
A Additional experimental details

A.1 Synthetic experiments

We pretrain the model for 2000 iterations with 128 synthetic functions at each iteration. We randomize
the length scale parameter ` ⇠ U [5.0, 10.0] and function scale parameter �y ⇠ U [1.0, 10.0] of the
RBF kernel to increase pretraining data diversity. For each function generated, we sample 228 data
points that we separate into 100 context points and 128 target points and train the model using the
loss function in (2). Each input x is a 32-dimensional vector, and each dimension is sampled from a
uniform distribution U [�3, 3].

For each test function, we sample a large dataset of 20000 data points. We then randomly select 100
samples from the data points with function values lower than the 20th percentile as the few-shot data.
We condition the model on this few-shot dataset and the maximal value y? in the large dataset to
generate 256 candidates and report the best score achieved among these candidates. We normalize
the score to [0, 1] using the worst and the best value in the large dataset.

A.2 ExPT pretraining details

Architectural details In all experiments, we use the same ExPT architecture. Before feeding to the
Transformer encoder, we embed the (y, x) context pairs with a 1-layer MLP and embed the target y0s
with another 1-layer MLP. The transformer encoder has 4 layers with a hidden dimension of 128, 4
attention heads, GELU activation, and a dropout rate of 0.1. For the VAE model, we use a standard
isotropic Gaussian distribution as the prior. Both the VAE encoder and VAE decoder have 4 layers
with a hidden dimension of 512, and the latent variable z has a dimension of 32.

Optimization details In Design-Bench experiments, we pretrain ExPT for 10,000 iterations with
128 synthetic functions in each iteration. We use AdamW optimizer [31, 40] with a learning rate of
5e� 4 and (�1,�2) = (0.9, 0.99). We use a linear warmup schedule for 1000 steps, followed by a
cosine-annealing schedule for 9000 steps.

A.3 Construction of new D’Kitty and Ant tasks

This section details how we constructed new objectives from the original D’Kitty and Ant that we
used to evaluate ExPT in Section 3.2.1. For each new objective, we apply the corresponding oracle to
the inputs x0s in the original dataset to create the dataset for the objective.

Ant tasks In Ant, the original goal is to design a morphology that allows the Ant robot to run as
fast as possible in the x (horizontal) direction. The objective function is the sum of rewards in 100
time steps, where the reward R at each time step is defined as:

R = Forward reward + Survival reward � Control cost � Contact cost, (5)

where Forward reward = (xt � xt�1)/dt is the velocity of the Ant in the x direction.

In Ant-vy, the reward at each time step is similar, except that Forward reward = (yt � yt�1)/dt is
the velocity of the Ant in the y (vertical) direction. In other words, we aim to design morphologies
that allow the robot to run fast in the y direction.

In Ant-Energy, the reward at each time step is:

R = 1 + Survival reward � Control cost � Contact cost, (6)

which means we incentivize the robot to conserve energy instead of running fast.

D’Kitty tasks In D’Kitty, the goal is to design a morphology that allows the D’Kitty robot to reach
a fixed target location, and the objective function f is the Euclidean distance to the target. In the
original D’Kitty task, the target location is on the vertical line from the starting point. In the two new
tasks D’Kitty-45 and D’Kitty-60, the target locations are 45 deg and 60 deg away from the original
target, respectively.

15

D'Kitty

D'Kitty-45

D'Kitty-60

Figure 5: Different D’Kitty tasks. The red dot denotes the starting location, and the green dots are the
target locations.

B Excluded Design-Bench tasks

B.1 Superconductor

We found the approximate oracle provided by Design-Bench not accurate enough to provide a reliable
comparison of optimization methods on this task. Figure 6 plots the score values in the dataset against
the score values predicted by the approximate oracle, which shows a weak correlation between these
two values.

Figure 6: The correlation between the score values in the dataset (x-axis) and the score values
predicted by the approximate oracle (y-axis) in Superconductor.

B.2 Hopper

As noted in previous works that use Design-Bench [34], the oracle provided for the Hopper task is
inconsistent with the true-dataset values. The outputs of the oracle on the dataset are skewed heavily
towards low-function values, which makes it an unreliable task for evaluation.

B.3 ChEMBL

As observed in previous works [58, 34], all methods produced nearly the same results on the ChEMBL
task, so we excluded it in our experiments.

16

C Additional ablation and analysis

C.1 Effects of GP hyperparameters

We empirically examine the impact of two GP hyperparameters, the variance � and the length scale
`, on the performance of ExPT. Specifically, we evaluate the performance of ExPT on D’Kitty
and Ant when � is too small (ExPT-small-�) or too large (ExPT-large-�), and when ` is too small
(ExPT-small-`) or too large (ExPT-large-`). In ExPT-small-� and ExPT-large-�, we sample � from
U [0.01, 0.1] and U [100, 200], respectively. In ExPT-small-` and ExPT-large-`, we sample ` from
U [0.1, 1.0] and U [100, 200], respectively.

Table 6: Impact of � and ` on ExPT performance on Ant and D’Kitty in random (left) and poorest
(right) settings. We average the performance across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median

ExPT 0.902± 0.006 0.705± 0.018
ExPT-small-� 0.915± 0.006 0.661± 0.111
ExPT-large-� 0.797± 0.000 0.471± 0.012
ExPT-small-` 0.793± 0.004 0.459± 0.005
ExPT-large-` 0.795± 0.003 0.460± 0.003

Mean

ExPT 0.865± 0.016 0.639± 0.026
ExPT-small-� 0.896± 0.016 0.630± 0.089
ExPT-large-� 0.752± 0.013 0.534± 0.015
ExPT-small-` 0.726± 0.018 0.518± 0.018
ExPT-large-` 0.725± 0.016 0.528± 0.006

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median

ExPT 0.922± 0.009 0.686± 0.090
ExPT-small-� 0.862± 0.064 0.656± 0.098
ExPT-large-� 0.792± 0.004 0.489± 0.019
ExPT-small-` 0.792± 0.006 0.462± 0.004
ExPT-large-` 0.795± 0.003 0.460± 0.004

Mean

ExPT 0.871± 0.018 0.646± 0.061
ExPT-small-� 0.755± 0.085 0.606± 0.077
ExPT-large-� 0.726± 0.016 0.547± 0.012
ExPT-small-` 0.725± 0.019 0.529± 0.014
ExPT-large-` 0.722± 0.014 0.530± 0.011

The results in Table 6 show that overall, suboptimal values of � and ` lead to a substantial drop in
the performance of ExPT on both tasks. It is also noticeable that ` has a more significant influence
on the performance than �. In other words, the shape of the synthetic functions has a more critical
impact on downstream performances than the magnitudes of the function values. A too small ` or
large ` results in synthetic functions that exhibit either excessive oscillations or excessive smoothness,
leading to poor generalization to downstream functions.

C.2 ExPT with different pretraining data distributions

We perform an ablation study where we pretrain ExPT on different data distributions, including
different GP kernels (GP-Cosine, GP-Linear, GP-Periodic), randomly initialized 1-layer neural
networks (Random MLP), and neural network checkpoints trained on the few-shot data (Trained
MLP). For each network used to generate data in Random MLP and Trained MLP, we randomly
select the initialization method in {uniform, normal, xavier uniform, xavier normal, kaiming uniform,
kaiming normal}, the hidden size in {16, 32, 64, 128, 256, 512, 1024}, and the depth in {2, 3, 4, 5,
6}. Each network in Random MLP is randomly initialized, while each network in Trained MLP is
trained on the few-shot data.

Table 7: Performance of ExPT with different pretraining data distributions on the random setting
Pretraining data D’Kitty Ant TF8 TF10 Mean score

Median

GP-RBF 0.902 ± 0.006 0.705 ± 0.018 0.473 ± 0.014 0.477 ± 0.014 0.639 ± 0.013
GP-Cosine 0.795 ± 0.006 0.463 ± 0.003 0.379 ± 0.013 0.456 ± 0.006 0.523 ± 0.007
GP-Linear 0.900 ± 0.002 0.686 ± 0.013 0.377 ± 0.009 0.468 ± 0.010 0.608 ± 0.009

GP-Periodic 0.902 ± 0.003 0.655 ± 0.029 0.452 ± 0.013 0.467 ± 0.006 0.619 ± 0.013
Random MLP 0.906 ± 0.004 0.520 ± 0.123 0.480 ± 0.021 0.487 ± 0.015 0.598 ± 0.041
Trained MLP 0.914 ± 0.007 0.691 ± 0.003 0.446 ± 0.021 0.482 ± 0.029 0.633 ± 0.015

Max

GP-RBF 0.973 ± 0.005 0.970 ± 0.004 0.933 ± 0.036 0.677 ± 0.048 0.888 ± 0.023
GP-Cosine 0.955 ± 0.008 0.963 ± 0.011 0.906 ± 0.079 0.709 ± 0.068 0.883 ± 0.042
GP-Linear 0.972 ± 0.001 0.965 ± 0.016 0.899 ± 0.095 0.654 ± 0.033 0.872 ± 0.036

GP-Periodic 0.971 ± 0.005 0.966 ± 0.005 0.875 ± 0.022 0.646 ± 0.026 0.864 ± 0.014
Random MLP 0.973 ± 0.001 0.953 ± 0.013 0.938 ± 0.068 0.653 ± 0.004 0.879 ± 0.022
Trained MLP 0.974 ± 0.005 0.935 ± 0.022 0.879 ± 0.039 0.660 ± 0.003 0.862 ± 0.017

Mean

GP-RBF 0.865 ± 0.016 0.639 ± 0.026 0.476 ± 0.010 0.474 ± 0.015 0.614 ± 0.017
GP-Cosine 0.725 ± 0.022 0.534 ± 0.011 0.385 ± 0.007 0.455 ± 0.004 0.525 ± 0.011
GP-Linear 0.866 ± 0.001 0.633 ± 0.017 0.397 ± 0.013 0.465 ± 0.010 0.590 ± 0.010

GP-Periodic 0.865 ± 0.008 0.594 ± 0.010 0.464 ± 0.008 0.469 ± 0.008 0.598 ± 0.009
Random MLP 0.883 ± 0.011 0.516 ± 0.074 0.481 ± 0.016 0.485 ± 0.016 0.591 ± 0.029
Trained MLP 0.910 ± 0.008 0.660 ± 0.003 0.451 ± 0.019 0.478 ± 0.026 0.625 ± 0.014

17

Table 8: Performance of ExPT with different pretraining data distributions on the poor setting
Pretraining data D’Kitty Ant TF8 TF10 Mean score

Median

GP-RBF 0.922 ± 0.009 0.686 ± 0.090 0.552 ± 0.042 0.489 ± 0.013 0.662 ± 0.039
GP-Cosine 0.795 ± 0.005 0.463 ± 0.003 0.379 ± 0.013 0.456 ± 0.006 0.524 ± 0.007
GP-Linear 0.918 ± 0.009 0.675 ± 0.065 0.380 ± 0.013 0.450 ± 0.004 0.606 ± 0.023

GP-Periodic 0.928 ± 0.006 0.689 ± 0.037 0.487 ± 0.089 0.498 ± 0.013 0.651 ± 0.036
Random MLP 0.902 ± 0.012 0.446 ± 0.004 0.499 ± 0.010 0.495 ± 0.005 0.586 ± 0.008
Trained MLP 0.909 ± 0.006 0.733 ± 0.039 0.431 ± 0.043 0.482 ± 0.028 0.639 ± 0.029

Max

GP-RBF 0.946 ± 0.018 0.965 ± 0.004 0.873 ± 0.035 0.615 ± 0.022 0.850 ± 0.020
GP-Cosine 0.961 ± 0.004 0.951 ± 0.027 0.906 ± 0.079 0.709 ± 0.068 0.872 ± 0.045
GP-Linear 0.976 ± 0.003 0.971 ± 0.008 0.896 ± 0.012 0.623 ± 0.030 0.867 ± 0.013

GP-Periodic 0.975 ± 0.004 0.969 ± 0.001 0.709 ± 0.086 0.641 ± 0.061 0.824 ± 0.038
Random MLP 0.975 ± 0.003 0.970 ± 0.007 0.797 ± 0.050 0.629 ± 0.018 0.843 ± 0.020
Trained MLP 0.975 ± 0.003 0.905 ± 0.033 0.716 ± 0.094 0.578 ± 0.023 0.794 ± 0.038

Mean

GP-RBF 0.871 ± 0.018 0.646 ± 0.061 0.549 ± 0.032 0.488 ± 0.011 0.639 ± 0.031
GP-Cosine 0.728 ± 0.021 0.528 ± 0.010 0.385 ± 0.007 0.455 ± 0.004 0.524 ± 0.010
GP-Linear 0.872 ± 0.025 0.624 ± 0.031 0.397 ± 0.009 0.447 ± 0.004 0.585 ± 0.017

GP-Periodic 0.887 ± 0.047 0.634 ± 0.015 0.511 ± 0.069 0.496 ± 0.011 0.634 ± 0.036
Random MLP 0.790 ± 0.048 0.522 ± 0.042 0.499 ± 0.012 0.489 ± 0.006 0.575 ± 0.027
Trained MLP 0.869 ± 0.012 0.684 ± 0.043 0.447 ± 0.057 0.476 ± 0.027 0.619 ± 0.022

Tables 7 and 8 show the performance of ExPT on the few-shot random and few-shot poor settings
when pretrained with different data distributions. Overall, the model achieves good performance
across different data distributions, with GP-RBF being the best in most settings. This ablation study
shows the robustness of ExPT to the pretraining data distribution.

C.3 ExPT with different decoder architectures

In addition to the pretraining data distribution, we also conducted an ablation study on the architecture
of ExPT, in which we replaced the VAE model with a diffusion model (ExPT-Diffusion). We take
the diffusion architecture from [35].

Table 9: Performance of ExPT with different decoder architectures on the random setting
Decoder architecture D’Kitty Ant TF8 TF10 Mean score

Median VAE 0.902 ± 0.006 0.705 ± 0.018 0.473 ± 0.014 0.477 ± 0.014 0.639 ± 0.013
Diffusion 0.816 ± 0.028 0.642 ± 0.018 0.457 ± 0.116 0.489 ± 0.019 0.601 ± 0.045

Max VAE 0.973 ± 0.005 0.970 ± 0.004 0.933 ± 0.036 0.677 ± 0.048 0.888 ± 0.023
Diffusion 0.966 ± 0.007 0.967 ± 0.006 0.868 ± 0.150 0.628 ± 0.014 0.857 ± 0.044

Mean VAE 0.865 ± 0.016 0.639 ± 0.026 0.476 ± 0.010 0.474 ± 0.015 0.614 ± 0.017
Diffusion 0.741 ± 0.013 0.603 ± 0.016 0.468 ± 0.115 0.486 ± 0.016 0.575 ± 0.040

Table 10: Performance of ExPT with different decoder architectures on the poor setting
Decoder architecture D’Kitty Ant TF8 TF10 Mean score

Median VAE 0.922 ± 0.009 0.686 ± 0.090 0.552 ± 0.042 0.489 ± 0.013 0.662 ± 0.039
Diffusion 0.821 ± 0.038 0.638 ± 0.011 0.295 ± 0.010 0.421 ± 0.007 0.544 ± 0.017

Max VAE 0.946 ± 0.018 0.965 ± 0.004 0.873 ± 0.035 0.615 ± 0.022 0.850 ± 0.020
Diffusion 0.974 ± 0.003 0.956 ± 0.008 0.677 ± 0.007 0.593 ± 0.026 0.800 ± 0.011

Mean VAE 0.871 ± 0.018 0.646 ± 0.061 0.549 ± 0.032 0.488 ± 0.011 0.639 ± 0.031
Diffusion 0.731 ± 0.035 0.600 ± 0.014 0.311 ± 0.011 0.415 ± 0.013 0.514 ± 0.018

Tables 9 and 10 show that ExPT + VAE outperforms ExPT + Diffusion in all tasks and settings. We
hypothesize that ExPT with a too powerful decoder may learn only to model the distribution over
the target x0s and ignore the conditioning variables (context x0s, context y0s, and target y), which
consequently hurts the generalization of the model.

C.4 Effects of |Dunlabeled|

We empirically examine the effects of the size of Dunlabeled on the downstream performance of ExPT.
Specifically, we subsample the x0s in the public dataset with a ratio r 2 {0.01, 0.1, 0.2, 0.5, 1.0}.
Adaptation and evaluation are the same as in Section 3.

Figure 7 shows the median and mean performance of ExPT on Dkitty and Ant in both random
and poorest settings with respect to the ratio r. In the random setting, ExPT is able to reach or

18

Figure 7: The performance of ExPT on Dkitty and Ant in the random (left) and poorest (right)
setting when we vary the training data ration r. We average the performance across 3 seeds.

surpass the best data point in the few-shot dataset by using as few as 0.2 of the pretraining data.
In the poorest setting, ExPT performs better than the best dataset point with only 0.01 of the
pretraining data. Moreover, the performance improves consistently as the pretraining data size
increases, suggesting that we can achieve even better performance by simply using more unlabeled
data for pretraining. This result highlights the unique capability of ExPT of learning from unlabeled
data, providing new opportunities for solving challenging optimization problems where unlabeled
data is plentiful but labeled data is scarce.

C.5 Sorting context and target points

In the main experiments in Section 3, for each generated function during pretrainnig, we sample 228
points that we divide randomly into 100 context points and 128 target points. However, at adaptation,
we condition on target output values that are likely to be higher than the best input value in the
context set. Therefore, it is natural to sort the context points and target points during pretraining, so
that the target inputs always have higher values than the context inputs. We denote this pretraining
mechanism as ExPT-sorted.

Table 11: Comparison of pretraining on randomly divided context and target points (ExPT) versus
sorted context and target points (ExPT-sorted) on Ant and D’Kitty in random (left) and poorest
(right) settings. We average the performance across 3 seeds.

Baseline D’Kitty Ant

Dfew-shot(best) 0.883 0.563

Median ExPT 0.902± 0.006 0.705± 0.018
ExPT-Sorted 0.811± 0.019 0.631± 0.015

Mean ExPT 0.865± 0.016 0.639± 0.026
ExPT-Sorted 0.794± 0.020 0.590± 0.014

Baseline D’Kitty Ant

Dfew-shot(best) 0.307 0.124

Median ExPT 0.922± 0.009 0.686± 0.090
ExPT-Sorted 0.911± 0.003 0.685± 0.044

Mean ExPT 0.871± 0.018 0.646± 0.061
ExPT-Sorted 0.900± 0.003 0.642± 0.035

Table 11 shows that ExPT-sorted underperforms ExPT in the random setting, while performing very
similarly in the poorest setting. This indicates that learning to predict any points provides a better
and more general pretraining objective than only learning to predict points with high values.

C.6 Comparisons with more baselines

In addition to the baselines in Section 3, we compare ExPT with 3 variants of Gradient Ascent, a
method that was considered in previous works [58, 36, 57, 34]. The Grad. Asc baseline simply learns
a forward model and finds an optimal x⇤ by taking 200 gradient-ascent steps to improve an existing
input x. The two variants Grad. Min and Grad. Mean create ensembles of forward models and
perform gradient ascent using the min and mean ensemble predictions.

Tables 12 and 13 show the performance of ExPT and all baselines in the random and poorest
settings. We see that while the gradient ascent methods perform well on certain tasks, with good

19

Table 12: Comparison of ExPT and the baselines on the few-shot random setting of 4 Design-Bench
tasks. We report median, max, and mean performance across 3 random seeds. Higher scores are
better. Blue denotes the best entry in the column, and Violet denotes the second best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (")

Dfew-shot(best) 0.883 0.563 0.439 0.466 —

Median

MINs 0.859± 0.014 0.485± 0.152 0.416± 0.019 0.468± 0.014 0.557± 0.050
COMs 0.752± 0.007 0.411± 0.012 0.371± 0.001 0.468± 0.000 0.501± 0.005

BONET 0.852± 0.013 0.597± 0.119 0.441± 0.003 0.483± 0.009 0.593± 0.036
BDI 0.592± 0.020 0.396± 0.018 0.540± 0.032 0.438± 0.034 0.492± 0.026

GP-qEI 0.842± 0.058 0.550± 0.007 0.439± 0.000 0.467± 0.000 0.575± 0.016
Grad. Asc 0.403± 0.134 0.088± 0.017 0.492± 0.017 0.492± 0.018 0.369± 0.0465
Grad. Min 0.712± 0.028 0.220± 0.035 0.504± 0.025 0.465± 0.008 0.475± 0.024

Grad. Mean 0.437± 0.180 0.150± 0.037 0.551± 0.029 0.485± 0.018 0.406± 0.066
ExPT 0.902± 0.006 0.705± 0.018 0.473± 0.014 0.477± 0.014 0.639± 0.013

Max

MINs 0.930± 0.010 0.890± 0.017 0.814± 0.030 0.639± 0.017 0.818± 0.019
COMs 0.920± 0.010 0.841± 0.044 0.686± 0.152 0.656± 0.020 0.776± 0.057

BONET 0.909± 0.012 0.888± 0.024 0.887± 0.053 0.702± 0.006 0.847± 0.024
BDI 0.918± 0.006 0.806± 0.094 0.906± 0.074 0.532± 0.023 0.791± 0.049

GP-qEI 0.896± 0.000 0.887± 0.000 0.513± 0.104 0.647± 0.011 0.736± 0.029
Grad. Asc 0.775± 0.032 0.240± 0.032 0.923± 0.005 0.675± 0.017 0.653± 0.0215
Grad. Min 0.822± 0.053 0.434± 0.092 0.960± 0.002 0.632± 0.009 0.712± 0.039

Grad. Mean 0.829± 0.009 0.337± 0.063 0.957± 0.010 0.668± 0.034 0.698± 0.029
ExPT 0.973± 0.005 0.970± 0.004 0.933± 0.036 0.677± 0.048 0.888± 0.023

Mean

MINs 0.624± 0.025 0.009± 0.013 0.415± 0.030 0.465± 0.015 0.378± 0.021
COMs 0.515± 0.050 0.020± 0.006 0.369± 0.003 0.471± 0.004 0.344± 0.016

BONET 0.837± 0.023 0.579± 0.024 0.448± 0.011 0.484± 0.009 0.587± 0.017
BDI 0.570± 0.032 0.385± 0.012 0.536± 0.032 0.444± 0.027 0.484± 0.026

GP-qEI 0.505± 0.006 0.019± 0.001 0.439± 0.001 0.473± 0.002 0.359± 0.003
Grad. Asc 0.400± 0.073 0.090± 0.018 0.513± 0.014 0.492± 0.017 0.374± 0.031
Grad. Min 0.599± 0.068 0.221± 0.034 0.531± 0.015 0.462± 0.009 0.453± 0.032

Grad. Mean 0.527± 0.079 0.150± 0.038 0.569± 0.028 0.438± 0.017 0.421± 0.041
ExPT 0.865± 0.016 0.639± 0.026 0.476± 0.010 0.474± 0.015 0.614± 0.017

Table 13: Comparison of ExPT and the baselines on the few-shot poorest setting of 4 Design-Bench
tasks. We report the median, max, and mean performance across 3 random seeds. Higher scores are
better. Blue denotes the best entry in the column, and Violet denotes the second best.

Baseline D’Kitty Ant TF Bind 8 TF Bind 10 Mean score (")

Dfew-shot(best) 0.307 0.124 0.124 0.000 —

Median

MINs 0.480± 0.156 0.316± 0.040 0.437± 0.007 0.463± 0.003 0.424± 0.052
COMs 0.733± 0.023 0.401± 0.026 0.111± 0.000 0.459± 0.006 0.426± 0.014

BONET 0.310± 0.000 0.236± 0.047 0.319± 0.018 0.461± 0.017⇤ 0.332± 0.021
BDI 0.309± 0.000 0.192± 0.012 0.365± 0.000 0.454± 0.017 0.330± 0.007

GP-qEI 0.883± 0.000 0.565± 0.001 0.439± 0.000 0.467± 0.000 0.589± 0.000
Grad. Asc 0.741± 0.026 0.321± 0.012 0.425± 0.064 0.419± 0.073 0.477± 0.044
Grad. Min 0.806± 0.004 0.454± 0.061 0.357± 0.040 0.376± 0.079 0.498± 0.046

Grad. Mean 0.742± 0.054 0.472± 0.066 0.350± 0.014 0.395± 0.019 0.489± 0.038
ExPT 0.922± 0.009 0.686± 0.090 0.552± 0.042 0.489± 0.013 0.662± 0.039

Max

MINs 0.841± 0.014 0.721± 0.031 0.962± 0.019 0.648± 0.025 0.793± 0.022
COMs 0.931± 0.022 0.843± 0.020 0.124± 0.000 0.739± 0.057 0.659± 0.025

BONET 0.929± 0.031 0.557± 0.118 0.809± 0.038 0.519± 0.039⇤ 0.704± 0.057
BDI 0.939± 0.002 0.693± 0.109 0.913± 0.000 0.596± 0.020 0.785± 0.033

GP-qEI 0.896± 0.000 0.887± 0.000 0.439± 0.000 0.645± 0.021 0.717± 0.005
Grad. Asc 0.837± 0.038 0.684± 0.071 0.821± 0.077 0.568± 0.019 0.728± 0.052
Grad. Min 0.910± 0.009 0.801± 0.029 0.842± 0.066 0.555± 0.028 0.777± 0.033

Grad. Mean 0.882± 0.028 0.807± 0.046 0.747± 0.055 0.542± 0.039 0.745± 0.042
ExPT 0.946± 0.018 0.965± 0.004 0.873± 0.035 0.615± 0.022 0.850± 0.020

Mean

MINs 0.623± 0.051 0.015± 0.017 0.464± 0.009 0.463± 0.002 0.391± 0.020
COMs 0.607± 0.021 0.033± 0.003 0.109± 0.001 0.454± 0.004 0.301± 0.007

BONET 0.490± 0.023 0.234± 0.052 0.318± 0.018 0.459± 0.018 0.375± 0.028
BDI 0.364± 0.004 0.215± 0.021 0.369± 0.000 0.453± 0.018 0.350± 0.011

GP-qEI 0.533± 0.001 0.018± 0.000 0.439± 0.000 0.470± 0.002 0.365± 0.001
Grad. Asc 0.659± 0.069 0.334± 0.018 0.432± 0.061 0.427± 0.042 0.463± 0.048
Grad. Min 0.794± 0.003 0.454± 0.051 0.374± 0.018 0.386± 0.044 0.502± 0.029

Grad. Mean 0.702± 0.083 0.467± 0.050 0.356± 0.023 0.405± 0.018 0.483± 0.044
ExPT 0.871± 0.018 0.646± 0.061 0.549± 0.032 0.488± 0.011 0.639± 0.031

performance on the TF-Bind8 task in particular, ExPT is still the best performing method in all
settings and metrics.

20

D Compute

All training is done on 10 AMD EPYC 7313 CPU cores and one NVIDIA RTX A5000 GPU.

E Reproducibility

We made a strong effort to ensure that our work can be reproduced properly. In Section 2, we provide
a comprehensive description of our methodology, while in Section 3 and Appendix A, we provide
the specifics of our pretraining and evaluation setup, as well as our choice of hyperparameters. We
compare our approach with various baseline methods from different approaches on multiple tasks
in Design-Bench [58] with distinct properties. Our results are averaged over 3 seeds and we also
report the standard deviation. Additionally, we conduct several ablation experiments to examine how
sensitive ExPT is to different hyperparameters.

F Broader impact

The field of offline black-box optimization can have positive impacts in many spheres, including
in drug-discovery, nuclear reactor design, and optimal robot design. The few-shot setting that we
introduce in this work is also highly relevant to these fields which have large quantities of unlabelled
data, but only a limited quantity of labelled data points. It is also worth noting however, that it is
possible to use black-box optimization in general for malicious purposes such as to produce chemicals
with harmful properties. Even though our work does not directly enable such use cases, this possibility
should be taken into account when applying ExPT and similar frameworks to these kinds of impactful
real-world scenarios.

21

