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Abstract

Decision trees are a well-established tool in machine learning for classification
and regression tasks. In this paper, we introduce a novel non-parametric Bayesian
model that uses variational inference to approximate a posterior distribution over
the space of stochastic decision trees. We evaluate the model’s performance on 18
datasets and demonstrate its competitiveness with other state-of-the-art methods in
regression tasks. We also explore its application to causal inference problems. We
provide a fully vectorized implementation of our algorithm in PyTorch.

1 Introduction and Related Work

The use of binary trees for classification and regression problems is widespread in the Machine
Learning community (see Breiman [2001], Criminisi [2011]). Chipman et al. [1998] proposed the
Bayesian CART method, which offers a fully Bayesian treatment of the problem, aiming to learn a
distribution over trees as opposed to a single tree. This innovation led to the development of more
sophisticated algorithms, such as Bayesian Additive Regression Trees (BART) (see Chipman et al.
[2010]), which has stood the test of time and still shows competitive performance to this day. Both
BART and Bayesian CART approximate the posterior distribution over trees through the use of
Markov Chain Monte Carlo (MCMC) methods.

In the period following the inception of the Bayesian CART methodology, the field has witnessed
significant advancements in approximate Bayesian Inference. This paper explores approximating a
posterior distribution over the space of trees via variational inference, a compelling MCMC alternative
based on an optimization problem as elaborated in Blei et al. [2017]. Our approach introduces a
unique stochastic process over the space of trees, serving as a model prior. Notably, despite the
infinite parameter specification of this stochastic process, we show that variational inference remains
feasible.

This paper is also related to work on soft decision trees (Kontschieder et al. [2015]), where the goal is
to learn a stochastic decision tree of a fixed structure by minimizing some sort of loss function (see
Section 2.1). In this paper, we adopt a fully Bayesian perspective to this problem and instead learn a
distribution over soft decision trees of varying structure. A fully Bayesian approach has the advantage
in that it allows us to naturally quantify the uncertainty of the predictions made by our model.

Overall, our contributions in this paper include a novel stochastic process over the space of trees,
a variational inference algorithm for approximating the posterior distribution over trees, and a
demonstration of the performance of our model on both regression and causal inference tasks.
We believe that this work opens up new avenues for future research in the area of Bayesian Non-
parametrics and decision trees.
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2 Model

2.1 Stochastic Decision Trees

A stochastic tree, denoted as T , is a binary tree where each of its b − 1 internal nodes is
associated with a soft decision rule. This rule indicates the probability of a particular data
point taking the left branch of the tree. In this paper, we focus on decision rules of the form
P (datapoint x at node i takes the left branch) = σ(βT

i X). Moreover, we introduce a prior proba-
bility measure, denoted as Π(Θ, T ), that encompasses the space of trees T (defined by splits and
decision rules) and the associated leaf parameters Θ. The generative process for the data is divided
into two parts:

1. Prior Distribution:

(T,Θ) ∼ Π(T,Θ) (1)

Unlike BART or Bayesian CART, our prior distribution is designed differently, incorporating a
sampling algorithm that generates a collection of parameters used to fully and uniquely reconstruct a
tree. The second part of the model is the likelihood that gives rise to the observed data

2. Likelihood:

(yi|Xi, T,Θ) ∼ p(yi|xi, T,Θ) (2)

The likelihood represents the conditional distribution of yi given xi, T , and Θ. In our case, it is
usually modeled as a Normal distribution. Further details regarding the likelihood and the overall
model will be discussed in subsequent sections.

2.2 Likelihood

We associate each of the b leafs of a stochastic tree T with a parameter Θ := {θ1, ..., θb}. Every
parameter θi ∈ Θ specifies a density over Y , denoted by f(y|θi).1. Throughout, we assume that the
features x ∈ X are fixed, and that the target variables y ∈ Y are sampled from a distribution whose
parameters stochastically determined by having x ∈ X traverse down the tree. In other words, if
x ∈ X is assigned to leaf i, then y ∈ Y is sampled from f(y|θi). If a feature x ∈ X is assigned
to leaf node i with a certain probability, this implies that the likelihood p(y|X,T,Θ) is a mixture
distribution over the densities f(y|θi) and is given by

p(y|T,Θ, x) =
∑
i∈Leaf

P (x takes a path leading to node i)f(y|θi). (3)

2.3 A Bayesian non-parametric process prior over the space of stochastic trees Π(Θ, T )

We define a prior distribution over a stochastic decision trees by specifying a sampling algorithm.
The joint distribution over decision trees T and it’s corresponding leaf parameters Θ is specified
through an infinite number of parameters that have a one-to-one correspondence with characteristics
of a stochastic decision tree. The parameters required to draw a sample from the joint distribution
over (T,Θ) —which we denote by Π(T,Θ) are as follows 2

1. {γi}∞i=1 ∈ [0, 1]∞ specify the probabilities of splitting a node in the tree. In other words,
node i in the tree is split with probability γi.

2. {µi}∞i=1 are the parameters that define the distribution over the weights specifying the
splitting rules.

3. {ζi}∞i=1 are the parameters that define the conditional likelihoods over the observations
falling in node i, provided that it is a leaf.

1The densities are relative to an appropriate dominating measure ν. In practice, ν will usually be the Lebesgue
or the counting measure.

2In this paper, we adopt the following convention for numbering the nodes of a binary tree: (a) We start by
labeling the root node as 1 (b) recursively label the left children of node j with 2j and the right children of node
j with 2j + 1.
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Figure 1: Taking a sample from the generative process
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Figure 2: Graphical Model as-
sociated to the data generating
process.
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Figure 3: Graphical Model as-
sociated to the data generating
process. The parameters s, β,
and θ are used to uniquely
specify a stochastic decision
tree and its parameters.
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Figure 4: Variational approxi-
mation to the data generating
process.

Given these parameters, a stochastic tree is sampled as follows:

1. For each node node i ∈ {1, 2, ...}
(a) Sample s1, ..., sk, ... ∼ Bernoulli(γi)
(b) Sample β1, ..., βk, ... ∼ ExpFam(µi)

(c) Sample θ1, ..., θk, ... ∼ ExpFam(ζi)

Note that the parameters (s1, ..., β1, ..., θ1, ...) suffice to completely specify a binary stochastic tree.
We give a concrete example of this generative process in Figure 1 and the graphical model associated
to this data-generating process is shown in 3.

2.4 A variational family over the space of trees and tree parameters q(Θ, T )

A variational family is obtained by truncating the Bayesian Nonparametric process described in
section 2.3 at a fixed tree depth d. This truncation is depicted as a graphical model in figure 4.
A similar pattern is observed in variational inference for Dirichlet Process Mixtures proposed by
Blei and Jordan [2006], where the stick-breaking process of the Dirichlet Process mixture is also
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truncated after a fixed number of steps. It is important to note that only the variational distribution is
truncated, not the underlying model itself. Furthermore, we would like to emphasize that the choice
of exponential family in the variational distribution aligns with those chosen for the prior distribution.
To distinguish them from the prior parameters, we label the variational parameters with a tilde (i.e.
γ̃, µ̃, ζ̃) on top.

2.5 Maximizing the ELBO

We obtain an approximation of the posterior distribution by maximizing a weighted version of the
evidence lower bound (ELBO) with respect to the model parameters:3

ELBO(q) = Eq (log p(Y |X,Θ, T ))− λKL(q(Θ, T )||p(Θ, T )) (4)
ELBO(q) = Eq (log p(Y |X,Θ, T )) (5)

+ λEq (log p(Θ, T )) (6)
− λEq (log q(Θ, T )) . (7)

Where λ is a hyperparameter controlling the amount of regularization. The gradients of the variational
objective are approximated stochastically with Monte Carlo samples from the variational family. To
obtain low-variance estimates of the gradient estimates, we make use of the reparametrization trick
(see Kingma and Welling [2022], Ruiz et al. [2016]), where a Softmax-Gumbel approximation is
used for the Bernoulli random variables (Jang et al. [2017]). Other approaches for variance-reduction
like Rao-Blackwellization are possible but these ideas were not explored in this paper (see Ranganath
et al. [2013]). Given a sample from the variational family (s1, ..., s2d−1 , β1, ..., β2d−1 , θ1, ..., θ2d),
we evaluate each of the terms in the ELBO as follows:

log p(y|T,Θ, x) = log

(∑
i∈Leaf

P (x takes a path leading to node i)f(y|θi)

)
(8)

log p(Θ, T ) =
∑

i∈Internal Nodes

log (γi) +
∑

i∈Internal Nodes

log (expFam(βi;µi)) (9)

+
∑

i∈Leaves

log (1− γi) +
∑

i∈Leaves

log (expFam(θi; ζi)) (10)

log q(Θ, T ) =
∑

i∈Internal Nodes

log (γ̃i) +
∑

i∈Internal Nodes

log (expFam(βi; µ̃i)) (11)

+
∑

i∈Leaves not in last level

log (1− γ̃i) +
∑

i∈Leaves

log
(

expFam(θi; ζ̃i)
)

(12)

In order to make use of reparametrization gradients, each of the three terms in the ELBO must be
written in terms of the model parameters

(
i.e. {γ, µ, ζ , γ̃, µ̃, ζ̃}

)
and a reparametrization for each of

the samples must be specified. These calculations are deferred to the next section.

3 Variational Regression Trees

In this paper, we explore the use of Variational Regression Trees. We propose using the normal
distribution as a natural choice for the splitting and prediction vectors of the prior and variational
families, as follows:4

βi ∼ N (µi, Si) (13)
θi ∼ N (ζi,Ψi) (14)

Where Si and Ψi are diagonal covariance matrices. We also assign a normal distribution to each of
the leaves in the tree by setting f(y|θi) to a normal distribution with parameters N (θTi x, σ

2
i ). The

normal distribution is a natural choice for regression problems and allows for an easy application of

3Whenever λ = 1.0, this is equivalent to minimizing the KL divergence between the variational family and
the posterior distribution over the space of trees.

4This shows the parameters of the prior, the corresponding parameters for the variational family are denoted
with the same letters but with a tilde on top.
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the reparametrization trick. For classification, adding a probit link function to the likelihood should
result in a tractable variational inference algorithm. We believe including a logit link on the outcome
y is also possible, but would require a Poly-Gamma augmentation (see Polson et al. [2013]). We leave
all of these modifications to future work (see section 5 for an overview on potential future work).

3.1 Learning the Variational Family

The parameters of the variational family are learned by minimizing Monte Carlo approximations of
the ELBO with gradient descent. The naive Monte Carlo Estimators for this types of problem are
given by ∇ϕEqϕ(x)(f(x)) = Eqϕ(f(x)∇ϕ log qϕ(x)) ≈ 1

N

∑N
i=1 f(x

(i))∇ϕ log qϕ(x
(i)). Although

asymptotically consistent, this estimator exhibits extremely high variance, rendering it impractical for
the purposes of stochastic optimization. Instead, we make use of a well-known variance-reduction
trick through a reparametrization of the samples obtained from the variational family. In particular,
we rewrite samples from the variational as a function of an auxiliary noise variable as follows

ϵ ∼ p(ϵ) (15)
x = g(ϕ, ϵ). (16)

The reparametrization of the normal distribution of equations 13 and 14 is straightforward and is
given below

ϵrules, ϵleaves ∼iid N (0, Id) (17)

βi = S
1/2
i ϵrules + µi (18)

θi = Ψ
1/2
i ϵleaves + ζi (19)

Reparametrizing the Bernoulli random variables requires use of the Softmax-Gumbel trick of Jang
et al. [2017]. The key insight relies on the fact that samples from a Bernoulli distribution with success
probability γ may be obtained as follows

v = one_hot (argmax (g1 + log(γ), g2 + log(1− γ))) (20)

s = (1, 0)T v (21)
Where g1, g2 are independent samples from a Gumbel(0, 1) distribution. In practice, we approximate
equation 20 using the following limitting representation of the onehot argmax function

v = lim
τ→0+

softmax
(
g1 + log(γ)

τ
,
g2 + log(1− γ)

τ

)
. (22)

During training, we set τ to a fixed value and then anneal it towards zero as the training progresses.
These reparametrizations allow us to use a single sample from the variational family to approximate
the ELBO. To tie everything together and make use of the reparametrization trick, we need to rewrite
each of the terms in equations 8 to 12 solely in terms of the sample parameters (s, β, θ) and the
distributional parameters (γ, γ̃, µ, S, µ̃, S̃, ζ,Ψ, ζ̃, Ψ̃). This is done by replacing the sums over the
leaves and internal nodes with indicator functions, which may be written as products over the node
splitting indicator variables s = (s1, ..., s2d−1). If we denote the internal and leaf node indicator
functions for node i by ψi and κi respectively, we may rewrite each of the terms in the ELBO as
follows

log p(Θ, T ) =

b−1∑
i=1

ψi (log (γi) + logN (βi;µi, Si)) (23)

+

2b−1∑
i=1

κi (log (1− γi) + logN (θi; ζi,Ψi)) (24)

log q(Θ, T ) =

b−1∑
i=1

ψi (log (γ̃i) + logN (βi;µi, Si)) (25)

+

b−1∑
i=1

κi log (1− γ̃i) +

2b−1∑
i=1

κi logN (θi; ζi,Ψi) (26)

log p(Y |T,Θ, X) = log

2b−1∑
i=1

κi

⌊log i⌋∏
k=1

σ
(
(−1)pak−1(i)βT

pak(i)
x
)
f(y|θi)

 (27)
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Where ψi and κi are given by

ψi = si

⌊log i⌋∏
k=1

spak(i) (28)

κi =

{
(1− si)

∏⌊log i⌋
k=1 spak(i), i ∈ {1, ..., b− 1}∏⌊log i⌋

k=1 spak(i), i ∈ {b, ..., 2b− 1}
(29)

3.2 Posterior Predictive Distribution and Bayesian Confidence Intervals

The fully Bayesian treatment of the problem enables us to obtain natural confidence intervals on
our predictions, which is a significant advantage of the Bayesian approach compared to other black-
box machine learning algorithms. Given a dataset D = {(xi, yi)}Ni=1, confidence intervals for the
predictions are obtained by approximating the predictive posterior distribution as follows:

p(y′|D, x′) =
∫
p(y′, T,Θ|D, x′)dΠ(T,Θ) (30)

=

∫
p(T,Θ|D)p(y′|T,Θ, x′)dΠ(T,Θ) (31)

≈
∫
q(T,Θ)p(y′|T,Θ, x′)dΠ(T,Θ). (32)

Equation 31 shows that the predictive posterior is a mixture of the posterior and the likelihood. Thus,
to obtain samples from the predictive posterior distribution, we sample a tree with its parameters
(Θ, T ) from the posterior and and then use (Θ, T ) to obtain a sample from the likelihood. Moreover,
as we do not have access to the true posterior distribution, we use the learned variational family
q(T,Θ) as an approximation. For prediction purposes, we estimate the posterior predictive mean
using the mixture representation of equation 32.

4 Experiments

This section presents a comparison of the performance of Variational Regression Trees with three
other widely used boosting algorithms: CatBoost, XGBoost, and RandomForest. A comparison with
Bayesian Additive Regression Trees (BART, Chipman et al. [2010]) and a Multilayer Perceptron
(MLP, LeCun et al. [2015]) is deferred to the Appendix. We conducted experiments on 18 distinct
Datasets from the UCI Machine Learning Repository to benchmark our algorithm. In addition, we
explored the use of VaRT for estimating of conditional treatment effects in causal inference problems,
motivated by the fact that BART is a popular algorithm for such problems.

4.1 Performance on Regression Datasets

The results of our regression experiments are shown in Table 2. We compare the performance of VaRT
to three popular Boosting Algorithms: CatBoost, XGBoost, and RandomForest. We compared an
ensemble of fifty trees for each algorithm to single VaRT trees of depths 3,5,7, and 10. A comparison
with BART and Multilayer Perceptrons is given in the Appendix.

In these experiments, VaRT was trained using gradient descent paired with a Clipped Adam optimizer
in PyTorch (Paszke et al. [2019], Bingham et al. [2018]). A single VaRT tree for depths 3, 5, 7, and
10 were trained for each dataset. We report the average RMSE values for VaRT across all depths
to provide a thorough representation of VaRT’s performance across various configurations (Table
A). The regularization parameters for all runs was set to 10−3 and no hyperparameter tuning was
performed to make a fair comparison on the off-the-shelf performance of each of the algorithms. In
practice, both the regularization and truncation parameters could be chosen through cross-validation.
Early stopping by evaluating the RMSE on a training or validation set everytime a fixed number of
epochs are completed should also increase performance.

Compared to other tree-based Bayesian algorithms, such as BART, VaRT offers distinct advantages
that enhance its practicality. Notably, VaRT’s framework is inherently parallelizable, a feature that
sets it apart from MCMC-based methods like BART which are inherently sequential and lack this
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Dataset CatBoost RandomForest XGBoost VaRT3 VaRT5 VaRT7 VaRT10

autompg 0.121 0.115 0.113 0.116 0.116 0.116 0.109
concreteslump 0.209 0.237 0.252 0.009 0.009 0.028 0.047
forest 0.396 0.403 0.403 0.392 0.394 0.387 0.387
solar 0.086 0.086 0.086 0.114 0.092 0.094 0.093
stock 0.074 0.067 0.072 0.065 0.068 0.065 0.059
yacht 0.036 0.026 0.018 0.041 0.035 0.035 0.046
airfoil 0.073 0.062 0.061 0.151 0.133 0.131 0.131
autos 0.092 0.072 0.076 0.121 0.146 0.134 0.140
breastcancer 0.403 0.362 0.398 0.390 0.476 0.380 0.360
concrete 0.095 0.093 0.081 0.149 0.141 0.158 0.148
fertility 0.402 0.375 0.358 0.481 0.454 0.456 0.387
housing 0.103 0.118 0.120 0.101 0.097 0.098 0.101
machine 0.089 0.112 0.097 0.110 0.123 0.124 0.138
pendulum 0.061 0.068 0.074 0.077 0.064 0.056 0.058
servo 0.066 0.062 0.050 0.096 0.077 0.078 0.109
skillcraft 0.118 0.116 0.120 0.114 0.114 0.114 0.114
sml 0.028 0.018 0.020 0.063 0.056 0.049 0.051
wine 0.108 0.103 0.096 0.122 0.119 0.117 0.121

Table A: Comparison of RMSE values for different boosting algorithms and VaRT. The RMSE values
correspond to the average RMSE on the test sets of a random 90/10% train-test split of the data over
ten runs. Bold values indicate the lowest RMSE. Each of the ensemble methods were trained using
fifty trees. VaRT’s performance is shown for trees of depth 3, 5, 7, and 10.

VaRT CatBoost RandomForest XGBoost

tamielectric (45781 datapoints) 0.508 0.503 0.545 0.504
kin40k (40000 datapoints) 0.099 0.100 0.097 0.110

Table B: RMSE values for different boosting algorithms and VaRT on datasets containing more than
40, 000 datapoints. The RMSE values correspond to the average RMSE on the test sets of a random
90/10% train-test split of the data over six runs. Bold values indicate the lowest RMSE. Each of the
ensemble methods were trained using fifty trees, and a variational family of depth 5 was used for
VaRT.

parallelization potential. This parallelizability not only accelerates the model training process but also
empowers efficient exploration of large datasets, making VaRT particularly well-suited for modern
computation demands. Furthermore, VaRT leverages gradient-based optimization techniques, making
it compatible with widely used automatic differentiation engines such as PyTorch. This was validated
by our experiments on datasets with over 40,000 datapoints, where training took less than 3 minutes.

We conducted all experiments on an ASUS Zephyrus G14 laptop with an RTX 2060 Max-Q GPU (6
GB VRAM), a 4900HS AMD CPU, 40 GB of RAM (although RAM usage was kept below 6 GB).
Each experiment took roughly ∼ 1-3 minutes per dataset. Code with the random seeds needed to
replicate the results of this section are provided with the supplementary material.

4.2 Causal Inference case-study

We investigate the performance of Variationial Regression Trees on several causal inference problems
using synthetic and semi-synthetic data. Our experiments are similar to those conducted by Hill
[2011]. To introduce causal inference, we consider the potential outcomes that would have been
observed for an individual under treatment and no treatment. We denote these quantities as Y (1) and
Y (0), respectively. The observed outcome is denoted by Y and is related to the potential outcomes
through the formula Y = AY (1) + (1 − A)Y (0), where A is a dichotomous variable indicating
whether a particular individual in the population recieved treatment. Our goal is to estimate different
quantities that quantify the effect of a treatment for various subpopulations.
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In section 4.2.1, we focus on the conditional average treatment effect (CATE), which can be identified
through the following formula under standard causal inference assumptions, including overlap,
conditional exchangeability, and consistency:

E(Y (1)− Y (0)|X = x) = E(Y |A = 1, X = x)− E(Y |A = 0, X = x). (33)

In section 4.2.2, our goal is to estimate the Average Treatment Effect (ATE), which under standard
causal inference assumptions can be given by:

E(Y (1)− Y (0)) = E(E(Y |A = 1, X)− E(Y |A = 0, X)). (34)

While we cannot provide a comprehensive treatment of causal inference in this paper, we refer
interested readers to Pearl et al. [2016], M. [2023].

4.2.1 Experiment on Toy Data

We begin by generating two toy synthetic datasets using the following generative process

Ai ∼ Bernoulli(0.5) (35)

Xi|Ai = ai ∼ aiN (µ1, 10
2) + (1− ai)N (µ2, 10

2) (36)

Yi|Ai = ai, Xi = xi ∼ aiN (90 + e0.06xi , 1) + (1− ai)N (72 + 3
√
xi, 1) (37)

In the "partially overlapping" setting (Figure 6), the means of the normal distributions used to generate
the data are (µ1, µ2) = (40, 20), as in Hill [2011]. In contrast, in the "overlapping" setting, we set
(µ1, µ2) = (30, 40). The figures illustrating these hypothetical scenarios are Figures 5 and 6. In
these figures, the red curve (top) represents the conditional expectation of the potential outcome
under treatment Y (1), while the blue curve (bottom) represents the conditional expectation of the
potential outcome under no treatment Y (0). To showcase the posterior predictive mean of VaRT for
each potential outcome, we use dashed lines alongside 80% Bayesian confidence bands. These bands
grow wider in areas where the density of the covariates is low and shrink in areas where the density
of the covariates is high. This type of qualitative behavior may be attributed to the Bayesian prior,
which acts as a type of regularization on the fit of the model and helps us avoid overfitting.

Figure 5 Figure 6

4.2.2 Experiments on the Infant Health and Development Program (IHDP) Dataset

We use the IHDP dataset to simulate the two response surfaces of Hill [2011] and then compare the
performance VaRT relative to BART when estimating the average causal effect. The first response is
linear and it is generated as follows

π ∼ Cat((0.5, 0.2, 0.15, 0.1, 0.05)) (38)
βi ∼ π · (0, 1, 2, 3, 4) i ∈ {1, ..., 25} (39)

Y (0) ∼ N (XTβ, 1) (40)

Y (1) ∼ N (XTβ + 4, 1) (41)
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Response Surface VaRT BART Ground Truth

Linear 3.86 ± 0.12 3.6 ± 0.6 4.00
Non-Linear 3.80 ± 0.19 2.9 ±0.8 4.00

Table 1: Estimation of the ATE for the response surfaces described by equations 38 through 45. The
results report the mean ACE along with the standard deviation as the error across 5 runs. All of the
VaRT trees were trained using a hyperparameter of λ = 1. The algorithm whose mean values were
closer to the Grount Truth are shown in bold.

The second response surface is highly non-linear and it is generated as follows

π ∼ Cat((0.6, 0.1, 0.1, 0.1, 0.1)) (42)
βi ∼ π · (0, .1, .2, .3, .4) i ∈ {1, ..., 25} (43)

Y (0) ∼ N (exp(XTβ + 1/2), 1) (44)

Y (1) ∼ N (XTβ − ω, 1) (45)

Here, ω is chosen so that the CATE is equal to 4 for every X (hence the ATE is also 4). The results
of these two experiments are reported in table 1 and suggest that VaRT clearly outperforms BART in
the task of Causal Effect Estimation on both response surfaces.

5 Conclusion and Future Work

In this paper, we presented a novel Bayesian non-parametric process over the space of stochastic
decision trees and derived a variational approximation to it. We also proposed a variational inference
algorithm to approximate the Bayesian posterior distribution, which we evaluated on both regression
and causal inference tasks. Our experiments showed that our model’s performance is competitive
with other state-of-the-art methods in machine learning.

Looking ahead, future research could explore extensions of the non-parametric Bayesian prior over
trees to model forests, similar to what we observe in BART. Additionally, other potential lines of
work could include modifying the prior to introduce dependencies among the tree parameters or
extending the model to classification.

Overall, the findings of this research provide a promising avenue for future research in Bayesian
non-parametrics and decision trees. We hope that this work will inspire other researchers to build
upon our model and improve its versatility and performance in various machine learning applications.
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A Comparison with BART and MLP

VaRT BART MLP

Median top 10% bottom 10% 50 trees (100,50) neurons

autompg
(N=392, d=7) 0.0751±0.0031 0.0708±0.0031 0.085±0.005 0.0710±0.0020∗ 0.088±0.013

concreteslump
(N=103, d=7) 0.049±0.023 0.034±0.017 0.069±0.031 0.149±0.011 0.16±0.10

forest
(N=517, d=12) 0.205±0.005 0.194±0.005 0.219±0.008 0.1945±0.0026∗ 0.1977±0.0026

solar
(N=1066, d=10) 0.114±0.006 0.108±0.004 0.124±0.013 0.1038±0.0004 0.1044±0.0009

stock
(N=536, d=11) 0.0351±0.0014 0.0336±0.0009 0.040±0.005 0.051±0.004 0.060±0.017

yacht
(N=308, d=6) 0.059±0.007 0.053±0.007 0.069±0.012 0.0684±0.0018 0.080±0.004

airfoil
(N=1503, d=5) 0.0828±0.0026 0.0776±0.0020 0.0894±0.0029 0.087±0.005 0.092±0.008

autos
(N=159, d=25) 0.107±0.007 0.0948±0.0031 0.121±0.012 0.075±0.006 0.093±0.004

breastcancer
(N=194, d=33) 0.244±0.017 0.220±0.014 0.273±0.023 0.219±0.008 0.205±0.010

concrete
(N=1030, d=8) 0.0837±0.0013 0.0786±0.0020 0.0922±0.0025 0.0768±0.0012∗ 0.085±0.005

fertility
(N=100, d=9) 0.197±0.023 0.180±0.018 0.214±0.027 0.160±0.005 0.158±0.013

housing
(N=506, d=13) 0.074±0.005 0.068±0.004 0.082±0.006 0.069±0.006∗ 0.077±0.006

machine
(N=209, d=7) 0.093±0.007 0.083±0.009 0.104±0.009 0.0695±0.0013 0.14±0.04

pendulum
(N=630, d=9) 0.060±0.006 0.054±0.006 0.073±0.009 0.0697±0.0016 0.072±0.006

servo
(N=167, d=4) 0.105±0.013 0.090±0.012 0.127±0.015 0.0827±0.0034 0.110±0.006

skillcraft
(N=3338, d=19) 0.0692±0.0006 0.0676±0.0007 0.0738±0.0031 0.0699±0.0007 0.0692±0.0025

sml
(N=4137, d=26) 0.0356±0.0029 0.0342±0.0022 0.041±0.004 0.0416±0.0009 0.0384±0.0033

wine
(N=1599, d=11) 0.0746±0.0022 0.0713±0.0020 0.0806±0.0034 0.0947±0.0031 0.0751±0.0015

TOTAL 8 - - 8 2
Table 2: Root Mean-Squared Error (RMSE) for VaRT, BART, and a Feedforward Neural Network on
18 regression datasets from the UCI Machine Learning Repository. For VaRT we show the 10th and
90th Bayesian quantiles along with the standard deviation reported as the error across 5 runs. For the
purposes of comparison, we use the median RMSE of VaRT to determine whether it outperformed
the other algorithms. The RMSE of the best performing algorithm is shown in bold.
∗: Indicates that the RMSE among the top 10% draws of VaRT’s posterior predictive distribution
beats (or overlaps) with the RMSE of the corresponding algorithm.

BART was trained using fifty trees and the off-the-shelf prior parameters of Chipman et al. [2010].
The Markov Chain of BART was given a burn-in period of 200 iterations (i.e. the default choice).
Finally, the Feed-forward Neural Network (MLP) had two hidden layers with 100 and 50 neurons
respectively„ and was trained using an Adam optimizer.
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Figure A: Experiments on toy data generated from a piecewise continuous function. The data was
generated from a uniform mixture of Gaussians centered on the midpoint of each interval. Analysis
was conducted on 100 (left) and 1000 (right) datapoints. Qualitatively it seems like the posterior
concentrates around the "true" clusters as we collect more data.
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