
Appendices497

A Proof for Lemma 1.498

Given a linear transformation y = Ax+ b,x ∈ Rn,A ∈ Rm×n, b,y ∈ Rm, we have499

y = Ax+ b (7)

= (A− k11TA)x+ k11TAx+ (b− µ(b)1) + µ(b)1 (8)

= (A− k11TA)x+ (b− µ(b)1) + k(1TAx)1+ µ(b)1 (9)

= (A− k11TA)x+ (b− µ(b)1) + (k1TAx+ µ(b))1 (10)

= Âx+ b̂+ f(x, k)1 (11)

where Â = A− k11TA, b̂ = b− µ(b)1, f(x, k) = k1TAx+ µ(b).500

If k = 1/m, then we obtain501

µ(Âx) =
1

m
1T (A− 1

m
11TA)x =

1

m
(1TA− 1TA)x = 0 (12)

µ(y) = µ(Âx) + µ(b̂) + µ(f(x, k = 1/m)1) (13)
= 0 + 0 + f(x, k = 1/m) (14)

=
1

m
1TAx+ µ(b) (15)

The Â is the recentered matrix of A, and all its column vectors have zero-mean. We decompose the502

output into two parts.503

• The first part Âx+ b̂ = y − µ(y)1, with zero mean, is another linear transformation with504

Â = A− 1
m11TA, b̂ = b− µ(b)1.505

• The second part corresponds to the mean information µ(y)1 = ( 1
m1TAx+ µ(b))1.506

B Post-LN Transformers507

Different from the Pre-LN Transformers, the Post-LN Transformers have the following blocks.508

xl+1 = LN(xl + Fl(xl)), l = 0, 1, ..., L− 1, (16)
Layer normalization is on the main branch instead of the beginning of residual branches. We can509

keep a zero-mean branch on the main branch without impact on the functionality.510

xl+1 = LN(xl + Fl(xl)) (17)
= LN((xl − µ(xl)1) + (Fl(xl)− µ(Fl(xl))1)) (18)

= LN(x̂l + F̂l(xl)) (19)

= RMSNorm(x̂l + F̂l(xl)) (20)
For the residual branch Fl, we can apply the same method in Pre-LN Transformer. We can modify511

the output linear projection to obtain F̂l, which will generate the zero-mean part of the original result.512

The recentering operation x̂l = xl − µ(xl)1 requires extra computation. If elementwise affine513

transformation is disabled in LayerNorm, xl is the output of a normalization such that µ(xl) = 0514

and x̂l = xl. If the transformation is enabled, xl is not guaranteed zero-mean such that the explicit515

recentering is necessary.516

C Experiments517

C.1 Implementation of normalization518

We have provided our implementation with JAX and PyTorch in the supplementary material. The519

reported results are based on the following implementations.520
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For JAX, we use the APIs of LayerNorm and RMSNorm in the flax library. For PyTorch, we use the521

implementations of LayerNorm and RMSNorm from NVIDIA’s apex extension 4. For CRMSNorm,522

we use our own customized implementations. We also provide our customized implementation of523

LayerNorm, RMSNorm.524

We notice that there are lots of APIs for the standard LayerNorm and RMSNorm. For example,525

PyTorch has provided the official LayerNorm API but lacks of RMSNorm implementation. These526

different implementations are mixed. We do not find one implementation that is dominant over others527

for all the cases. For instance, torch.nn.LayerNorm is usually faster than apex’s one when the528

input vectors are small in inference, while it is slower than the apex’s one when the input vectors are529

large. PyTorch’s official implementation is also slower than apex’s for training.530

C.2 Extended Experiments in ViT531

Name Dimension Depth Heads MLP Dimension
Tiny-16 192 12 3 192 × 4
Small-16 384 12 6 384 × 4
Base-16 768 12 12 768 × 4
Large-16 1024 24 16 1024 × 4
Huge-14 1280 32 16 1280 × 4
Giant-14 1664 48 16 8192

Table 2: ViTs with different sizes. The number in the model name is the patch size.

no norm Pre-LN Pre-RMS Pre-CRMS
PyTorch, single A100, amp 0.8567 1.000 0.9699 0.9783

amp → float32 0.9353 1.000 0.9850 0.9951
single A100 → 16-thread CPU 0.8697 1.000 0.9012 0.8857

PyTorch → JAX 0.9610 1.000 0.9873 1.0005
Table 3: Normalized inference time of ViT.

Table 2 list the architecture parameters of Vision Transformer. We first measure the inference time.532

We sweep these 6 ViTs with 6 batch sizes (1, 4, 16, 64, 256, 1024) and collect the medians of these533

36 data points. We report the average of these 36 experiments in Table 3. We conduct inference on534

a single A100 with automatic mixed precision (amp) in PyTorch. We further change the precision535

(disabling the amp), computation platforms (16 threads in AMD EPYC 7742 CPUs), and machine536

learning frameworks (JAX).537

C.3 Numerical Issue538

The theoretical arithmetic equivalence cannot be fully translated into equality in the practical numeri-539

cal computation if we use floating numbers. An intuitive example is that µ(x+ y) = µ(x) + µ(vy)540

always holds for any vectors x,y. However, if these two vectors are represented as (low precision)541

floating numbers, this equality is not guaranteed in real-world numerical computation. It is possible542

that these small discrepancies may be accumulated and enlarged in the large models, further degrading543

the numerical stability. In our proposed method, we cannot ensure the exactly zero-mean in the main544

branch numerically.545

The numerical issue is a common problem in machine learning. A typical example is546

operator reordering and layer fusion. PyTorch provides a related API officially, named547

torch.ao.quantization.fuse_modules. We can fuse the convolution layer and its following548

batch normalization layer to simplify the computation. These two layers are separate in training and549

can be fused to accelerate the inference. The fusion does not break the arithmetic equivalence but550

changes the numerical results. In spite of the numerical difference, the fusion usually has a neutral551

impact on task-related performance, such as classification accuracy, even in large models. Fine-tuning552

or calibration may be helpful in case there is severe performance degradation.553

4https://github.com/NVIDIA/apex
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Our proposed methods encounter a similar issue as layer fusion since we modify partial parameters.554

In our experiments, we can convert the pre-trained Pre-LN ViT-H/14 into Pre-(C)RMS variants555

without any accuracy change on the ImageNet validation dataset. Actually, we observe that replacing556

PyTorch’s official LayerNorm implementation with the apex’s one may have a larger impact on the557

model performance.558
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