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Abstract

Zero-shot Human-Object Interaction (HOI) detection aims to identify both seen
and unseen HOI categories. A strong zero-shot HOI detector is supposed to be
not only capable of discriminating novel interactions but also robust to positional
distribution discrepancy between seen and unseen categories when locating human-
object pairs. However, top-performing zero-shot HOI detectors rely on seen and
predefined unseen categories to distill knowledge from CLIP and jointly locate
human-object pairs without considering the potential positional distribution discrep-
ancy, leading to impaired transferability. In this paper, we introduce CLIP4HOI,
a novel framework for zero-shot HOI detection. CLIP4HOI is developed on the
vision-language model CLIP and ameliorates the above issues in the following two
aspects. First, to avoid the model from overfitting to the joint positional distribu-
tion of seen human-object pairs, we seek to tackle the problem of zero-shot HOI
detection in a disentangled two-stage paradigm. To be specific, humans and objects
are independently identified and all feasible human-object pairs are processed by
Human-Object interactor for pairwise proposal generation. Second, to facilitate
better transferability, the CLIP model is elaborately adapted into a fine-grained
HOI classifier for proposal discrimination, avoiding data-sensitive knowledge dis-
tillation. Finally, experiments on prevalent benchmarks show that our CLIP4HOI
outperforms previous approaches on both rare and unseen categories, and sets a
series of state-of-the-art records under a variety of zero-shot settings.

1 Introduction

Human-Object Interaction (HOI) detection aims at locating paired humans and objects and identifying
their interactions. It finds applications in several downstream tasks, including surveillance, robotics,
and human-computer interaction. Despite significant progress in recent years, in most previous
works, the task of HOI detection has been conventionally restricted to predefined HOI categories.
Given the flexibility of verb-object combinations in human-object interaction scenarios, obtaining
a comprehensive dataset is laborious and time-consuming. Moreover, the obtained detectors also
struggle to generalize to unseen HOI categories, even if both verb and object in the novel category
are present (but never composed together) in the training set. These facts motivate and highlight the
exploration of zero-shot HOI detection, which targets to development of transferable HOI detectors.

Latest zero-shot HOI detectors [31, 44, 46, 48] seek to harness the general visual and linguistic
knowledge of CLIP [38] for identifying novel HOIs. Despite notable advancements over conventional
compositional learning approaches [2, 15, 17–19, 34, 36], these methods exhibit certain limitations.
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Figure 1: In our CLIP4HOI, the CLIP model is elaborately adapted for fine-grained pairwise
HOI discrimination, avoiding data-sensitive knowledge distillation (a). Thanks to the distribution-
agnostic proposal generation, our CLIP4HOI demonstrates better robustness when encountering large
positional distribution discrepancy between seen and unseen HOI categories (b)(c). The distribution
statistics are the angles between the line from the person to the object and the x-axis. The distribution
discrepancy is measured with KL divergence.

First, the prevailing approaches [31, 46] adhere to the one-stage framework, where each query or
pair thereof is required to jointly localize the human and the object. This strategy bears the inherent
risk of overfitting the decoder to the joint positional distribution of human-object pairs for seen HOI
categories, which results in compromised efficacy of the model when encountering novel HOIs that
exhibit significant distribution discrepancy with the seen categories, as shown in Figure 1b. Second,
the knowledge of CLIP is transferred to the detector through knowledge distillation, the effectiveness
of which largely depends on the completeness of the training data. However, given the absence
of unseen categories during training, the distillation process is dominated by samples from seen
categories, resulting in impaired generalization of the model to unseen categories. Although the
latest approach [46] tries to mine potential unseen categories during training, the text descriptions of
unseen categories are required in advance. As a result, the generalization capability of the detector is
restricted to predefined unseen HOI categories, which is not conducive to practical applications.

To this end, we propose CLIP4HOI, a novel framework for zero-shot generalizable HOI detection.
On the one hand, in view of the overfitting issue associated with the joint localization of humans and
objects, we seek to tackle the problem of zero-shot HOI detection in a two-stage paradigm, as shown
in Figure 1a. Specifically, with the help of an off-the-shelf object detector, the first stage focuses on the
accurate identification of humans and objects from images, followed by traversing all feasible human-
object combinations in the Human-Object (HO) interactor for pairwise HOI proposal generation. On
the other hand, instead of employing data-sensitive knowledge distillation from CLIP to existing
detectors, we demonstrate that the adapted CLIP is a natural fit for generalizable fine-grained HOI
discrimination. Specifically, based on the generated pairwise proposals, a transformer-based HOI
decoder is designed to aggregate contextual visual clues from the output of the CLIP image encoder.
HOI scores are then obtained in the HOI classifier by comparing the text embeddings of prompted
HOI descriptions with the visual features from different granularities. The final scores for all human-
object pairs are the integration of HOI scores and the object class priors out of the object detector.
Thanks to the distribution-agnostic pairwise proposal generation and the strong transferability of
CLIP, the resulting HOI detector exhibits better robustness to positional distribution discrepancy and
superior generalization capability to unseen HOI categories, as shown in Figure 1c.

To verify the effectiveness, we conducted extensive experiments on two prevalent HOI detection
benchmarks, i.e., HICO-DET [4] and V-COCO [14]. Results show that our approach exhibits superior
performance under a variety of zero-shot settings. Specifically, compared to previous state-of-the-art
methods GEN-VLKT [31] and EoID [46], our CLIP4HOI achieves absolute mAP gains of 6.43, 4.67,
and 8.41 on the unseen categories of RF-UC, NF-UC, and UO settings, respectively. Moreover, our
CLIP4HOI also demonstrates exceptional performance under the fully supervised setting, particularly
in rare categories where it outperforms Liu et al. [32] by 3.65 mAP on the HICO-DET dataset.

Overall, we make the following three-fold contributions:
• Given the compromised generalization capability of the joint human-object localization, we propose

a novel two-stage framework, termed CLIP4HOI, for zero-shot HOI detection, which leverages the
generalizable knowledge of CLIP for unseen interaction identification.
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• Instead of relying on data-sensitive knowledge distillation, we demonstrate that by carefully
designing the adaptation modules, the CLIP model itself exhibits a strong capability for fine-
grained HOI discrimination, enabling the unrivaled zero-shot transferability of our CLIP4HOI.

• We conduct extensive experiments on two prevalent benchmarks to verify the effectiveness of
the proposed approach. Compared to previous methods, our CLIP4HOI exhibits remarkable
performance and sets a series of state-of-the-art records.

2 Related Work

Human-Object Interaction Detection: There are two mainstream solutions for HOI detection,
one-stage and two-stage. Two-stage methods [4, 10–12, 15, 25, 26, 28, 29, 33, 37, 42, 47, 56] first
detect human and object instances in the image with an off-the-shelf object detector. Then relation
modeling strategies like multi-steam fusion [4] and graph reasoning [10] are designed to identify
interactions between each pair of detected humans and objects. One-stage methods, on the other
hand, undertake detection, association, and classification in a single stage. Early one-stage methods
adopt interaction point [30, 45] or union box [22] as anchors to facilitate the joint localization of
humans and objects. Recent one-stage approaches [5, 6, 21, 23, 24, 40, 41, 43, 52, 54, 57] have been
inspired by the query-based object detector [3], wherein a group of learnable queries is employed
in the transformer decoder to simultaneously predict ⟨human, verb, object⟩ triplets. Despite the
promising performance under the fully-supervised setting, we argue that such a joint localization
strategy tends to overfit the decoder to the joint position distribution of humans and objects for known
verb-object combinations. Therefore in this work, we seek to solve the problem of zero-shot HOI
detection in a more generalizable two-stage paradigm.

Contrastive Language-Image Pre-Training: Contrastive Language-Image Pre-Training (CLIP)
[38] is a multimodal learning framework that entails joint training of an image encoder and a text
encoder on large-scale image-text pairs. While traditional approaches rely exclusively on either
visual or textual cues for learning, CLIP utilizes both modalities to acquire a shared representation
space that aligns images and their corresponding captions in a common embedding space. The
outcome of this joint training is the ability of CLIP to facilitate zero-shot and few-shot learning on
a variety of downstream tasks, including image classification [38], object detection [8, 9, 13], and
image retrieval [1]. The success of CLIP also opens up new avenues for zero-shot HOI detection.

Zero-shot Human-Object Interaction Detection: Zero-shot human-object interaction (HOI)
detection strives to develop a detector that can effectively generalize to HOI categories not encountered
during training. It is of practical significance due to the flexibility of verb-object combinations.

Early works [2, 15, 17–20, 34, 36] mainly adopt compositional learning for zero-shot HOI detection.
VCL [17] decomposes HOI representation into object- and verb-specific features and then composes
novel HOI samples in the feature space via stitching the decomposed features. FCL [19] introduces
an object fabricator to generate large-scale HOI samples for rare and unseen categories. ATL
[18] decouples HOI representation into a combination of affordance and object representation.
Novel interactions are then discovered by combining affordance representation and novel object
representation from additional object images. ConsNet [34] proposes a knowledge-aware framework
for explicit relation modeling among objects, actions, and interactions in an undirected graph. It
leverages graph attention networks to enable knowledge propagation among HOI categories and their
constituents. SCL [20] devises a self-compositional learning framework for HOI concept discovery.

Recently, the development of multimodal learning has led to a surge of interest in transferring
knowledge from pre-trained vision-language models like CLIP [38] to existing HOI detectors for
high-performance zero-shot HOI detection. GEN-VLKT [31] extracts CLIP text embeddings for
prompted HOI labels to initialize the classifier and leverages the CLIP visual feature to guide the
learning of interactive representation. EoID [46] distills the distribution of action probability from
CLIP to the HOI model and detects potential action-agnostic interactive human-object pairs by
applying an interactive score module combined with a two-stage bipartite matching algorithm. To
avoid data-sensitive knowledge distillation and facilitate better transferability, in our approach, the
CLIP model is directly adapted as a fine-grained classifier for generalizable HOI identification.

As a concurrent work, HOICLIP [35] adopts the one-stage design following GEN-VLKT [2] and
proposes query-based knowledge retrieval for efficient knowledge transfer from CLIP to HOI detec-
tion tasks. During evaluation, it exploits zero-shot CLIP knowledge as a training-free enhancement.
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Differently, our CLIP4HOI leverages the two-stage proposal generation strategy to mitigate the
overfitting of the method to the joint positional distribution of human-object pairs during training.

3 Preliminary

3.1 Problem Formulation

In this section, we introduce the problem formulation of zero-shot HOI detection. Let V =
{v1, v2, · · · , vNv} be the set of action verbs and O = {o1, o2, · · · , oNo} be the set of objects
that can be interacted with. The conventional fully-supervised solutions try to incorporate samples
of all feasible verb-object pairs C = {(vi, oj)|vi ∈ V; oj ∈ O} into the training set and assign each
sample a discrete label for to learn a closed-set classifier. Given the inherent flexibility of verb-object
combinations, it is impractical to collect a complete HOI dataset. Consequently, researchers have
pursued the zero-shot HOI detection paradigm as an alternative direction, where the detector needs
to generalize well to unseen categories Cunseen during the test. Let Vseen ⊂ V, Oseen ⊂ O, and
Cseen ⊂ C \ Cunseen denote seen verbs, seen objects, and seen categories during training, respec-
tively. According to whether verbs and objects in the unseen categories Cunseen exist during training,
zero-shot HOI detection can be divided into three settings: (1) Unseen Composition (UC), where
for all (vi, oj) ∈ Cunseen, we have vi ∈ Vseen and oj ∈ Oseen; (2) Unseen Object (UO), where for
all (vi, oj) ∈ Cunseen, we have vi ∈ Vseen and oj /∈ Oseen; (3) Unseen Verb (UV), where for all
(vi, oj) ∈ Cunseen, we have vi /∈ Vseen and oj ∈ Oseen.

3.2 Revisiting DETR

DEtection TRansformer (DETR) [3] is an end-to-end object detector that approaches object detection
as a direct set prediction problem. At the core of DETR is a transformer encoder-decoder architecture,
which is responsible for processing the input image and producing a set of object queries that
correspond to potential objects in the image. DETR uses a bipartite matching algorithm that associates
the object queries with ground-truth objects during training. Thanks to this query-based detection
paradigm, we can easily obtain the features corresponding to each detected instance, enabling efficient
extraction of pairwise representation for interaction recognition.

4 Methodology

4.1 Framework Overview

In this section, we give an overview of the proposed framework. As shown in Figure 2, The proposed
CLIP4HOI comprises three key components: Human-Object interactor (HO interactor), HOI decoder,
and HOI classifier. Given a single image as input, all humans and objects are first detected using a
pre-trained transformer-based detector DETR [3]. Then, the HO interactor takes the decoded query
features that correspond to individual human-object pairs as input and derive pairwise HOI tokens
through feature interaction and pairwise spatial information injection. After that, with pairwise HOI
tokens serving as the input queries, the HOI decoder is engaged to generate pairwise HOI visual
features by aggregating the contextual visual clues from the output of the CLIP image encoder.
Finally, in the HOI classifier, global and pairwise HOI scores are obtained by comparing the text
embeddings of prompted HOI descriptions with the class token from the CLIP image encoder and the
decoded pairwise HOI visual features, respectively.

4.2 HO Interactor

Following [51], the detections from DETR are first post-processed with non-maximum suppression
and thresholding. The filtered result is denoted as {B,X,C,S}, where B ∈ RNd×4, X ∈ RNd×Cd ,
C ∈ {0, 1, · · · , Nc − 1}Nd , and S ∈ [0, 1]Nd denote bounding boxes, decoded query features, object
classes, and confidence scores, respectively. Nd denotes the number of detected instances. Then, we
perform feature interaction between instances and traverse all valid human-object pairs to generate
pairwise HOI tokens Q. These are done through the Human-Object Interactor (HO Interactor).
Specifically, the HO Interactor borrows the design of the lightweight interaction head in UPT [51],
which consists of a cooperative layer and a competitive layer. Given the detected boxes, unary and
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Figure 2: The pipeline of the proposed CLIP4HOI. CLIP4HOI is developed based on the prevalent
DETR [3] with three new components, i.e., HO interactor, HOI decoder, and HOI classifier. Based on
the detections from DETR, the HO interactor generates pairwise HOI tokens by feature interaction
and spatial information injection. The HOI decoder then aggregates the CLIP image representation to
produce pairwise HOI visual features, with the pairwise HOI tokens serving input queries. Finally, in
the HOI classifier, global and pairwise HOI scores are obtained by comparing the text embeddings of
HOI descriptions with the CLIP image class token and the pairwise HOI visual features, respectively.

pairwise spatial features [50] (box center, width, height, pairwise IOU, relative area, and direction)
are first extracted and mapped into pairwise positional encodings E ∈ RNd×Nd×Cr . Then, decoded
query feature X ∈ RNd×Cd of detected instances are fed into the cooperative layer along with E for
feature interaction and pairwise spatial information injection:

X̂ = CoopLayer(X,E) ∈ RNd×Cr . (1)

After that, the competitive layer generates pairwise HOI tokens Q for all valid human-object pairs:

idxvalid = {(u, v)|u ̸= v, cu = “human”}, (2)

Xpair ∈ RNpair×2Cr , where X
[i]
pair = CAT(X̂[u], X̂[v]), (u, v) = idx

[i]
valid, (3)

Epair ∈ RNpair×Cr , where E
[i]
pair = E[u,v], (u, v) = idx

[i]
valid, (4)

Q = CompLayer(Xpair,Xglob,Epair) ∈ RNpair×2Cr , (5)

where idxvalid is the index set of valid human-object pairs and has size Npair. Xglob ∈ R1×Cb is the
global visual feature from the backbone of DETR [3]. Please refer to [51] and also the supplementary
material for more technical details of the HO interactor.

4.3 HOI Decoder

After obtaining the pairwise HOI tokens, we feed them into the HOI decoder to aggregate contextual
features from the CLIP image encoder, yielding pairwise HOI visual features. Specifically, the HOI
decoder is stacked by Nl customized transformer layers, each of which contains a cross-attention
block, a self-attention block, and a feed-forward network (FFN) block. Given the collection of
pairwise HOI tokens Q ∈ RNpair×2Cr , patch level CLIP image features F ∈ RNpatch×Cc , and the
global CLIP image class token I ∈ R1×Cc , the pairwise HOI visual features P ∈ RNpair×Cc are
computed as follows:

H0 = Linear(Q), (6)

H′
l = MHCA(LN(Hl−1), LN(F), LN(F)) +Hl−1, l ∈ 1, · · · , Nl (7)

H′′
l = MHSA(LN(CAT(I,H′

l))) + CAT(I,H′
l), l ∈ 1, · · · , Nl (8)

Hl = MLP(LN(H′′[1:]
l )) +H

′′[1:]
l , l ∈ 1, · · · , Nl (9)

P = HNl
, (10)
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where Linear denotes the linear projection Fproj(·) : R2Cr 7→ RCc that maps the pairwise HOI tokens
into CLIP’s joint feature space. LN, MHCA, MHSA, MLP, and CAT denote layer normalization, multi-head
cross-attention, multi-head self-attention, multilayer perceptron, and concatenation, respectively. So
far, the obtained pairwise HOI visual features P integrate the relative positional information between
humans and objects as well as the contextual visual clues from the large-scale pre-trained CLIP
model, greatly promoting the subsequent fine-grained HOI recognition.

4.4 HOI Classifier

Given the notable transferability of the CLIP model, this study endeavors to adapt it as a fine-grained
classifier for transferable HOI detection. Thanks to the shared embedding space of image and text
learned by CLIP after large-scale contrastive pre-training, we can perform fine-grained HOI recogni-
tion for both seen and unseen HOI categories by transforming their verb-object combinations into
textual descriptions and comparing their embeddings with pairwise HOI visual features. Considering
that the manual prompt lacks task-specific heuristics and robustness [55], we choose to train a learn-
able prompt for text embedding generation. Specifically, we insert several learnable tokens before the
verb and object of each HOI category following [44,55], which we denote as [PREFIX] and [CONJUN],
respectively. We denote the obtained text embedding as T ∈ RNc×Co (Nc denotes the number of
HOI categories). As shown in Figure 2, we compute both global and pairwise HOI scores as follows:

I′ = Linear(I), P′ = Linear(P), (11)

T̂ = Norm(T), Î = Norm(I′), P̂ = Norm(P′), (12)

Sglob = Sigmoid(ÎT̂⊤/τ), Spair = Sigmoid(P̂T̂⊤/τ), (13)

where Linear denotes the linear projection head Fproj(·) : RCc 7→ RCo , Norm denotes L2 normaliza-
tion operation, and τ is the learnable scale factor that rescales the intermediate logits.

The obtained global and pairwise scores Sglob ∈ [0, 1]1×Nc and Spair ∈ [0, 1]Npair×Nc indicate the
presence of HOI categories in the whole image and each human-object pair, respectively. Since each
human-object pair may correspond to multiple HOI categories, we adopt the Sigmoid function when
computing the HOI scores instead of Softmax with mutually exclusive properties. During inference,
the two HOI scores along with the class priors from the object detector are integrated to produce the
final classification result for each human-object proposal.

4.5 Training and Inference

Training: For the global HOI score, the training label is the union of all seen HOI categories present
in the image. For the pairwise HOI score, we compare each proposal (detected human-object pair) to
the seen HOI targets. When the IOU of both the human and the object exceeds a certain threshold, we
consider the proposal a positive sample for the compared target and assign the corresponding label to
it. Note that a single proposal may correspond to multiple HOI labels. Considering the scarcity of
positive samples, we adopt binary focal loss for training. The final training loss is formulated as the
combination of global loss and pairwise loss:

Lfinal = FocalBCE(Sglob,Yglob) + β · FocalBCE(Spair,Ypair), (14)

where Yglob ∈ {0, 1}1×Nc and Ypair ∈ {0, 1}Npair×Nc are global and pairwise labels, respectively. β
is a hyper-parameter that adjusts the weight of pairwise loss.

Inference: Let Shuman ∈ [0, 1]Npair×1 and Sobject ∈ [0, 1]Npair×1 be the confidence scores out of DETR
for paired humans and objects. During inference, the final HOI scores Sfinal ∈ [0, 1]Npair×Nc are
obtained by element-wise multiplication (with broadcasting) of Sglob, Spair, Shuman, and Sobject:

Sfinal = Sglob · Spair · Sλ
human · Sλ

object, (15)

where a hyper-parameter λ is introduced to suppress overconfident detections following [50, 51]. Nc

is equal to the number of seen/full HOI categories during training/test. Based on the object class
priors provided by DETR, scores of irrelevant HOIs in Sfinal are manually set to 0.
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Table 1: Zero-shot HOI detection results on HICO-DET. UC, UO, and UV denote unseen composition,
unseen object, and unseen verb settings, respectively. RF- and NF- denote rare first and non-rare first.

(a) UC & UO & UV
Method Setting Full Seen Unseen
Shen et al. [39] UC 6.26 - 5.62
FG [2] UC 12.26 12.60 10.93
ConsNet [34] UC 19.81 20.51 16.99
EoID [46] UC 28.91 30.39 23.01
HOICLIP [35] UC 32.99 34.85 25.53
CLIP4HOI UC 32.11 33.25 27.71
FCL* [19] UO 11.43 13.71 0.00
ATL* [18] UO 13.08 14.69 5.05
FCL [19] UO 19.87 20.74 15.54
ATL [18] UO 20.47 21.54 15.11
GEN-VLKT [31] UO 25.63 28.92 10.51
HOICLIP [35] UO 28.53 30.99 16.20
CLIP4HOI* UO 28.44 30.34 18.92
CLIP4HOI UO 32.58 32.73 31.79
GEN-VLKT [31] UV 28.74 30.23 20.96
EoID [46] UV 29.61 30.73 22.71
HOICLIP [35] UV 31.09 32.19 24.30
CLIP4HOI UV 30.42 31.14 26.02

(b) RF-UC & NF-UC
Method Setting Full Seen Unseen
VCL [17] RF-UC 21.43 24.28 10.06
ATL [18] RF-UC 21.57 24.67 9.18
FCL [19] RF-UC 22.01 24.23 13.16
SCL [20] RF-UC 28.08 30.39 19.07
RLIP [48] RF-UC 30.52 33.35 19.19
GEN-VLKT [31] RF-UC 30.56 32.91 21.36
EoID [46] RF-UC 29.52 31.39 22.04
HOICLIP [35] RF-UC 32.99 34.85 25.53
CLIP4HOI RF-UC 34.08 35.48 28.47
VCL [17] NF-UC 18.06 18.52 16.22
ATL [18] NF-UC 18.67 18.78 18.25
FCL [19] NF-UC 19.37 19.55 18.66
SCL [20] NF-UC 24.34 25.00 21.73
RLIP [48] NF-UC 26.19 27.67 20.27
GEN-VLKT [31] NF-UC 23.71 23.38 25.05
EoID [46] NF-UC 26.69 26.66 26.77
HOICLIP [35] NF-UC 27.75 28.10 26.39
CLIP4HOI NF-UC 28.90 28.26 31.44

5 Experiments

5.1 Implementation Details

We adopt pre-trained DETR as the object detector, with ResNet-50 [16] serving as the backbone. The
HOI classifier is built upon the CLIP model, which takes ViT-B/16 [7] as its visual encoder. During
training, the parameters of both the DETR and CLIP models are frozen. The HOI decoder has Nl = 6
layers. In each layer, the embedding dimension is 768, the head number of the multi-head attention is
12, and the hidden dimension of the feed-forward network is 3072. The prompt lengths for [PREFIX]
and [CONJUN] are 8 and 2, respectively. Following [51], the hyper-parameter λ is set to 1 during
training and 2.8 during inference. Please refer to the supplementary material for the training details.

5.2 Compare with the State-of-the-art Methods

Zero-Shot HOI Detection: In Table 1, we evaluate the generalization capability of our approach on
the HICO-DET [4] dataset. Performance is reported under three zero-shot settings.

Under the Unseen Composition (UC) setting, CLIP4HOI surpasses most previous top-performing
methods. Specifically, compared to EoID [46], our CLIP4HOI exhibits relative mAP improvements
of 29.17% (28.47 vs 22.04) and 17.44% (31.44 vs 26.77) on unseen categories under rare first UC
and non-rare first UC settings, respectively. Notably, our CLIP4HOI also outperforms the concurrent
work HOICLIP [35] by considerable margins in terms of the unseen mAP.

For a fair comparison with previous methods, under the Unseen Object (UO) setting, we provide an
additional variant of our approach (marked with * in Table 1), which only uses the bounding boxes
of the detections as subsequent inputs. Results show that both versions of our CLIP4HOI exhibit
outstanding performance. Specifically, our CLIP4HOI surpasses HOICLIP [35] by a relative mAP
improvement of 16.79% (18.92 vs 16.20) on the unseen categories.

Following GEN-VLKT [31], EoID [46], and HOICLIP [35], we report the performance of our ap-
proach under the Unseen Verb (UV) setting, where the proposed CLIP4HOI also exhibits promising
results. It is worth mentioning that compared to the previous state-of-the-art methods, the advan-
tages is mainly reflected in unseen categories, e.g., relative mAP improvements of 14.58% (26.02
vs 22.71) and 7.08% (26.02 vs 24.30) compared to EoID [46] and HOICLIP [35], respectively. This
demonstrates the superior generalization capability of our approach.
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Table 2: Fully-supervised HOI detection results on HICO-DET and V-COCO test sets.

Method Backbone
HICO-DET V-COCO

Default Known Object
APS2

roleFull Rare Non-rare Full Rare Non-rare
IDN[NeurIPS20] [27] ResNet-50 23.36 22.47 23.63 26.43 25.01 26.85 60.3
Zou et al.[CVPR21] [57] ResNet-50 23.46 16.91 25.41 26.15 19.24 28.22 -
HOTR[CVPR21] [23] ResNet-50 25.10 17.34 27.42 - - - 64.4
ATL[CVPR21] [18] ResNet-50 28.53 21.64 30.59 31.18 24.15 33.29 -
AS-Net[CVPR21] [6] ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14 -
QPIC[CVPR21] [40] ResNet-50 29.07 21.85 31.23 31.68 24.14 33.93 61.0
FCL[CVPR21] [19] ResNet-50 29.12 23.67 30.75 31.31 25.62 33.02 -
GGNet[CVPR21] [53] ResNet-50 29.17 22.13 30.84 33.50 26.67 34.89 -
SCG[ICCV21] [50] ResNet-50 31.33 24.72 33.31 34.37 27.18 36.52 60.9
UPT[CVPR22] [51] ResNet-50 31.66 25.94 33.36 35.05 29.27 36.77 64.5
CDN[NeurIPS21] [49] ResNet-50 31.78 27.55 33.05 34.53 29.73 35.96 64.4
Iwin[ECCV22] [41] ResNet-50 32.03 27.62 34.14 35.17 28.79 35.91 -
Liu et al.[CVPR22] [32] ResNet-50 33.51 30.30 34.46 36.28 33.16 37.21 65.2
GEN-VLKT[CVPR22] [31] ResNet-50 33.75 29.25 35.10 36.78 32.75 37.99 64.5
HOICLIP[CVPR23] [35] ResNet-50 34.69 31.12 35.74 37.61 34.47 38.54 64.8
CLIP4HOI ResNet-50 35.33 33.95 35.74 37.19 35.27 37.77 66.3

Table 3: Robustness comparison between our CLIP4HOI and EoID against distribution discrepancy.
Performance is evaluated on the unseen categories of HICO-DET under the NF-UC setting.

KL divergence [0,0.3) [0.3,0.6) [0.6,0.9) [0.9,∞)
EoID [46] 26.69 27.50 26.82 18.92
CLIP4HOI 30.97 33.06 34.15 28.23
mAP gain 4.28 5.56 7.33 9.31

Fully-supervised HOI Detection: This work focuses on the development of a transferable HOI
detector. Nonetheless, we also test the efficacy of our CLIP4HOI for fully-supervised HOI detection,
as shown in Table 2. For the HICO-DET [4] dataset, the proposed approach demonstrates remarkable
performance, outperforming GEN-VLKT [31] by a margin of 1.11 mAP for full categories. It is worth
mentioning that the performance improvement mainly comes from the rare categories, where our
CLIP4HOI outperforms GEN-VLKT and [32] by margins of 4.70 mAP and 3.65 mAP, respectively.
This indicates that the HOI classifier adapted from CLIP can better handle the long-tailed distribution
of HOI categories. For the V-COCO [14] dataset, we ignore HOIs defined with no object labels
and report the results in Scenario 2. As shown in Table 2, our CLIP4HOI achieves 66.3 role AP,
surpassing GEN-VLKT [31] and [32] by margins of 1.8 mAP and 1.1 mAP, respectively. Compared
to the concurrent work HOICLIP [35], our approach also shows advantages on rare categories and
performs better under the default setting.

Robustness to Distribution Discrepancy: In Table 3, we report the mAP gain of CLIP4HOI
over previous top-performing EoID [46]. Performance is evaluated on four unseen subsets of the
HICO-DET dataset under the NF-UC setting, each of which exhibits varying degrees of positional
distribution discrepancy (measured with KL divergence) from its corresponding seen subset. Results
show that our CLIP4HOI exhibits better robustness to positional distribution discrepancy. A detailed
definition of the distribution discrepancy is in the supplementary material.

5.3 Ablation Study

In this section, we conduct several ablative experiments to verify the effectiveness of our CLIP4HOI.
Performance is evaluated on HICO-DET under the RF-UC setting.

Component Analysis: As shown in Table 4, we first verified the effectiveness of: (1) HO interactor.
Without the HO interactor, the overall performance drops by 1.1 mAP, verifying the effectiveness of
pairwise feature interaction and spatial information injection. (2) HOI decoder. The HOI decoder
is designed to aggregate relevant CLIP visual features for better feature alignment in interaction
recognition, without which the performance drops by 3.54 mAP and 4.67 mAP for seen and unseen
categories, respectively.
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Table 4: Component analysis of CLIP4HOI on HICO-DET. The performance is evaluated on HICO-
DET under the rare first UC (RF-UC) setting.

Configuration Full Seen Unseen
Full version 34.08 35.48 28.47
Global:
w/o HO interactor 32.98 34.36 27.43
w/o HOI decoder 30.31 31.94 23.80
HOI decoder:
w/o CLIP class token 33.50 34.85 28.10
w/ Mid-level CLIP features 32.83 34.40 26.56
HOI classifier:
w/o Global HOI score 33.94 36.06 25.48
w/o Class priors from DETR 33.13 35.24 24.68

Table 5: Ablative experiments for hyper-parameters like (a) HOI decoder layer number, (b) text
prompt length, and (c) training loss weight. The manual prompt is set to "A photo of a person [verb]
[object]". The performance is evaluated on HICO-DET under the rare first UC (RF-UC) setting.

(a) HOI decoder layer number
Nl Full Seen Unseen
2 33.45 34.80 28.08
4 33.65 34.96 28.41
6 34.08 35.48 28.47
8 33.66 35.32 27.01
10 33.94 35.30 28.46

(b) Text prompt length
[PREFIX] [CONJUN] Full Seen Unseen
Manual / 32.77 34.99 23.92

4 2 33.60 35.11 27.57
4 4 33.37 35.15 26.23
8 2 34.08 35.48 28.47
8 4 33.59 34.96 28.13

(c) Training loss weight
β Full Seen Unseen

0.2 33.46 35.06 27.04
0.5 33.59 35.17 27.30
1.0 34.08 35.48 28.47
2.0 33.82 35.18 28.37
5.0 33.33 35.06 26.41

Then, we explored the input of the HOI decoder: (1) CLIP class token. In the HOI decoder, the
CLIP class token I is incorporated as the input of the self-attention block. Without I, the overall
performance decreases slightly by 0.58 mAP, which verifies the effectiveness of the CLIP class token
for providing holistic representation of input images. (2) Mid-level CLIP features. We also train a
variant of CLIP4HOI where each layer of the HOI decoder aggregates the corresponding mid-level
features of the CLIP visual encoder layer. Experiments show that aggregating mid-level CLIP visual
features results in an overall performance drop of 1.25 mAP.

Finally, we discussed the design of the HOI classifier: (1) Global HOI score. While the performance
of CLIP4HOI on seen categories exhibits a minor improvement of 0.58 mAP upon removing the
global HOI score, the efficacy of the model to identify novel interactions deteriorates significantly
by 2.99 mAP. (2) Class priors from DETR. The removal of the class priors out of DETR caused a
consistent decrease in performance, particularly a drop of 3.79 mAP for unseen categories.

HOI Decoder Layer Number: In Table 5a, we experimented with different numbers of HOI decoder
layers. Results show that a layer number of 6 exhibits the best overall performance. Adding more
layers does not bring consistently better performance, but higher computational overhead.

Text Prompt Length: As shown in Table 5b, we explored the impact of different prompt lengths for
text embedding generation. Results show that the best performance is observed when the lengths
of [PREFIX] and [CONJUN] are set to 8 and 2, respectively. We also experimented with the manual
prompt "A photo of a person [verb] [object]", whose performance is much lower than the learnable
one, especially for the unseen categories (23.92 vs 28.47 in mAP).

Training Loss Weight: We investigate the impact of varying weights for pairwise loss in Table 5c.
Results show that the performance of CLIP4HOI is not substantially influenced by the weight of loss
functions. A straightforward summation of global and pairwise losses just works well.

5.4 Qualitative Visualization

As shown in Figure 3, we visualize some detection results and their corresponding attention maps
in the HOI decoder. We can find that: (1) The HOI decoder can effectively attend to the regions
associated with human-object interactions, resulting in accurate aggregation of contextual visual
clues from the output of the CLIP image encoder. (2) The obtained HOI detector exhibits remarkable
discrimination capability for unseen categories.
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GT: <blow, cake>
Pred: <blow / ..., cake>

GT: <carry / hold / throw, sports ball>
Pred: <hold / carry / throw / ..., sports ball>

GT: <wear, tie>
Pred: <wear / ..., tie>

GT: <drink with / hold / sip, cup>
Pred: <hold / drink with  / sip / ..., cup>

GT: <hold / load / pet, horse>
Pred: <hold / pet / load / ..., horse>

GT: <hold / inspect, orange>
Pred: <hold / inspect / ..., orange>

GT: <hold / inspect / smell, apple>
Pred: <hold / eat / smell / ..., apple>

Figure 3: Visualization of detection results and their corresponding attention maps in the HOI decoder.
Correctly classified seen and unseen categories are marked in blue and green, respectively. Incorrect
recognition results are marked in red. Images are sampled from the HICO-DET dataset. More
qualitative results can be found in the supplementary material.

6 Conclusion

This paper presents CLIP4HOI, a novel two-stage framework for zero-shot HOI detection, where
the generalizable knowledge of the vision-language model CLIP is leveraged for novel interaction
identification. By disentangling the detection of humans and objects in the proposal generation phase,
the proposed approach exhibits strong robustness to the positional distribution discrepancy between
seen and unseen HOI categories. To avoid data-sensitive knowledge distillation and facilitate better
knowledge transfer for novel human-object interactions, the CLIP model is elaborately adapted into
a fine-grained classifier for pairwise HOI discrimination. Extensive experiments on two prevalent
benchmarks verify the effectiveness of the proposed CLIP4HOI framework.
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