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Abstract

The theory underlying robust distributed learning algorithms, designed to resist
adversarial machines, matches empirical observations when data is homogeneous.
Under data heterogeneity however, which is the norm in practical scenarios, es-
tablished lower bounds on the learning error are essentially vacuous and greatly
mismatch empirical observations. This is because the heterogeneity model consid-
ered is too restrictive and does not cover basic learning tasks such as least-squares
regression. We consider in this paper a more realistic heterogeneity model, namely
(G,B)-gradient dissimilarity, and show that it covers a larger class of learning
problems than existing theory. Notably, we show that the breakdown point under
heterogeneity is lower than the classical fraction 1/2. We also prove a new lower
bound on the learning error of any distributed learning algorithm. We derive a
matching upper bound for a robust variant of distributed gradient descent, and
empirically show that our analysis reduces the gap between theory and practice.

1 Introduction

Distributed machine learning algorithms involve multiple machines (or workers) collaborating with
the help of a server to learn a common model over their collective datasets. These algorithms enable
training large and complex machine learning models, by distributing the computational burden among
several workers. They are also appealing as they allow workers to retain control over their local
training data. Conventional distributed machine learning algorithms are known to be vulnerable to
adversarial workers, which may behave unpredictably. Such behavior may result from software and
hardware bugs, data poisoning, or malicious players controlling part of the network. In the parlance of
distributed computing, such adversarial workers are referred to as Byzantine [24]. Due to the growing
influence of distributed machine learning in public applications, a significant amount of work has been
devoted to addressing the problem of robustness to Byzantine workers, e.g., see [34, 11, 2, 19, 13, 15].

A vast majority of prior work on robustness however assumes data homogeneity, i.e., local datasets are
generated from the same distribution. This questions their applicability in realistic distributed learning
scenarios with heterogeneous data, where local datasets are generated from different distributions.
Under data homogeneity, Byzantine workers can only harm the system when the other workers
compute stochastic gradient estimates, by exploiting the noise in gradient computations. This
vulnerability can be circumvented using variance-reduction schemes [19, 13, 14]. In contrast, under
data heterogeneity, variance-reduction schemes are not very helpful, as suggested by preliminary
work [12, 20, 3]. In short, data heterogeneity is still poorly understood in robust distributed learning.
In particular, existing robustness guarantees are extremely conservative, and often refuted by empirical
observations. Indeed, the heterogeneity model generally assumed is typically violated in practice and
does not even cover basic machine learning tasks such as least-squares regression.

∗Correspondence to: Youssef Allouah <youssef.allouah@epfl.ch>.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Our work addresses the aforementioned shortcomings of existing theory, by considering a more
realistic heterogeneity model, called (G,B)-gradient dissimilarity [18]. This criterion characterizes
data heterogeneity for a larger class of machine learning problems compared to prior works [12, 20, 3],
and enables us to reduce the gap between theoretical guarantees and empirical observations. Before
summarizing our contributions in Section 1.2, we briefly recall below the essentials of robust
distributed learning and highlight the challenges of data heterogeneity.

1.1 Robust distributed learning under heterogeneity

Consider a system comprising n workers w1, . . . , wn and a central server, where f workers of a
priori unknown identity may be Byzantine. Each worker wi holds a dataset Di composed of m data
points from an input space X , i.e., Di := {x(i)

1 , . . . , x
(i)
m } ∈ Xm. Given a model parameterized by

θ ∈ Rd, each data point x incurs a loss ℓ(θ;x) where ℓ : Rd ×X → R. Thus, each worker wi has a
local empirical loss function defined as Li(θ) :=

1
m

∑
x∈Di

ℓ(θ;x). Ideally, when all the workers are
assumed honest (i.e., non-Byzantine), the server can compute a model minimizing the global average
loss function given by 1

n

∑n
i=1 Li(θ), without requiring the workers to share their raw data points.

However, this goal is rendered vacuous in the presence of Byzantine workers. A more reasonable
goal for the server is to compute a model minimizing the global honest loss [16], i.e., the average loss
of the honest workers. Specifically, denoting by H ⊆ [n] where |H| = n− f , the indices of honest
workers, the goal in robust distributed learning is to solve the following optimization problem:2

min
θ∈Rd

LH(θ) :=
1

|H|
∑
i∈H

Li(θ) . (1)

Because Byzantine workers may send bogus information and are unknown to the server, solving
(even approximately) the optimization problem (1) is known to be impossible in general [26, 20]. The
key reason for this impossibility is precisely data heterogeneity. Indeed, we cannot obtain meaningful
robustness guarantees unless data heterogeneity is bounded across honest workers.

Modeling heterogeneity. Prior work on robustness primarily focuses on a restrictive heterogeneity
bound we call G-gradient dissimilarity [12, 20, 3]. Specifically, denoting ∥ · ∥ to be the Euclidean
norm, the honest workers are said to satisfy G-gradient dissimilarity if for all θ ∈ Rd, we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2 . (2)

However, the above uniform bound on the inter-worker variance of local gradients may not hold in
common machine learning problems such as least-squares regression, as we discuss in Section 3. In
our work, we consider the more general notion of (G,B)-gradient dissimilarity, which is a prominent
data heterogeneity model in the classical (Byzantine-free) distributed machine learning literature
(i.e., when f = 0) [18, 23, 27, 29]. Recent works have also adopted this definition in the context of
Byzantine robust learning [20, 14], but did not provide tight analyses, as we discuss in Section 5.
Formally, (G,B)-gradient dissimilarity is defined as follows.
Assumption 1 ((G,B)-gradient dissimilarity). The local loss functions of honest workers (repre-
sented by set H) are said to satisfy (G,B)-gradient dissimilarity if, for all θ ∈ Rd, we have3

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2 +B2 ∥∇LH(θ)∥2 .

Under (G,B)-gradient dissimilarity, the inter-worker variance of gradients need not be bounded, and
can grow with the norm of the global loss function’s gradient at a rate bounded by B. Furthermore,
this notion also generalizes G-gradient dissimilarity, which corresponds to the special case of B = 0.

1.2 Our contributions

We provide the first tight analysis on robustness to Byzantine workers in distributed learning under a
realistic data heterogeneity model, specifically (G,B)-gradient dissimilarity. Our key contributions
are summarized as follows.

2We denote by [n] the set {1, . . . , n}.
3The dissimilarity inequality is equivalent to 1

|H|
∑

i∈H ∥∇Li(θ)∥2 ≤ G2 +
(
1 +B2

)
∥∇LH(θ)∥2.
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Breakdown point. We establish a novel breakdown point for distributed learning under heterogeneity.
Prior to our work, the upper bound on the breakdown point was simply 1

2 [26], i.e., when half (or
more) of the workers are Byzantine, no algorithm can provide meaningful guarantees for solving (1).
We prove that, under (G,B)-gradient dissimilarity, the breakdown point is actually 1

2+B2 . That is,
the breakdown point of distributed learning is lower than 1

2 under heterogeneity due to non-zero
growth rate B of gradient dissimilarity. We also confirm empirically that the breakdown point under
heterogeneity can be much lower than 1

2 , which could not be explained prior to our work.

Tight error bounds. We show that, under the necessary condition f
n < 1

2+B2 , any robust distributed
learning algorithm must incur an optimization error in

Ω

(
f

n− (2 +B2) f
·G2

)
(3)

on the class of smooth strongly convex loss functions. We also show that the above lower bound
is tight. Specifically, we prove a matching upper bound for the class of smooth non-convex loss
functions, by analyzing a robust variant of distributed gradient descent.

Proof techniques. To prove our new breakdown point and lower bound, we construct an instance of
quadratic loss functions parameterized by their scaling coefficients and minima. While the existing
lower bound under G-gradient dissimilarity can easily be obtained by considering quadratic functions
with different minima and identical scaling coefficients (see proof of Theorem III in [20]), this simple
proof technique fails to capture the impact of non-zero growth rate B in gradient dissimilarity. In
fact, the main challenge we had to overcome is to devise a coupling between the parameters of the
considered quadratic losses (scaling coefficients and minima) under the (G,B)-gradient dissimilarity
constraint. Using this coupling, we show that when f

n ≥ 1
2+B2 , the distance between the minima

of the quadratic losses can be made arbitrarily large by carefully choosing the scaling coefficients,
hence yielding an arbitrarily large error. We similarly prove the lower bound (3) when f

n < 1
2+B2 .

1.3 Paper outline

The remainder of this paper is organized as follows. Section 2 presents our formal robustness
definition and recalls standard assumptions. Section 3 discusses some key limitations of previous
works on heterogeneity under G-gradient dissimilarity. Section 4 presents the impossibility and
lower bound results under (G,B)-gradient dissimilarity, along with a sketch of proof. Section 5
presents tight upper bounds obtained by analyzing robust distributed gradient descent under (G,B)-
gradient dissimilarity. Full proofs are deferred to appendices A, B and C. Details on the setups of our
experimental results are deferred to Appendix D.

2 Formal definitions

In this section, we state our formal definition of robustness and standard optimization assumptions.
Recall that an algorithm is deemed robust to adversarial workers if it enables the server to approximate
a minimum of the global honest loss, despite the presence of f Byzantine workers whose identity is a
priori unknown to the server. In Definition 1, we state the formal definition of robustness.
Definition 1 ((f, ε)-resilience). A distributed algorithm is said to be (f, ε)-resilient if it can output a
parameter θ̂ such that

LH(θ̂)− L∗,H ≤ ε,

where L∗,H := minθ∈Rd LH(θ).

Accordingly, an (f, ε)-resilient distributed algorithm can output an ε-approximate minimizer of the
global honest loss function, despite the presence of f adversarial workers. Throughout the paper, we
assume that f

n < 1
2 , as otherwise (f, ε)-resilience is in general impossible [26]. Note also that, for

general smooth non-convex loss functions, we aim to find an approximate stationary point of the
global honest loss instead of a minimizer, which is standard in non-convex optimization [8].

Standard assumptions. To derive our lower bounds, we consider the class of smooth strongly convex
loss functions. We derive our upper bounds for smooth non-convex functions, and for functions
satisfying the Polyak-Łojasiewicz (PL) inequality. This property relaxes strong convexity, i.e., strong
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convexity implies PL, and covers learning problems which may be non-strongly convex such as
least-squares regression [17]. We recall these properties in definitions 2 and 3 below.
Definition 2 (L-smoothness). A function L : Rd → R is L-smooth if, for all θ, θ′ ∈ Rd, we have

∥∇L(θ′)−∇L(θ)∥ ≤ L ∥θ′ − θ∥ .

This is equivalent [28] to, for all θ, θ′, having |L(θ′)− L(θ)− ⟨∇L(θ), θ′ − θ⟩| ≤ L
2 ∥θ′ − θ∥2.

Definition 3 (µ-Polyak-Łojasiewicz (PL), strong convexity). A function L : Rd → R is µ-PL if, for
all θ ∈ Rd, we have

2µ (L(θ)− L∗) ≤ ∥∇L(θ)∥2 ,

where L∗ := minθ∈Rd L(θ). Function L is µ-strongly convex if, for all θ, θ′ ∈ Rd, we have

L(θ′)− L(θ)− ⟨∇L(θ), θ′ − θ⟩ ≥ µ

2
∥θ′ − θ∥2 .

Note that a function satisfies L-smoothness and µ-PL inequality simultaneously only if µ ≤ L. Lastly,
although not needed for our results to hold, when the global loss function LH is µ-PL, we will assume
that it admits a unique minimizer, denoted θ∗, for clarity.

3 Brittleness of previous approaches on heterogeneity

Under the G-gradient dissimilarity condition, presented in (2), prior work has established lower
bounds [20] and matching upper bounds [3] for robust distributed learning. However, G-gradient
dissimilarity is arguably unrealistic, since it requires a uniform bound G2 on the variance of workers’
gradients over the parameter space. As a matter of fact, G-gradient dissimilarity does not hold in
general for simple learning tasks such as least-squares regression, as shown in Observation 1 below.
Observation 1. In general, G-gradient dissimilarity (2) does not hold in least-squares regression.

Proof. Consider the setting given by X = R2, n = 2, f = 0, and d = 1. For any data point
(x1, x2) ∈ X , consider the squared error loss ℓ(θ; (x1, x2)) =

1
2 (θ · x1 − x2)

2. Let the local datasets
be D1 = {(1, 0)},D2 = {(0, 1)}. Note that for all θ ∈ R, we have ∇L1(θ) = θ, and ∇L2(θ) = 0.
This implies that 1

|H|
∑

i∈H ∥∇Li(θ)−∇LH(θ)∥2 = θ2
/4, where H = {1, 2}, which is unbounded

over R. Hence, the condition of G-gradient dissimilarity cannot be satisfied for any G ∈ R.

In contrast, the (G,B)-gradient dissimilarity condition, presented in Assumption 1, is more realistic,
since it allows the variance across the local gradients to grow with the norm of the global gradient.
This condition is common in the (non-robust) distributed learning literature [23, 18, 25, 29], and
is also well-known in the (non-distributed) optimization community [8, 9, 32]. While G-gradient
dissimilarity corresponds to the special case of (G, 0)-gradient dissimilarity, we show in Proposition 1
below that a non-zero growth rate B of gradient dissimilarity allows us to characterize heterogeneity
in a much larger class of distributed learning problems.
Proposition 1. Assume that the global loss LH is µ-PL and L-smooth, and that for each i ∈ H local
loss Li is convex and Li-smooth. Denote Lmax := maxi∈H Li. Then, Assumption 1 is satisfied, i.e.,
the local loss functions satisfy (G,B)-gradient dissimilarity, with

G2 =
2

|H|
∑
i∈H

∥∇Li(θ∗)∥2 and B2 =
2Lmax

µ
− 1. (4)

We present the proof of Proposition 1 in Appendix A for completeness. However, note that it can
also be proved following existing results [32, 21] derived in other contexts. The (G,B)-gradient
dissimilarity condition shown in Proposition 1 is arguably tight (up to multiplicative factor 2), in the
sense that G2 cannot be improved in general. Indeed, as the (G,B)-gradient dissimilarity inequality
should be satisfied for θ = θ∗, G2 should be at least the variance of honest gradients at the minimum,
i.e., 1

|H|
∑

i∈H ∥∇Li(θ∗)∥2.

Gap between existing theory and practice. The theoretical limitation of G-gradient dissimilarity
is exacerbated by the following empirical observation. We train a linear least-squares regression
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model on the mg LIBSVM dataset [10]. The system comprises 7 honest and 3 Byzantine workers.
We simulate extreme heterogeneity by having each honest worker hold one distinct point. We
implement four well-studied Byzantine attacks: sign flipping (SF) [2], fall of empires (FOE) [33], a
little is enough (ALIE) [5] and mimic [20]. More details on the experimental setup can be found in
Appendix D. We consider the state-of-the-art robust variant of distributed gradient descent (detailed
later in Section 5.1) that uses the NNM robustness scheme [3] composed with coordinate-wise
trimmed mean. The empirical success on this learning task, which could not be explained by existing
theory under G-gradient dissimilarity following Observation 1, is covered under (G,B)-gradient
dissimilarity, as per Proposition 1. We present formal robustness guarantees under (G,B)-gradient
dissimilarity later in Section 5. Additionally, through experimental evaluations in Section 5, we
observe that even if G-gradient dissimilarity were assumed to be true, the bound G2 may be extremely
large in practice, thereby inducing a non-informative error bound O(f/n · G2) [20]. On the other
hand, under (G,B)-gradient dissimilarity, we obtain tighter bounds matching empirical observations.
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Figure 1: Evolution of the training losses (left) and the trajectories (right) of robust D-GD algorithm
with NNM and coordinate-wise trimmed mean (see Section 5.1), on the mg LIBSVM least-squares
regression task described in Section 3. f = 0 corresponds to the case where the algorithm is run
without Byzantine workers.

4 Fundamental limits on robustness under (G,B)-Gradient Dissimilarity

Theorem 1 below shows the fundamental limits on robustness in distributed learning under (G,B)-
gradient dissimilarity. The result has twofold implications. On the one hand, we show that the
breakdown point of any robust distributed learning algorithm reduces with the growth rate B of
gradient dissimilarity. On the other hand, when the fraction f/n is smaller than the breakdown point,
both G and B induce a lower bound on the learning error.

Theorem 1. Let 0 < f < n/2. Assume that the global loss LH is L-smooth and µ-strongly convex
with 0 < µ < L. Assume also that the honest local losses satisfy (G,B)-gradient dissimilarity
(Assumption 1) with G > 0. Then, a distributed algorithm can be (f, ε)-resilient only if

f

n
<

1

2 +B2
and ε ≥ 1

8µ
· f

n− (2 +B2) f
·G2 .

Sketch of proof. The full proof is deferred to Appendix B. In the proof, we construct hard instances
for (f, ε)-resilience, using a set of quadratic functions of the following form:

Li(θ) =
α
2 ∥θ − z∥2 , ∀i ∈ {1, . . . , f},

Li(θ) =
1

2K ∥θ∥2 , ∀i ∈ {f + 1, . . . , n− f},
Li(θ) =

α
2 ∥θ∥2 , ∀i ∈ {n− f + 1, . . . , n}.

To prove the theorem, we consider two plausible scenarios corresponding to two different identities
of honest workers, which are unknown to the algorithm. Specifically, in scenarios I and II, we assume
the indices of honest workers to be S1 := {1, . . . , n − f} and S2 := {f + 1, . . . , n}, respectively.
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We show that for all θ ∈ Rd,

max {LS1
(θ)− L∗,S1

, LS2
(θ)− L∗,S2

} ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 . (5)

That is, every model in the parameter space incurs an error that grows with ∥z∥2, in at least one of
the two scenarios. Hence, an (f, ε)-resilient algorithm, by Definition 1, must guarantee optimization
error ε in both scenarios I and II, which together with (5) implies that

ε ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 . (6)

At this point, to obtain the largest lower bounds possible, our goal is to maximize the right-hand
side of 6, under the constraint that the loss functions induced by the triplet (α,K, z) satisfy (G,B)-
gradient dissimilarity, L-smoothness and µ-strong convexity (simultaneously in both scenarios). We
separately analyze this error in two cases: (i) f

n ≥ 1
2+B2 and (ii) f

n < 1
2+B2 . In both cases, we

construct a coupling between the values of z and K by having the norm ∥z∥2 proportional to K.
Specifically, in case (i), we show that the condition f

n ≥ 1
2+B2 allows us to choose K arbitrarily large

while satisfying (G,B)-dissimilarity. Thus, ∥z∥2 being proportional to K means that ε is arbitrarily
large as per (6). Similarly, in case (ii) where f

n < 1
2+B2 , K cannot be arbitrarily large and carefully

choosing a large possible value yields

ε ≥ 1

8µ
· f

n− (2 +B2) f
·G2.

One of the crucial components to the above deductions was finding the suitable triplets (α,K, z)
while preserving the (G,B)-gradient dissimilarity assumption (along with the smoothness and strong
convexity assumptions) simultaneously in both the two scenarios, thereby establishing their validity.
While the exact calculations are tedious, intuitively, B constrains the relative difference between the
scale parameters α and 1

K , and G constrains the separation between the minima, i.e. ∥z∥2.

Extension to non-convex problems. The lower bound from Theorem 1 assumes that the given
distributed algorithm satisfies (f, ε)-resilience, which means finding an ε-approximate minimizer
of the global honest loss LH. The latter may not be possible for the general case of smooth and
non-convex functions. In that case we cannot seek an ε-approximate minimizer, but rather an ε-
approximate stationary point [20, 3], i.e., θ̂ such that ∥∇LH(θ̂)∥2 ≤ ε. Then the lower bound in
Theorem 1, in conjunction with the µ-PL inequality, yields the following lower bound

ε ≥ 1

4
· f

n− (2 +B2)f
·G2 . (7)

Comparison with prior work. The result of Theorem 1 generalizes the existing robustness limits
derived under G-gradient dissimilarity [20]. In particular, setting B = 0 in Theorem 1, we recover
the breakdown point 1

2 and the optimization lower bound Ω(f/n ·G2). Perhaps, the most striking
contrast to prior work [12, 20, 13, 3] is our breakdown point 1

2+B2 , instead of simply 1
2 . We remark

that a similar dependence on heterogeneity has been repeatedly assumed in the past, but without any
formal justification. For instance, under (0, B)-gradient dissimilarity, [20, Theorem IV] assumes
f/n = O(1/B2) to obtain a formal robustness guarantee. In the context of robust distributed convex
optimization (and robust least-squares regression), the upper bound assumed on the fraction f/n
usually depends upon the condition number of the distributed optimization problem, e.g., see [6,
Theorem 3] and [16, Theorem 2]. Our analysis in Theorem 1 justifies these assumptions on the
breakdown point in prior work under heterogeneity.

Empirical breakdown point. Interestingly, our breakdown point 1
2+B2 allows to better understand

some empirical observations indicating that the breakdown point of robust distributed learning
algorithms is smaller than 1/2. We illustrate this in Figure 2 with a logistic regression model on the
MNIST dataset under extreme heterogeneity, i.e., each worker dataset contains data points from a
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single class. We consider the state-of-the-art robust variant of distributed gradient descent (detailed
later in Section 5.1) that uses the NNM robustness scheme composed with robust aggregation rules,
namely, coordinate-wise trimmed-mean (CW Trimmed Mean) [34], Krum [7], coordinate-wise
median (CW Median) [34] and geometric median [31, 30, 1]. We observe that all these methods
consistently fail to converge as soon as the fraction of Byzantine workers exceeds 1

4 , which is
well short of the previously known theoretical breakdown point 1

2 . Theorem 1, to the best of our
knowledge, provides the first formal justification to this empirical observation.
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Figure 2: Best training loss (left) and accuracy (right) using robust D-GD (see Section 5.1) with
NNM to train a logistic regression model on the MNIST dataset, in the presence of 10 honest workers
and 1 to 9 Byzantine workers. The Byzantine workers use the sign flipping attack. More details on
the experimental setup can be found in Appendix D.

5 Tight upper bounds under (G,B)-Gradient Dissimilarity

We demonstrate in this section that the bounds presented in Theorem 1 are tight. Specifically, we show
that a robust variant of distributed gradient descent, referred to as robust D-GD, yields an asymptotic
error that matches the lower bound under (G,B)-gradient dissimilarity, while also proving the
tightness of the breakdown point. Lastly, we present empirical evaluations showcasing a significant
improvement over existing robustness analyses that relied upon G-gradient dissimilarity.

5.1 Convergence analysis of robust D-GD

In robust D-GD, the server initially possesses a model θ0. Then, at each step t ∈ {0, . . . , T − 1}, the
server broadcasts model θt to all workers. Each honest worker wi sends the gradient g(i)t = ∇Li(θt)
of its local loss function at θt. However, a Byzantine worker wj might send an arbitrary value
for its gradient. Upon receiving the gradients from all the workers, the server aggregates the local
gradients using a robust aggregation rule F : Rd×n → Rd. Specifically, the server computes
Rt := F (g

(1)
t , . . . , g

(n)
t ). Ultimately, the server updates the current model θt to θt+1 = θt − γRt,

where γ > 0 is the learning rate. The full procedure is summarized in Algorithm 1.

Algorithm 1: Robust D-GD
Input: Initial model θ0, robust aggregation F , learning rate γ, and number of steps T .
for t = 0 . . . T − 1 do

Server broadcasts θt to all the workers;
for each honest worker wi in parallel do

Compute and send gradient g(i)t = ∇Li(θt);
// A Byzantine worker wj may send an arbitrary value for g

(j)
t

Server computes the aggregate gradient: Rt = F (g
(1)
t , . . . , g

(n)
t );

Server updates the model: θt+1 = θt − γRt;
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To analyze robust D-GD under (G,B)-gradient dissimilarity, we first recall the notion of (f, κ)-
robustness in Definition 4 below. First introduced in [3], (f, κ)-robustness is a general property of
robust aggregation that covers several existing aggregation rules.
Definition 4 ((f, κ)-robustness). Let n ≥ 1, 0 ≤ f < n/2 and κ ≥ 0. An aggregation rule
F : Rd×n → Rd is said to be (f, κ)-robust if for any vectors x1, . . . , xn ∈ Rd, and any set S ⊆ [n]
of size n− f , the output x̂ := F (x1, . . . , xn) satisfies the following:

∥x̂− xS∥2 ≤ κ · 1

|S|
∑
i∈S

∥xi − xS∥2 ,

where xS := 1
|S|
∑

i∈S xi. We refer to κ as the robustness coefficient of F .

Closed-form robustness coefficients for multiple aggregation rules can be found in [3]. For example,
assuming n ≥ (2 + η)f , for some η > 0, κ = Θ( fn ) for coordinate-wise trimmed mean, κ = Θ(1)

for coordinate-wise median, and κF◦NNM = Θ( fn (κ+ 1)) when F is composed with NNM [3].

Assuming F to be an (f, κ)-robust aggregation rule, we show in Theorem 2 below the convergence
of robust D-GD in the presence of up to f Byzantine workers, under (G,B)-gradient dissimilarity.
Theorem 2. Let 0 ≤ f < n/2. Assume that the global loss LH is L-smooth and that the honest local
losses satisfy (G,B)-gradient dissimilarity (Assumption 1). Consider Algorithm 1 with learning rate
γ = 1

L . If the aggregation F is (f, κ)-robust with κB2 < 1, then the following holds for all T ≥ 1.

1. In the general case where LH may be non-convex, we have

1

T

T−1∑
t=0

∥∇LH(θt)∥2 ≤ κG2

1− κB2
+

2L (LH(θ0)− L∗,H)

(1− κB2)T
.

2. In the case where LH is µ-PL, we have

LH(θT )− L∗,H ≤ κG2

2µ (1− κB2)
+ e−

µ
L (1−κB2)T (LH(θ0)− L∗,H) .

Tightness of the result. We recall that the best possible robustness coefficient for an aggregation F
is κ = f/n−2f (see [3]). For such an aggregation rule, the sufficient condition κB2 < 1 reduces to
f/n−2f ·B2 < 1 or equivalently f/n < 1/2+B2. Besides, robust D-GD guarantees (f, ε)-resilience, for
µ-PL losses, where we have ε = O

(
f/n−(2+B2)f ·G2

)
asymptotically in T . Both these conditions

on f/n and ε indeed match the limits shown earlier in Theorem 1. Yet, we are unaware of an
aggregation rule with an order-optimal robustness coefficient, i.e., usually κ > f/n−2f . However,
as shown in [3], the composition of nearest neighbor mixing (NNM) with several aggregation
rules, such as CW Trimmed Mean, Krum and Geometric Median, yields a robustness coefficient
κ = Θ(f/n−2f). Therefore, robust D-GD can indeed achieve (f, ε)-resilience with an optimal error
ε = O

(
f/n−(2+B2)f ·G2

)
, but for a suboptimal breakdown point. The same observation holds for

the non-convex case, where the lower bound is given by (7). Lastly, note that when B = 0, our result
recovers the bounds derived in prior work under G-gradient dissimilarity [20, 3].

We remark that while the convergence rate of robust D-GD shown in Theorem 2 is linear (which is
typical to convergence of gradient descent in strongly convex case), it features a slowdown factor
of value 1 − κB2. Hence, suggesting that Byzantine workers might decelerate the training under
heterogeneity. This slowdown is also empirically observed (e.g., see Figure 1). Whether this
slowdown is fundamental to robust distributed learning is an interesting open question. Investigating
such a slowdown in the stochastic case is also of interest, as existing convergence bounds are under
G-gradient dissimilarity only, for strongly convex [4] and non-convex [3] cases.

Comparison with prior work. Few previous works have studied Byzantine robustness under
(G,B)-gradient dissimilarity [20, 14]. While these works do not provide lower bounds, the upper
bound they derive (see Appendix E in [20] and Appendix E.4 in [14]) are similar to Theorem 2, with
some notable differences. First, unlike the notion of (f, κ)-robustness that we use, the so-called
(c, δ)-agnostic robustness, used in [20, 14], is a stochastic notion. Under the latter notion, good
parameters (c, δ) of robust aggregators were only shown when using a randomized method called
Bucketing [20]. Consequently, instead of obtaining a deterministic error bound as in Theorem 2,
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simply replacing cδ with κ in [20, 14] gives an expected bound, which is strictly weaker than the
result of Theorem 2. Moreover, the corresponding non-vanishing upper bound term and breakdown
point for robust D-GD obtained from the analysis in [20] for several robust aggregation rules (e.g.,
coordinate-wise median) are worse than what we obtain using (f, κ)-robustness.

5.2 Reducing the gap between theory and practice

In this section, we first argue that, even if we were to assume that the G-gradient dissimilarity condi-
tion (2) holds true, the robustness bounds derived in Theorem 2 under (G,B)-gradient dissimilarity
improve upon the existing bounds [3] that rely on G-gradient dissimilarity. Next, we compare the
empirical observations for robust D-GD with our theoretical upper bounds.

Comparing upper bounds. We consider a logistic regression model on MNIST dataset under
extreme heterogeneity. While it is difficult to find tight values for parameters G and B satisfying
(G,B)-gradient dissimilarity, we can approximate these parameters through a heuristic method. A
similar approach can be used to approximate Ĝ for which the loss functions satisfy the condition of
Ĝ-gradient dissimilarity. We defer the details on these approximations to Appendix D. In Figure 3,
we compare the error bounds, i.e., f/n−(2+B2)f ·G2 and f/n−2f · Ĝ2, guaranteed for robust D-GD
under (G,B)-gradient dissimilarity and Ĝ-gradient dissimilarity, respectively. We observe that the
latter bound is extremely large compared to the former, which confirms that the tightest bounds under
G-gradient dissimilarity are vacuous for practical purposes.
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Figure 3: Comparison of our upper bound in The-
orem 2 with that of G-gradient dissimilarity on
MNIST with a logistic regression model. The
number of honest workers is 10, and the number
of Byzantine workers varies from 1 to 9.
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in Corollary 1 and the training loss for the
least-squares regression on the mg LIBSVM
dataset [10]. The number of honest workers is
20 and the number of Byzantine workers varies
from 1 to 19.

We further specialize the result of Theorem 2 to the convex case for which the (G,B)-gradient
dissimilarity condition was characterized in Proposition 1. We have the following corollary.

Corollary 1. Assume that the global loss LH is µ-PL and L-smooth, and that for each i ∈ H local
loss Li is convex and Li-smooth. Denote Lmax := maxi∈H Li and assume that κ( 3Lmax

µ − 1) ≤ 1.
Consider Algorithm 1 with learning rate γ = 1

L . If F is (f, κ)-robust, then for all T ≥ 1, we have

LH(θT )− L∗,H ≤ 3κ

µ

1

|H|
∑
i∈H

∥∇Li(θ∗)∥2 + e−
µ
3LT (LH(θ0)− L∗,H) .

The non-vanishing term in the upper bound shown in Corollary 1 corresponds to the heterogeneity at
the minimum 1

|H|
∑

i∈H ∥∇Li(θ∗)∥2. This quantity is considered to be a natural measure of gradient
dissimilarity in classical (non-Byzantine) distributed convex optimization [22, 23]. As such, we
believe that this bound cannot be improved upon in general.

Matching empirical performances. Since the upper bound in Corollary 1 requires computing the
constants µ,L, we choose to conduct this experiment on least-squares regression, where the exact
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computation of µ,L is possible. We compare the empirical error gap (left-hand side of Corollary 1)
with the upper bound (right-hand side of Corollary 1). Our findings, shown in Figure 4, indicate that
our theoretical analysis reliably predicts the empirical performances of robust D-GD, especially when
the fraction of Byzantine workers is small. Note, however, that our upper bound is non-informative
when more than 1

4 of the workers are Byzantine, as the predicted error exceeds the initial loss
value. We believe this to be an artifact of the proof, i.e. the upper bound is meaningful only up to
a multiplicative constant. Indeed, when visualizing the results in logarithmic scale in Figure 4, the
shape of empirical measurements and our upper bounds are quite similar.

6 Conclusion and future work

This paper revisits the theory of robust distributed learning by considering a realistic data heterogeneity
model, namely (G,B)-gradient dissimilarity. Using this model, we show that the breakdown point
depends upon heterogeneity (specifically, 1/2+B2) and is smaller than the usual fraction 1/2. We prove
a new lower bound on the learning error of any distributed learning algorithm, which is matched
using robust D-GD. Moreover, we show that our theoretical guarantees align closely with empirical
observations, contrary to prior works which rely upon the stringent model of G-gradient dissimilarity.

An interesting future research direction is to investigate whether the 1− κB2 slowdown factor in the
convergence rate of robust D-GD (Theorem 2) is unavoidable. Another interesting research problem
is to derive lower (and upper) bounds independent of the heterogeneity model, thereby elucidating
the tightness of the convergence guarantee of robust D-GD in the strongly convex case (Corollary 1).
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Organization of the Appendix

Appendix A contains the proof of Proposition 1. Appendix B contains the impossibility result shown
in Theorem 1. Appendix C contains the convergence proofs concerning Robust D-GD (Theorem 2,
Corollary 1, and Proposition 1). Appendix D presents our experimental setups.

A Proof of Proposition 1

Proposition 1. Assume that the global loss LH is µ-PL and L-smooth, and that for each i ∈ H local
loss Li is convex and Li-smooth. Denote Lmax := maxi∈H Li. Then, Assumption 1 is satisfied, i.e.,
the local loss functions satisfy (G,B)-gradient dissimilarity, with

G2 =
2

|H|
∑
i∈H

∥∇Li(θ∗)∥2 and B2 =
2Lmax

µ
− 1. (4)

Proof. Let θ ∈ Rd. By bias-variance decomposition, we obtain that
1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 =
1

|H|
∑
i∈H

∥∇Li(θ)∥2 − ∥∇LH(θ)∥2 . (8)

Using triangle inequality, we have

∥∇Li(θ)∥2 = ∥∇Li(θ)−∇Li(θ∗) +∇Li(θ∗)∥2 ≤ (∥∇Li(θ)−∇Li(θ∗)∥+ ∥∇Li(θ∗)∥)2

For any pair of real values (a, b), we have (a + b)2 ≤ 2a2 + 2b2. Using this inequality with
a = ∥∇Li(θ)−∇Li(θ∗)∥ and b = ∥∇Li(θ∗)∥ in the above, we obtain that

∥∇Li(θ)∥2 ≤ 2 ∥∇Li(θ)−∇Li(θ∗)∥2 + 2 ∥∇Li(θ∗)∥2 .
Using the above in (8), we obtain that

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ 1

|H|
∑
i∈H

(
2 ∥∇Li(θ)−∇Li(θ∗)∥2 + 2 ∥∇Li(θ∗)∥2

)
− ∥∇LH(θ)∥2 . (9)

For all i ∈ H, since Li is assumed convex and Li-smooth, we also have (see [28, Theorem 2.1.5])
for all θ′ ∈ Rd that

Li(θ) ≥ Li(θ
′) + ⟨∇Li(θ

′), θ − θ′⟩+ 1

2Li
∥∇Li(θ)−∇Li(θ

′)∥2 .

Substituting θ′ = θ∗ in the above, we have Li(θ) − Li(θ∗) − ⟨∇Li(θ∗), θ − θ∗⟩ ≥ 0 and
∥∇Li(θ)−∇Li(θ∗)∥2 ≤ 2Li (Li(θ)− Li(θ∗)− ⟨∇Li(θ∗), θ − θ∗⟩). Therefore, as Lmax :=
maxi∈H Li, we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇Li(θ∗)∥2 ≤ 2Lmax

|H|
∑
i∈H

(Li(θ)− Li(θ∗)− ⟨∇Li(θ∗), θ − θ∗⟩) . (10)

Recall that LH := 1
|H|
∑

i∈H Li. Thus, 1
|H|
∑

i∈H Li(θ∗) = LH(θ∗), and 1
|H|
∑

i∈H ∇Li(θ∗) =

∇LH(θ∗) = 0. Using this in (10), and then recalling that LH is assumed µ-PL, we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇Li(θ∗)∥2 ≤ 2Lmax (LH(θ)− LH(θ∗)) ≤
Lmax

µ
∥∇LH(θ)∥2 .

Substituting the above in (9), we obtain that
1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ 2
Lmax

µ
∥∇LH(θ)∥2 + 2

1

|H|
∑
i∈H

∥∇Li(θ∗)∥2 − ∥∇LH(θ)∥2

=
2

|H|
∑
i∈H

∥∇Li(θ∗)∥2 +
(
2Lmax

µ
− 1

)
∥∇LH(θ)∥2 .

The above proves the proposition.
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B Proof of Theorem 1: Impossibility Result

For convenience, we recall below the theorem statement.

Theorem 1. Let 0 < f < n/2. Assume that the global loss LH is L-smooth and µ-strongly convex
with 0 < µ < L. Assume also that the honest local losses satisfy (G,B)-gradient dissimilarity
(Assumption 1) with G > 0. Then, a distributed algorithm can be (f, ε)-resilient only if

f

n
<

1

2 +B2
and ε ≥ 1

8µ
· f

n− (2 +B2) f
·G2 .

B.1 Proof outline

We prove the theorem by contradiction. We start by assuming that there exists an algorithm A that
is (f, ε)-resilient when the conditions stated in the theorem for the honest workers are satisfied. We
consider the following instance of the loss functions where parameters α and K are positive real
values, and z ∈ Rd is a vector.

Li(θ) = LI(θ) :=
α

2
∥θ − z∥2 , ∀i ∈ {1, . . . , f}, (11)

Li(θ) = LII(θ) :=
1

2K
∥θ∥2 , ∀i ∈ {f + 1, . . . , n− f}, (12)

Li(θ) = LIII(θ) :=
α

2
∥θ∥2 , ∀i ∈ {n− f + 1, . . . , n}. (13)

We then consider two specific scenarios, each corresponding to different identities of honest workers:
S1 = {1, . . . , n − f} and S2 = {f + 1, . . . , n}. That is, we let S1 and S2 represent the set of
honest workers in the first and second scenarios, respectively. Upon specifying certain conditions
on parameters α, K and z we show that the corresponding honest workers’ loss functions in either
execution satisfy the assumptions stated in the theorem, i.e., the global loss functions are L-smooth
µ-strongly convex and the honest local loss functions satisfy (G,B)-gradient dissimilarity. Since
algorithm A is oblivious to the honest identities, it must ensure (f, ε)-resilience in both these
scenarios. Consequently, we show that ε cannot be lower that a value that grows with K and ∥z∥2.
Using this approach, we first show that the lower bound on ε can be arbitrarily large when f

n ≥ 1
2+B2 .

Then, we obtain a non-trivial lower bound on ε in the case when f
n < 1

2+B2 . The two scenarios, and
corresponding loss functions, used in our proof are illustrated in Figure 5.

0 z

K

0

K

Figure 5: Illustration of the proof of Theorem 1. It is impossible to distinguish between the two scenarios
depicted above, corresponding to the local honest losses in scenarios S1 and S2. We set ∥z∥2 to grow with K,
and show that (G,B)-gradient dissimilarity holds in both scenarios. A large K means that the minimum in the
first scenario (left) is close to z, while it is 0 in the second scenario (right). Thus, any algorithm must make an
error ε in the order of ∥z∥2, which itself grows with K. When f/n ≥ 1

2+B2 , we show that K and thus ε can be
made arbitrarily large.

We make use of the following auxiliary results.

B.1.1 Unavoidable error due to anonymity of Byzantine workers

Lemma 1 below establishes a lower bound on the optimization error that any algorithm must
incur in at least one of the two scenarios described above. Recall that S1 = {1, . . . , n − f} and
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S2 = {f + 1, . . . , n}. Recall that for any non-empty subset S ⊆ [n], we denote

LS(θ) :=
1

|S|
∑
i∈S

Li(θ) and L∗,S = min
θ∈Rd

LS(θ) .

Lemma 1. Consider the setting where the local loss functions are given by (11), (12), and (13). In
this particular case, the following holds for all θ ∈ Rd:

max {LS1
(θ)− L∗,S1

, LS2
(θ)− L∗,S2

} ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 .

The proof is deferred to Appendix B.3. We next analyze the (G,B)-gradient dissimilarity condition
for the considered distributed learning setting.

B.1.2 Validity of (G,B)-gradient dissimilarity

In Lemma 2 below we derive necessary and sufficient conditions on α, K and z for (G,B)-gradient
dissimilarity when the loss functions are given by (11), (12) and (13).

Lemma 2. Consider the setting where the local loss functions are given by (11), (12), and (13).
Denote

A1 :=
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+

(
1− f

n− 2f
B2

)
α2

)
,

A2 :=
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

(
1

K
− α

)
1

K
z , and A3 :=

f(n− 2f)α2(
(n− 2f) 1

K + fα
)2 ∥z∥2K2

.

(14)

Suppose that S1 = {1, . . . , n−f} denotes the set of honest workers. Then, the honest workers satisfy
(G,B)-gradient dissimilarity if and only if

A1 ≤ 0, A3 ≤ G2, and ∥A2∥2 ≤ A1(A3 −G2). (15)

The proof of Lemma 2 is deferred to Appendix B.4. Since LI corresponds to LIII with z = 0, the result
in the lemma above also holds true when the honest workers is represented by set S2 = {f+1, . . . , n}.
Specifically, we have the following lemma.

Lemma 3. Consider a specific distributed learning setting where the local loss functions are as
defined in (11), (12) and (13). We denote

A1 :=
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+

(
1− f

n− 2f
B2

)
α2

)
.

Suppose that S2 = {f +1, . . . , n} denotes the set of honest workers. Then, the honest workers satisfy
(0, B)-gradient dissimilarity if and only if A1 ≤ 0.

We do not provide a proof of Lemma 3, as it follows the proof of Lemma 2 verbatim upon simply
substituting z = 0Rd and G = 0.

B.2 Proof of Theorem 1

We prove the two assertions of Theorem 1, i.e., the necessity of f
n < 1

2+B2 and the lower bound on ε,
separately in sections B.2.1 and B.2.2, respectively.

B.2.1 Necessity of f
n < 1

2+B2

In this section, we prove by contradiction the necessity of f
n < 1

2+B2 by demonstrating that ε can be
arbitrarily large if f

n ≥ 1
2+B2 . Let 0 < f < n/2, 0 < µ < L, G > 0 and B ≥ 0.
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Suppose that f
n ≥ 1

2+B2 , or equivalently B2 ≥ n−2f
f . Let A be an arbitrary (f, ε)-resilient distributed

learning algorithm. We consider the setting where the local loss functions are given by (11), (12)
and (13), and the corresponding parameters are given by

α =
n− f

f
µ , (16)

K is an arbitrary positive real number such that

K ≥ 1

α
max

{
1 ,

n− 2f

f
· µ

L− µ

}
, (17)

and z ∈ Rd is such that

∥z∥2 =
f

n− 2f
· G

2

2α
K . (18)

Proof outline. In the proof, we consider two scenarios, each corresponding to two different identities
of honest workers: S1 = {1, . . . , n− f} and S2 = {f + 1, . . . , n}. For each of these, we first show
that the corresponding local and global honest loss functions satisfy the assumptions made in the
theorem, invoking Lemma 2. Then, by invoking Lemma 1, we show that ε is proportional to K which
(as per (17)) can be chosen to be arbitrarily large. This yields a contradiction to the assumption that
A is (f, ε)-resilient, proving that (f, ε)-resilience is generally impossible when f

n ≥ 1
2+B2 .

First scenario. Suppose that the set of honest workers is represented by S1 = {1, . . . , n − f}.
From (11) and (12), we obtain that

LS1
(θ) =

1

|S1|
∑
i∈S1

Li(θ) =
f

n− f
LI(θ) +

n− 2f

n− f
LII(θ)

=
f

n− f

α

2
∥θ − z∥2 + n− 2f

n− f

1

2K
∥θ∥2 .

Substituting, from (16), α = n−f
f µ in the above we obtain that

LS1
(θ) =

µ

2
∥θ − z∥2 + n− 2f

n− f

1

2K
∥θ∥2 . (19)

Therefore,

∇LS1
(θ) = µ (θ − z) +

n− 2f

n− f

1

K
θ , and ∇2LS1

(θ) =

(
µ+

n− 2f

n− f

1

K

)
Id , (20)

where Id denotes the identity matrix of size d. From (20), we deduce that LS1
(θ) is

(
n−2f
n−f

1
K + µ

)
-

smooth and
(

n−2f
n−f

1
K + µ

)
-strongly convex. From(17), we have K ≥ 1

α · n−2f
f · µ

L−µ = n−2f
n−f · 1

L−µ .

This implies that n−2f
n−f

1
K + µ ≤ L− µ+ µ = L. Clearly,

(
n−2f
n−f

1
K + µ

)
≥ µ. Hence, the honest

global loss function LS1 is L-smooth µ-strongly convex. Next, invoking Lemma 2, we show that
the honest workers satisfy (G,B)-gradient dissimilarity. We analyze below the terms A1, A2 and A3

introduced in Lemma 2 in this particular scenario.

Term A1. Recall from Lemma 2 that

A1 =
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+ α2

(
1− f

n− 2f
B2

))
.

Since we assume B2 ≥ n−2f
f , we have 1− f

n−2fB
2 ≤ 0. Using this in the above we obtain that

A1 ≤ f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K

)
=

f(n− 2f)

(n− f)2
α

K

((
1− n− 2f

f
B2

)
1

αK
− 2(1 +B2)

)
.
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As α,K > 0, and by (17), K ≥ 1
α ≥ 1

α

(1−n−2f
f B2)

1+B2 . Therefore, 1 + B2 ≥ 1
αK

(
1− n−2f

f B2
)

.
Using this in the above implies that

A1 ≤ −f(n− 2f)

(n− f)2
α

K
(1 +B2) ≤ −f(n− 2f)

(n− f)2
α

K
. (21)

Term A2. Recall from Lemma 2 that

A2 =
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

(
1

K
− α

)
1

K
z. (22)

Therefore, as K > 0 and we assume n > 2f , we have

∥A2∥2 =

(
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

)2(
1

K
− α

)2
1

K2
∥z∥2

≤
(
f(n− 2f)α

(n− f)fα

)2(
1

K
− α

)2
1

K2
∥z∥2 =

(
n− 2f

n− f

)2(
α− 1

K

)2
1

K2
∥z∥2 .

As K ≥ 1
α > 0, we have

(
α− 1

K

)2 ≤ α2. Thus, from above we obtain that

∥A2∥2 ≤
(
n− 2f

n− f

)2

α2 1

K2
∥z∥2 ,

Substituting from (18), i.e. ∥z∥2 = f
n−2f

G2

2α ·K, in the above implies that

∥A2∥2 ≤ f(n− 2f)

(n− f)2
α

K

G2

2
. (23)

Term A3. Recall from Lemma 2 that

A3 :=
f(n− 2f)α2(

(n− 2f) 1
K + fα

)2 ∥z∥2K2
.

As K > 0 and n > 2f , we have

A3 ≤ f(n− 2f)α2

f2α2

∥z∥2

K2
=

n− 2f

f

∥z∥2

K2
.

Substituting ∥z∥2 = f
n−2f

G2

2α ·K (see (18)), and then recalling that K ≥ 1
α (see (17)), yields

A3 ≤ G2

2αK
≤ G2

2
.

Therefore,

G2 −A3 ≥ G2

2
≥ 0 . (24)

Invoking Lemma 2. Using the results obtained above in (21), (23) and (24), we show below that
the conditions stated in (15) of Lemma (2) are satisfied, i.e., A1 ≤ 0, A3 ≤ G2 and ∥A2∥2 ≤
A1(A3 −G2). Hence, we prove that the local loss functions for the honest workers in this particular
scenario satisfy (G,B)-gradient dissimilarity.

First, from (21), we note that

A1 ≤ −f(n− 2f)

(n− f)2
α

K
≤ 0 . (25)

Second, as a consequence of (24), A3 ≤ G2. Lastly, recall from (23) that

∥A2∥2 ≤ f(n− 2f)

(n− f)2
α

K

G2

2
.
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As f(n−2f)
(n−f)2

α
K ≤ −A1 (from (21)), from above we obtain that ∥A2∥2 ≤ −A1

G2

2 . Therefore, as

G2 ≥ 0 and G2 ≤ 2(G2 −A3) (from (24)), ∥A2∥2 ≤ A1(A3 −G2).

This concludes the analysis for the first scenario. We have shown that the conditions on smoothness,
strong convexity and (G,B)-gradient dissimilarity hold in this scenario.

Second scenario. Consider the set of honest workers to be S2 = {f + 1, . . . , n}. Identical to (19)
with z = 0, from (12) and (13), we obtain that

LS2
(θ) =

(
µ

2
+

n− 2f

n− f

1

2K

)
∥θ∥2 .

Therefore, similar to the analysis of the first scenario, the global loss LS2
satisfies L-smoothness

and µ-strong convexity. Moreover, Lemma 3, in conjunction with the deduction in (25) that A1 ≥ 0,
implies that the loss functions for the honest workers in this particular scenario satisfy (0, B)-gradient
dissimilarity, thereby also satisfying (G,B)-gradient dissimilarity.

This concludes the analysis for the second scenario. We have shown that the conditions on smoothness,
strong convexity and (G,B)-gradient dissimilarity indeed hold true in this scenario.

Final step: lower bound on ε in terms of K. We have established in the above that the condi-
tions of smoothness, strong convexity and (G,B)-gradient dissimilarity are satisfied in both the
scenarios. Therefore, by assumptions, algorithm A must guarantee (f, ε)-resilience in either scenario.
Specifically, the output of A, denoted by θ̂ must satisfy the following.

max
{
LS1

(θ̂)− L∗,S1
, LS2

(θ̂)− L∗,S2

}
≤ ε.

Due to Lemma 1, the above holds true only if

ε ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 . (26)

Recall from (17) that K ≥ 1
α · n−2f

f · µ
L−µ . Therefore, we have (n − 2f) 1

K ≤ L−µ
µ fα, which

implies that (
f

n−f

)2
α2

n−2f
n−f

1
K + f

n−f α
≥

(
f

n−f

)2
α2(

L−µ
µ + 1

)
f

n−f α
=

µ

L
· f

n− f
α.

Using the above in (26), and then substituting α = n−f
f µ (from (16)), implies that

ε ≥ µ2

8L
∥z∥2 .

Recall from (18) that ∥z∥2 = f
n−2f

G2

2α ·K where α = n−f
f µ, from above we obtain that

ε ≥ µ2

16L

f

n− 2f

G2

α
K =

µ

16L
· f2

(n− 2f)(n− f)
G2K.

That is, ε grows with K. Note that the above holds for any arbitrarily large value of K satisfying (17).
Therefore, ε can be made arbitrarily large. This contracts the assumption that A is (f, ε)-resilient with
a finite ε. Hence, we have shown that (f, ε)-resilience is impossible in general under (G,B)-gradient
dissimilarity when f

n ≥ 1
2+B2 .

Concluding remark. A critical element to the above inference on the unboundedness of ε is the
condition that A1 ≤ 0, shown in (21). Recall that

A1 :=
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+ α2

(
1− f

n− 2f
B2

))
.

The right-hand side in the above is negative for any large enough value of K as soon as 1− f
n−2fB

2 ≤
0 or, equivalently, f

n ≥ 1
2+B2 . However, in the case when f

n < 1
2+B2 , K cannot be arbitrarily large

if we were to ensure A1 ≤ 0, i.e., K must be bounded from above. This constraint on K yields a
non-trivial lower bound on ε. We formalize this intuition in the following.
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B.2.2 Lower Bound on ε

In this section, we prove that ε ≥ 1
8µ · f

n−(2+B2)fG
2. Let 0 < f < n/2, and G,B ≥ 0. Owing to

the arguments presented in Section B.2.1, the assertion holds true when f
n ≥ 1

2+B2 . In the following,
we assume that f

n < 1
2+B2 , or equivalently B2 < n−2f

f .

Let A be an (f, ε)-resilient algorithm. We consider a distributed learning setting where the workers’
loss functions are given by (11), (12) and (13) with parameters α,K and z set as follows.

α = µ
(
1 +B2

)
, and K =

1

µ
(
1− f

n−2fB
2
) . (27)

We let z be an arbitrary point in Rd such that

∥z∥2 =
(n− f)2

f(n− 2f)
· G2

α(1 +B2)
·K.

Note that, as α = µ
(
1 +B2

)
, we have

K =
1

µ
(
1− f

n−2fB
2
) =

1 +B2

1− f
n−2fB

2
· 1
α

. (28)

Therefore,

∥z∥2 =
(n− f)2

f(n− 2f)
·
1− f

n−2fB
2

(1 +B2)2
·G2K2. (29)

From (28), we also obtain that

n− 2f

n− f

1

K
+

f

n− f
α =

n− 2f

n− f

(
1− f

n−2fB
2
)

1 +B2
α+

f

n− f
α =

n− 2f − fB2 + f + fB2

(n− f)(1 +B2)
α

=
α

1 +B2
. (30)

Proof outline. We consider two scenarios, each corresponding to two different identities of honest
workers: S1 = {1, . . . , n − f} and S2 = {f + 1, . . . , n}. For each of these, we prove that the
corresponding local and global loss functions satisfy the assumptions of the theorem, mainly by
invoking Lemma 2. Finally, by invoking Lemma 1, we show that (f, ε)-resilience implies the stated
lower bound on ε.

First scenario. Consider the set of honest workers to be S1 = {1, . . . , n− f}. From (11) and (12)
we obtain that

LS1(θ) =
f

n− f

α

2
∥θ − z∥2 + n− 2f

n− f

1

2K
∥θ∥2 . (31)

Therefore,

∇LS1
(θ) =

f

n− f
α (θ − z) +

n− 2f

n− f

1

K
θ , and ∇2LS1

(θ) =

(
f

n− f
α+

n− 2f

n− f

1

K

)
Id ,

where Id denotes the identity matrix of size d. The above, in conjunction with (30), implies that
LS1

is
(

α
1+B2

)
-smooth

(
α

1+B2

)
-strongly convex. As α

1+B2 = µ (see (27)), we deduce that LS1

is µ-smooth µ-strong convexity. Recall that µ ≤ L, therefore LS1
is also L-smooth. Next, by

invoking Lemma 2, we show that the local losses for the honest workers in this scenario also satisfy
(G,B)-dissimilarity.

We start by analyzing below the terms A1, A2 and A3 introduced in Lemma 2 in this scenario.

Term A1. Recall from (14) in Lemma 2 that

A1 =
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+ α2

(
1− f

n− 2f
B2

))
.
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Let A′
1 := (n−f)2

f(n−2f)A1. Substituting in the above, from (28), K = 1+B2

1− f
n−2f B2

· 1
α , we obtain that

A′
1 =

(1− n− 2f

f
B2

)(
1− f

n−2fB
2

1 +B2

)2

α2 − 2(1 +B2)
1− f

n−2fB
2

1 +B2
α2 + α2

(
1− f

n− 2f
B2

)
= α2

(
1− f

n− 2f
B2

)
(
1− n−2f

f B2
)(

1− f
n−2fB

2
)

(1 +B2)
2 − 1


= α2

(
1− f

n−2fB
2
)

(1 +B2)
2

((
1− n− 2f

f
B2

)(
1− f

n− 2f
B2

)
−
(
1 +B2

)2)

= α2

(
1− f

n−2fB
2
)

(1 +B2)
2

((
1− n− 2f

f
B2 − f

n− 2f
B2 +B4

)
−
(
1 + 2B2 +B4

))

= −α2

(
1− f

n−2fB
2
)

(1 +B2)
2 B2

(
2 +

n− 2f

f
+

f

n− 2f

)
= −α2

(
1− f

n−2fB
2
)
B2

(1 +B2)
2

(n− f)2

f(n− 2f)
.

Recall that A′
1 = (n−f)2

f(n−2f)A1. Therefore, from the above we obtain that

A1 = −

(
1− f

n−2fB
2
)

(1 +B2)
2 B2α2 . (32)

Term A2. From (14) in Lemma 2, and (30), we obtain that

A2 =
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

(
1

K
− α

)
1

K
z =

f(n− 2f)

(n− f)2
(
1 +B2

)( 1

K
− α

)
1

K
z.

From (28), we obtain that α− 1
K = α− 1− f

n−2f B2

1+B2 α = n−f
n−2f

B2

1+B2α. Using this above we obtain
that

∥A2∥2 =

(
f(n− 2f)

(n− f)2

)2 (
1 +B2

)2( n− f

n− 2f

)2
B4

(1 +B2)2
α2 ∥z∥

2

K2
=

(
f

n− f

)2

B4α2 ∥z∥
2

K2
.

(33)

Term A3. From (14) in Lemma 2, and (30), we obtain that

A3 =
f(n− 2f)α2(

(n− 2f) 1
K + fα

)2 ∥z∥2K2
=

f(n− 2f)

(n− f)2
(
1 +B2

)2 ∥z∥2

K2
. (34)

Substituting in the above, from (29), ∥z∥2 = (n−f)2

f(n−2f)

(1− f
n−2f B2)

(1+B2)2 G2K2 we obtain that

A3 =

(
1− f

n− 2f
B2

)
G2 . (35)

Invoking Lemma 2. Using the results obtained above we show below that the conditions stated in (15)
of Lemma (2) are satisfied, i.e., A1 ≤ 0, A3 ≤ G2 and ∥A2∥2 ≤ A1(A3 − G2). Hence, proving
that the local loss functions for the honest workers in this particular scenario satisfy (G,B)-gradient
dissimilarity.

Since we assumed that B2 < n−2f
f , (32) implies that A1 ≤ 0 . Similarly, (35) implies that

A3 ≤ G2. Substituting, from (32) and (34), respectively, A1 = − (1− f
n−2f B2)

(1+B2)2
B2α2 and A3 =

f(n−2f)
(n−f)2

(
1 +B2

)2 ∥z∥2

K2 , we obtain that

A1(A3 −G2) =

(
1− f

n−2fB
2
)

(1 +B2)
2 B2α2

(
G2 − f(n− 2f)

(n− f)2
(
1 +B2

)2 ∥z∥2

K2

)
.
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Substituting in the above, from (29), i.e. ∥z∥2 = (n−f)2

f(n−2f)

(1− f
n−2f B2)

(1+B2)2 G2K2, we obtain that

A1(A3 −G2) =

(
1− f

n−2fB
2
)

(1 +B2)
2 B2α2

(
G2 −

(
1− f

n− 2f
B2

)
G2

)

=

(
1− f

n−2fB
2
)

(1 +B2)
2

(
f

n− 2f

)
G2B4α2 =

(n− f)2

f(n− 2f)

(
1− f

n−2fB
2
)

(1 +B2)
2 G2

(
f

n− f

)2

B4α2 .

Recall that (n−f)2

f(n−2f)

(1− f
n−2f B2)

(1+B2)2
G2 = ∥z∥2

K2 . Using this above, and then comparing the resulting
equation with (33), we obtain that

A1(A3 −G2) =

(
f

n− f

)2

B4α2 ∥z∥
2

K2
= ∥A2∥2 .

This concludes the analysis for the first scenario. We have shown that the conditions on smoothness,
strong convexity and (G,B)-gradient dissimilarity hold in this scenario.

Second scenario. Consider the set of honest workers to be S2 = {f + 1, . . . , n}. Identical to (31)
with z = 0, from (12) and (13), we obtain that

LS2(θ) =
f

n− f

α

2
∥θ∥2 + n− 2f

n− f

1

2K
∥θ∥2 .

Similar to the analysis in the first scenario, we deduce that LS2
is L-smooth and µ-strongly convex.

Moreover, Lemma 3, in conjunction with the deduction in (32) that A1 ≥ 0 (recall that B2 < n−2f
f ),

implies that the loss functions for the honest workers in this particular scenario satisfy (0, B)-gradient
dissimilarity, thereby also satisfying (G,B)-gradient dissimilarity.

This concludes the analysis for the second scenario. We have shown that the conditions on smoothness,
strong convexity and (G,B)-gradient dissimilarity hold in this scenario.

Final step: lower bound on ε in terms of G and B. We have established in the above that the
conditions of smoothness, strong convexity and (G,B)-gradient dissimilarity are satisfied in both the
scenarios. Therefore, by assumptions, algorithm A must guarantee (f, ε)-resilience in either scenario.
Specifically, the output of A, denoted by θ̂ must satisfy the following:

max
{
LS1(θ̂)− L∗,S1 ,LS2(θ̂)− L∗,S2

}
≤ ε.

Due to Lemma 1, the above holds only if

ε ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 . (36)

Recall, from (30), that n−2f
n−f

1
K + f

n−f α = α
1+B2 . Using this in (36), we obtain that

ε ≥

(
f

n−f

)2
α2

8
(

α
1+B2

) ∥z∥2 =
1

8

(
f

n− f

)2

α(1 +B2) ∥z∥2

Substituting, from (27), α = µ(1 +B2) in the above implies that

ε ≥ µ

8

(
f

n− f

)2

(1 +B2)2 ∥z∥2 .

Substituting, from (29), ∥z∥2 = (n−f)2

f(n−2f)

(1− f
n−2f B2)

(1+B2)2 G2K2 in the above implies that

ε ≥ µ

8

(
f

n− f

)2 (
1 +B2

)2 (n− f)2

f(n− 2f)

(
1− f

n−2fB
2
)

(1 +B2)
2 G2K2

=
µ

8

(
f

n− 2f

)(
1− f

n− 2f
B2

)
G2K2 .
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Substituting, from (27), i.e. K = 1

µ(1− f
n−2f B2)

, in the above implies that

ε ≥ µ

8

(
f

n− 2f

)(
1− f

n− 2f
B2

)
G2

µ2
(
1− f

n−2fB
2
)2 =

1

8µ
·

f
n−2fG

2

1− f
n−2fB

2

The above completes the proof.

B.3 Proof of Lemma 1

Let us recall the lemma below.

Lemma 1. Consider the setting where the local loss functions are given by (11), (12), and (13). In
this particular case, the following holds for all θ ∈ Rd:

max {LS1
(θ)− L∗,S1

, LS2
(θ)− L∗,S2

} ≥

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 .

Proof. We prove the lemma by contradiction. Suppose there exists a parameter vector θ̂ such that

max
{
LS1(θ̂)− L∗,S1 , LS2(θ̂)− L∗,S2

}
<

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 =: δ . (37)

From (11), (12) and (13), we obtain that

LS1
(θ) :=

1

n− f

(
f
α

2
∥θ − z∥2 + (n− 2f)

1

2K
∥θ∥2

)
, and

LS2
(θ) :=:=

1

n− f

(
f
α

2
∥θ∥2 + (n− 2f)

1

2K
∥θ∥2

)
.

Therefore, we have4

LS1(θ̂)− L∗,S1 =
1

2

(
n− 2f

n− f

1

K
+

f

n− f
α

)∥∥∥∥θ̂ − fα

(n− 2f) 1
K + fα

z

∥∥∥∥2 , and

LS2
(θ̂)− L∗,S2

=
1

2

(
n− 2f

n− f

1

K
+

f

n− f
α

)∥∥∥θ̂∥∥∥2 .
Substituting from the above in (37), we obtain that

δ >
1

2

(
n− 2f

n− f

1

K
+

f

n− f
α

)
max

{∥∥∥∥θ̂ − fα

(n− 2f) 1
K + fα

z

∥∥∥∥2 ,∥∥∥θ̂∥∥∥2
}
.

As for any real values a, b, we have max{a, b} ≥ 1
2 (a+ b), from above we obtain that

δ >
1

4

(
n− 2f

n− f

1

K
+

f

n− f
α

)(∥∥∥∥θ̂ − fα

(n− 2f) 1
K + fα

z

∥∥∥∥2 + ∥∥∥θ̂∥∥∥2
)
. (38)

By triangle and Jensen’s inequalities, we have∥∥∥∥ fα

(n− 2f) 1
K + fα

z

∥∥∥∥2 =

∥∥∥∥ fα

(n− 2f) 1
K + fα

z − θ̂ + θ̂

∥∥∥∥2 ≤ 2

∥∥∥∥θ̂ − fα

(n− 2f) 1
K + fα

z

∥∥∥∥2 + 2
∥∥∥θ̂∥∥∥2 .

4For arbitrary positive real values a and b, and an arbitrary z ∈ Rd, consider a loss function L(θ) :=
a
2
∥θ − z∥2 + b

2
∥θ∥2. The minimum point θ∗ of L(θ) is given by θ∗ = a

a+b
z, and for any θ, L(θ)−L(θ∗) =

1
2
(a+ b) ∥θ − θ∗∥2.
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Substituting from the above in (38), we obtain that

δ >
1

8

(
n− 2f

n− f

1

K
+

f

n− f
α

)∥∥∥∥ fα

(n− 2f) 1
K + fα

z

∥∥∥∥2

=
1

8

(
n− 2f

n− f

1

K
+

f

n− f
α

)∥∥∥∥∥
f

n−f α
n−2f
n−f

1
K + f

n−f α
z

∥∥∥∥∥
2

=

(
f

n−f

)2
α2

8
(

n−2f
n−f

1
K + f

n−f α
) ∥z∥2 = δ .

The contradiction above proves the lemma.

B.4 Proof of Lemma 2

Let us recall the lemma below.
Lemma 2. Consider the setting where the local loss functions are given by (11), (12), and (13).
Denote

A1 :=
f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+

(
1− f

n− 2f
B2

)
α2

)
,

A2 :=
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

(
1

K
− α

)
1

K
z , and A3 :=

f(n− 2f)α2(
(n− 2f) 1

K + fα
)2 ∥z∥2K2

.

(14)

Suppose that S1 = {1, . . . , n−f} denotes the set of honest workers. Then, the honest workers satisfy
(G,B)-gradient dissimilarity if and only if

A1 ≤ 0, A3 ≤ G2, and ∥A2∥2 ≤ A1(A3 −G2). (15)

Proof. Let θ ∈ Rd. As 1
|S1|

∑
i∈S1

∥∇Li(θ)−∇LS1
(θ)∥2 = 1

|S1|
∑

i∈S1
∥∇Li(θ)∥2 −

∥∇LS1
(θ)∥2, we obtain that

1

|S1|
∑
i∈S1

∥∇Li(θ)−∇LS1(θ)∥
2 −

(
G2 +B2 ∥∇LS1(θ)∥

2
)

=
1

|S1|
∑
i∈S1

∥∇Li(θ)∥2 − (1 +B2) ∥∇LS1
(θ)∥2 −G2. (39)

We analyze the right-hand side of the above equality. As S1 = {1, . . . , n− f}, from (11) and (12),
we obtain that

1

|S1|
∑
i∈S1

∥∇Li(θ)∥2 =
n− 2f

n− f
∥∇LII(θ)∥2 +

f

n− f
∥∇LI(θ)∥2

=
n− 2f

n− f

1

K2
∥θ∥2 + f

n− f
α2 ∥θ − z∥2 . (40)

Similarly, we have

∇LS1(θ) =
1

|S1|
∑
i∈S1

∇Li(θ) =
n− 2f

n− f

1

K
θ +

f

n− f
α (θ − z)

=
(n− 2f) 1

K + fα

n− f
θ − f

n− f
α z =

(n− 2f) 1
K + fα

n− f︸ ︷︷ ︸
A0

θ − fα

(n− 2f) 1
K + fα

z︸ ︷︷ ︸
θ∗

 .

Denoting in the above

A0 :=
(n− 2f) 1

K + fα

n− f
(41)
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and

θ∗ :=
fα

(n− 2f) 1
K + fα

z , (42)

we have
∇LS1

(θ) = A0 (θ − θ∗) .

The above implies that θ∗ is the minimizer of the convex function LS1 , and

∥∇LS1
(θ)∥2 = A2

0 ∥θ − θ∗∥2 . (43)
Substituting from (40) and (43) in (39) implies that

1

|S1|
∑
i∈S1

∥∇Li(θ)−∇LS1
(θ)∥2 −G2 −B2 ∥∇LS1

(θ)∥2

=
n− 2f

n− f

1

K2
∥θ∥2 + f

n− f
α2 ∥θ − z∥2 − (1 +B2)A2

0 ∥θ − θ∗∥2 −G2.

Now, we operate the change of variables X = θ − θ∗, and rewrite the above as
1

|S1|
∑
i∈S1

∥∇Li(θ)−∇LS1(θ)∥
2 −G2 −B2 ∥∇LS1(θ)∥

2

=
n− 2f

n− f

1

K2
∥X + θ∗∥2 +

f

n− f
α2 ∥X + θ∗ − z∥2 − (1 +B2)A2

0 ∥X∥2 −G2

=
n− 2f

n− f

1

K2

(
∥X∥2 + ∥θ∗∥2 + 2 ⟨X, θ∗⟩

)
+

f

n− f
α2
(
∥X∥2 + ∥θ∗ − z∥2 + 2 ⟨X, θ∗ − z⟩

)
− (1 +B2)A2

0 ∥X∥2 −G2

=

 (n− 2f) 1
K2 + fα2

n− f
− (1 +B2)A2

0︸ ︷︷ ︸
A1

 ∥X∥2 + 2

〈
X,

n− 2f

n− f

1

K2
θ∗ +

f

n− f
α2(θ∗ − z)︸ ︷︷ ︸

A2

〉

+
n− 2f

n− f

1

K2
∥θ∗∥2 +

f

n− f
α2 ∥θ∗ − z∥2︸ ︷︷ ︸

A3

−G2. (44)

Next, we show that A1, A2 and A3 as defined in (14) can be equivalently written as follows.

A1 =
(n− 2f) 1

K2 + fα2

n− f
− (1 +B2)A2

0 , A2 =
n− 2f

n− f

1

K2
θ∗ +

f

n− f
α2(θ∗ − z) and

A3 =
n− 2f

n− f

1

K2
∥θ∗∥2 +

f

n− f
α2 ∥θ∗ − z∥2 .

Term A1: Substituting from (41), i.e. A0 =
(n−2f) 1

K +fα

n−f , we obtain that

(n− 2f) 1
K2 + fα2

n− f
− (1 +B2)A2

0 =
(n− 2f) 1

K2 + fα2

n− f
− (1 +B2)

(
(n− 2f) 1

K + fα

n− f

)2

=
(n− 2f) 1

K2 + fα2

n− f
− (1 +B2)

((
n− 2f

n− f

)2
1

K2
+

(
f

n− f

)2

α2 +
2f(n− 2f)

(n− f)2
α

K

)

=

(
n− 2f

n− f

)2(
n− f

n− 2f
− (1 +B2)

)
1

K2
− 2(1 +B2)

f(n− 2f)

(n− f)2
α

K

+

(
f

n− f

)2

α2

(
n− f

f
− (1 +B2)

)
=

(
n− 2f

n− f

)2(
f

n− 2f
−B2

)
1

K2
− 2(1 +B2)

f(n− 2f)

(n− f)2
α

K
+

(
f

n− f

)2

α2

(
n− 2f

f
−B2

)
=

f(n− 2f)

(n− f)2

((
1− n− 2f

f
B2

)
1

K2
− 2(1 +B2)

α

K
+

(
1− f

n− 2f
B2

)
α2

)
.
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Comparing the above with A1 defined in (14) implies that
(n− 2f) 1

K2 + fα2

n− f
− (1 +B2)A2

0 = A1 . (45)

Term A2: Substituting from (42), i.e. θ∗ = fα
(n−2f) 1

K +fα
z, we obtain that

n− 2f

n− f

1

K2
θ∗ +

f

n− f
α2(θ∗ − z)

=
n− 2f

n− f

1

K2

fα

(n− 2f) 1
K + fα

z +
f

n− f
α2(

fα

(n− 2f) 1
K + fα

z − z)

=
n− 2f

n− f

1

K2

fα

(n− 2f) 1
K + fα

z − f

n− f
α2 (n− 2f) 1

K

(n− 2f) 1
K + fα

z

=
f(n− 2f)α

(n− f)((n− 2f) 1
K + fα)

(
1

K
− α

)
1

K
z .

Comparing the above with A2 defined in (14) implies that
n− 2f

n− f

1

K2
θ∗ +

f

n− f
α2(θ∗ − z) = A2 . (46)

Term A3: Similarly, substituting θ∗ = fα
(n−2f) 1

K +fα
z, we obtain that

n− 2f

n− f

1

K2
∥θ∗∥2 +

f

n− f
α2 ∥θ∗ − z∥2

=
n− 2f

n− f

1

K2

(
fα

(n− 2f) 1
K + fα

)2

∥z∥2 + f

n− f
α2

(
fα

(n− 2f) 1
K + fα

− 1

)2

∥z∥2

=
n− 2f

n− f

1

K2

(
fα

(n− 2f) 1
K + fα

)2

∥z∥2 + f

n− f
α2

(
(n− 2f) 1

K

(n− 2f) 1
K + fα

)2

∥z∥2

=
f(n− 2f)α2(

(n− 2f) 1
K + fα

)2 ∥z∥2K2
.

Comparing the above with A3 defined in (14) implies that
n− 2f

n− f

1

K2
∥θ∗∥2 +

f

n− f
α2 ∥θ∗ − z∥2 = A3 . (47)

Substituting from (45), (46) and (47) in (44), we obtain that
1

|S1|
∑
i∈S1

∥∇Li(θ)−∇LS1
(θ)∥2 −G2 −B2 ∥∇LS1

(θ)∥2 = A1 ∥X∥2 + 2 ⟨X, A2⟩+A3 −G2.

Therefore, by Assumption 1, the honest workers represented by set S1 satisfy (G,B)-gradient
dissimilarity if and only if the right-hand side of the above equations is less than or equal to 0, i.e.,

A1 ∥X∥2 + 2 ⟨X, A2⟩+A3 −G2 ≤ 0 , for all X = θ − θ∗ ∈ Rd . (48)
To show the above, we consider an auxiliary second-order "polynomial" in x ∈ Rd, P (x) :=

a ∥x∥2 + 2 ⟨x, b⟩+ c where b ∈ Rd and a, c ∈ R. We show below that P (x) ≤ 0 for all x ∈ Rd if
and only if a, c ≤ 0 and ∆ := ∥b∥2 − ac ≤ 0.

Case 1. Let a ̸= 0. In this particular case, we have P (x) = a
(∥∥x+ 1

a · b
∥∥2 − ∆

a2

)
.

Therefore, P (x) ≤ 0 for all x if and only if a < 0 and c,∆ ≤ 0.

Case 2. Let a = 0. In this particular case, P (x) = 2 ⟨x, b⟩+ c. Therefore, P (x) ≤ 0 for all
x if and only if c ≤ 0 and ∆ = ∥b∥2 = 0.

Hence, (48) is equivalent to
A1 ≤ 0 , A3 −G2 ≤ 0 , and ∥A2∥2 −A1(A3 −G2) ≤ 0 .

This completes the proof.
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C Proofs of Theorem 2 and Corollary 1: Convergence Results

C.1 Proof of Theorem 2

Theorem 2. Let 0 ≤ f < n/2. Assume that the global loss LH is L-smooth and that the honest local
losses satisfy (G,B)-gradient dissimilarity (Assumption 1). Consider Algorithm 1 with learning rate
γ = 1

L . If the aggregation F is (f, κ)-robust with κB2 < 1, then the following holds for all T ≥ 1.

1. In the general case where LH may be non-convex, we have

1

T

T−1∑
t=0

∥∇LH(θt)∥2 ≤ κG2

1− κB2
+

2L (LH(θ0)− L∗,H)

(1− κB2)T
.

2. In the case where LH is µ-PL, we have

LH(θT )− L∗,H ≤ κG2

2µ (1− κB2)
+ e−

µ
L (1−κB2)T (LH(θ0)− L∗,H) .

C.1.1 Non-convex Case

Proof. As LH is assumed L-smooth, for all θ, θ′ ∈ Rd, we have (see Definition 2)

LH(θ′)− LH(θ) ≤ ⟨∇LH(θ), θ′ − θ⟩+ L

2
∥θ′ − θ∥2 .

Let t ∈ {0, . . . , T − 1}. From Algorithm 1, recall that θt+1 = θt − γRt. Hence, substituting in the
above θ = θt and θ′ = θt+1, we have

LH(θt+1)− LH(θt) ≤ −γ ⟨∇LH(θt), Rt⟩+
1

2
γ2L ∥Rt∥2 . (49)

As ⟨a, b⟩ = 1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
for any a, b ∈ Rd, we also have

⟨∇LH(θt), Rt⟩ =
1

2

(
∥∇LH(θt)∥2 + ∥Rt∥2 − ∥∇LH(θt)−Rt∥2

)
.

Substituting the above in (49) we obtain that

LH(θt+1)− LH(θt) ≤ −γ

2

(
∥∇LH(θt)∥2 + ∥Rt∥2 − ∥∇LH(θt)−Rt∥2

)
+

1

2
γ2L ∥Rt∥2

= −γ

2
∥∇LH(θt)∥2 −

γ

2
(1− γL) ∥Rt∥2 +

γ

2
∥∇LH(θt)−Rt∥2 .

Substituting γ = 1
L in the above we obtain that

LH(θt+1)− LH(θt) ≤ − 1

2L
∥∇LH(θt)∥2 +

1

2L
∥Rt −∇LH(θt)∥2 . (50)

As we assume the aggregation F to satisfy (f, κ)-robustness, by Definition 4, we also have that

∥Rt −∇LH(θt)∥2 =

∥∥∥∥∥F(g(1)t , . . . , g
(n)
t

)
− 1

|H|
∑
i∈H

g
(i)
t

∥∥∥∥∥
2

≤ κ

|H|
∑
i∈H

∥∥∥∥∥g(i)t − 1

|H|
∑
i∈H

g
(i)
t

∥∥∥∥∥
2

=
κ

|H|
∑
i∈H

∥∇Li(θt)−∇LH(θt)∥2 . (51)

Besides, Assumption 1 implies that for all θ ∈ Rd we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2 +B2 ∥∇LH(θ)∥2 .

Using the above in (51) yields

∥Rt −∇LH(θt)∥2 ≤ κG2 + κB2 ∥∇LH(θt)∥2 .
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Substituting the above in (50) yields

LH(θt+1)− LH(θt) ≤ − 1

2L
∥∇LH(θt)∥2 +

1

2L

(
κG2 + κB2 ∥∇LH(θt)∥2

)
. (52)

Multiplying both sides in (52) by 2L and rearranging the terms, we get(
1− κB2

)
∥∇LH(θt)∥2 ≤ κG2 + 2L (LH(θt)− LH(θt+1)) . (53)

Recall that t in the above was arbitrary in {0, . . . , T − 1}. Averaging over all t ∈ {0, . . . , T − 1}
yields

(
1− κB2

) 1

T

T−1∑
t=0

∥∇LH(θt)∥2 ≤ κG2 +
2L

T

T−1∑
t=0

(LH(θt)− LH(θt+1)) = κG2 +
2L

T
(LH(θ0)− LH(θT ))

≤ κG2 +
2L

T
(LH(θ0)− L∗,H) .

Finally, since we assume that 1− κB2 > 0, dividing both sides in the above by 1− κB2 yields

1

T

T−1∑
t=0

∥∇LH(θt)∥2 ≤ κG2

1− κB2
+

2L (LH(θ0)− L∗,H)

(1− κB2)T
.

The above concludes the proof for the non-convex case.

C.1.2 Strongly Convex Case

Proof. Assume now that LH is µ-PL. Following the proof of the non-convex case up until (53) yields(
1− κB2

)
∥∇LH(θt)∥2 ≤ κG2 + 2L (LH(θt)− LH(θt+1))

= κG2 + 2L (LH(θt)− L∗,H + L∗,H − LH(θt+1)) .

Rearranging terms, we get

2L (LH(θt+1)− L∗,H) ≤ κG2 −
(
1− κB2

)
∥∇LH(θt)∥2 + 2L (LH(θt)− L∗,H) .

Since LH is µ-PL, as per Definition 3, we obtain

2L (LH(θt+1)− L∗,H) ≤ κG2 − 2µ
(
1− κB2

)
(LH(θt)− L∗,H) + 2L (LH(θt)− L∗,H)

= κG2 +
(
2L− 2µ

(
1− κB2

))
(LH(θt)− L∗,H) .

Dividing both sides by 2L, we get

LH(θt+1)− L∗,H ≤ κG2

2L
+
(
1− µ

L

(
1− κB2

))
(LH(θt)− L∗,H) . (54)

Recall that t is arbitrary in {0, . . . , T − 1}. Then, applying (54) recursively (on the right hand side)
yields

LH(θt+1)− L∗,H ≤ κG2

2L

t∑
k=0

(
1− µ

L

(
1− κB2

))k
+
(
1− µ

L

(
1− κB2

))t+1

(LH(θ0)− L∗,H)

≤ κG2

2L

1

1−
(
1− µ

L (1− κB2)
) + (1− µ

L

(
1− κB2

))t+1

(LH(θ0)− L∗,H)

=
κG2

2µ (1− κB2)
+
(
1− µ

L

(
1− κB2

))t+1

(LH(θ0)− L∗,H) .

Using the fact that (1 + x)n ≤ enx for all x ∈ R and substituting t = T − 1 yields

LH(θT )− L∗,H ≤ κG2

2µ (1− κB2)
+ e−

µ
L (1−κB2)T (LH(θ0)− L∗,H) .

This concludes the proof.
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C.2 Proof of Corollary 1

Corollary 1. Assume that the global loss LH is µ-PL and L-smooth, and that for each i ∈ H local
loss Li is convex and Li-smooth. Denote Lmax := maxi∈H Li and assume that κ( 3Lmax

µ − 1) ≤ 1.
Consider Algorithm 1 with learning rate γ = 1

L . If F is (f, κ)-robust, then for all T ≥ 1, we have

LH(θT )− L∗,H ≤ 3κ

µ

1

|H|
∑
i∈H

∥∇Li(θ∗)∥2 + e−
µ
3LT (LH(θ0)− L∗,H) .

Proof. Invoking Proposition 1, we know that the loss functions satisfy (G,B)-gradient dissimilarity
with

G2 =
2

|H|
∑
i∈H

∥∇Li(θ∗)∥2 , B2 = 2
Lmax

µ
− 1.

Moreover, since we assume that κ(3Lmax

µ − 1) ≤ 1, we have

1− κB2 = 1− κ(2
Lmax

µ
− 1) = 1− 2

3
κ(3

Lmax

µ
− 1) +

κ

3
≥ 1− 2

3
+

κ

3
≥ 1

3
.

Therefore, since the global loss LH is µ-PL and L-smooth, we can apply Theorem 2 to obtain

LH(θT )− L∗,H ≤ κG2

2µ (1− κB2)
+ e−

µ
L (1−κB2)T (LH(θ0)− L∗,H)

≤ 3

2µ
κG2 + e−

µ
3LT (LH(θ0)− L∗)

=
3κ

µ

1

|H|
∑
i∈H

∥∇Li(θ∗)∥2 + e−
µ
3LT (LH(θ0)− L∗,H) .

This concludes the proof.
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D Experimental Setups

In this section, we present the full experimental setups of the experiments in Figures 1,2,3, and 4. All
our experiments were conducted on the following hardware: Macbook Pro, Apple M1 chip, 8-core
CPU and 2 NVIDIA A10-24GB GPUs. Our code is available online through this link.

D.1 Figure 1: brittleness of G-Gradient Dissimilarity

This first experiment aims to show the gap between existing theory and practice. While in theory
G-gradient dissimilarity does not cover the least square regression problem, we show that it is indeed
possible to converge using the Robust D-GD Algorithm with the presence of 3 Byzantine workers
out of 10 total workers. All the hyperparameters of this experiments are listed in Table 1.

Number of Byzantine workers f = 3

Number of honest workers n− f = 7

Dataset n− f datapoints in mg LIBSVM [10]
selected uniformly without replacement

Data heterogeneity Each honest worker holds one distinct point

Model Linear regression

Algorithm Robust D-GD

Number of steps T = 40000

Learning rate γ = 0.001

Loss function Regularized Mean Least Square error

ℓ2-regularization term λ = 1/
√

m(n−f) = 1/
√
7

Aggregation rule NNM [3] coupled with CW Trimmed Mean [34]

Byzantine attacks
sign flipping [2], fall of empires [33],

a little is enough [5] and mimic [20]

Table 1: Setup of Figure 1’s experiment
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D.2 Figure 2: empirical breakdown point

The second experiment we conduct tends to highlight the empirical breakdown point observed in
practice when the fraction of Byzantines becomes too high. Indeed, while existing theory suggests
that this breakdown point occurs for a fraction of 1/2 Byzantine workers, we show empirically
that it occurs even before having 1/4 Byzantines. We present all the hyperparameters used for this
experiment in Table 2.

Number of Byzantine workers from f = 1 to f = 9

Number of honest workers n− f = 10

Dataset 10% of MNIST selected uniformly without replacement

Data heterogeneity Each worker dataset holds data from a distinct class

Model Logistic regression

Algorithm Robust D-GD

Number of steps T = 500

Learning rate γ =


0.05 if 0 ≤ T < 350

0.01 if 350 ≤ T < 420

0.002 if 420 ≤ T < 480

0.0004 if 480 ≤ T < 500

Loss function Negative Log Likelihood (NLL)

ℓ2-regularization term 10−4

Aggregation rule NNM [3] &
CW Trimmed Mean [34], Krum [7],

CW Median [34] or geometric median [30]

Byzantine attacks sign flipping [2]

Table 2: Setup of Figure 2’s experiment
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D.3 Figure 3: comparing theoretical upper bounds

In the third experiment, we compare two errors bounds, i.e., f/n−(2+B2)f · G2 and f/n−2f · Ĝ2,
guaranteed for robust D-GD under (G,B)-gradient dissimilarity and Ĝ-gradient dissimilarity, respec-
tively, on the MNIST Dataset. We use a logistic regression model and the Negative Log Likelihood
(NLL) loss function as the local loss function for each honest worker.

Before explaining how we compute Ĝ and (G,B), let us recall that the local loss functions of honest
workers are said to satisfy Ĝ-gradient dissimilarity if for all θ ∈ Rd, we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ Ĝ2 .

Similarly, the local loss functions of honest workers are said to satisfy (G,B)-gradient dissimilarity
if, for all θ ∈ Rd, we have

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2 +B2 ∥∇LH(θ)∥2 .

Evidently, Ĝ and (G,B) are difficult to compute since one has to explore the entire space to get tight
values. In this paper, we present a first heuristic to compute approximate values of Ĝ and (G,B):
We first compute θ⋆ by running D-GD without Byzantine workers, then we choose a point θ0, that
is arbitrarily far from θ⋆. Here we choose θ0 = (1e4, . . . , 1e4) ∈ Rd with d = 784 for the MNIST
dataset. Given θ⋆ and θ0 we construct 101 points θ0, . . . , θ100 between θ⋆ and θ0 such that

θt =
t

100
× θ⋆ +

(
1− t

100

)
× θ0 , ∀t ∈ {0, 1, 2, . . . , 100} ,

and then compute 1
|H|
∑

i∈H ∥∇Li(θt)−∇LH(θt)∥2 and ∥∇LH(θt)∥2 for all t ∈
{0, 1, 2, . . . , 100}. We set

Ĝ2 = max
t∈{0,1,2,...,100}

1

|H|
∑
i∈H

∥∇Li(θt)−∇LH(θt)∥2 .

Also, to compute the couple (G,B), we first consider 100 values of B′2 ∈
[
0, n−2f

f

]
, then compute

G2
B′ = max

t∈{0,1,2,...,100}

1

|H|
∑
i∈H

∥∇Li(θt)−∇LH(θt)∥2 −B′2 ∥∇LH(θt)∥2 .

and finally set

(G,B) = argmin
(GB′ ,B′)

f

n− (2 +B′2)f
·G2

B′ .

In Figure 3, we show the different values of f/n−(2+B2)f ·G2 and f/n−2f · Ĝ2 for f = 1 to f = 9
where there is always n− f = 10 honest workers.

31



D.4 Figure 4: matching empirical performances

In the last experiments of the paper, we compare the empirical error gap (left-hand side of Corollary 1)
with the upper bound (right-hand side of Corollary 1).

Let us first recall Corollary 1:

Corollary 1. Assume that the global loss LH is µ-PL and L-smooth, and that for each i ∈ H local
loss Li is convex and Li-smooth. Denote Lmax := maxi∈H Li and assume that κ( 3Lmax

µ − 1) ≤ 1.
Consider Algorithm 1 with learning rate γ = 1

L . If F is (f, κ)-robust, then for all T ≥ 1, we have

LH(θT )− L∗,H ≤ 3κ

µ

1

|H|
∑
i∈H

∥∇Li(θ∗)∥2 + e−
µ
3LT (LH(θ0)− L∗,H) .

We first give all the hyperparameters used for the learning in Table 3 and then explain how we
computed µ, L, κ and θ⋆.

Number of Byzantine workers from f = 1 to f = 19

Number of honest workers n− f = 20

Dataset n− f datapoints in mg LIBSVM [10]
selected uniformly without replacement

Data heterogeneity Each honest worker holds m = 1 distinct point

Model Linear regression

Algorithm Robust D-GD

Number of steps T = 40000

Learning rate γ = 0.0001

Loss function Regularized Mean Least Square error

ℓ2-regularization term λ = 1/
√

m(n−f) = 1/
√
7

Aggregation rule NNM [3] coupled with CW Trimmed Mean [34]

Byzantine attacks
sign flipping [2], fall of empires [33],

a little is enough [5] and mimic [20]

Table 3: Setup of Figure 4’s experiment

Computation of µ and L. Let X be the matrix that contains all the n− f vector data points and λ
the ℓ2-regularization term, we have

L = eigmax

(
1

n− f
X⊤X+ λI

)
, µ = eigmin

(
1

n− f
X⊤X+ λI

)
(55)

where for any matrix A ∈ Rd×d, eigmax(A) and eigmax(A) refer to the maximum and minimum
eigenvalue of A respectively.

Computation of κ. We recall that by definition, an aggregation rule F : Rd×n → Rd is said to be
(f, κ)-robust if for any vectors x1, . . . , xn ∈ Rd, and any set S ⊆ [n] of size n − f , the output
x̂ := F (x1, . . . , xn) satisfies the following:

∥x̂− xS∥2 ≤ κ · 1

|S|
∑
i∈S

∥xi − xS∥2 ,

where xS := 1
|S|
∑

i∈S xi.
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Hence, as done in [3], we estimate κ empirically as follows: We first compute for every step
t ∈ {0, . . . , T − 1} and every attack a ∈ {SF,FOE,ALIE,Mimic} the value of κt,a such that

κt,a =

∥∥Rt,a − gt,a
∥∥2

1
|S|
∑

i∈S

∥∥∥g(i)t,a − gt,a

∥∥∥2
where gt,a := 1

|H|
∑

i∈H g
(i)
t,a and Rt,a and g

(i)
t,a refer respectively to Rt and g

(i)
t when the attack a is

used by the Byzantine workers. Then, we compute the empirical κ following:

κ = max
t∈{0,...,T−1}

a∈{SF,FOE,ALIE,Mimic}

κt,a.

Computation of θ⋆. We compute θ⋆ using the closed form of the solution of a Mean Least Square
regression problem:

θ⋆ =
(
X⊤X+ (n− f)λI

)−1
X⊤y,

where X ∈ R(n−f)×d is the matrix that contains the data points and y ∈ Rn−f the associated vector
that contains the labels.

33


	Introduction
	Robust distributed learning under heterogeneity
	Our contributions
	Paper outline

	Formal definitions
	Brittleness of previous approaches on heterogeneity
	Fundamental limits on robustness under (G,B)-Gradient Dissimilarity
	Tight upper bounds under (G,B)-Gradient Dissimilarity
	Convergence analysis of robust D-GD
	Reducing the gap between theory and practice

	Conclusion and future work
	Proof of Proposition 1
	Proof of Theorem 1: Impossibility Result
	Proof outline
	Unavoidable error due to anonymity of Byzantine workers
	Validity of (G,B)-gradient dissimilarity

	Proof of Theorem 1
	Necessity of fn < 12 + B2
	Lower Bound on 

	Proof of Lemma 1
	Proof of Lemma 2

	Proofs of Theorem 2 and Corollary 1: Convergence Results
	Proof of Theorem 2
	Non-convex Case
	Strongly Convex Case

	Proof of Corollary 1

	Experimental Setups
	Figure 1: brittleness of G-Gradient Dissimilarity
	Figure 2: empirical breakdown point
	Figure 3: comparing theoretical upper bounds
	Figure 4: matching empirical performances


