatives at zero for W , or by allowing W to be negative.

The dynamics (7b) for the algorithm µ is a non-autonomous transport equation,

∂tµ = div (µv) ,

where the time-dependence in the velocity field

v(t, x) := ∇x

(∫
f1(z, x)dρ(t, z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
,
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comes through the evolving population ρ(t). This structure allows to obtain an explicit solution for µ(t) in terms
of the initial condition µ0 and the solution ρ(t) to (7a) using the method of characteristics.

Proposition 5. Assume that there exists a constant c > 0 such that∥∥∥∥∫ ∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z)

∥∥∥∥ ≤ c(1 + ∥x∥) ∀ρ ∈ P2(Rd) and ∀x ∈ Rd . (8)

Then the unique distributional solution µ(t) to (7b) is given by

µ(t) = Φ(t, 0, ·)#µ0 , (9)

where Φ(t, s, x) solves the characteristic equation

∂sΦ(s, t, x) + v(s,Φ(s, t, x)) = 0 , Φ(t, t, x) = x . (10)

Proof. Thanks to Assumption 1, we have that v ∈ C1(R× Rd;Rd), and by (8), we have

∥v(t, x)∥ ≤ c(1 + ∥x∥) for all t ≥ 0, x ∈ Rd .

By classical Cauchy-Lipschitz theory for ODEs, this guarantees the existence of a unique global solution
Φ(t, s, x) solving (10). Then it can be checked directly that µ(t) as defined in (9) is a distributional solution to
(7b).

In the characteristic equation (10), Φ(s, t, x) is a parametrization of all trajectories: if a particle was at location
x at time t, then it is at location Φ(s, t, x) at time s. Our assumptions on f1, f2 and ρ̄ also ensure that
Φ(s, t, ·) : Rd → Rd is a C1-diffeomorphism for all s, t ∈ R. For more details on transport equations, see for
example [De 07].

Remark 2. Consider the special case where µ0 = δx0 for some initial position x0 ∈ Rd. Then by Proposition 5,
the solution to (7b) is given by µ(t) = δx(t), where x(t) := Φ(t, 0, x0) solves the ODE

ẋ(t) = −v(t, x(t)) , x(0) = x0 ,

which is precisely of type (3).

For the case of competing objectives, the two models we consider can be written as

∂tρ = −div (ρ [∇(f1(z, b(ρ))− α log(ρ/ρ̃)−W ∗ ρ]) ,

b(ρ) := argmin
x̄

∫
f1(z, x̄)dρ(z) +

∫
f2(x̄, z

′)dρ̄(z′) +
β

2
∥x̄− x0∥2

for (5), and

d

dt
x = −∇x

(∫
f1(z, x) r(x)(dz) +

∫
f2(x, z

′)dρ̄(z′) +
β

2
∥x− x0∥2

)
,

r(x) := argmax
ρ̂∈P

∫
f1(z, x)dρ̂(z)− αKL(ρ̂|ρ̃)− 1

2

∫
ρ̂W ∗ ρ̂ .

for (6).

A.2 Definitions and notation

Here, and in what follows, Id denotes the d× d identity matrix, and id denotes the identity map. The energy
functionals we are considering are usually defined on the set of probability measures on Rd, denoted by P(Rd).
If we consider the subset P2(Rd) of probability measures with bounded second moment,

P2(Rd) := {ρ ∈ P(Rd) :

∫
Rd

∥z∥2dρ(z) <∞} ,

then we can endow this space with the Wasserstein-2 metric.

Definition 4 (Wasserstein-2 Metric). The Wasserstein-2 metric between two probability measures µ, ν ∈ P2(Rd)
is given by

W2(µ, ν)
2 = inf

γ∈Γ(µ,ν)

∫ ∥∥z − z′
∥∥2

2
dγ(z, z′)

where Γ is the set of all joint probability distributions with marginals µ and ν, i.e. µ(dz) =
∫
γ(dz, z′)dz′ and

ν(dz′) =
∫
γ(z, dz′)dz.
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The restriction to P2(Rd) ensures that W2 is always finite. Then the space (P2(Rd),W2) is indeed a metric
space. We will make use of the fact that W2 metrizes narrow convergence of probability measures. To make this
statement precise, let us introduce two common notions of convergence for probability measures, which are a
subset of the finite signed Radon measures M(Rd).

Definition 5. Consider a sequence (µn) ∈ M(Rd) and a limit µ ∈ M(Rd).

• (Narrow topology) The sequence (µn) converges narrowly to µ, denoted by µn ⇀ µ, if for all
continuous bounded functions f : Rd → R,∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

• (Weak-∗ topology) The sequence (µn) converges weakly-∗ to µ, denoted by µn
∗
⇀ µ, if for all

continuous functions vanishing at infinity (i.e. f : Rd → R such that for all ϵ > 0 there exists a
compact set Kϵ ⊂ Rd such that |f(z)| < ϵ on Rd \Kϵ), we have∫

Rd

f(z)dµn(z) →
∫
Rd

f(z)dµ(z) .

Let us denote the set of continuous functions on Rd vanishing at infinity by C0(Rd), and the set of continuous
bounded functions by Cb(Rd). Note that narrow convergence immediately implies that µn(Rd) → µ(Rd) as the
constant function is in Cb(Rd). This is not necessarily true for weak-∗ convergence. We will later make use of
the Banach-Alaoglu theorem [Ala40], which gives weak-∗ compactness of the unit ball in a dual space. Note that
M(Rd) is indeed the dual of C0(Rd) endowed with the sup-norm, and P(Rd) is the unit ball in M(Rd) using
the dual norm. Moreover, if we can ensure that mass does not escape to infinity, the two notions of convergence
in Definition 5 are in fact equivalent.

Lemma 6. Consider a sequence (µn) ∈ M(Rd) and a measure µ ∈ M(Rd). Then µn ⇀ µ if and only if
µn

∗
⇀ µ and µn(Rd) → µ(Rd).

This follows directly from Definition 5. Here, the condition µn(Rd) → µ(Rd) is equivalent to tightness of (µn),
and follows from Markov’s inequality [Gho02] if we can establish uniform bounds on the second moments, i.e.
we want to show that there exists a constant C > 0 independent of n such that∫

∥z∥2dµn(z) < C ∀n ∈ N . (11)

Definition 6 (Tightness of probability measures). A collection of measures (µn) ∈ M(Rd) is tight if for all
ϵ > 0 there exists a compact set Kϵ ⊂ Rd such that |µn|(Rd \Kϵ) < ϵ for all n ∈ N, where |µ| denotes the
total variation of µ.

Another classical result is that the Wasserstein-2 metric metrizes narrow convergence and weak-∗ convergence
of probability measures, see for example [San15, Theorem 5.11] or [Vil03, Theorem 7.12].

Lemma 7. Let µn, µ ∈ P2(Rd). Then W2(µn, µ) → 0 if and only if

µn ⇀ µ and
∫
Rd

∥z∥2dµn(z) →
∫
Rd

∥z∥2dµ(z) .

Remark 3. Note that µn ⇀ µ can be replaced by µn
∗
⇀ µ in the above statement thanks to the fact that the

limit µ is a probability measure with mass 1, see Lemma 6.

Next, we consider two measures µ, ν ∈ P(Rd) that are atomless, i.e µ({z}) = 0 for all z ∈ Rd. By Brenier’s
theorem [BB00] (also see [Vil03, Theorem 2.32]) there exists a unique measurable map T : Rd → Rd such
that T#µ = ν, and T = ∇ψ for some convex function ψ : Rd → R. Here, the push-forward operator ∇ψ# is
defined as ∫

Rd

f(z)d∇ψ#ρ0(z) =

∫
Rd

f(∇ψ(z))dρ0(z)

for all Borel-measurable functions f : Rd 7→ R+. If ρ1 = ∇ψ#ρ0, we denote by ρs = [(1− s) id+s∇ψ]#ρ0
the discplacement interpolant between ρ0 and ρ1. We are now ready to introduce the notion of displacement
convexity, which is the same as geodesic convexity in the geodesic space (P2(Rd),W2). We will state the
definition here for atomless measures, but it can be relaxed to any pair of measures in P2 using optimal transport
plans instead of transport maps. In what follows, we will use s to denote the interpolation parameter for
geodesics, and t to denote time related to solutions of (4), (5) and (6).
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Definition 7 (Displacement Convexity). A functional G : P 7→ R is displacement convex if for all ρ0, ρ1 that
are atomless we have

G(ρs) ≤ (1− s)G(ρ0) + sG(ρ1) ,

where ρs = [(1− s) id+s∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1. Further, G : P 7→ R is
uniformly displacement convex with constant η > 0 if

G(ρs) ≤ (1− s)G(ρ0) + sG(ρ1)− s(1− s)
η

2
W2(ρ0, ρ1)

2 ,

where ρs = [(1− s) id+s∇ψ]#ρ0 is the displacement interpolant between ρ0 and ρ1.

Remark 4. In other words, G is displacement convex (concave) if the function G(ρs) is convex (concave) with
ρs = [(1 − s id+s∇ψ]#ρ0 being the displacement interpolant between ρ0 and ρ1. Contrast this with the
classical notion of convexity (concavity) for G, where we require that the function G((1− s)ρ0 + sρ1) is convex
(concave).

In fact, if the energy G is twice differentiable along geodesics, then the condition d2

ds2
G(γs) ≥ 0 along

any geodesic (ρs)s∈[0,1] between ρ0 and ρ1 is sufficient to obtain displacement convexity. Similarly, when
d2

ds2
G(ρs) ≥ ηW2(ρ0, ρ1)

2, then G is uniformly displacement convex with constant η > 0. For more details,
see [McC97] and [Vil03, Chapter 5.2].

A.3 Steady states

The main goal in our theoretical analysis is to characterize the asymptotic behavior for the models (4), (5) and
(6) as time goes to infinity. The steady states of these equations are the natural candidates to be asymptotic
profiles for the corresponding equations. Thanks to the gradient flow structure, we expect to be able to make a
connection between ground states of the energy functionals, and the steady states of the corresponding gradient
flow dynamics. More precisely, any minimizer or maximizer is in particular a critical point of the energy, and
therefore satisfies that the first variation is constant on disconnected components of its support. If this ground
state also has enough regularity (weak differentiability) to be a solution to the equation, it immediately follows
that it is in fact a steady state.

To make this connection precise, we first introduce what exactly we mean by a steady state.

Definition 8 (Steady states for (4)). Given ρ∞ ∈ L1
+(Rd) ∩ L∞

loc(Rd) with ∥ρ∞∥1 = 1 and µ∞ ∈ P2(Rd),
then (ρ∞, µ∞) is a steady state for the system (4) if ρ∞ ∈W 1,2

loc (R
d), ∇W ∗ρ∞ ∈ L1

loc(Rd), ρ∞ is absolutely
continuous with respect to ρ̃, and (ρ∞, µ∞) satisfy

∇z

(∫
f1(z, x)dµ∞(x) + α log

(
ρ∞(z)

ρ̃(z)

)
+W ∗ ρ∞(z)

)
= 0 ∀z ∈ supp(ρ∞) , (12a)

∇x

(∫
f1(z, x)dρ∞(z) +

∫
f2(z, x)dρ̃(z) +

β

2
∥x− x0∥2

)
= 0 ∀x ∈ supp(µ∞) (12b)

in the sense of distributions.

Here, L1
+(Rd) := {ρ ∈ L1(Rd) : ρ ≥ 0}.

Definition 9 (Steady states for (5)). Let ρ∞ ∈ L1
+(Rd) ∩ L∞

loc(Rd) with ∥ρ∞∥1 = 1. Then ρ∞ is a steady
state for the system (5) if ρ∞ ∈W 1,2

loc (R
d), ∇W ∗ ρ∞ ∈ L1

loc(Rd), ρ∞ is absolutely continuous with respect
to ρ̃, and ρ∞ satisfies

∇z

(
f1(z, b(ρ∞))− α log

(
ρ∞(z)

ρ̃(z)

)
−W ∗ ρ∞(z)

)
= 0 ∀z ∈ Rd , (13)

in the sense of distributions, where b(ρ∞) := argminxGc(ρ∞, x).

Definition 10 (Steady states for (6)). The vector x∞ ∈ Rd is a steady state for the system (6) if it satisfies

∇xGd(x∞) = 0 .

In fact, with the above notions of steady state, we can obtain improved regularity for ρ∞.

Lemma 8. Let Assumptions 1-3 hold. Then the steady states ρ∞ for (4) and (5) are continuous.

Proof. We present here the argument for equation (5) only. The result for (4) follows in exactly the same way
by replacing f1(z, b(ρ∞)) with −

∫
f1(z, x)dµ∞(x).
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Thanks to our assumptions, we have f1(·, b(ρ∞)) + α log ρ̃(·) ∈ C1, which implies that ∇(f1(·, b(ρ∞)) +
α log ρ̃(·)) ∈ L∞

loc. By the definition of a steady state, ρ∞ ∈ L1 ∩ L∞
loc and thanks to Assumption 3 we have

W ∈ C2, which implies that ∇W ∗ ρ∞ ∈ L∞
loc. Let

h(z) := ρ∞(z)∇ [f1(z, b(ρ∞)) + α log ρ̃(z)− (W ∗ ρ∞)(z)] .

Then by the aforementioned regularity, we obtain h ∈ L1
loc ∩ L∞

loc. By interpolation, it follows that h ∈ Lp
loc

for all 1 < p <∞. This implies that div (h) ∈W−1,p
loc . Since ρ∞ is a weak W 1,2

loc -solution of (13), we have

∆ρ∞ = div (h) ,

and so by classic elliptic regularity theory we conclude ρ∞ ∈W 1,p
loc . Finally, applying Morrey’s inequality, we

have ρ∞ ∈ C0,k where k = p−d
p

for any d < p <∞. Therefore ρ∞ ∈ C(Rd) (after possibly being redefined
on a set of measure zero).

B Proof of Theorem 2

For ease of notation, we write Ga : P(Rd)× P(Rd) 7→ [0,∞] as

Ga((ρ, µ)) = αKL(ρ|ρ̃) + V(ρ, µ) +W(ρ) ,

where we define

V(ρ, µ) =
∫∫

f1(z, x)dρ(z)dµ(x) +

∫
V (x)dµ(x) ,

W(ρ) =
1

2

∫∫
W (z1 − z2)dρ(z1)dρ(z2) ,

with potential given by V (x) :=
∫
f2(z, x)dρ̄(z) +

β
2
∥x− x0∥2.

In order to prove the existence of a unique ground state forGa, a natural approach is to consider the corresponding
Euler-Lagrange equations

α log
ρ(z)

ρ̃(z)
+

∫
f1(z, x)dµ(x) + (W ∗ ρ)(z) = c1[ρ, µ] for all z ∈ supp(ρ) , (14a)∫

f1(z, x)dρ(z) + V (x) = c2[ρ, µ] for all x ∈ supp(µ) , (14b)

where c1, c2 are constants that may differ on different connected components of supp(ρ) and supp(µ). These
equations are not easy to solve explicitly, and we are therefore using general non-constructive techniques from
calculus of variations. We first show continuity and convexity properties for the functional Ga (Lemma 9 and
Proposition 10), essential properties that will allow us to deduce existence and uniqueness of ground states using
the direct method in the calculus of variations (Proposition 11). Using the Euler-Lagrange equation 14, we then
prove properties on the support of the ground state (Corollary 12). To obtain convergence results, we apply
the HWI method: we first show a general ’interpolation’ inequality between the energy, the energy dissipation
and the metric (Proposition 13); this fundamental inequality will then imply a generalized logarithmic Sobolev
inequality (Corollary 14) relating the energy to the energy dissipation, and a generalized Talagrand inequality
(Corollary 15) that allows to translate convergence in energy into convergence in metric. Putting all these
ingrediends together will then allow us to conclude for the statements in Theorem 2.

Lemma 9 (Lower semi-continuity). Let Assumptions 1-3 hold. Then the functional Ga : P × P → R is lower
semi-continuous with respect to the weak-∗ topology.

Proof. We split the energy Ga into three parts: (i) KL(ρ|ρ̃), (ii) the interaction energy W , and (iii) the potential
energy V . For (i), lower semi-continuity has been shown in [Pos75]. For (ii), we can directly apply [San15,
Proposition 7.2] using Assumption 3. For (iii), note that V and f1 are lower semi-continuous and bounded below
thanks to Assumption 1, and so the result follows from [San15, Proposition 7.1].

Proposition 10 (Uniform displacement convexity). Let α, β > 0. Fix γ0, γ1 ∈ P2×P2 and let Assumptions 1-3
hold. Along any geodesic (γs)s∈[0,1] ∈ P2 × P2 connecting γ0 to γ1, we have for all s ∈ [0, 1]

d2

ds2
Ga(γs) ≥ λaW (γ0, γ1)

2 , λa := λ1 +min(λ2 + β, αλ̃) . (15)

As a result, the functional Ga : P × P → R is uniformly displacement convex with constant λa > 0.
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Proof. Let γ0 and γ1 be two probability measures with bounded second moments. Denote by ϕ, ψ : Rd → R
the optimal Kantorovich potentials pushing ρ0 onto ρ1, and µ0 onto µ1, respectively:

ρ1 = ∇ϕ#ρ0 such that W2(ρ0, ρ1)
2 =

∫
Rd

∥z −∇ϕ(z)∥2dρ0(z) ,

µ1 = ∇ψ#µ0 such that W2(µ0, µ1)
2 =

∫
Rd

∥x−∇ψ(x)∥2dµ0(x) .

The now classical results in [BB00] guarantee that there always exists convex functions ϕ, ψ that satisfy the
conditions above. Then the path (γs)s∈[0,1] = (ρs, µs)s∈[0,1] defined by

ρs = [(1− s) id+s∇zϕ]#ρ0 ,

µs = [(1− s) id+s∇xψ]#µ0

is a W -geodesic from γ0 to γ1.

The first derivative of V along geodesics in the Wasserstein metric is given by

d

ds
V(γs) =

d

ds

[∫∫
f1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) dρ0(z)dµ0(x)

+

∫
V ((1− s)x+ s∇ψ(x)) dµ0(x)

]
=

∫∫
∇xf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)∫∫
∇zf1((1− s)z + s∇ϕ(z), (1− s)x+ s∇ψ(x)) · (∇ϕ(z)− z) dρ0(z)dµ0(x)

+

∫
∇xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dµ0(x) ,

and taking another derivative we have

d2

ds2
V(γs) =−

∫∫ [
(∇ψ(x)− x)
(∇ϕ(z)− z)

]T

·Ds(z, x) ·
[
(∇ψ(x)− x)
(∇ϕ(z)− z)

]
dρ0(z)dµ0(x)

+

∫∫
(∇ψ(x)− x)T · ∇2

xV ((1− s)x+ s∇ψ(x)) · (∇ψ(x)− x) dρ0(z)dµ0(x)

≥ λ1W (γ0, γ1)
2 + (λ2 + β)W2(µ0, µ1)

2 ,

where we denoted Ds(z, x) := Hess(f1)((1 − s)z + s∇ϕ(z), (1 − s)x + s∇ψ(x)), and the last inequality
follows from Assumption 1 and the optimality of the potentials ϕ and ψ.

Following [CMV03; Vil03] and using Assumption 2, the second derivatives of the diffusion term and the
interaction term along geodesics are given by

d2

ds2
KL(ρs|ρ̃) ≥ αλ̃W2(ρ0, ρ1)

2 ,
d2

ds2
W(ρs) ≥ 0. (16)

Putting the above estimates together, we obtain (15).

Remark 5. Alternatively, one could assume strong convexity of W , which would improve the lower-bound on
the second derivative along geodesics.

Proposition 11. (Ground state) Let Assumptions 1-3 hold for α, β > 0. Then the functional Ga : P(Rd) ×
P(Rd) → [0,∞] admits a unique minimizer γ∗ = (ρ∗, µ∗), and it satisfies ρ∗ ∈ P2(Rd) ∩ L1(Rd), µ∗ ∈
P2(Rd), and ρ∗ is absolutely continuous with respect to ρ̃.

Proof. We show existence of a minimizer of Ga using the direct method in the calculus of variations. Denote by
γ = (ρ, µ) ∈ P×P ⊂ M×M a pair of probability measures as a point in the product space of Radon measures.
Since Ga ≥ 0 on P × P (see Assumption 1) and not identically +∞ everywhere, there exists a minimizing
sequence (γn) ∈ P × P . Note that (γn) is in the closed unit ball of the dual space of continuous functions
vanishing at infinity (C0(Rd) × C0(Rd))∗ endowed with the dual norm ∥γn∥∗ = sup

|
∫
fdρn+

∫
gdµn|

∥(f,g)∥∞
over

f, g ∈ C0(Rd) with ∥(f, g)∥∞ := ∥f∥∞ + ∥g∥∞ ̸= 0. By the Banach-Alaoglu theorem [Rud91, Thm 3.15]
there exists a limit γ∗ = (ρ∗, µ∗) ∈ M×M = (C0 × C0)

∗ and a convergent subsequence (not relabelled)
such that γn

∗
⇀ γ∗. In fact, since KL(ρ∗ | ρ̃) <∞ it follows that ρ∗ is absolutely continuous with respect to ρ̃,

implying ρ∗ ∈ L1(Rd) thanks to Assumption 2. Further, µ∗ has bounded second moment, else we would have
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infγ∈P×P Ga(γ) = ∞ which yields a contradiction. It remains to show that
∫
dρ∗ =

∫
dµ∗ = 1 to conclude

that γ∗ ∈ P × P . To this aim, it is sufficient to show tightness of (ρn) and (µn), preventing the escape of mass
to infinity as we have

∫
dρn =

∫
dµn = 1 for all n ≥ 1. Tightness follows from Markov’s inequality [Gho02]

if we can establish uniform bounds on the second moments, i.e. we want to show that there exists a constant
C > 0 independent of n such that∫

∥z∥2dρn(z) +
∫

∥x∥2dµn(x) < C ∀n ∈ N . (17)

To establish (17), observe that thanks to Assumption 2, there exists a constant c0 ∈ R (possibly negative) such
that − log ρ̃(z) ≥ c0 +

λ̃
4
∥z∥2 for all z ∈ Rd. Then

αλ̃

4

∫
∥z∥2dρn ≤ −αc0 − α

∫
log ρ̃(z)dρn

Therefore, using
∫
dρn =

∫
dµn = 1 and writing ζ := min{αλ̃

4
, β
2
} > 0, we obtain the desired uniform upper

bound on the second moments of the minimizing sequence,

ζ

∫∫ (
∥z∥2 + ∥x∥2

)
dρndµn ≤ −αc0 − α

∫
log ρ̃(z)dρn + β

∫
∥x− x0∥2dµn + β∥x0∥2

≤ −αc0 + β∥x0∥2 +Ga(γn)

≤ −αc0 + β∥x0∥2 +Ga(γ1) <∞ .

This concludes the proof that the limit γ∗ satisfies indeed γ∗ ∈ P×P , and indeed ρ∗ ∈ P2(Rd) as well. Finally,
γ∗ is indeed a minimizer of Ga thanks to weak-* lower-semicontinuity of Ga following Lemma 9.

Next we show uniqueness using a contradiction argument. Suppose γ∗ = (ρ∗, µ∗) and γ′
∗ = (ρ′∗, µ

′
∗) are

minimizers of Ga. For s ∈ [0, 1], define γs := ((1− s) id+sT, (1− s) id+sS)#γ∗, where T, S : Rd 7→ Rd

are the optimal transport maps such that ρ′∗ = T#ρ∗ and µ′
∗ = S#µ∗. By Proposition 10 the energy Ga is

uniformly displacement convex, and so we have

Ga(γs) ≤ (1− s)Ga(γ∗) + sGa(γ
′
∗) = Ga(γ∗).

If γ∗ ̸= γ′
∗ and s ∈ (0, 1), then strict inequality holds by applying similar arguments as in [McC97, Proposition

1.2]. However, the strict inequality Ga(γs) < Ga(γ∗) for γ∗ ̸= γ′
∗ is a contradiction to the minimality of γ∗.

Hence, the minimizer is unique.

Remark 6. If λ1 > 0, then the strict convexity of f1 can be used to deduce uniqueness, and the assumptions on
− log ρ̃ can be weakened from strict convexity to convexity.

Corollary 12. Let Assumptions 1-3 hold. Any minimizer γ∗ = (ρ∗, µ∗) of Ga is a steady state for equation (4)
according to Definition 8 and satisfies supp(ρ∗) = supp(ρ̃).

Proof. By Proposition 11, we have ρ∗, µ∗ ∈ P2, as well as ρ∗ ∈ L1
+, ∥ρ∗∥1 = 1, and that ρ∗ is absolutely

continuous with respect to ρ̃. Since W ∈ C2(Rd), it follows that ∇W ∗ ρ∗ ∈ L1
loc. In order to show that γ∗ is a

steady state for equation (4), it remains to prove that ρ∗ ∈W 1,2
loc ∩ L∞

loc. As γ∗ is a minimizer, it is in particular
a critical point, and therefore satisfies equations (14). Rearranging, we obtain (for a possible different constant
c1[ρ∗, µ∗] ̸= 0) from (14a) that

ρ∗(z) = c1[ρ∗, µ∗]ρ̃(z) exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
on supp(ρ∗) . (18)

Then for any compact set K ⊂ Rd,

sup
z∈K

ρ∗(z) ≤ c1[ρ∗, µ∗] sup
z∈K

ρ̃(z) sup
z∈K

exp

(
− 1

α

(∫
f1(z, x)µ∗(x)

))
sup
z∈K

exp

(
− 1

α
W ∗ ρ∗

)
.

As f1 ≥ 0 by Assumption 1 and W ≥ 0 by Assumption 3, the last two terms are finite. The first supremum
is finite thanks to continuity of ρ̃. Therefore ρ∗ ∈ L∞

loc. To show that ρ∗ ∈ W 1,2
loc , note that for any compact

set K ⊂ Rd, we have
∫
K
|ρ∗(z)|2dz < ∞ as a consequence of ρ∗ ∈ L∞

loc. Moreover, defining T [γ](z) :=

− 1
α

(∫
f1(z, x)µ(x) +W ∗ ρ(z)

)
≤ 0, we have∫

K

|∇ρ∗|2dz = c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃+ ρ̃∇T [γ∗]|2 exp(2T [γ∗])dz

≤ 2c1[ρ∗, µ∗]
2

∫
K

|∇ρ̃|2 exp(2T [γ∗])dz + 2c1[ρ∗, µ∗]
2

∫
K

|∇T [γ∗]|2ρ̃2 exp(2T [γ∗])dz ,
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which is bounded noting that exp(2T [γ∗]) ≤ 1 and that T [γ∗](·), ∇T [γ∗](·) and ∇ρ̃ are in L∞
loc, where we used

that f1, (·, x),W (·), ρ̃(·) ∈ C1(Rd) by Assumptions 1-3. We conclude that ρ∗ ∈ W 1,2
loc , and indeed (ρ∗, µ∗)

solves (12) in the sense of distributions as a consequence of (14).

Next, we show that supp(ρ∗) = supp(ρ̃) using again the relation (18). Firstly, note that
supp(ρ∗) ⊂ supp(ρ̃) since ρ∗ is absolutely continuous with respect to ρ̃. Secondly, we claim that
exp

[
− 1

α

(∫
f1(z, x)µ∗(x) +W ∗ ρ∗(z)

)]
> 0 for all z ∈ Rd. In other words, we claim that∫

f1(z, x)µ∗(x) < ∞ and W ∗ ρ∗(z) < ∞ for all z ∈ Rd. Indeed, for the first term, fix any z ∈ Rd

and choose R > 0 large enough such that z ∈ BR(0). Then, thanks to continuity of f1 according to Assump-
tion 1, we have ∫

f1(z, x)µ∗(x) ≤ sup
z∈BR(0)

∫
f1(z, x)µ∗(x) <∞ .

For the second term, note that by Assumption 3, we have for any z ∈ Rd and ϵ > 0,

W (z) ≤W (0) +∇W (z) · z ≤W (0) +
1

2ϵ
∥∇W (z)∥2 + ϵ

2
∥z∥2

≤W (0) +
D2

2ϵ
(1 + ∥z∥)2 + ϵ

2
∥z∥2 ≤W (0) +

D2

ϵ
+

(
D2

ϵ
+
ϵ

2

)
∥z∥2

=W (0) +
D√
2
+

√
2D∥z∥2 ,

where the last equality follows by choosing the optimal ϵ =
√
2D. We conclude that

W ∗ ρ∗(z) ≤W (0) +
D√
2
+

√
2D

∫
∥z − z̃∥2 ρ∗(z̃)

≤W (0) +
D√
2
+ 2

√
2D∥z∥2 + 2

√
2D

∫
∥z̃∥2 ρ∗(z̃) , (19)

which is finite for any fixed z ∈ Rd thanks to the fact that ρ∗ ∈ P2(Rd). Hence, supp(ρ∗) = supp(ρ̃).

Remark 7. If we have in addition that ρ̃ ∈ L∞(Rd), then the minimizer ρ∗ of Ga is in L∞(Rd) as well. This
follows directly by bounding the right-hand side of (18).

The following inequality is referred to as HWI inequality and represents the key result to obtain convergence to
equilibrium.

Proposition 13 (HWI inequality). Define the dissipation functional

Da(γ) :=

∫∫
|∇x,zδγGa(z, x)|2dγ(z, x) .

Assume α, β > 0 and let λa as defined in (15). Let γ0, γ1 ∈ P2 ×P2 such that Ga(γ0), Ga(γ1), Da(γ0) <∞.
Then

Ga(γ0)−Ga(γ1) ≤W (γ0, γ1)
√
Da(γ0)−

λa

2
W (γ0, γ1)

2 (20)

Proof. For simplicity, consider γ0, γ1 that have smooth Lebesgue densities of compact support. The general
case can be recovered using approximation arguments. Let (γs)s∈[0,1] denote a W -geodesic between γ0, γ1.
Following similar arguments as in [CMV03] and [OV00, Section 5] and making use of the calculations in the
proof of Proposition 10, we have

d

ds
Ga(γs)

∣∣∣∣
s=0

≥
∫∫ [

ξ1(z)
ξ2(x)

]
·
[
(∇ϕ(z)− z)
(∇ψ(x)− x)

]
dγ0(z, x) ,

where

ξ1[γ0](z) := α∇z log

(
ρ0(z)

ρ̃(z)

)
+

∫
∇zf1(z, x)dµ0(x) +

∫
∇zW (z − z′)dρ0(z

′) ,

ξ2[γ0](x) :=

∫
∇xf1(z, x)dρ0(z) +∇xV (x) .

Note that the dissipation functional can then be written as

Da(γ0) =

∫∫ (
|ξ1(z)|2 + |ξ2(x)|2

)
dγ0(z, x) .
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Using the double integral Cauchy-Schwarz inequality [Ste04], we obtain

d

ds
Ga(γs)

∣∣∣∣
s=0

≥ −

√∫∫ ∥∥∥∥[ξ1ξ2
]∥∥∥∥2

2

dγ0

√∫∫ ∥∥∥∥[∇ϕ(z)− z
∇ψ(x)− x

]∥∥∥∥2

2

dγ0


= −

√
Da(γ0)

√∫
∥∇ϕ(z)− z∥2dρ0 +

∫
∥∇ψ(x)− x∥2dµ0

= −
√
Da(γ0)W (γ0, γ1) .

Next, we compute a Taylor expansion of Ga(γs) when considered as a function in s and use the bound on
d2

ds2
Ga from (15):

Ga(γ1) = Ga(γ0) +
d

ds
Ga(γs)

∣∣∣∣
s=0

+

∫ 1

0

(1− t)

(
d2

ds2
Ga(γs)

)∣∣∣∣
s=t

dt

≥ Ga(γ0)−
√
Da(γ0)W (γ0, γ1) +

λa

2
W (γ0, γ1)

2 .

Remark 8. The HWI inequality in Proposition 13 immediately implies uniqueness of minimizers for Ga in the
set {γ ∈ P × P : Da(γ) < +∞}. Indeed, if γ0 is such that Da(γ0) = 0, then for any other γ1 in the above
set we have Ga(γ0) ≤ Ga(γ1) with equality if and only if W (γ0, γ1) = 0.
Corollary 14 (Generalized Log-Sobolev inequality). Denote by γ∗ the unique minimizer of Ga. With λa as
defined in (15), any product measure γ ∈ P2 × P2 such that G(γ), Da(γ) <∞ satisfies

Da(γ) ≥ 2λaGa(γ|γ∗) . (21)

Proof. This statement follows immediately from Proposition 13. Indeed, let γ1 = γ∗ and γ0 = γ in (20). Then

Ga(γ | γ∗) ≤W (γ, γ∗)
√
Da(γ)−

λa

2
W (γ, γ∗)

2

≤ max
t≥0

(√
Da(γ)t−

λa

2
t2
)

=
Da(γ)

2λa
.

Corollary 15 (Talagrand inequality). Denote by γ∗ the unique minimizer of Ga. With λa as defined in (15), it
holds

W (γ, γ∗)
2 ≤ 2

λa
Ga(γ | γ∗)

for any γ ∈ P2 × P2 such that Ga(γ) <∞.

Proof. This is also a direct consequence of Proposition 13 by setting γ0 = γ∗ and γ1 = γ. Then Ga(γ∗) <∞
and Da(γ∗) = 0, and the result follows.

Proof of Theorem 2. The entropy term
∫
ρ log ρ produces diffusion in ρ for the corresponding PDE in (4). As a

consequence, solutions ρt to (4) and minimizers ρ∗ for Ga have to be L1 functions. As there is no diffusion for
the evolution of µt, solutions may have a singular part. In fact, for initial condition µ0 = δx0 , the corresponding
solution will be of the form µt = δx(t), where x(t) solves the ODE (3) with initial condition x0. This follows
from the fact that the evolution for µt is a transport equation (also see Section A.1 for more details). Results (a)
and (b) are the statements in Proposition 11, Corollary 12 and Corollary 15. To obtain (c), we differentiate the
energy Ga along solutions γt to the equation (4):

d

dt
Ga(γt) =

∫
δρGa[γt](z)∂tρtdz +

∫
δµGa[γt](x)∂tµtdx

= −
∫

∥∇zδρGa[γt](z)∥2 dρt(z)−
∫

∥∇xδµGa[γt](x)∥2 dµt(x)

= −Da(γt) ≤ −2λaGa(γt | γ∗) ,
where the last bound follows from Corollary 14. Applying Gronwall’s inequality, we immediately obtain decay
in energy,

Ga(γt | γ∗) ≤ e−2λatGa(γ0 | γ∗) .
Finally, applying Talagrand’s inequality (Corollary 15), the decay in energy implies decay in the product
Wasserstein metric,

W (γt, γ∗) ≤ ce−λat

where c > 0 is a constant only depending on γ0, γ∗ and the parameter λa.
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C Proof of Theorem 3

In the case of competing objectives, we rewrite the energy Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] as follows:

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 − P (ρ) ,

where

P (ρ) := αKL(ρ|ρ̃) + 1

2

∫
ρW ∗ ρ .

Note that for any fixed ρ ∈ P , the energy Gc(ρ, ·) is strictly convex in x, and therefore has a unique minimizer.
Define the best response by

b(ρ) := argmin
x̄

Gc(ρ, x̄)

and denote Gb(ρ) := Gc(ρ, b(ρ)). We begin with auxiliary results computing the first variations of the best
response b and then the different terms in Gb(ρ) using Definition 1.
Lemma 16 (First variation of the best response). The first variation of the best response of the classifier at ρ (if
it exists) is

δρb[ρ](z) = −Q(ρ)−1∇xf1(z, b(ρ)) for almost every z ∈ Rd ,

where Q(ρ) ⪰ (β + λ1 + λ2) Id is a symmetric matrix, constant in z and x, defined as

Q(ρ) := β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z) .

In particular, we then have for any ψ ∈ C∞
c (Rd) with

∫
ψ dz = 0 that

lim
ϵ→0

1

ϵ

∥∥∥∥b[ρ+ ϵψ]− b[ρ]− ϵ

∫
δρb[ρ](z)ψ(z)dz

∥∥∥∥ = 0 .

Proof. Let ψ ∈ C∞
c (Rd) with

∫
ψ dz = 0 and fix ϵ > 0. Any minimizer of Gc(ρ + ϵψ, x) for fixed ρ must

satisfy
∇xGc(ρ+ ϵψ, b(ρ+ ϵψ)) = 0 .

Differentiating in ϵ, we obtain∫
δρ∇xGc[ρ+ ϵψ, b(ρ+ ϵψ)]ψ(z) dz +∇2

xGc(ρ+ ϵψ, b(ρ+ ϵψ))

∫
δρb[ρ+ ϵψ](z)ψ(z) dz = 0 . (22)

Next, we explicitly compute all terms involved in (22). Computing the derivatives yields

∇xGc(ρ, x) =

∫
∇xf1(z, x)dρ(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

δρ∇xGc[ρ, x](z) = ∇xf1(z, x)

∇2
xGc(ρ, x) =

∫
∇2

xf1(z, x)dρ(z) +

∫
∇2

xf2(z, x)dρ̄(z) + β Id .

Note that ∇2
xGc is invertible by Assumption 1, which states that f1 and f2 have positive-definite Hessians.

Inverting this term and substituting these expressions into (22) for ϵ = 0 gives∫
δρb[ρ](z)ψ(z) dz = −

[
β Id +

∫
∇2

xf1(z, b(ρ))dρ(z) +

∫
∇2

xf2(z, b(ρ))dρ̄(z)

]−1 ∫
∇xf1(z, b(ρ))ψ(z) dz

= −
∫
Q(ρ)−1∇xf1(z, b(ρ))ψ(z) dz .

Finally, the lower bound on Q(ρ) follows thanks to Assumption 1.

Remark 9. If we include the additional assumption that fi ∈ C3(Rd × Rd; [0,∞)) for i = 1, 2, then the
Hessian of b[ρ] is well-defined. More precisely, the Hessian is given by

d2

dϵ2
b[ρ+ ϵψ]|ϵ=0 = Q(ρ)−1

(
d

dϵ
Q(ρ+ ϵψ)|ϵ=0 +

∫
∇2

xf1(z, b[ρ])ψ(z)dz

)
Q(ρ)−1u[ρ, ψ]

where u[ρ, ψ] =
∫
∇xf1(z, b[ρ])ψ(z)dz and

d

dϵ
Qij(ρ+ ϵψ)|ϵ=0 =

∫
∂xi∂xjf1(z, b[ρ])ψ(z)dz −

∫
∂xi∂xj∇xf1(z, b[ρ])ψ(z)ρ(z)dz Q(ρ)−1u[ρ, ψ]

−
∫
∂xi∂xj∇xf2(z, b[ρ])ψ(z)ρ̄(z)dz Q(ρ)−1u[ρ, ψ].

Therefore, we can Taylor expand b[ρ] up to second order and control the remainder term of order ϵ2.
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Lemma 17 (First variation of Gb). The first variation of Gb is given by

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z) ,

where

h1(z) :=
δ

δρ

(∫
f1(z̃, b(ρ))dρ(z̃)

)
(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) ,

h2(z) :=
δ

δρ

(∫
f2(z̃, b(ρ))dρ̄(z̃)

)
(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
,

h3(z) :=
1

2

δ

δρ
∥b(ρ)− x0∥2 =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
,

and

δρP [ρ](z) = α log(ρ(z)/ρ̃(z)) + (W ∗ ρ)(z) .

Proof. We begin with general expressions for Taylor expansions of b : P(Rd) → Rd and fi(z, b(·)) : P(Rd) →
R for i = 1, 2 around ρ. Let ψ ∈ T with T = {ψ :

∫
ψ(z)dz = 0}. Then

b(ρ+ ϵψ) = b(ρ) + ϵ

∫
δb

δρ
[ρ](z′)ψ(z′)dz′ +O(ϵ2) (23)

and

fi(z, b(ρ+ ϵψ)) = fi(z, b(ρ)) + ϵ

〈
∇xfi(z, b(ρ)),

∫
δb

δρ
[ρ](z′)ψ(z′)dz′

〉
+O(ϵ2) . (24)

We compute explicitly each of the first variations:

(i) Using (24), we have∫
ψ(z)h1(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f1(z, b(ρ+ ϵψ))(ρ(z) + ϵψ(z))dz −

∫
f1(z, b(ρ))ρ(z)dz

]
=

〈∫
∇xf1(z, b(ρ))dρ(z),

∫
δb(ρ)

δρ
[ρ](z′)ψ(z′)dz′

〉
+

∫
f1(z, b(ρ))ψ(z)dz

=

∫ 〈∫
∇xf1(z, b(ρ))dρ(z),

δb(ρ)

δρ
[ρ](z′)

〉
ψ(z′)dz′ +

∫
f1(z, b(ρ))ψ(z)dz

⇒ h1(z) =

〈∫
∇xf1(z̃, b(ρ))dρ(z̃),

δb

δρ
[ρ](z)

〉
+ f1(z, b(ρ)) .

(ii) Similarly, using again (24),∫
ψ(z)h2(z)dz = lim

ϵ→0

1

ϵ

[ ∫
f2(z, b(ρ+ ϵψ))dρ̄(z)−

∫
f2(z, b(ρ))ρ̄(z)dz

]
=

∫ 〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h2(z) =

〈∫
∇xf2(z̃, b(ρ))dρ̄(z̃),

δb

δρ
[ρ](z)

〉
.

(iii) Finally, from (23) it follows that∫
ψ(z)h3(z)dz = lim

ϵ→0

1

2ϵ

[
⟨b(ρ+ ϵψ)− x0, b(ρ+ ϵψ)− x0⟩ − ⟨b(ρ)− x0, b(ρ)− x0⟩

]
=

∫ 〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
ψ(z)dz

⇒ h3(z) =

〈
b(ρ)− x0,

δb

δρ
[ρ](z)

〉
.

Finally, the expression for δρP [ρ] follows by direct computation

Lemma 18. Denote Gb(ρ) := Gc(ρ, b(ρ)) with b(ρ) given by (5). Then δρGb[ρ] = δρGc[ρ]|x=b(ρ).
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Proof. We start by computing δρGc(·, x)[ρ](z) for any z, x ∈ Rd:

δρGc(·, x)[ρ](z) = f1(z, x)− δρP [ρ](z). (25)

Next, we compute δρGb. Using Lemma 17, the first variation of Gb is given by

δρGb[ρ](z) = h1(z) + h2(z) + βh3(z)− δρP [ρ](z)

= −
〈[∫

∇xf1(z̃, b(ρ))dρ(z̃) +

∫
∇xf2(z̃, b(ρ))dρ̄(z̃) + β(b(ρ)− x0)

]
, δρb[ρ](z)

〉
+ f1(z, b(ρ))− δρP [ρ](z) .

Note that

∇xGc(ρ, x) =

∫
∇xf1(z̃, x)dρ(z̃) +

∫
∇xf2(z̃, x)dρ̄(z̃) + β(x− x0) , (26)

and by the definition of the best response b(ρ), we have ∇xGx(ρ, x)|x=b(ρ) = 0. Substituting into the expression
for δρGb and using (25), we obtain

δρGb[ρ](z) = f1(z, b(ρ))− δρP [ρ](z) = δρGc(·, x)[ρ](z)
∣∣∣∣
x=b(ρ)

.

This concludes the proof.

Lemma 19 (Uniform boundedness of the best response). Let Assumption 1 hold. Then for any ρ ∈ P(Rd), we
have

∥b(ρ)∥2 ≤ ∥x0∥2 +
2(a1 + a2)

β
.

Proof. By definition of the best response b(ρ), we have∫
∇xf1(z, b(ρ))dρt +

∫
∇xf2(z, b(ρ))dρ̄(z) + β(b(ρ)− x0) = 0 .

To show that that b(ρ) is uniformly bounded, we take the inner product of the above expression with b(ρ) itself

β∥b(ρ)∥2 = βx0 · b(ρ)−
∫

∇xf1(z, b(ρ)) · b(ρ)dρ(z)−
∫

∇xf2(z, b(ρ)) · b(ρ)dρ̄(z) .

Using Assumption 1 to bound the two integrals, together with using Young’s inequality to bound the first term
on the right-hand side, we obtain

β∥b(ρ)∥2 ≤ β

2
∥x0∥2 +

β

2
∥b(ρ)∥+ a1 + a2 ,

which concludes the proof after rearranging terms.

Lemma 20 (Upper semi-continuity). Let Assumptions 1-3 hold. The functionalGc : P(Rd)×Rd → [−∞,+∞]
is upper semi-continuous when P(Rd)× Rd is endowed with the product topology of the weak-∗ topology and
the Euclidean topology. Moreover, the functional Gb : P(Rd) → [−∞,+∞] is upper semi-continuous with
respect to the weak-∗ topology.

Proof. The functional Gc : P(Rd) × Rd → [−∞,+∞] is continuous in the second variable thanks to
Assumption 1. Similarly,

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) is continuous in ρ thanks to [San15, Proposition

7.1] using the continuity of f1 and f2. Further, −P is upper semi-continuous using [Pos75] and [San15,
Proposition 7.2] thanks to Assumptions 2 and 3. This concludes the continuity properties for Gc.

The upper semi-continuity of Gb then follows from a direct application of a version of Berge’s maximum
theorem [AB06, Lemma 16.30]. Let R := ∥x0∥2 + 2(a1+a2)

β
> 0. We define φ : (P(Rd),W2) ↠ Rd

as the correspondence that maps any ρ ∈ P(Rd) to the closed ball BR(0) ⊂ Rd. Then the graph of φ is
Grφ = P(Rd)×{BR(0)}. With this definition of φ, the range of φ is compact and φ is continuous with respect
to weak-∗ convergence, and so it is in particular upper hemicontinuous. Thanks to Lemma 19, the best response
function b(ρ) is always contained in BR(0) for any choice of ρ ∈ P(Rd). As a result, maximizing −Gc(ρ, x)

in x over Rd for a fixed ρ ∈ P(Rd) reduces to maximizing it over BR(0). Using the notation introduced above,
we can restrict Gc to Gc : Grφ→ R and write

Gb(ρ) := max
x̂∈φ(ρ)

−Gc(ρ, x̂).

BecauseGc(ρ, x) is upper semi-continuous when P(R2)×Rd is endowed with the product topology of the weak-
∗ topology and the Euclidean topology, [AB06, Lemma 16.30] guarantees that Gb(·) is upper semi-continuous
in the weak-∗ topology.
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Proposition 21. Let α, β > 0 and assume Assumptions 1-4 hold with the parameters satisfying αλ̃ > Λ1. Fix
ρ0, ρ1 ∈ P(Rd). Along any geodesic (ρs)s∈[0,1] ∈ P2(Rd) connecting ρ0 to ρ1, we have for all s ∈ [0, 1]

d2

ds2
Gb(ρs) ≤ −λbW1(ρ0, ρ1)

2 , λb := αλ̃− Λ1, . (27)

As a result, the functional Gb : P2(Rd) → [−∞,+∞] is uniformly displacement concave with constant λb > 0.

Proof. Consider any ρ0, ρ1 ∈ P2(Rd). Then any W2-geodesic (ρs)s∈[0,1] connecting ρ0 with ρ1 solves the
following system of geodesic equations:{

∂sρs + div (ρsvs) = 0 ,

∂s(ρsvs) + div (ρsvs ⊗ vs) = 0 ,
(28)

where ρs : Rd → R and vs : Rd 7→ Rd . The first derivative of Gb along geodesics can be computed explicitly
as

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs)

+

〈[∫
∇xf1(z, x)dρs(z) +

∫
∇xf2(z, x)dρ̄(z) + β(x− x0)

]∣∣∣∣
x=b(ρs)

,
d

ds
b(ρs)

〉
.

The left-hand side of the inner product is zero by definition of the best response b(ρs) to ρs, see (26). Therefore

d

ds
Gb(ρs) =

∫
∇zf1(z, b(ρs)) · vs(z)ρs(z)dz −

d

ds
P (ρs) .

Differentiating a second time, using (28) and integration by parts, we obtain

d2

ds2
Gb(ρs) = L1(ρs) + L2(ρs)−

d2

ds2
P (ρs) ,

where

L1(ρs) :=

∫
∇2

zf1(z, b(ρs)) · (vs ⊗ vs) ρsdz =

∫ 〈
vs, ∇2

zf1(z, b(ρs)) · vs
〉
ρsdz ,

L2(ρs) :=

∫
d

ds
b(ρs) · ∇x∇zf1(z, b(ρs)) · vs(z) ρs(z)dz .

From (16), we have that
d2

ds2
P̃ (ρs) ≥ αλ̃W2(ρ0, ρ1)

2 ,

and thanks to Assumption 4 it follows that

L1(s) ≤ Λ1W2(ρ0, ρ1)
2.

This leaves L2 to bound; we first consider the term d
ds
b(ρs):

d

ds
b(ρs) =

∫
δρb[ρs](z̃)∂sρs(dz̃) = −

∫
δρb[ρs](z̃)div (ρsvs) dz̃

=

∫
∇zδρb[ρs](z̃) · vs(z̃)dρs(z̃).

Defining u(ρs) ∈ Rd by

u(ρs) :=

∫
∇x∇zf1(z, b(ρs)) · vs(z)dρs(z) ,

using the results from Lemma 16 for ∇zδρb[ρs], Assumption 1 and the fact that Q(ρ) is constant in z and x, we
have

L2(ρs) = −
∫∫ [

Q(ρs)
−1∇x∇zf1(z̃, b(ρs)) · vs(z̃)

]
· ∇x∇zf1(z, b(ρs)) · vs(z) dρs(z)dρs(z̃)

= −
〈
u(ρs), Q(ρs)

−1u(ρs)
〉
≤ 0

Combining all terms together, we obtain

d2

ds2
Gb(ρs) ≤ −

(
αλ̃− Λ1

)
W2(ρ0, ρ1)

2 .

27



Remark 10. Under some additional assumptions on the functions f1 and f2, we can obtain an improved
convergence rate. In particular, assume that for all z, x ∈ Rd,

• there exists a constant Λ2 ≥ λ2 ≥ 0 such that ∇2
xf2(z, x) ⪯ Λ2 Id;

• there exists a constant σ ≥ 0 such that ∥∇x∇zf1(z, x)∥ ≥ σ.

Then we have −Q(ρs)
−1 ⪯ −1/(β + Λ1 + Λ2) Id. Using Lemma 16, we then obtain a stronger bound on L2

as follows:

L2(ρs) ≤ − 1

β + Λ1 + Λ2
∥u(ρs)∥2 ≤ − 1

β + Λ1 + Λ2

∫
∥∇x∇zf1(z, b(ρs))∥2 dρs(z)

∫
∥vs(z)∥2 dρs(z)

≤ − σ2

β + Λ1 + Λ2
W2(ρ0, ρ1)

2.

This means we can improve the convergence rate in (27) to λb := αλ̃+ σ2

β+Λ1+Λ2
− Λ1.

Proposition 22 (Ground state). Let Assumptions 1-4 hold for αλ̃ > Λ1 ≥ 0 and β > 0. Then there exists
a unique maximizer ρ∗ for the functional Gb over P(Rd), and it satisfies ρ∗ ∈ P2(Rd) ∩ L1(Rd) and ρ∗ is
absolutely continuous with respect to ρ̃.

Proof. Uniqueness of the maximizer (if it exists) is guaranteed by the uniform concavity provided by Lemma 21.
To show existence of a maximizer, we use the direct method in the calculus of variations, requiring the
following key properties for Gb: (1) boundedness from above, (2) upper semi-continuity, and (3) tightness
of any minimizing sequence. To show (1), note that ∇2

z(f1(z, x) + α log ρ̃(z)) ⪯ −(αλ̃ − Λ1) Id for all
z, x ∈ Rd × Rd by Assumptions 2 and 4, and so

f1(z, x) + α log ρ̃(z) ≤ c0(x)−
(αλ̃− Λ1)

4
|z|2 ∀(z, x) ∈ Rd × Rd (29)

with c0(x) := f1(0, x) + α log ρ̃(0) + 1

αλ̃−Λ1
∥∇z [f1(0, x) + α log ρ̃(0)] ∥2. Therefore,

Gb(ρ) =

∫
[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2

− α

∫
ρ log ρ−

∫
ρW ∗ ρ

≤ c0(b(ρ)) +

∫
f2(z, b(ρ))dρ̄(z) +

β

2
∥b(ρ)− x0∥2 .

To estimate each of the remaining terms on the right-hand side, denote R := ∥x0∥2 + 2(a1+a2)
β

and recall that
∥b(ρ)∥ ≤ R for any ρ ∈ P(Rd) thanks to Lemma 19. By continuity of f1 and log ρ̃, there exists a constant
c1 ∈ R such that

sup
x∈BR(0)

c0(x) = sup
x∈BR(0)

[
f1(0, x) + α log ρ̃(0) +

1

αλ̃− Λ1

∥∇z (f1(0, x) + α log ρ̃(0))∥2
]
≤ c1 . (30)

The second term is controlled by c2 thanks to Assumption 4. And the third term can be bounded directly to
obtain

Gb(ρ) ≤ c1 + c2 + β(R2 + ∥x0∥2) .

This concludes the proof of (1). Statement (2) was shown in Lemma 20. Then we obtain a minimizing sequence
(ρn) ∈ P(Rd) which is in the closed unit ball ofC0(Rd)∗ and so the Banach-Anaoglu theorem [Rud91, Theorem
3.15] there exists a limit ρ∗ in the Radon measures and a subsequence (not relabeled) such that ρn

∗
⇀ ρ∗. In fact,

ρ∗ is absolutely continuous with respect to ρ̃ as otherwise Gb(ρ∗) = −∞, which contradicts that Gb(·) > −∞
somewhere. We conclude that ρ∗ ∈ L1(Rd) since ρ̃ ∈ L1(Rd) by Assumption 2. To ensure ρ∗ ∈ P(Rd),
we require (3) tightness of the minimizing sequence (ρn). By Markov’s inequality [Gho02] it is sufficient to
establish a uniform bound on the second moments:∫

∥z∥2dρn(z) < C ∀n ∈ N . (31)

To see this we proceed in a similar way as in the proof of Proposition 10. Defining

K(ρ) := −
∫

[f1(z, b(ρ)) + α log ρ̃(z)] dρ(z) + α

∫
ρ log ρ dz +

1

2

∫
ρW ∗ ρ dz ,
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we have K(ρ) = −Gb(ρ) +
∫
f2(z, b(ρ))dρ̄(z) +

β
2
∥b(ρ)− x0∥2. Then using again the bound on b(ρ) from

Lemma 19,

K(ρ) ≤ −Gb(ρ) + sup
x∈BR(0)

∫
f2(z, x)dρ̄(z) + β

(
R2 + ∥x0∥2

)
≤ −Gb(ρ) + c2 + β

(
R2 + ∥x0∥2

)
,

where the last inequality is thanks to Assumption 4. Hence, using the estimates (29) and (30) from above, and
noting that the sequence (ρn) is minimizing (−Gb), we have

(αλ̃− Λ1)

4

∫
∥z∥2 dρn(z) ≤ c0(b(ρn))−

∫
[f1(z, b(ρn)) + α log ρ̃(z)] dρn(z)

≤ c1 +K(ρn) ≤ c1 −Gb(ρn) + c2 + β
(
R2 + ∥x0∥2

)
≤ c1 −Gb(ρ1) + c2 + β

(
R2 + ∥x0∥2

)
<∞ .

which uniformly bounds the second moments of (ρn). This concludes the proof for the estimate (31) and also
ensures that ρ∗ ∈ P2(Rd).

Corollary 23. Any maximizer ρ∗ of Gb is a steady state for equation (5) according to Definition 9, and satisfies
supp(ρ∗) = supp(ρ̃).

Proof. To show that ρ∗ is a steady state we can follow exactly the same argument as in the proof of Corollary 12,
just replacing − 1

α

∫
f1(z, x)µ∗(x) with + 1

α

∫
f1(z, b(ρ∗). It remains to show that supp(ρ∗) = supp(ρ̃). As

ρ∗ is a maximizer, it is in particular a critical point, and therefore satisfies that δρGb[ρ∗](z) is constant on all
connected components of supp(ρ∗). Thanks to Lemma 18, this means there exists a constant c[ρ∗] (which may
be different on different components of supp(ρ∗)) such that

f1(z, b(ρ∗))− α log

(
ρ∗(z)

ρ̃(z)

)
−W ∗ ρ∗(z) = c[ρ∗] on supp(ρ∗) .

Rearranging, we obtain (for a possible different constant c[ρ∗] ̸= 0)

ρ∗(z) = c[ρ∗]ρ̃(z) exp

[
1

α
(f1(z, b(ρ∗))−W ∗ ρ∗(z))

]
on supp(ρ∗) . (32)

Firstly, note that supp(ρ∗) ⊂ supp(ρ̃) since ρ∗ is absolutely continuous with respect to ρ̃. Secondly, note that
exp 1

α
f1(z, b(ρ∗)) ≥ 1 for all z ∈ Rd since f1 ≥ 0. Finally, we claim that exp

(
− 1

α
W ∗ ρ∗(z)

)
> 0 for all

z ∈ Rd. In other words, we claim that W ∗ ρ∗(z) < ∞ for all z ∈ Rd. This follows by exactly the same
argument as in Corollary 12, see equation (19). We conclude that supp(ρ∗) = supp(ρ̃).

Remark 11. If we have in addition that ρ̃ ∈ L∞(Rd) and f1(·, x) ∈ L∞(Rd) for all x ∈ Rd, then the
maximizer ρ∗ of Gb is in L∞(Rd) as well. This follows directly by bounding the right-hand side of (32).

With the above preliminary results, we can now show the HWI inequality, which implies again a Talagrand-type
inequality and a generalized logarithmic Sobolev inequality.

Proposition 24 (HWI inequalities). Define the dissipation functional

Db(γ) :=

∫∫
|∇zδρGb[ρ](z)|2dρ(z) .

Assume α, β > 0 such that αλ̃ > Λ1 + σ2, and let λb as defined in (27). Denote by ρ∗ the unique maximizer of
Gb.

(HWI) Let ρ0, ρ1 ∈ P2(Rd) such that Gb(ρ0), Gb(ρ1), Db(ρ0) <∞. Then

Gb(ρ0)−Gb(ρ1) ≤W (ρ0, ρ1)
√
Db(ρ0)−

λb

2
W2(ρ0, ρ1)

2 (33)

(logSobolev) Any ρ ∈ P2(Rd) such that G(ρ), Db(ρ) <∞ satisfies

Db(ρ) ≥ 2λbGa(ρ|ρ∗) . (34)

(Talagrand) For any ρ ∈ P2(Rd) such that Gb(ρ) <∞, we have

W2(ρ, ρ∗)
2 ≤ 2

λb
Gb(ρ | ρ∗) . (35)
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Proof. The proof for this result follows analogously to the arguments presented in the proofs of Proposition 13,
Corollary 14 and Corollary 15, using the preliminary results established in Proposition 21 and Proposition 22.

Proof of Theorem 3. Following the same approach as in the proof of Theorem 2, the results in Theorem 3
immediately follow by combining Proposition 22, Corollary 23 and Proposition 24 applied to solutions of the
PDE (5).

D Proof of Theorem 4

The proof for this theorem uses similar strategies as that of Theorem 3, but considers the evolution of an ODE
rather than a PDE. Recall that for any x ∈ Rd the best response r(x)(·) ∈ P(Rd) in (6) is defined as

r(x) := argmax
ρ̂∈P

Gc(ρ̂, x) ,

where the energy Gc(ρ, x) : P(Rd)× Rd 7→ [−∞,∞] is given by

Gc(ρ, x) =

∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2 − αKL(ρ|ρ̃)− 1

2

∫
ρW ∗ ρ .

Lemma 25. Let Assumptions 2- 4 hold and assume αλ̃ > Λ1. Then for each x ∈ Rd there exists a unique
maximizer ρ∗ := r(x) solving argmaxρ̂∈P2

Gc(ρ̂, x). Further, r(x) ∈ L1(Rd), supp(r(x)) = supp(ρ̃), and
there exists a function c : Rd 7→ R such that the best response ρ∗(z) = r(x)(z) solves the Euler-Lagrange
equation

δρGc[ρ∗, x](z) := α log ρ∗(z)−(f1(z, x)+α log ρ̃(z))+(W ∗ρ∗)(z) = c(x) for all (z, x) ∈ supp(ρ̃)×Rd .
(36)

Proof. Equivalently, consider the minimization problem for F (ρ) = −
∫
f1(z, x) dρ(z) + αKL(ρ | ρ̃) +

1
2

∫
ρW ∗ ρ with some fixed x. Note that we can rewrite F (ρ) as

F (ρ) = α

∫
ρ log ρ dz +

∫
V (z, x)dρ(z) +

1

2

∫
ρW ∗ ρ

where V (z, x) := −(f1(z, x)+α log ρ̃(z)) is strictly convex in z for fixed x by Assumptions 2 and 4. Together
with Assumption 3, we can directly apply the uniqueness and existence result from [CMV03, Theorem 2.1 (i)].

The result on the support of r(x) and the expression for the Euler-Lagrange equation follows by exactly the
same arguments as in Corollary 12 and Corollary 23.

Lemma 26. The density of the best response r(x) is continuous on Rd for any fixed x ∈ Rd.

Proof. Instead of solving the Euler-Lagrange equation (36), we can also obtain the best response r(x) as the
long-time asymptotics for the following gradient flow:

∂tρ = div (ρ∇δρF [ρ]) . (37)

Following Definitions 8 and 9, we can characterize the steady states ρ∞ of the PDE (37) by requiring that
ρ∞ ∈ L1

+(Rd) ∩ L∞
loc(Rd) with ∥ρ∞∥1 = 1 such that ρ∞ ∈ W 1,2

loc (R
d), ∇W ∗ ρ∞ ∈ L1

loc(Rd), ρ∞ is
absolutely continuous with respect to ρ̃, and ρ∞ satisfies

∇z

(
−f1(z, x) + α log

(
ρ∞(z)

ρ̃(z)

)
+W ∗ ρ∞(z)

)
= 0 ∀z ∈ Rd , (38)

in the sense of distributions. Noting that because the energy functional F (ρ) differs from Ga(ρ, µ) only in the
sign of f1(z, x) if viewing Ga(ρ, µ) as a function of ρ only. Note that F (ρ) is still uniformly displacement
convex in ρ due to Assumption 4. Then the argument to obtain that ρ∞ ∈ C(Rd) follows exactly as that of
Lemma 8.

Lemma 27. Let i ∈ {1, ..., d}. If the energy Hi : P(Rd) → Rd given by

Hi(ρ, x) :=
α

2

∫
ρ(z)2

r(x)(z)
dz +

1

2

∫
ρW ∗ ρ−

∫
∂xif1(z, x)dρ(z) , (39)

admits a critical point at x ∈ Rd, then the best response r(x) ∈ P(Rd) is differentiable in the ith coordinate
direction at x ∈ Rd. Further, the critical point of Hi is in the subdifferential ∂xir(x).
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Proof. First, note that DF [r(x)](x)(u) = 0 for all directions u ∈ C∞
c (Rd) and for all x ∈ Rd thanks to

optimality of r(x). Here, DF denotes the Fréchet derivative of F , associating to every ρ ∈ P(Rd) the bounded
linear operator DF [ρ] : C∞

c → R

DF [ρ](u) :=

∫
δρF [ρ](z)u(z)dz ,

and we note that F (ρ) depends on x through the potential V . Fixing an index i ∈ {1, ..., d}, and differentiating
the optimality condition with respect to xi we obtain

∂xiDF [r(x)](x)(u) +D2F [r(x)](x)(u, ∂xir(x)) = 0 ∀u ∈ C∞
c (Rd) . (40)

Both terms can be made more explicit using the expressions for the Fréchet derivative of F :

∂xiDF [r(x)](x)(u) = −
∫
∂xif1(z, x)u(z)dz ,

and for the second term note that the second Fréchet derivative of F at ρ ∈ P(Rd) along directions u, v ∈
C∞

c (Rd) such that (supp(u) ∪ supp(v)) ⊂ supp(ρ) is given by

D2F [ρ](x)(u, v) = α

∫
u(z)v(z)

ρ(z)
dz +

∫∫
W (z − z̃)u(z)v(z̃) dzdz̃ .

In other words, assuming supp(r(x)) = supp(ρ̃) = Rd, relation (40) can be written as

α

∫
∂xir(x)

r(x)(z)
u(z) dz +

∫
(W ∗ ∂xir(x)) (z)u(z)v dz −

∫
∂xif1(z, x)u(z)dz = 0 ,

For ease of notation, given r(x) ∈ P(Rd), we define the function g : P(Rd) → L1
loc(Rd) by

g[ρ](z) := α
ρ(z)

r(x)(z)
+W ∗ ρ− ∂xif1(z, x) .

The question whether the partial derivative ∂xir(x) exists then reduces to the question whether there exists some
ρ∗ ∈ P(Rd) such that ρ = ρ∗ solves the equation

g[ρ](z) = c for almost every z ∈ Rd .

and for some constant c > 0. This is precisely the Euler-Lagrange condition for the functional Hi defined in
(39), which has a solution thanks to the assumption of Lemma 27.

We observe that the first term in Hi is precisely (up to a constant) the χ2-divergence with respect to r(x),∫ (
ρ

r(x)
− 1

)2

r(x) dz =

∫
ρ2

r(x)
dz − 1 .

Depending on the shape of the best response r(x), the χ2-divergence may not be displacement convex. Similarly,
the last term −

∫
∂xif1(z, x)dρ(z) in the energy Hi is in fact displacement concave due to the convexity

properties of f1 in z. The interaction term is displacement convex thanks to Assumption 3. As a result, the
overall convexity properties of Hi are not known in general. Proving the existence of a critical for Hi under
our assumptions on f1, f2, ρ̃ and W would be an interesting result in its own right, providing a new functional
inequality that expands on the literature of related functional inequalities such as the related Hardy-Littlewood-
Sobolev inequality [Lie83].

It remains to show that Hi indeed admits a critical point. Next, we provide examples of additional assumptions
that would guarantee for Lemma 27 to apply.

Lemma 28. If either C := supz∈Rd |W (z)| <∞, or

C := sup
z∈Rd

|α log(r(x)(z)/ρ̃(z)) + f1(z, x) + c| <∞ ,

then for each x ∈ Rd and for large enough α > 0, the best response r(x) is differentiable with the gradient
coordinate ∂xir(x) given by the unique coordinate-wise solutions of the Euler-Lagrange condition for Hi.

Proof. We will show this result using the Banach Fixed Point Theorem for the mapping Ti : L
1(Rd) → L1(Rd)

for each fixed i ∈ {1, ..., d} given by

Ti(ρ) = −r(x)(z)
α

[(W ∗ ρ)(z)− ∂xif1(z, x) + c] ,
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noting that ρ∗ = Ti(ρ∗) is the Euler-Lagrange condition for a critical point of Hi. It remains to show that Ti is
a contractive mapping. For the first assumption, note that∥∥Ti(ρ)− Ti(ρ

′)
∥∥
1
=

1

α

∫
r(x)|W ∗ (ρ− ρ′)|dz

≤ 1

α

∫∫
r(x)(z)W (z − ẑ)|ρ(ẑ)− ρ′(ẑ)|dẑdz

≤ ∥W∥∞
α

(∫
r(x)(z)dz

)(∫
|ρ(ẑ)− ρ′(ẑ)|dẑ

)
≤ C

α

∥∥ρ− ρ′
∥∥
1
.

Similarly, for the second assumption we estimate∥∥Ti(ρ)− Ti(ρ
′)
∥∥
1
=

1

α

∫
r(x)|W ∗ (ρ− ρ′)|dz

≤ 1

α

∫∫
r(x)(z)W (z − ẑ)|ρ(ẑ)− ρ′(ẑ)|dẑdz

=
1

α

∫
(W ∗ r(x))(z)|ρ(z)− ρ′(z)|dz

≤ 1

α
∥W ∗ r(x)∥∞

∥∥ρ− ρ′
∥∥
1

which requires a bound on ∥W ∗ r(x)∥∞. Using

∥W ∗ r(x)∥∞ = sup
z∈Rd

|α log(r(x)/ρ̃) + f1(z, x) + c| = C <∞ ,

we conclude that Ti is a contraction map for large enough α. In both cases, we can then apply the Banach
Fixed-Point Theorem to conclude that ∇xr(x) exists and is unique.

Lemma 29. Let r(x) as defined in (6). If r(x) is differentiable in x, then we have ∇xGd(x) =
(∇xGc(ρ, x))|ρ=r(x).

Proof. We start by computing ∇xGd(x). We have

∇xGd(x) = ∇x (Gc(r(x), x)) =

∫
δρ[Gc(ρ, x)]|ρ=r(x)(z)∇xr(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x)

= c(x)∇x

∫
r(x)(z)dz + (∇xGc(ρ, x))|ρ=r(x) = (∇xGc(ρ, x))|ρ=r(x) ,

where we used that r(x) solves the Euler-Lagrange equation (36) and that r(x) ∈ P(Rd) for any x ∈ Rd so
that

∫
r(x)(z)dz is independent of x.

Lemma 30. Let Assumption 1 hold. Then Gd : Rd → R ∪ {+∞} is strongly convex with constant λd :=
λ1 + λ2 + β > 0.

Proof. The energy Gc(ρ, x) is strongly convex in x due to our assumptions on f1, f2, and the regularizing term
∥x− x0∥22. This means that for any ρ ∈ P ,

Gc(ρ, x) ≥ Gc(ρ, x
′) +∇xGc(ρ, x

′)⊤(x− x′) +
λd

2

∥∥x− x′
∥∥2

2
.

Selecting ρ = r(x′), we have

Gc(r(x
′), x) ≥ Gc(r(x

′), x′) +∇xGc(r(x
′), x′)⊤(x− x′) +

λd

2

∥∥x− x′
∥∥2

2
.

Since Gc(r(x
′), x) ≤ Gc(r(x), x) by definition of r(x), we obtain the required convexity condition:

Gd(x) = Gc(r(x), x) ≥ Gc(r(x
′), x′) +∇xGc(r(x

′), x′)⊤(x− x′) +
λd

2

∥∥x− x′
∥∥2

2
.

Proof of Theorem 4. For any reference measure ρ0 ∈ P , we have

Gd(x) ≥ Gc(ρ0, x) ≥ −αKL(ρ0 | ρ̃)−
1

2

∫
ρ0W ∗ ρ0 +

β

2
∥x− x0∥2
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and therefore,Gd is coercive. Together with the strong convexity provided by Lemma 30, we obtain the existence
of a unique minimizer x∞ ∈ Rd. Convergence in norm now immediately follows also using Lemma 30: for
solutions x(t) to (6), we have

1

2

d

dt
∥x(t)− x∞∥2 = − (Gd(x(t))−Gd(x∞)) · (x(t)− x∞) ≤ −λd∥x(t)− x∞∥2 .

A similar result holds for convergence in entropy using the Polyák-Łojasiewicz convexity inequality

1

2
∥∇Gd(x)∥22 ≥ λd(Gd(x)−Gd(x∞)) ,

which is itself a direct consequence of strong convexity provided in Lemma 30. Then

d

dt
(Gd(x(t))−Gd(x∞)) = ∇xGd(x(t)) · ẋ(t) = −∥∇xGd(x(t))∥2 ≤ −2λd (Gd(x(t))−Gd(x∞)) ,

and so the result in Theorem 4 follows.

E Additional Simulation Results

We simulate a number of additional scenarios to illustrate extensions beyond the setting with provable guarantees
and in the settings for which we have results but no numerical implementations in the main paper. First, we
simulate the aligned objectives setting in one dimension, corresponding to (4). Then we consider two settings
which are not covered in our theory: (1) the previously-fixed distribution ρ̄ is also time varying, and (2) the
algorithm does not have access to the full distributions of ρ and ρ̄ and instead samples from them to update.
Lastly, we illustrate a classifier with the population attributes in two dimensions, which requires a different
finite-volume implementation [CCH15, Section 2.2] than the one dimension version of the PDE due to flux in
two dimensions.

E.1 Aligned Objectives

Here we show numerical simulation results for the aligned objectives case, where the population and distribution
have the same cost function. In this setting, the dynamics are of the form

∂tρ = div (ρ∇zδρGa[ρ, µ])

= div

(
ρ∇z

(∫
f1(z, x)dµ(x) + α log(ρ/ρ̃) +W ∗ ρ

))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)
where f1 and f2 are as defined in section 4.1, and W = 1

20
(1 + z)−1, a consensus kernel. Note that W does

not satisfy Assumption 3, but we still observe convergence in the simulation. This is expected; in other works
such as [CMV03], the assumptions on W are relaxed and convergence results proven given sufficient convexity
of other terms. The regularizer ρ̃ is set to ρ0, which models a penalty for the effort required of individuals to
alter their attributes. The coefficient weights are α = 0.1 and β = 1, with discretization parameters dz = 0.1,
dt = 0.01.

Figure 4: The dynamics include a consensus kernel, which draws neighbors in z-space closer together.
We see that the population moves to make the classifier performer better, as the two distributions
become more easily separable by the linear classifier.
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In Figure 4, we observe the strategic distribution separating itself from the stationary distribution, improving
the performance of the classifier and also improving the performance of the population itself. The strategic
distribution and classifier appear to be stationary by time t = 40.

E.2 Multiple Dynamical Populations

We also want to understand the dynamics when both populations are strategic and respond to the classifier. In
this example, we numerically simulate this and in future work we hope to prove additional results regarding
convergence. This corresponds to modeling the previously-fixed distribution ρ̄ as time-dependent; let this
distribution be τ ∈ P2. We consider the case where ρ is competitive with x and τ is aligned with x, with
dynamics given by

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)−W ∗ ρ))
∂tτ = div (τ∇z (f2(z, x) + α log(τ/τ̃) +W ∗ τ))
d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dτ(z) +

β

2
∥x− x0∥2

)
.

We use W = 0 and f1, f2 as in section 4.1 and the same discretization parameters as in Section E.1. In Figure 5,

Figure 5: The population ρ aims to be classified with the τ population, while the classifier moves to
delineate between the two. We observe that τ adjusts to improve the performance of the classifier
while ρ competes against it. The distributions are plotted at time t = 0, corresponding to ρ̃ and τ̃ ,
and time t = 20, corresponding to ρ and τ .

we observe that the τ population moves to the right, assisting the classifier in maintaining accurate scoring.
In contrast, ρ also moves to the right, rendering the right tail to be classified incorrectly, which is desirable
for individuals in the ρ population but not desirable for the classifier. While we leave analyzing the long-term
behavior mathematically for future work, the distributions and classifier appear to converge by time t = 20.

E.3 Sampled Gradients

In real-world applications of classifiers, the algorithm may not know the exact distribution of the population,
relying on sampling to estimate it. In this section we explore the effects of the classifier updating based on an
approximated gradient, which is computed by sampling the true underlying distributions ρ and ρ̄. We use the
same parameters for the population dynamics as in section 4.1, and for the classifier we use the approximate
gradient

∇xL(z, xt) ≈
1

n

n∑
i=1

(∇xf1(zi, xt) +∇xf2(z̄i, xt)) + β(xt − x0), zi ∼ ρt, z̄i ∼ ρ̄t .

First, we simulate the dynamics with the classifier and the strategic population updating at the same rate, using
α = 0.05, β = 1, and the same consensus kernel as used previously, with the same discretization parameters as
in E.1. In Figure 6, we observe no visual difference between the two results with n = 4 versus n = 40 samples,
which suggests that not many samples are needed to estimate the gradient.

Next, we consider the setting where the classifier is best-responding to the strategic population.

Unlike the first setting, we observe in Figure 7 a noticeable difference between the evolution of ρt with n = 4
versus n = 40 samples. This is not surprising because optimizing with a very poor estimate of the cost function
at each time step would cause xt to vary wildly, and this method fails to take advantage of correct "average"
behavior that gradient descent provides.
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Figure 6: When the classifier is updating at the same rate as the population, we do not see a significant
change in the evolution of both species, suggesting that as long as the gradient estimate for the
classifier is correct on average, the estimate itself does not need to be particularly accurate.

Figure 7: When the classifier is best-responding to the population, we observe that using n = 4
samples leads to different behavior for both the classifier and the population, compared with a more
accurate estimate using n = 40 samples.

E.4 Two-dimensional Distributions

In practice, individuals may alter more that one of their attributes in response to an algorithm, for example, both
cancelling a credit card and also reporting a different income in an effort to change a credit score. We model this
case with z ∈ R2 and x ∈ R2, and simulate the results for the setting where the classifier and the population
are evolving at the same rate. While this setting is not covered in our theory, it interpolates between the two
timescale extremes.

We consider the following classifier:

f1(z, x) =
1

2

(
1− 1

1 + expx⊤z

)
f2(z, x) =

1

2

(
1

1 + expx⊤z

) (41)

with W = 0. Again, the reference distribution ρ̃ corresponds to the initial shape of the distribution, instituting
a penalty for deviating from the initial distribution. We use α = 0.5 and β = 1 for the penalty weights, run
for t = 4 with dt = 0.005 and dx = dy = 0.2 for the discretization. In this case, the strategic population is
competing with the classifier, with dynamics given by

∂tρ = −div (ρ∇z (f1(z, x)− α log(ρ/ρ̃)))

d

dt
x = −∇x

(∫
f1(z, x)dρ(z) +

∫
f2(z, x)dρ̄(z) +

β

2
∥x− x0∥2

)
In Figure 8, we observe the strategic population increasing mass toward the region of higher probability of being
labeled "1" while the true underlying label is zero, with the probability plotted at time t = 4. This illustrates
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Figure 8: We use (41) for the classifier functions, using a Gaussian initial condition and regularizer
for ρ. We see the distribution moving toward the region with higher probability of misclassification.

similar behavior to the one-dimensional case, including the distribution splitting into two modes, which is
another example of polarization induced by the classifier. Note that while in this example, x ∈ R2 and we use a
linear classifier; we could have x ∈ Rd with d > 2 and different functions for f1 and f2 which yield a nonlinear
classifier; our theory in the timescale-separated case holds as long as the convexity and smoothness assumptions
on f1 and f2 are satisfied.

36


	Introduction
	Problem Formulation
	Case (i): Aligned Objectives
	Case (ii): Competing Objectives

	Results
	Gradient Flow Structure
	Analysis of Case (i): Aligned Objectives
	Analysis of Case (ii): Competing Objectives

	Numerical Examples
	Competitive Objectives
	Naïve Behavior

	Future Directions, Limitations, and Broader Impact
	General structure and preliminaries
	Structure of the dynamics
	Definitions and notation
	Steady states

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Additional Simulation Results
	Aligned Objectives
	Multiple Dynamical Populations
	Sampled Gradients
	Two-dimensional Distributions


