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Abstract

We propose the Multimodal Clinical Benchmark for Emergency Care (MC-BEC),
a comprehensive benchmark for evaluating foundation models in Emergency
Medicine using a dataset of 100K+ continuously monitored Emergency Department
visits from 2020-2022. MC-BEC focuses on clinically relevant prediction tasks
at timescales from minutes to days, including predicting patient decompensation,
disposition, and emergency department (ED) revisit, and includes a standardized
evaluation framework with train-test splits and evaluation metrics. The multimodal
dataset includes a wide range of detailed clinical data, including triage information,
prior diagnoses and medications, continuously measured vital signs, electrocar-
diogram and photoplethysmograph waveforms, orders placed and medications
administered throughout the visit, free-text reports of imaging studies, and informa-
tion on ED diagnosis, disposition, and subsequent revisits. We provide performance
baselines for each prediction task to enable the evaluation of multimodal, multitask
models. We believe that MC-BEC will encourage researchers to develop more
effective, generalizable, and accessible foundation models for multimodal clinical
data.

1 Introduction

Emergency Medicine is a critical area of healthcare in which timely and accurate decisions, drawing
appropriately on a wide variety of data sources, have a significant impact on patient outcomes
[1]. However, developing effective foundation models for electronic health record (EHR) data in
Emergency Medicine requires addressing several challenges. EHR data in Emergency Medicine
is heterogeneous, including clinical notes, orders, lab results, imaging studies, and physiological
waveforms. This heterogeneity can make it difficult to extract meaningful features from the data and
integrate them into a single model. Data quality and missingness can also be a significant issue, due
to the fast-paced and high-pressure nature of emergency care. Inaccurate or incomplete data can
limit the reliability of model results. Clinical interpretability is also critical. Clinicians must be able
to understand the model’s predictions to make informed decisions. Therefore, models developed
for EHR analysis in Emergency Medicine must be transparent and explainable. Finally, the limited
scope and standardization of existing datasets are significant challenges to developing foundation
models for Emergency Medicine. Many datasets focus on specific patient populations, such as trauma
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patients, or specific tasks, such as predicting mortality. This orientation to specific subgroups and
tasks makes it difficult to compare and evaluate models across tasks and patient populations.

To address these challenges, and to promote the development of robust and clinically useful foundation
models for Emergency Medicine, we propose the Multimodal Clinical Benchmark for Emergency
Care (MC-BEC), a comprehensive benchmark for evaluating foundation models in Emergency
Medicine. MC-BEC is built on a dataset 1 of 102,731 monitored visits made by 63,389 unique
patients between 2020 and 2022, and provides a unique opportunity to study acute care in the
COVID-19 era. It is the only multimodal medical dataset that exclusively covers patients during
this period, while also capturing a wide range of non-COVID pathology. This dataset covers a
wide range of information for emergency department (ED) patients, including triage information,
prior diagnoses and medications, orders placed in the ED, medication administrations, lab results,
continuously monitored vital signs and physiologic waveforms, and free-text reports for radiology
studies. With its emphasis on multiple modalities, including continuous waveforms and vital signs
providing physiologic context for heterogeneous and often rapidly evolving patients, MC-BEC
presents opportunities to study the uniquely dynamic and complex nature of emergency care.

MC-BEC emphasizes clinically relevant downstream tasks at multiple timescales, specifically predict-
ing patient decompensation (within minutes), disposition (within hours), and ED revisit (within days),
and provides a standardized evaluation framework with train-test splits and evaluation metrics. We
also provide baselines for each task to enable model comparison and evaluation. With MC-BEC, we
hope to encourage researchers and clinicians to develop more effective, generalizable, and accessible
foundation models for EHR analysis in Emergency Medicine, ultimately improving patient outcomes
and advancing the analysis of real-world EHR data.

2 Related Work

2.1 Current ED benchmarks are not multimodal

Existing EHR datasets for ED or critically ill patients are often limited to structured EHR data and
intermittent vital sign recordings. These datasets fail to capture the comprehensive multimodal
information obtained from the intensive evaluation and monitoring of ED patients. To our knowledge,
only two ED-specific benchmarks exist. Xie et al. (2022) [2] introduced an ED benchmark using the
MIMIC-IV-ED dataset [3]. While this dataset represents the only publicly available general-purpose
ED dataset, it contains only tabular EHR data for all patients, with radiology reports for a subset.
EHRShot [4] is the other recent ED benchmark, but its underlying dataset includes only coded data
such as ICD diagnosis codes, and is not publicly available.

Due to the lack of robust ED benchmarks, we also reviewed existing critical care benchmarks, since
patient monitoring practices in the ED and intensive care unit (ICU) are similar. A comparison in Table
1 shows most ICU datasets also focus on structured EHR data and intermittent vital signs, lacking
free text or waveforms. HiRID[5] provides high-resolution physiological data but no text/reports.
Strikingly, neither ICU nor ED datasets include electrocardiogram (ECG) and photoplethysmograph
(PPG) waveforms, which represent essential data on the physiology of critically ill patients.

To address the lack of multimodal ED benchmarks, we propose MC-BEC, using a novel multimodal
dataset including vital signs, continuous physiologic waveforms (ECG, PPG, respiration), radiology
reports, and diverse structured EHR data. This supports improved evaluation of model performance
on a wider range of salient patient information.

2.2 Current ED benchmarks are not suitable for generalist medical AI

Existing medical AI benchmarks fall short in comprehensively evaluating generalist medical AI
(GMAI) and clinical foundation models. GMAI was recently proposed as a goal for foundation
models in healthcare and medicine [6]. GMAI would perform a wide range of medical tasks and
flexibly interpret different combinations of data modalities, enabled by foundation models’ capability
to learn broadly useful data representations from massive pretraining [7]. However, as discussed in a
recent survey [8], current benchmarks focus narrowly on accuracy for predefined tasks, inadequate
for evaluating key GMAI capabilities. A major limitation is the lack of assessment for multimodal
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integration (Table 1). While GMAI is designed to integrate diverse data modalities, performance can
decline with more modalities [9]. Yet accuracy metrics alone will not expose these nuances. Current
benchmarks also rarely evaluate how models handle missing modalities, though incomplete data is
pervasive in real-world EHRs.

To address these gaps, benchmarks must move beyond accuracy to rigorously assess multimodal
performance, tolerance to missing data, and other facets critical for GMAI. The proposed MC-
BEC benchmark exemplifies this comprehensive approach through evaluating multitask learning,
multimodal performance, and fairness analyses beyond predictive accuracy alone. Rethinking
evaluation is imperative as GMAI diverges from narrow benchmarks of the past toward more
expansive and integrative capabilities. Robust benchmarks will be central to steering progress in this
promising new direction.

Table 1: Comparison of critical and emergency care EHR benchmarks. MT Learning stands for
multitask learning; MM Analysis stands for multimodal analysis; the number of patients and visits of
MIMIC-III excludes neonatal patients.
Benchmark Eval. Beyond Acc. Source Data Modalities

MT
Learning

MM
Analysis Fairness Dataset ICU ED Num.

patients
Num.
visits

EHR
Codes

Free-Text
Notes

Vital
Signs

ECG/PPG
Waveform

MIMIC-Extract[10]
MIMIC-III[11] x 39K* 53K* x x xPurushotham 2018[12]

Harutyunyan 2019[13] x

Xie 2022[2] MIMIC-IV-ED (v1.0)[14] x 217K 449K x x x

Gupta 2022[15] x MIMIC-IV (v1.0) [16, 17] x x 257K 524k x x x

eICU[18] eICU[19] x 139K 201K x x

EHR PT[20] x MIMIC-III[11] / eICU[18]

HiRID-ICU[21] HiRID (v1.1.1)[5] x 34K 56K x x

EHRSHOT[4] Stanford Med. x x 7k 894k x

MC-BEC x x x Stanford EM x 63K 102K x x x x

2.3 GMAI for multimodal EHR data

Our baseline model is inspired by related work in the field. A common approach to foundation models
is to first pretrain them on tasks with abundant data to generate robust representations, then to fine-tune
on downstream tasks. ClinicalBERT [22] is a widely used pretrained model specifically designed
for clinical text embeddings. Categorial EHR data also has pretraining options like BEHRT[23],
CLMBR[24] and MOTOR [25], which predict future EHR codes based on past codes. However, these
representations of EHR codes depend on the code formats used during training, limiting transferability
and robustness to heterogeneous EHR formats. Instead, we employed CodeEmb’s [26] approach that
uses pretrained text embeddings associated with EHR code descriptions regardless of the format or
code system used by the EHR. For fine-tuning on multimodal data, we adopt the HAIM framework
[27], using a modular ML pipeline that integrates modality-specific pretrained embeddings.

2.4 Multitask learning

Our multitask training approach draws inspiration from prompting techniques in language models.
Rather than using task-specific prediction heads, we employ a unified task representation combined
with task-specific queries. This allows creating broadly capable models without architectural changes
for new tasks.

Conventional multitask learning often designates separate prediction heads for each task, as in
MOTOR which has heads for distinct medical predictions[25]. However, the promising avenue
of using unified task representations combined with task-specific queries has gained traction, as
showcased in studies like OFS [28] and Perceiver IO [29]. We enhance our baseline LightGBM model
[30] by incorporating contextual embeddings from the BERT model. For each task, we concatenate
BERT embeddings of the task-specific queries with other input features. This integrates BERT’s
rich semantic understanding, allowing the model to adeptly differentiate tasks within the shared
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Figure 1: MC-BEC evaluates foundation model performance on predictions of ED patient decompen-
sation, disposition, and revisit, using a unique multimodal dataset of 102,731 monitored ED visits.

embedding space. This provides flexibility to expand to new prediction tasks without architectural
changes.

3 Benchmark

MC-BEC is a benchmark for evaluating clinical foundation models/GMAI on multimodal EHR data
in the ED setting. It provides three clinically relevant prediction tasks spanning different stages of an
ED visit: prediction of near-term decompensation early in the visit, prediction of disposition at the
end of a visit, and prediction of revisit after the visit. MC-BEC includes evaluation metrics beyond
prediction performance, capturing modality interaction, fairness, and consistency of predictions with
respect to time and modalities.

3.1 Data source

The MC-BEC dataset consists of 102,731 ED visits made by 63,389 patients between September,
2020 and September, 2022. The dataset is IRB approved, with a waiver of informed consent for
retrospective research on de-identified data. The de-identified data for each ED visit spans the entire
visit from department arrival to departure, including triage after ED arrival, rooming and initiation of
monitoring, and all interventions and results up to the point of departure from the ED. Patients in the
dataset have multiple ED visits, but MC-BEC ensures no patient overlap (i.e., visits from the same
patient) across the training, testing and validation cohorts. Unlike previous ED datasets, MC-BEC
contains both categorical and unstructured clinical data. These modalities and data structures are
described below.

Categorical data with single observation: chief complaint, triage acuity level, gender, race, ethnicity,
means of arrival, disposition of most recent visit, disposition of current visit, and payor class.

Categorical data with repeated observations: current and previous ICD-10 diagnosis codes with
timestamps and corresponding text descriptions; home medications and medications administered
during visit with IDs, names, and timestamps of administration; orders placed during visit with IDs,
names, and timestamps; lab results with IDs, names, result values, and timestamps.

Numeric data: age, hours since previous visit, and vital signs including heart rate, respiratory rate,
blood pressure, oxygen saturation, and temperature.

Time-series data: continuously recorded vital signs (heart rate, respiratory rate, oxygen saturation)
and secondary features (heart rate variability, pulse transit time, perfusion index) throughout the
patient’s visit. These measurements were averaged over 1-minute intervals.

Waveform data: electrocardiogram (ECG), photoplethysmogram (PPG) and respiratory waveforms.

Free-text data: radiology reports for imaging studies ordered during the ED visit.
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3.2 Benchmark tasks

We chose decompensation, disposition, and revisit as prediction tasks for MC-BEC. These tasks have
high clinical and operational relevance in the ED setting: early identification of patients at risk of
decompensation allows healthcare providers to allocate appropriate resources; accurate disposition
prediction helps optimize resource allocation, bed management, and patient flow within the hospital
system; and understanding the probability of revisit allows healthcare providers to identify patients
who may require closer follow-up or additional interventions to prevent complications or ensure
proper continuity of care. These prediction tasks collectively encompass the entire timeframe of an
ED visit, focusing on different aspects in the patient’s journey through the ED encounter (Figure 1).
We provide brief descriptions of each task as defined for our benchmark:

1. Decompensation: The goal of this binary classification task is to predict which patients are likely
to experience clinical decompensation, defined as new onset of tachycardia (heart rate [HR] >
110), hypotension (mean arterial pressure [MAP] < 65mmHg), or hypoxia (oxygen saturation
by pulse oximetry [SpO2] < 90%) in patients with initially normal vital signs. The task uses the
first 15 minutes of data acquired after the patient is roomed (the assessment period) to predict
decompensation in a 60, 90 or 120 minute-window (evaluation period) following the assessment
period. Patients with abnormal vital signs at triage or at any point during the assessment period
are excluded from this task, in order to prevent trivial predictions (e.g., the prediction of future
hypotension in an already hypotensive patient).

2. Disposition: The objective is to predict the binary outcome of a patient’s disposition from the ED:
whether they will be discharged home or admitted to the hospital. This is a summative clinical
decision that reflects the patient’s overall clinical stability and risk as determined by the totality of
evidence accrued during the visit. To avoid data leakage, any information that could reveal the
disposition decision (such as a consult order to an admitting service) is excluded for this task.

3. Revisit: The goal is to predict whether a patient will revisit the ED within a 3, 7, or 14-day
period after being discharged. ED revisits are a common quality metric, because return visits can
sometimes suggest incomplete workup or inappropriate disposition (i.e., a patient sent home who
should have been admitted). All data from a visit can be used to make the revisit prediction, and
no patients or visits from the dataset need to be excluded for this task.

3.3 Evaluation framework

Prediction performance. We propose to evaluate prediction performance with area under the
precision-recall curve (AUPRC) as a threshold-independent metric. AUPRC is a clinically meaningful
metric because it reflects the model’s performance in correctly identifying positive instances while
minimizing false positives. In medical scenarios, correctly identifying positive cases is crucial, as
it ensures accurate diagnosis or prediction of a particular condition. AURPC is also particularly
important when dealing with unbalanced data, which is common among medical datasets, including
ours.

Monotonicity in modalities. We propose to assess the performance change of a model when
increasing the data modalities available for training. We hypothesize that a well-designed multimodal
model should not perform worse when more data modalities are used for training. However, such
monotonicity of performance in modalities is not always observed. For example, [9] found that a
unimodal network performed better than the multimodal network obtained through joint training. A
reduction in performance caused by the inclusion of more modalities may be attributed to modality
competition during training, wherein the model learns to rely on only a subset of modalities to make
predictions [31]. The evaluation of monotonicity in modalities can help guide the development of
more effective and robust multimodal models.

We evaluate monotonicity in modalities mmodalities by calculating the concordance index C between
the actual performance pm(i) and the theoretical ground truth which would expect better performance
ym(i) for increasing numbers n of modalities m:

ym1 ≤ ym2 ≤ . . . ≤ ym(n−1) ≤ ym(n) (1)

mmodalities = C =

∑n
i=1

∑n
j=i+1 f(yi, yj , pi, pj)

n(n− 1)/2
(2)
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f(yi, yj , pi, pj) =


1 if (yi < yj) · (pi < pj) + (yi > yj) · (pi > pj)

0.5 pi = pj
0 otherwise

(3)

Robustness against missing modalities. We evaluate the model’s robustness and generalization
capabilities when one or more modalities of data used in training are unavailable in testing. This metric
encourages the development of models with more reliable performance in real-world applications
where not all training modalities will be present in all cases.

Bias. We evaluate bias as a crucial metric to detect systematic errors or prejudices in the model’s
predictions or outputs. MC-BEC reflects the ED, where false negative prediction of adverse events
can result in severe negative health outcomes. Incorrect disposition decisions might exacerbate health
issues; misjudged revisit predictions can overlook preventive care needs; and unforeseen clinical
decompensation, like hypotension or hypoxia, can be life-threatening. Hence, we chose the true
positive rate (TPR) difference as our primary bias metric. Using a sensitivity threshold of 0.85 on the
validation set, we assess TPR differences between different demographic groups such as age, gender,
race, and ethnicity. Our approach for evaluating model fairness seeks to identify underdiagnosis bias,
which is arguably most relevant and consequential in healthcare settings [32].

4 Experiments

We developed and evaluated baseline models to demonstrate the use of MC-BEC. Our models used
pretrained text and waveform embeddings and employed a modular approach for modality fusion.
We trained multimodal representations using LightGBM [30], as gradient boosting ensembles are
often highly performant in clinical tasks [33, 34, 35, 36]. We also proposed a novel multitask training
schema with LightGBM and compared its performance against models trained on individual tasks.
Our aim is to provide an example of MC-BEC evaluation, and a reference for future models evaluated
with this benchmark.

4.1 Baseline models

Featurization of multimodal data. In our baseline model, we employ a modular approach in
multimodal fusion that combines different embeddings to create a multimodal feature representation
(Figure 2). The data featurization module is highly specialized for a given modality. Singly observed
categorical and numeric data are fed directly into the fusion and prediction modules. All other data
modalities undergo an additional step of featurization. For continuous vital sign monitoring, we
calculate minimum and maximum values and linear trends. We manually engineer features such
as heart rate variability, pulse transit time, and perfusion index from the ECG and PPG waveforms,
and produce ECG embeddings from a pre-trained transformer [37]. To encode EHR codes with text
descriptions such as diagnoses, medications, and lab results, we leverage ClinicalBERT embeddings
to capture the richer and more general information provided by the text description, rather than relying
on one-hot embeddings for the codes themselves. For orders, we employ Word2Vec-like embeddings,
which are trained based on the co-occurrence of order pairs within patient visits. Lastly, from
radiology reports, we produce text embedding features using the pre-trained RadBERT transformer
as outlined in Yan et al.’s work [38]. These diverse information sources—ClinicalBERT, Word2Vec
for orders, and RadBERT for radiology reports—are then concatenated to form a comprehensive
multimodal embedding representation.

Multitask learning. We propose a novel multitask training schema for our LightGBM models
inspired by prompting in language models, whereby a model’s predictions are guided by simply
providing specific task descriptions. Depending on the training schema, whether multitask or single-
task, we further concatenate the multimodal representation with a task description encoded by
BERT-Tiny [39, 40] embeddings. The task descriptions used are "predict disposition" for disposition
prediction; "predict revisit within [D] days" for revisit prediction, where D is 3, 7 or 14 depending on
the revisit horizon; and "predict decompensation within [M] minutes" for decompensation prediction,
where M is 60, 90 or 120 depending on the decompensation window of interest. We chose to
encode the task as a text embedding because this approach will have the capability to generalize for
predictions on a non-discrete set of tasks. Finally, we train a LightGBM model to make predictions
based on these enriched multimodal representations.
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Figure 2: Summary of data modalities represented in MC-BEC and modality-specific featurization
strategies.

Table 2: AUPRC of task-specific and multitask models (point estimate and 95% confidence interval).

Task
Model Task-specific model Multitask model Class Prevalence

Decompensation
60 min 0.33 (0.27 - 0.40) 0.25 (0.20 - 0.31) 0.11
90 min 0.35 (0.30 - 0.41) 0.32 (0.27 - 0.38) 0.15
120 min 0.40 (0.35 - 0.46) 0.35 (0.30 - 0.41) 0.17

Disposition 0.87 (0.85 - 0.87) 0.82 (0.81 - 0.83) 0.37

Revisit
3 days 0.11 (0.08 - 0.14) 0.10 (0.08 - 0.13) 0.05
7 days 0.16 (0.14 - 0.19) 0.16 (0.14 - 0.19) 0.08

14 days 0.24 (0.21 - 0.27) 0.25 (0.22 - 0.28) 0.12

4.2 Benchmark results

Prediction performance. We compare the performance of models trained on a single task (de-
compensation, disposition, or revisit) with a model trained simultaneously on all three prediction
tasks. Table 2 presents the model performance as assessed by AUPRC using all available data
modalities. Overall, task-specific models perform better than the multitask model in decompensation
and disposition predictions, but similarly in revisit predictions. For decompensation prediction, the
task-specific model has AUPRCs of 0.33, 0.35 and 0.40 (for 60-, 90- and 120-minute prediction
windows), while AUPRCs for the multitask model are 0.25, 0.32, and 0.35. Disposition is predicted
with AUPRC 0.87 for the task-specific model and 0.82 for the multitask model. When predicting
revisit at 3, 7 and 14-day time windows, we report AUPRC scores of 0.11, 0.16, and 0.24 for the
task-specific model, and 0.10, 0.16, 0.25 for the multitask prediction model. The prevalence of
the positive class in the dataset is provided as baseline AUPRC [41]. Our results indicate slightly
worse performance with a multitask prediction model which conforms with the assumption that
the single-task prediction models will be better specialized for their specific task. However, the
overall performance gap between single and multitask approaches is small. This suggests potential
for more advanced multitask modeling to match or surpass the single-task results by better leveraging
commonalities and differences between tasks. Recent work has shown promise for sophisticated
multitask architectures surpassing single-task models in clinical predictions. For instance, a multitask
channel-wise LSTM exceeded single-task models in predicting in-hospital mortality[13]. Future
research can use MC-BEC as an avenue to improve upon multitask models.

Monotonicity in modalities. To assess monotonicity in modalities, we train the multitask prediction
model on an increasing subset of data modalities. We start with a model trained only on categorical
and numeric features, then incrementally add features from diagnoses, medications, orders, lab
results, radiology reports, continuous monitoring, and waveforms. Table 3 shows the AUPRC of
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Table 3: AUPRC of multitask models with incrementally increasing testing and training modalities
(point estimate and 95% confidence interval). The modality concordance index measures monotonicity
of prediction performance in modalities.

Model Decompensation Disposition Revisit
60 min 90 min 120 min 3 day 7 day 14 day

Modality added
+ Categorical/numerics 0.23 (0.18 - 0.29) 0.30 (0.25 - 0.35) 0.33 (0.28 - 0.39) 0.71 (0.69 - 0.72) 0.10 (0.08 - 0.13) 0.15 (0.13 - 0.18) 0.25 (0.22 - 0.28)
+ Diagnoses 0.23 (0.18 - 0.29) 0.30 (0.25 - 0.35) 0.33 (0.28 - 0.39) 0.70 (0.68 - 0.72) 0.09 (0.07 - 0.11) 0.15 (0.13 - 0.18) 0.24 (0.21 - 0.27)
+ Medications 0.22 (0.18 - 0.28) 0.29 (0.24 - 0.34) 0.32 (0.28 - 0.38) 0.71 (0.69 - 0.72) 0.09 (0.07 - 0.12) 0.15 (0.13 - 0.18) 0.24 (0.22 - 0.27)
+ Orders 0.18 (0.15 - 0.24) 0.24 (0.21 - 0.30) 0.27 (0.23 - 0.32) 0.79 (0.78 - 0.80) 0.09 (0.08 - 0.12) 0.15 (0.13 - 0.17) 0.24 (0.22 - 0.27)
+ Labs 0.16 (0.13 - 0.20) 0.22 (0.19 - 0.26) 0.25 (0.21 - 0.29) 0.79 (0.78 - 0.81) 0.09 (0.08 - 0.12) 0.15 (0.13 - 0.18) 0.24 (0.22 - 0.27)
+ Radiology 0.15 (0.13 - 0.19) 0.21 (0.18 - 0.25) 0.24 (0.21 - 0.29) 0.79 (0.78 - 0.80) 0.10 (0.08 - 0.12) 0.16 (0.14 - 0.18) 0.25 (0.22 - 0.28)
+ Monitoring 0.24 (0.19 - 0.29) 0.30 (0.25 - 0.35) 0.33 (0.28 - 0.39) 0.80 (0.79 - 0.82) 0.10 (0.08 - 0.12) 0.16 (0.14 - 0.18) 0.25 (0.22 - 0.28)
+ Waveforms 0.25 (0.20 - 0.31) 0.32 (0.27 - 0.38) 0.35 (0.30 - 0.41) 0.82 (0.81 - 0.83) 0.10 (0.08 - 0.13) 0.16 (0.14 - 0.19) 0.25 (0.22 - 0.28)

Modality concordance index 0.50 0.46 0.43 0.89 0.71 0.79 0.82

Table 4: AUPRC for multitask models with one modality missing in test data, demonstrating
robustness to missing modalities (point estimate and 95% confidence interval).

Model Decompensation Disposition Revisit
60 min 90 min 120 min 3 day 7 day 14 day

All modalities 0.25 (0.20 - 0.31) 0.32 (0.27 - 0.38) 0.35 (0.30 - 0.41) 0.82 (0.81 - 0.83) 0.10 (0.08 - 0.13) 0.16 (0.14 - 0.19) 0.25 (0.22 - 0.28)
Missing modality

- Categorical/numerics 0.26 (0.21 - 0.32) 0.32 (0.27 - 0.38) 0.35 (0.30 - 0.41) 0.81 (0.80 - 0.83) 0.06 (0.05 - 0.07) 0.10 (0.09 - 0.11) 0.17 (0.16 - 0.19)
- Diagnoses 0.25 (0.20 - 0.31) 0.32 (0.27 - 0.38) 0.35 (0.30 - 0.41) 0.82 (0.81 - 0.83) 0.10 (0.08 - 0.13) 0.16 (0.14 - 0.19) 0.25 (0.22 - 0.28)
- Medications 0.25 (0.20 - 0.31) 0.32 (0.27 - 0.37) 0.35 (0.30 - 0.40) 0.82 (0.81 - 0.83) 0.08 (0.07 - 0.11) 0.13 (0.11 - 0.15) 0.23 (0.21 - 0.26)
- Orders 0.26 (0.21 - 0.32) 0.34 (0.28 - 0.40) 0.37 (0.32 - 0.43) 0.73 (0.72 - 0.75) 0.07 (0.05 - 0.09) 0.11 (0.10 - 0.13) 0.23 (0.21 - 0.25)
- Labs 0.26 (0.21 - 0.33) 0.33 (0.28 - 0.39) 0.36 (0.31 - 0.42) 0.81 (0.80 - 0.82) 0.08 (0.06 - 0.10) 0.13 (0.11 - 0.15) 0.23 (0.21 - 0.25)
- Radiology 0.25 (0.20 - 0.31) 0.32 (0.27 - 0.37) 0.35 (0.30 - 0.40) 0.80 (0.79 - 0.81) 0.07 (0.06 - 0.10) 0.12 (0.11 - 0.14) 0.23 (0.21 - 0.25)
- Monitoring 0.14 (0.12 - 0.17) 0.20 (0.18 - 0.24) 0.23 (0.20 - 0.27) 0.82 (0.81 - 0.83) 0.08 (0.06 - 0.10) 0.13 (0.11 - 0.15) 0.23 (0.21 - 0.25)
- Waveforms 0.24 (0.19 - 0.29) 0.31 (0.26 - 0.36) 0.34 (0.29 - 0.39) 0.82 (0.81 - 0.83) 0.08 (0.06 - 0.10) 0.13 (0.11 - 0.15) 0.23 (0.21 - 0.26)

Max AUPRC difference 0.12 0.13 0.14 0.09 0.04 0.06 0.08

models trained with increasing numbers of modalities, along with the modality concordance index.
Disposition prediction demonstrates strong monotonicity in modalities with a modality concordance
index of 0.86. This indicates that disposition prediction benefits from incorporating more data
modalities. Revisit predictions demonstrate moderate monotonicity, with concordance indices of
0.71, 0.79, and 0.82 for the 3, 7, and 14-day windows. Decompensation predictions show the worst
monotonicity among all tasks, with notably decreased performance when adding orders, labs, and
radiology reports data. This poor monotonicity in modalities is reflected in low concordance indices
of 0.50, 0.46, and 0.43 for the 60, 90, and 120-minute windows. However, the performance does
increase when continuous monitoring and waveforms are added, which aligns with the expectation
that continuous monitoring and waveforms of vital signs are predictive of impending decompensation
events.

Robustness against missing modalities. We assess the robustness of the multitask benchmark model
against missing modalities during inference by dropping individual modalities and comparing the
difference in AUPRC between using all modalities versus missing modalities (Table 4). Although
revisit predictions do not have the largest maximum AUPRC difference, with values of 0.04, 0.06,
and 0.08 for the 3, 7, and 30-day windows, they are more likely to see a performance decrease
when missing modalities. Specifically, revisit predictions show notable performance drops when
all modalities except diagnoses are missing, compared to the substantial drops for decompensation
predictions only when continuous monitoring data is missing and for disposition predictions only
when orders data is missing. Furthermore, the performance gap widens in the worst case of missing
modalities over the longer time windows for both revisit and decompensation predictions, with
maximum AUPRC differences of 0.12, 0.13, and 0.14 for the latter. Qualitatively, the impact on
model performance when omitting modalities varies significantly depending on the prediction task.
Overall, our results suggest that the benchmark predictions are reasonably robust to missing modalities
during inference.

Bias. Lastly, in table 5, we report mean TPR differences for the multitask prediction model when
applied to different demographic groups, specifically based on patient age, gender, race, and ethnicity.
The greatest absolute disparities in mean TPR emerged when comparing different racial groups, with
a mean TPR difference of 0.11 for 3-day revisit prediction, followed by a mean TPR difference of 0.09
for 7-day revisit prediction. Notable model bias was also observed between gender groups for 90 and
120-minute decompensation predictions, with TPR differences of 0.08 and 0.09. Additionally, there
was a sizable TPR difference of 0.07 between age groups for 60-minute decompensation predictions.
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Table 5: Evaluation of model bias across demographic groups. True positive rate (TPR) and absolute
TPR difference between different groups are reported below.

Demographic Group Decompensation Disposition Revisit
60 min 90 min 120 min 3 day 7 day 14 day

Age < 55 0.87 0.86 0.88 0.93 0.69 0.75 0.88
>= 55 0.94 0.91 0.92 0.97 0.65 0.79 0.92

TPR difference 0.07 0.05 0.05 0.04 0.04 0.03 0.04

Gender Male 0.92 0.93 0.94 0.96 0.68 0.79 0.91
Female 0.88 0.85 0.85 0.95 0.67 0.74 0.87

TPR difference 0.05 0.08 0.09 0.01 0.01 0.04 0.04

Race White 0.88 0.88 0.88 0.96 0.63 0.77 0.88
Black/African American 1.00 0.90 0.95 0.95 0.82 0.90 0.94
Asian 0.88 0.87 0.88 0.96 0.64 0.73 0.85
Native Hawaiian/Other Pacific
Islander

1.00 0.86 1.00 0.93 0.80 0.86 0.81

Other 0.90 0.90 0.91 0.95 0.70 0.74 0.90

TPR difference 0.07 0.02 0.06 0.01 0.11 0.09 0.06

Ethnicity Non-Hispanic/Non-Latino 0.89 0.88 0.89 0.96 0.68 0.77 0.88
Hispanic/Latino 0.92 0.91 0.92 0.94 0.66 0.75 0.91

TPR difference 0.03 0.03 0.03 0.01 0.02 0.02 0.03

We also present supplementary fairness metrics like Statistical Parity Difference (SPD), Disparate
Impact (DI), and Equal Opportunity Difference (EOD) between minority and majority cohorts in
Table 15 in the Appendix. Models applied to the MC-BEC benchmark should be attentive to potential
biases as assessed by our framework, and any identified biases must be carefully considered before
deployment to ensure fairness and equity.

5 Limitations

While the benchmark provides valuable insights, MC-BEC has limitations. The benchmark does not
assess the potential of foundation models in automating novel clinical tasks, such as summarizing all
data obtained throughout a visit into an easy-to-understand report for the provider or patient. Future
iterations of the benchmark should include novel tasks specific to the ED environment to further
highlight the capabilities of clinical foundation models. Although the benchmark evaluates bias on
measured patient characteristics, it does not account directly for socioeconomic status. Due to privacy
and legal concerns, socioeconomic information, such as income or education level, are not included in
the underlying dataset. However, the dataset does include visit payor information, which is correlated
with socioeconomic status (for instance, patients whose visits are paid by Medicaid are more likely to
have lower socioeconomic status). Finally, we used a relatively simple baseline model to demonstrate
the benchmark. Although this choice may limit the model’s performance, the primary contribution of
this work is the proposal of a new benchmark using a novel multimodal dataset. LightGBM, despite
its simplicity, remains a commonly used and highly performant approach for many clinical tasks.
Therefore, the baseline model serves not only as a demonstration of the benchmark but also as a
reasonable reference for future models.

6 Conclusion and Future Work

Our work introduces a novel benchmark (MC-BEC), enabling robust multitask evaluation of pre-
diction models for Emergency Medicine, using a unique multimodal clinical dataset. We evaluate
multiple baseline models, and compare the performance of multitask and task-specific models. We
present an evaluation schema suited to the demands of multitask clinical predictions on complex
multimodal data, which assesses a model’s ability to make full use of multimodal data, to make robust
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predictions despite missing data, and to make fair and unbiased predictions across demographic
groups.

The benchmark models introduced in this work employed an explicit data featurization step, which
highlights the challenges of working with diverse, complex and data-rich modalities. We expect
future models applied to MC-BEC to leverage alternative approaches, such as with deep end-to-end
trainable networks, and integration of a temporal dimension both within and across visits. MC-BEC
is centered on predictions of decompensation, disposition, and revisit because these encompass the
entire time scale of ED visit prediction tasks. However, future work in benchmarks for generalizable
ED prediction models should also aim to evaluate prediction over a non-discrete set of tasks, such as
prediction of therapeutic complications or need for post-discharge follow-up. This would enable more
granular and comprehensive predictions that could help providers to target and prioritize interventions.
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Appendix

1 Training Details

The dataset was divided into training, testing, and validation sets, as shown in Table 6. During
training, we applied sample weights to visits based on the frequency of the label classes. Specifically,
the weight for each visit was directly correlated with the frequency of the predominant class and
inversely correlated with the frequency of its own class. The distribution of labels is presented in
Table 7. It is worth noting that the prevalence of revisits was calculated only among visits with a
discharge disposition, since revisits are only relevant for patients discharged from the ED.

Table 6: Distribution of Dataset into Train, Validation, and Test Sets
Dataset Number of Samples Percentage (%)
Train 82,438 80.25
Validation 10,235 9.96
Test 10,058 9.79

Total 102,731 100

Table 7: Label distribution for different tasks
Category Task Class Prevalence
Disposition n/a 0.37

Revisit
3 days 0.05
7 days 0.08
14 Days 0.12

Decompensation
60 mins 0.11
90 mins 0.15
120 mins 0.17

Hyperparameter Tuning

We employed the Tree-structured Parzen Estimator (TPE) for hyperparameter tuning, as implemented
in the Optuna optimization framework [42]. TPE, a Bayesian optimization approach, leverages
outcomes from preceding trials to inform the selection of subsequent hyperparameter values. In this
framework, Optuna adeptly pinpoints areas within the hyperparameter space anticipated to enhance
the objective function’s value. For each model, we executed 20 trials using the hyperparameter spaces
delineated in Table 8.
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Table 8: Search space used for hyperparameter tuning and the optimal values for the multitask model
trained on all data modalities

Hyperparameters Search Space Optimal Values
LightGBM
lambda_l1 [1e-8, 10] 1.84
lambda_l2 [1e-8, 10] 0.07
num_leaves [2, 306] 134
feature_fraction [0.4, 1.0] 0.58
bagging_fraction [0.4, 1.0] 0.79
bagging_freq [1, 7] 4
max_depth [-1, 15] 6
learning_rate [1e-4, 1] 0.09

XGBoost
n_estimators [100, 10,000] 734
learning_rate [0.001, 0.5] 0.04
max_depth [1, 10] 7
subsample [0.25, 0.75] 0.46
colsample_bytree [0.05, 0.5] 0.30
colsample_bylevel [0.05, 0.5] 0.31

Random Forest
n_estimators [100, 10,000] 9864
max_depth [1, 10] 10
min_samples_split [2, 11] 2
min_samples_leaf [1, 10] 10
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2 Additional Experiments

2.1 Random Forest and XGBoost

In addition to LightGBM, we trained Random Forest and XGBoost[43] models for the same clinical
prediction tasks, comparing single-task and multitask performance. All modalities were used for
training. Results for Random Forest are shown in Table 9, XGBoost in Table 10, and LightGBM
again in Table 11 for comparison.

LightGBM outperforms both Random Forest and XGBoost in most tasks. Therefore, we focused
the remaining experiments (monotonicity in modalities, robustness to missing modalities, and bias
evaluation) on only the LightGBM models.

2.2 CLMBR

We conducted additional experiments to explore integrating past records of ED visits for a patient
into their EHR representations. We trained a clinical language model-based representation (CLMBR)
[24] model on the structured portion of the EHR data. CLMBR treats a patient’s longitudinal EHR
as a “document” comprising sequences of diagnosis, procedure, medication, and laboratory codes.
It learns representations of patient EHRs by predicting future EHR codes based only on past EHR
codes. We used the EHR representations learned by CLMBR as input to LightGBM models to predict
the clinical tasks (Table 12). As CLMBR is designed for structured EHR data, this experiment could
only utilize the structured portion of the dataset, preventing direct comparison to other experiments
using all modalities. However, the model’s performance is not too far off from others in predicting
revisits and disposition. Its performance is lower in predicting decompensation, but that is because
it doesn’t have access to the continuous monitoring and waveform modalities, which are important
in predicting decompensation. Overall, this experiment demonstrates the potential in integrating a
patient’s longitudinal history into learned EHR representations for improved predictive modeling, an
area for future work.

Table 9: AUPRC performance of task-specific and multitask models (point estimate and 95%
confidence interval) for Random Forest

Task
Model Task-specific model Multitask model Class Prevalence

Decompensation
60 min 0.21 (0.17 - 0.26) 0.17 (0.14 - 0.21) 0.11
90 min 0.28 (0.24 - 0.34) 0.22 (0.19 - 0.27) 0.15
120 min 0.31 (0.27 - 0.37) 0.25 (0.21 - 0.30) 0.17

Disposition 0.83 (0.82 - 0.84) 0.80 (0.79 - 0.81) 0.37

Revisit
3 days 0.09 (0.07 - 0.12) 0.08 (0.07 - 0.11) 0.05
7 days 0.14 (0.12 - 0.16) 0.13 (0.12 - 0.16) 0.08

14 days 0.21 (0.19 - 0.23) 0.20 (0.18 - 0.23) 0.12
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Table 10: AUPRC performance of task-specific and multitask models (point estimate and 95%
confidence interval) for XGBoost

Task
Model Task-specific model Multitask model Class Prevalence

Decompensation
60 min 0.26 (0.21 - 0.33) 0.23 (0.19 - 0.28) 0.11
90 min 0.31 (0.26 - 0.37) 0.30 (0.25 - 0.35) 0.15
120 min 0.28 (0.24 - 0.34) 0.33 (0.28 - 0.38) 0.17

Disposition 0.88 (0.87 - 0.89) 0.85 (0.84 - 0.86) 0.37

Revisit
3 days 0.08 (0.06 - 0.11) 0.08 (0.06 - 0.10) 0.05
7 days 0.14 (0.12 - 0.16) 0.14 (0.12 - 0.16) 0.08

14 days 0.21 (0.19 - 0.24) 0.22 (0.19 - 0.24) 0.12

Table 11: AUPRC performance of task-specific and multitask models (point estimate and 95%
confidence interval) for LightGBM

Task
Model Task-specific model Multitask model Class Prevalence

Decompensation
60 min 0.33 (0.27 - 0.40) 0.25 (0.20 - 0.31) 0.11
90 min 0.35 (0.30 - 0.41) 0.32 (0.27 - 0.38) 0.15
120 min 0.40 (0.35 - 0.46) 0.35 (0.30 - 0.41) 0.17

Disposition 0.87 (0.85 - 0.87) 0.82 (0.81 - 0.83) 0.37

Revisit
3 days 0.11 (0.08 - 0.14) 0.10 (0.08 - 0.13) 0.05
7 days 0.16 (0.14 - 0.19) 0.16 (0.14 - 0.19) 0.08

14 days 0.24 (0.21 - 0.27) 0.25 (0.22 - 0.28) 0.12

Table 12: AUPRC performance for LightGBM with CLMBR embeddings

Task
Model CLMBR + LightGBM Class Prevalence

Decompensation
60 min 0.19 (0.15 - 0.24) 0.11
90 min 0.26 (0.22 - 0.32) 0.15
120 min 0.28 (0.24 - 0.33) 0.17

Disposition 0.81 (0.80 - 0.82) 0.37

Revisit
3 days 0.08 (0.07 - 0.10) 0.05
7 days 0.13 (0.11 - 0.15) 0.08
14 days 0.22 (0.19 - 0.24) 0.12
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3 Dataset Details

The distribution of demographics within the dataset can be found in table 13. For a glimpse at the
primary data modalities, refer to a sample datapoint presented in table 14.

Table 13: Distribution of Demographic Groups with Counts and Relative Percentages
Demographic Number of Visits Percentage of Total Visits
Age
18-30 16,159 15.73%
30-40 15,684 15.27%
40-50 13,501 13.14%
50-60 15,355 14.95%
60-70 15,815 15.39%
70-80 13,272 12.92%
80-90 12,361 12.03%
Unknown 584 0.57%
Total 102,731 100.00%

Gender
Female 55,929 54.44%
Male 46,774 45.53%
Unknown 28 0.03%
Total 102,731 100.00%

Race
American Indian or Alaska Native 276 0.27%
Asian 16,971 16.52%
Black or African American 6,590 6.41%
Declines to State 475 0.46%
Native Hawaiian or Other Pacific Islander 2,147 2.09%
Other 34,536 33.62%
Unknown 444 0.43%
White 41,292 40.19%
Total 102,731 100.00%

Ethnicity
Declines to State 557 0.54%
Hispanic/Latino 28,181 27.43%
Non-Hispanic/Non-Latino 73,404 71.45%
Unknown 589 0.57%
Total 102,731 100.00%
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Table 14: Sample of Visits Data including Triage Details, Medications, Prior Diagnosis, Lab Tests,
Orders and Radiology Report

Category Field Value

Visits

Age 52
Triage_HR 95.0
Triage_RR 12.0
Triage_SpO2 99.0
Triage_Temp 36.4
Triage_SBP 142.0
Triage_DBP 81.0
Gender F
Triage_acuity 3-Urgent
CC Means_of_arrival_cat Self
Race Asian
Ethnicity Non-Hispanic/Non-Latino

Meds Med_class DIETARY SUPPLEMENT, MISCELLA-
NEOUS

Med_subclass Alternative Therapy - Unclassified

Dx (Diagnosis) DescCCS HIV infection

Orders Procedure CBC W/O DIFF
Med MAGNESIUM SULFATE IN WATER 2

GRAM/50 ML (4 %) IV PGBK

Labs Component_name CALCIUM
Component_abnormal_mod Normal

Rads Impression The appendix is inflamed, but is favored to be a
reactive process in close proximity to the dom-
inant cecal/terminal iletis. Findings were dis-
cussed by ___ over the phone with ___ on ___
19:27.

Table 15: Evaluation of model fairness across demographic groups. Three metrics - SPD, DI, and
EOD averaged across the 7 experiments have been shown. In the ideal equitable scenario, we expect
and aim for DI=1 and SPD, EOD = 0 (Adults are defined as individuals between 18-65 years of age.
Individuals older than 65 have been categorized as Seniors)
Minority Majority SPD DI EOD
Seniors Adults 0.09 1.14 0.04
Hispanic/Latino Non-Hispanic/Non-Latino 0.00 1.01 0.01
Other White -0.02 0.98 0.02
Asian White -0.02 0.96 -0.01
Asian Other 0.00 1.00 -0.03
Black or African American White 0.09 1.15 0.08
Black or African American Other 0.11 1.18 0.07
Black or African American Asian 0.12 1.20 0.09
Native Hawaiian or Other Pacific Islander White -0.02 0.97 0.05
Native Hawaiian or Other Pacific Islander Other -0.01 0.99 0.04
Native Hawaiian or Other Pacific Islander Asian 0.00 1.01 0.06
Native Hawaiian or Other Pacific Islander Black or African American -0.12 0.84 -0.03
Male Female 0.03 1.04 0.05
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