A Proofs for the single layer case (Theorem 1) 12
A. 1 Rewriting the loss function 12
A. 2 Warm-up: proof for the isotropic data 13
A. 3 Proof for the non-isotropic case 15
B Proofs for the multi-layer case 17
B. 1 Proof of Theorem 3 17
B. 2 Proof of Theorem 4 17
B. 3 Proof of Theorem 5 20
B. 4 Equivalence under permutation 28
C Auxiliary Lemmas 29
C. 1 Reformulating the in-context loss 29
C. 2 Proof of Lemma 2 (Equivalence to Preconditioned Gradient Descent) 31

A Proofs for the single layer case (Theorem 1)

In this section, we prove our characterization of global minima for the single layer case (Theorem 1). We begin by simplifying the loss into a more concrete form.

A. 1 Rewriting the loss function

Recall the in-context loss $f(P, Q)$ defined in (6):

$$
f(P, Q)=\mathbf{E}_{Z_{0}, w_{\star}}\left[\left[Z_{0}+\frac{1}{n} \operatorname{Attn}_{P, Q}\left(Z_{0}\right)\right]_{(d+1),(n+1)}+w_{\star}^{\top} x^{(n+1)}\right]^{2}
$$

Using the notation $Z_{0}=\left[z^{(1)} z^{(2)} \cdots z^{(n+1)}\right]$, one can rewrite Z_{1} as follows:

$$
\begin{aligned}
Z_{1} & =Z_{0}+\frac{1}{n} \operatorname{Attn}_{P, Q}\left(Z_{0}\right) \\
& =\left[z^{(1)} \cdots z^{(n+1)}\right]+\frac{1}{n} P\left[z^{(1)} \cdots z^{(n+1)}\right] M\left(\left[z^{(1)} \cdots z^{(n+1)}\right]^{\top} Q\left[z^{(1)} \cdots z^{(n+1)}\right]\right) .
\end{aligned}
$$

Thus, the last token of Z_{1} can be expressed as

$$
z^{(n+1)}+\frac{1}{n} \sum_{i=1}^{n} P z^{(i)}\left(z^{(i)^{\top}} Q z^{(n+1)}\right)=\left[\begin{array}{c}
x^{(n+1)} \\
0
\end{array}\right]+\frac{1}{n} P \sum_{i=1}^{n} z^{(i)} z^{(i)^{\top}} Q\left[\begin{array}{c}
x^{(n+1)} \\
0
\end{array}\right],
$$

where note that the summation is for $i=1,2, \ldots, n$ due to the mask matrix M. Letting b^{\top} be the last row of P, and $A \in \mathbb{R}^{d+1, d}$ be the first d columns of Q, then $f(P, Q)$ only depends on b, A and henceforth, we will write $f(P, Q)$ as $f(b, A)$. Then, $f(b, A)$ can be rewritten as

$$
\begin{align*}
f(b, A) & =\mathbf{E}_{Z_{0}, w_{\star}}[b^{\top} \underbrace{\left.\frac{1}{n} \sum_{i} z^{(i)} z^{(i)^{\top}} A x^{(n+1)}+w_{\star}^{\top} x^{(n+1)}\right]^{2}} \\
& =: \mathbf{E}_{Z_{0}, w_{\star}}\left[b^{\top} \mathcal{M} A x^{(n+1)}+w_{\star}^{\top} x^{(n+1)}\right]^{2}=\mathbf{E}_{Z_{0}, w_{\star}}\left[\left(b^{\top} \mathcal{M} A+w_{\star}^{\top}\right) x^{(n+1)}\right]^{2}, \tag{13}
\end{align*}
$$

where we used the notation $\mathcal{M}:=\frac{1}{n} \sum_{i} z^{(i)} z^{(i)}{ }^{\top}$ to simplify. We now analyze the global minima of this loss function.

To illustrate the proof idea clearly, we begin with the proof for the simpler case of isotropic data.

A. 2 Warm-up: proof for the isotropic data

As a warm-up, we first prove the result for the special case where $x^{(i)}$ is sampled from $\mathcal{N}\left(0, I_{d}\right)$ and w_{\star} is sampled from $\mathcal{N}\left(0, I_{d}\right)$.

Step 1: Decomposing the loss function into components

Writing $A=\left[\begin{array}{llll}a_{1} & a_{1} & \cdots & a_{d}\end{array}\right]$, and use the fact that $\mathbf{E}\left[x^{(n+1)}[i] x^{(n+1)}[j]\right]=0$ for $i \neq j$, we get

$$
f(b, A)=\sum_{j=1}^{d} \mathbf{E}_{Z_{0}, w_{\star}}\left[b^{\top} \mathcal{M} a_{j}+w_{\star}[j]\right]^{2} \mathbf{E}\left[x^{(n+1)}[j]^{2}\right]=\sum_{j=1}^{d} \mathbf{E}_{Z_{0}, w_{\star}}\left[b^{\top} \mathcal{M} a_{j}+w_{\star}[j]\right]^{2} .
$$

Hence, we first focus on characterizing the global minima of each component in the summation separately. To that end, let us formally define each component in the summation as follows.

$$
\begin{aligned}
f_{j}(b, A) & :=\mathbf{E}_{Z_{0}, w_{\star}}\left[b^{\top} \mathcal{M} a_{j}+w_{\star}[j]\right]^{2}=\mathbf{E}_{Z_{0}, w_{\star}}\left[\operatorname{Tr}\left(\mathcal{M} a_{j} b^{\top}\right)+w_{\star}[j]\right]^{2} \\
& =\mathbf{E}_{Z_{0}, w_{\star}}\left[\left\langle\mathcal{M}, b a_{j}^{\top}\right\rangle+w_{\star}[j]\right]^{2},
\end{aligned}
$$

where we use the notation $\langle X, Y\rangle:=\operatorname{Tr}\left(X Y^{\top}\right)$ for two matrices X and Y here and below.

Step 2: Characterizing global minima of each component

To characterize the global minima of each objective, we prove the following result.
Lemma 6. Suppose that $x^{(i)}$ is sampled from $\mathcal{N}\left(0, I_{d}\right)$ and w_{\star} is sampled from $\mathcal{N}\left(0, I_{d}\right)$. Consider the following objective $\left(\langle X, Y\rangle:=\operatorname{Tr}\left(X Y^{\top}\right)\right.$ for two matrices X and $\left.Y\right)$

$$
f_{j}(X)=\mathbf{E}_{Z_{0}, w_{\star}}\left[\langle\mathcal{M}, X\rangle+w_{\star}[j]\right]^{2} .
$$

Then a global minimum is given as

$$
X_{j}=-\frac{1}{\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)} E_{d+1, j}
$$

where $E_{i_{1}, i_{2}}$ is the matrix whose $\left(i_{1}, i_{2}\right)$-th entry is 1 , and the other entries are zero.
Proof of Lemma 6. Note first that f_{j} is convex in X. Hence, in order to show that a matrix X_{0} is the global optimum of f_{j}, it suffices to show that the gradient vanishes at that point, in other words,

$$
\nabla f_{j}\left(X_{0}\right)=0
$$

To verify this, let us compute the gradient of f_{j} :

$$
\nabla f_{j}\left(X_{0}\right)=2 \mathbf{E}\left[\left\langle\mathcal{M}, X_{0}\right\rangle \mathcal{M}\right]+2 \mathbf{E}\left[w_{\star}[j] \mathcal{M}\right]
$$

where we recall that \mathcal{M} is defined as

$$
\mathcal{M}=\frac{1}{n} \sum_{i}\left[\begin{array}{cc}
x^{(i)} x^{(i)^{\top}} & y^{(i)} x^{(i)} \\
y^{(i)} x^{(i)^{\top}} & y^{(i)^{2}}
\end{array}\right] .
$$

To verify that the gradient is equal to zero, let us first compute $\mathbf{E}\left[w_{\star}[j] \mathcal{M}\right]$. For each $i=1, \ldots, n$, note that $\mathbf{E}\left[w_{\star}[j] x^{(i)} x^{(i)^{\top}}\right]=O$ because $\mathbf{E}\left[w_{\star}\right]=0$. Moreover, $\mathbf{E}\left[w_{\star}[j] y^{(i)^{2}}\right]=0$ because w_{\star} is symmetric, i.e., $w_{\star} \stackrel{d}{=}-w_{\star}$, and $y^{(i)}=\left\langle w_{\star}, x^{(i)}\right\rangle$. Lastly, for $k=1,2, \ldots, d$, we have

$$
\begin{equation*}
\mathbf{E}\left[w_{\star}[j] y^{(i)} x^{(i)}[k]\right]=\mathbf{E}\left[w_{\star}[j]\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[k]\right]=\mathbf{E}\left[w_{\star}[j]^{2} x^{(i)}[j] x^{(i)}[k]\right]=\mathbb{1}_{[j=k]} \tag{14}
\end{equation*}
$$

because $\mathbf{E}\left[w_{\star}[i] w_{\star}[j]\right]=0$ for $i \neq j$. Combining the above calculations, it follows that

$$
\begin{equation*}
\mathbf{E}\left[w_{\star}[j] \mathcal{M}\right]=E_{d+1, j}+E_{j, d+1} \tag{15}
\end{equation*}
$$

We now compute compute $\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle \mathcal{M}\right]$. Note first that

$$
\left\langle\mathcal{M}, E_{d+1, j}\right\rangle=\sum_{i}\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[j] .
$$

Hence, it holds that

$$
\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle\left(\sum_{i} x^{(i)} x^{(i)^{\top}}\right)\right]=\mathbf{E}\left[\left(\sum_{i}\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[j]\right)\left(\sum_{i} x^{(i)} x^{(i)^{\top}}\right)\right]=O .
$$

because $\mathbf{E}\left[w_{\star}\right]=0$. Next, we have

$$
\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle\left(\sum_{i} y^{(i)^{2}}\right)\right]=\mathbf{E}\left[\left(\sum_{i}\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[j]\right)\left(\sum_{i} y^{(i)^{2}}\right)\right]=0
$$

because $w_{\star} \stackrel{d}{=}-w_{\star}$. Lastly, we compute

$$
\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle\left(\sum_{i} y^{(i)} x^{(i)^{\top}}\right)\right] .
$$

To that end, note that for $j \neq j^{\prime}$,

$$
\mathbf{E}\left[\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[j]\left\langle w_{\star}, x^{\left(i^{\prime}\right)}\right\rangle x^{\left(i^{\prime}\right)}\left[j^{\prime}\right]\right]= \begin{cases}\mathbf{E}\left[\left\langle x^{(i)}, x^{\left(i^{\prime}\right)}\right\rangle x^{(i)}[j] x^{\left(i^{\prime}\right)}\left[j^{\prime}\right]\right]=0 & \text { if } i \neq i^{\prime}, \\ \mathbf{E}\left[\left\|x^{(i)}\right\|^{2} x^{(i)}[j] x^{(i)}\left[j^{\prime}\right]\right]=0 & \text { if } i=i^{\prime}\end{cases}
$$

and

$$
\mathbf{E}\left[\left\langle w_{\star}, x^{(i)}\right\rangle x^{(i)}[j]\left\langle w_{\star}, x^{\left(i^{\prime}\right)}\right\rangle x^{\left(i^{\prime}\right)}[j]\right]= \begin{cases}\mathbf{E}\left[x^{(i)}[j]^{2} x^{\left(i^{\prime}\right)}[j]^{2}\right]=1 & \text { if } i \neq i^{\prime}, \\ \mathbf{E}\left[\left\langle w_{\star}, x^{(i)}\right\rangle^{2} x^{(i)}[j]^{2}\right]=d+2 & \text { if } i=i^{\prime},\end{cases}
$$

where the last case follows from the fact that the 4 th moment of Gaussian is 3 and

$$
\mathbf{E}\left[\left\langle w_{\star}, x^{(i)}\right\rangle^{2} x^{(i)}[j]^{2}\right]=\mathbf{E}\left[\left\|x^{(i)}\right\|^{2} x^{(i)}[j]^{2}\right]=3+d-1=d+2 .
$$

Combining the above calculations together, we arrive at

$$
\begin{align*}
\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle \mathcal{M}\right] & =\frac{1}{n^{2}} \cdot(n(n-1)+(d+2) n)\left(E_{d+1, j}+E_{j, d+1}\right) \\
& =\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)\left(E_{d+1, j}+E_{j, d+1}\right) \tag{17}
\end{align*}
$$

Therefore, combining (15) and (17), the results follows.

Step 3: Combining global minima of each component

Now we finish the proof. From Lemma 6, it follows that

$$
X_{j}=-\frac{1}{\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)} E_{d+1, j}
$$

is the unique global minimum of f_{j}. Hence, b and $A=\left[a_{1} a_{1} \cdots a_{d}\right]$ achieve the global minimum of $f(b, A)=\sum_{j=1}^{d} f_{j}\left(b, A_{j}\right)$ if they satisfy

$$
b a_{j}^{\top}=-\frac{1}{\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)} E_{d+1, j} \quad \text { for all } i=1,2, \ldots, d
$$

This can be achieve by the following choice:

$$
b^{\top}=\mathbf{e}_{d+1}, \quad a_{j}=-\frac{1}{\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)} \mathbf{e}_{j} \quad \text { for } i=1,2, \ldots, d
$$

where \mathbf{e}_{j} is the j-th coordinate vector. This choice precisely corresponds to

$$
b=\mathbf{e}_{d+1}, \quad A=-\frac{1}{\left(\frac{n-1}{n}+(d+2) \frac{1}{n}\right)}\left[\begin{array}{c}
I_{d} \\
0
\end{array}\right] .
$$

where the last line follows since

$$
\begin{aligned}
\mathbf{E}\left[\left\langle w_{\star}, x^{(i)}\right\rangle^{2} x^{(i)}[j]^{2}\right] & =\mathbf{E}\left[\left\|x^{(i)}\right\|^{2} x^{(i)}[j]^{2}\right]=\mathbf{E}\left[x^{(i)}[j]^{2} \sum_{k} x^{(i)}[k]^{2}\right] \\
& =\lambda_{j} \sum_{k} \lambda_{k}+2 \lambda_{j}^{2}
\end{aligned}
$$

451 Therefore, we have

$$
\begin{align*}
\mathbf{E}\left[\left\langle\mathcal{M}, E_{d+1, j}\right\rangle \mathcal{M}\right] & =\frac{1}{n^{2}} \cdot\left(n(n-1) \lambda_{j}^{2}+n \lambda_{j} \sum_{k} \lambda_{k}+2 n \lambda_{j}^{2}\right)\left(E_{d+1, j}+E_{j, d+1}\right) \\
& =\left(\frac{n+1}{n} \lambda_{j}^{2}+\frac{1}{n}\left(\lambda_{j} \sum_{k} \lambda_{k}\right)\right)\left(E_{d+1, j}+E_{j, d+1}\right) \tag{19}
\end{align*}
$$

Now we finish the proof. From Lemma 6, it follows that

$$
X_{j}=-\frac{1}{\frac{n+1}{n} \lambda_{j}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)} E_{d+1, j}
$$

is the unique global minimum of f_{j}. Hence, b and $A=\left[a_{1} a_{1} \cdots a_{d}\right]$ achieve the global minimum of $f(b, A)=\sum_{j=1}^{d} f_{j}\left(b, A_{j}\right)$ if they satisfy

$$
b a_{j}^{\top}=X_{j}=-\frac{1}{\frac{n+1}{n} \lambda_{j}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)} E_{d+1, j} \quad \text { for all } i=1,2, \ldots, d
$$

This can be achieve by the following choice:

$$
b^{\top}=\mathbf{e}_{d+1}, \quad a_{j}=-\frac{1}{\frac{n+1}{n} \lambda_{j}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)} \mathbf{e}_{j} \quad \text { for } i=1,2, \ldots, d
$$

where \mathbf{e}_{j} is the j-th coordinate vector. This choice precisely corresponds to

$$
b=\mathbf{e}_{d+1}, \quad A=-\left[\operatorname{diag}\left(\left\{\frac{1}{\frac{n+1}{n} \lambda_{j}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)}\right\}_{j}\right)\right] .
$$

Step 2: Non-diagonal covariance case (the setting of Theorem 1)

We finally prove the general result of Theorem 1 , namely $x^{(i)}$ is sampled from a Gaussian with covariance $\Sigma=U \Lambda U^{\top}$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ and w_{\star} is sampled from $\mathcal{N}\left(0, I_{d}\right)$. The proof works by reducing this case to the previous case. For each i, define $\widetilde{x}^{(i)}:=U^{T} x^{(i)}$. Then $\mathbf{E}\left[\widetilde{x}^{(i)}\left(\widetilde{x}^{(i)}\right)^{\top}\right]=\mathbf{E}\left[U^{\top}\left(U \Lambda U^{\top}\right) U\right]=\Lambda$. Now let us write the loss function (13) with this new coordinate system: since $x^{(i)}=U \widetilde{x}^{(i)}$, we have

$$
f(b, A)=\mathbf{E}_{Z_{0}, w_{\star}}\left[\left(b^{\top} \mathcal{M} A+w_{\star}^{\top}\right) U \widetilde{x}^{(n+1)}\right]^{2}=\sum_{j=1}^{d} \lambda_{j} \mathbf{E}_{Z_{0}, w_{\star}}\left[\left(\left(b^{\top} \mathcal{M} A+w_{\star}^{\top}\right) U\right)[j]\right]^{2} .
$$

Hence, let us consider the vector $\left(b^{\top} \mathcal{M} A+w_{\star}^{\top}\right) U$. By definition of \mathcal{M}, we have

$$
\begin{aligned}
\left(b^{\top} \mathcal{M} A+w_{\star}^{\top}\right) U & =\frac{1}{n} \sum_{i} b^{\top}\left[\begin{array}{c}
x^{(i)} \\
\left\langle x^{(i)}, w_{\star}\right\rangle
\end{array}\right]^{\otimes 2} A U+w_{\star}^{\top} U \\
& =\frac{1}{n} \sum_{i} b^{\top}\left[\begin{array}{c}
U \tilde{x}_{i} \\
\left\langle U x^{(i)}, w_{\star}\right\rangle
\end{array}\right]^{\otimes 2} A U+w_{\star}^{\top} U \\
& =\frac{1}{n} \sum_{i} b^{\top}\left[\begin{array}{cc}
U & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{i} \\
\left\langle U x^{(i)}, w_{\star}\right\rangle
\end{array}\right]^{\otimes 2}\left[\begin{array}{cc}
U^{\top} & 0 \\
0 & 1
\end{array}\right] A U+w_{\star}^{\top} U \\
& =\frac{1}{n} \sum_{i} \widetilde{b}^{\top}\left[\begin{array}{c}
\tilde{x}_{i} \\
\left\langle x^{(i)}, \widetilde{w}_{\star}\right\rangle
\end{array}\right]^{\otimes 2} \widetilde{A}+\widetilde{w}_{\star}^{\top}
\end{aligned}
$$

where we define $\widetilde{b}^{\top}:=b^{\top}\left[\begin{array}{ll}U & 0 \\ 0 & 1\end{array}\right], \widetilde{A}:=\left[\begin{array}{cc}U^{\top} & 0 \\ 0 & 1\end{array}\right] A U$, and $\widetilde{w}_{\star}:=U^{\top} w_{\star}$. By the rotational symmetry, \widetilde{w}_{\star} is also distributed as $\mathcal{N}\left(0, I_{d}\right)$. Hence, this reduces to the previous case, and a global minimum is given as

$$
\widetilde{b}=\mathbf{e}_{d+1}, \quad \widetilde{A}=-\left[\operatorname{diag}\left(\left\{\frac{1}{\frac{n+1}{n} \lambda_{j}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)}\right\}_{j}\right)\right]
$$

From the definition of $\widetilde{b}, \widetilde{A}$, it thus follows that a global minimum is given by

$$
b^{\top}=\mathbf{e}_{d+1}, \quad A=-\left[U \operatorname{diag}\left(\left\{\frac{1}{\frac{n+1}{n} \lambda_{i}+\frac{1}{n} \cdot\left(\sum_{k} \lambda_{k}\right)}\right\}_{i}\right) U^{\top}\right]
$$ as desired.

B Proofs for the multi-layer case

B. 1 Proof of Theorem 3

The proof is based on probabilistic methods (Alon and Spencer, 2016). According to Lemma 9, the objective function can be written as (for more details check the derivations in (20))

$$
\begin{aligned}
f\left(A_{1}, A_{2}\right) & =\mathbf{E} \operatorname{Tr}\left(\mathbf{E}\left[\prod_{i=1}^{2}\left(I-X_{0}^{\top} A_{i} X_{0} M\right) X_{0}^{\top} w_{\star} w_{\star}^{\top} X_{0} \prod_{i=1}^{2}\left(I-M X_{0}^{T} A_{i} X_{0}\right)\right]\right) \\
& =\mathbf{E} \operatorname{Tr}\left(\mathbf{E}\left[\prod_{i=2}^{1}\left(I-X_{0}^{\top} A_{i} X_{0} M\right) X_{0}^{\top} X_{0} \prod_{j=1}^{2}\left(I-M X_{0}^{T} A_{j} X_{0}\right)\right]\right),
\end{aligned}
$$

where we use the isotropy of w_{\star} and the linearity of trace to get the last equation. Suppose that A_{0}^{*} and A_{1}^{*} denote the global minimizer of f over symmetric matrices. Since A_{1}^{*} is a symmetric matrix, it admits the spectral decomposition $A_{1}=U D_{1} U^{\top}$ where D_{1} is a diagonal matrix and U is an orthogonal matrix. Remarkably, the distribution of X_{0} is invariant to a linear transformation by an orthogonal matrix, i.e, X_{0} has the same distribution as $X_{0} U^{\top}$. This invariance yields

$$
f\left(U D_{1} U^{\top}, A_{2}^{*}\right)=f\left(D_{1}, U^{\top} A_{2}^{*} U\right)
$$

Thus, we can assume A_{1}^{*} is diagonal without loss of generality. To prove A_{2}^{*} is also diagonal, we leverage a probabilistic proof technique. Consider the random diagonal matrix S whose diagonal elements are either 1 or -1 with probability $\frac{1}{2}$. Since the input distribution is invariant to orthogonal transformations, we have

$$
f\left(D_{1}, A_{2}^{*}\right)=f\left(S D_{1} S, S A_{2}^{*} S\right)=f\left(D_{1}, S A_{2}^{*} S\right)
$$

Note that we use $S D_{1} S=D_{1}$ in the last equation, which holds due to D_{1} and S are diagonal matrices and S has diagonal elements in $\{+1,-1\}$. Since f is convex in A_{2}, a straightforward application of Jensen's inequality yields

$$
f\left(D_{1}, A_{2}^{*}\right)=\mathbf{E}\left[f\left(D_{1}, S A_{2}^{*} S\right)\right] \geq f\left(D_{1}, \mathbf{E}\left[S A_{2}^{*} S\right]\right)=f\left(D_{1}, \operatorname{diag}\left(A_{2}^{*}\right)\right)
$$

Thus, there are diagonal D_{1} and $\operatorname{diag}\left(A_{2}^{*}\right)$ for which $f\left(D_{1}, \boldsymbol{\operatorname { d i a g }}\left(A_{2}^{*}\right)\right) \leq f\left(A_{1}^{*}, A_{2}^{*}\right)$ holds for an optimal A_{1}^{*} and A_{2}^{*}. This concludes the proof.

B. 2 Proof of Theorem 4

Let us drop the factor of $\frac{1}{n}$ which was present in the original update (51). This is because the constant $1 / n$ can be absorbed into A_{i} 's. Doing so does not change the theorem statement, but reduces notational clutter.
Let us consider the reformulation of the in-context loss f presented in Lemma 9. Specifically, let \bar{Z}_{0} be defined as

$$
\bar{Z}_{0}=\left[\begin{array}{lllll}
x^{(1)} & x^{(2)} & \cdots & x^{(n)} & x^{(n+1)} \\
y^{(1)} & y^{(2)} & \cdots & y^{(n)} & y^{(n+1)}
\end{array}\right] \in \mathbb{R}^{(d+1) \times(n+1)},
$$

where $y^{(n+1)}=\left\langle w_{\star}, x^{(n+1)}\right\rangle$. Let \bar{Z}_{i} denote the output of the $(i-1)^{t h}$ layer of the linear transformer (as defined in (51), initialized at \bar{Z}_{0}). For the rest of this proof, we will drop the bar, and simply denote \bar{Z}_{i} by $Z_{i} .^{2}$ Let $X_{i} \in \mathbb{R}^{d \times n+1}$ denote the first d rows of Z_{i} and let $Y_{i} \in \mathbb{R}^{1 \times n+1}$ denote the $(d+1)^{t h}$ row of Z_{k}. Under the sparsity pattern enforced in (9), we verify that, for any $i \in\{0 \ldots k\}$,

$$
\begin{align*}
& X_{i}=X_{0}, \\
& Y_{i+1}=Y_{i}+Y_{i} M X_{i}^{\top} A_{i} X_{i}=Y_{0} \prod_{\ell=0}^{i}\left(I+M X_{0}^{T} A_{\ell} X_{0}\right) . \tag{20}
\end{align*}
$$

[^0]where $M=\left[\begin{array}{cc}I_{n \times n} & 0 \\ 0 & 0\end{array}\right]$. We adopt the shorthand $A=\left\{A_{i}\right\}_{i=0}^{k}$.
We adopt the shorthand $A=\left\{A_{i}\right\}_{i=0}^{k}$. Let $\mathcal{S} \subset \mathbb{R}^{(k+1) \times d \times d}$, and $A \in \mathcal{S}$ if and only if for all $i \in\{0 \ldots k\}$, there exists scalars $a_{i} \in \mathbb{R}$ such that $A_{i}=a_{i} \Sigma^{-1}$ and $B_{i}=b_{i} I$. We use $f(A)$ to refer to the in-context loss of Theorem 4, that is,

$$
f(A):=f\left(\left\{Q_{i}=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & 0
\end{array}\right], P_{i}=\left[\begin{array}{cc}
0_{d \times d} & 0 \\
0 & 1
\end{array}\right]\right\}_{i=0}^{k}\right) .
$$

Throughout this proof, we will work with the following formulation of the in-context loss from Lemma 9:

$$
\begin{equation*}
f(A)=\mathbf{E}_{\left(X_{0}, w_{\star}\right)}\left[\operatorname{Tr}\left((I-M) Y_{k+1}^{\top} Y_{k+1}(I-M)\right)\right] \tag{21}
\end{equation*}
$$

The theorem statement is equivalent to the following:

$$
\begin{equation*}
\inf _{A \in \mathcal{S}} \sum_{i=0}^{k}\left\|\nabla_{A_{i}} f(A)\right\|_{F}^{2}=0 \tag{22}
\end{equation*}
$$

where $\nabla_{A_{i}} f$ denotes derivative wrt the Frobenius norm $\left\|A_{i}\right\|_{F}$. Towards this end, we establish the following intermediate result: if $A \in \mathcal{S}$, then for any $R \in \mathbb{R}^{(k+1) \times d \times d}$, there exists $\tilde{R} \in \mathcal{S}$, such that, at $t=0$,

$$
\begin{equation*}
\frac{d}{d t} f(A+t \tilde{R}) \leq \frac{d}{d t} f(A+t R) \tag{23}
\end{equation*}
$$

In fact, we show that $\tilde{R}_{i}:=r_{i} I$, for $r_{i}=\frac{1}{d} \operatorname{Tr}\left(\Sigma^{1 / 2} R_{i} \Sigma^{1 / 2}\right)$. This implies (22) via the following simple argument: Consider the " \mathcal{S}-constrained gradient flow": let $A(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{(k+1) \times d \times d}$ be defined as

$$
\frac{d}{d t} A_{i}(t)=-r_{i}(t) \Sigma^{-1}, \quad r_{i}(t):=\operatorname{Tr}\left(\Sigma^{1 / 2} \nabla_{A_{i}} f(A(t)) \Sigma^{1 / 2}\right)
$$

for $i=0 \ldots k$. By (23), we verify that

$$
\begin{equation*}
\frac{d}{d t} f(A(t)) \leq-\sum_{i=0}^{k}\left\|\nabla_{A_{i}} f(A(t))\right\|_{F}^{2} \tag{24}
\end{equation*}
$$

We verify from its definition that $f(A) \geq 0$; if the infimum in (22) fails to be zero, then inequality (24) will ensure unbounded descent as $t \rightarrow \infty$, contradicting the fact that $f(A)$ is lower-bounded. This concludes the proof.

Step 0: Proof outline

The remainder of the proof will be devoted to showing (23), which we outline as follows:

- In Step 1, we reduce the condition in (24) to a more easily verified layer-wise condition. Specifically, we only need to verify (24) when R_{i} are all zero except for R_{j} for some fixed j (see (25))
At the end of Step 1, we set up some additional notation, and introduce an important matrix G, which is roughly "a product of attention layer matrices". In (26), we study the evolution of $f(A(t))$ when $A(t)$ moves in the direction of R, as X_{0} is (roughly speaking) randomly transformed.
- In Step 2, we use the results of Step 2 to to study G (see (27)) and $\frac{d}{d t} G(A(t))$ (see (28)) under random transformation of X_{0}. The idea in (28) is that "randomly transforming X_{0} " has the same effect as "randomly transforming S " (recall S is the perturbation to B).
- In Step 3, we apply the result from Step 2 to the expression of $\frac{d}{d t} f(A(t))$ in (26). We verify that \tilde{R} in (23) is exactly the expected matrix after "randomly transforming S ". This concludes our proof.

Step 1: Reduction to layer-wise condition

To prove (23), it suffices to show the following simpler condition: Let $j \in\{0 \ldots k\}$. Let $R_{j} \in$ $\mathbb{R}^{d \times d}$ be arbitrary matrices. For $C \in \mathbb{R}^{d \times d}$, let $A(t C, j)$ denote the collection of matrices, where
$[A(t C, j)]_{j}=A_{j}+t C$, and for $i \neq j, A(t C, j)_{i}=A_{i}$. We show that for all $j \in\{0 \ldots k\}, R_{j} \in \mathbb{R}^{d \times d}$, there exists $\tilde{R}_{j}=r_{j} \Sigma^{-1}$, such that, at $t=0$,

$$
\begin{equation*}
\frac{d}{d t} f\left(A\left(t \tilde{R}_{j}, j\right)\right) \leq \frac{d}{d t} f\left(A\left(t R_{j}, j\right)\right) \tag{25}
\end{equation*}
$$

We can verify that (23) is equivalent to (25) by noticing that for any R, at $t=0, \frac{d}{d t} f(A+t R)=$ $\sum_{j=0}^{k} \frac{d}{d t} f\left(A\left(t R_{j}, j\right)\right)$. We will now work towards proving (25) for some index j that is arbitrarily chosen but fixed throughout.
By (20) and (21),

$$
\begin{aligned}
& f\left(A\left(t R_{j}, j\right)\right) \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) Y_{k+1}^{\top} Y_{k+1}(I-M)\right)\right] \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, A_{j}+t R_{j}\right)^{\top} w_{\star}^{\top} w_{\star} G\left(X_{0}, A_{j}+t R_{j}\right)(I-M)\right)\right] \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, A_{j}+t R_{j}\right)^{\top} \Sigma^{-1} G\left(X_{0}, A_{j}+t R_{j}\right)(I-M)\right)\right]
\end{aligned}
$$

where $G\left(X, A_{j}+C\right):=X \prod_{i=0}^{k}\left(I-M X_{0}^{\top}[A(t C, j)]_{i} X\right)$. The second equality follows from plugging in (20). For the rest of this proof, let U denote a uniformly randomly sampled orthogonal matrix. Let $U_{\Sigma}:=\Sigma^{1 / 2} U \Sigma^{-1 / 2}$. Using the fact that $X_{0} \stackrel{d}{=} U_{\Sigma} X_{0}$, we can verify

$$
\begin{align*}
& \left.\frac{d}{d t} f\left(A\left(t R_{j}, j\right)\right)\right|_{t=0} \\
= & \left.\frac{d}{d t} \mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, A_{j}+t R_{j}\right)^{\top} \Sigma^{-1} G\left(X_{0}, A_{j}+t R_{j}\right)(I-M)\right)\right]\right|_{t=0} \\
= & \left.\frac{d}{d t} \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left((I-M) G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)^{\top} \Sigma^{-1} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)(I-M)\right)\right]\right|_{t=0} \\
= & 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(U_{\Sigma} X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right|_{t=0}(I-M)\right)\right] . \tag{26}
\end{align*}
$$

Step 2: G and $\frac{d}{d t} G$ under random transformation of X_{0}

We will now verify that $G\left(U_{\Sigma} X_{0}, A_{j}\right)=U_{\Sigma} G\left(X_{0}, A_{j}\right)$:

$$
\begin{align*}
& G\left(U_{\Sigma} X_{0}, A_{j}\right) \\
= & U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{0}^{T} U_{\Sigma}^{\top} A_{i} U_{\Sigma} X_{0}\right) \\
= & U_{\Sigma} G\left(X_{0}, A_{j}\right) \tag{27}
\end{align*}
$$

where we use the fact that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=U_{\Sigma}^{\top}\left(a_{i} \Sigma^{-1}\right) U_{\Sigma}=A_{i}$. Next, we verify that

$$
\begin{align*}
\frac{d}{d t} G\left(U_{\Sigma} X_{0}, R_{j}\right) & =U_{\Sigma} X_{0}\left(\prod_{i=0}^{j-1}\left(I+M X_{0}^{T} A_{i} X_{0}\right)\right) M X_{0}^{T} U_{\Sigma}^{\top} R_{j} U_{\Sigma} X_{0} \prod_{i=j+1}^{k}\left(I+M X_{0}^{T} A_{i} X_{0}\right) \\
& =U_{\Sigma} \frac{d}{d t} G\left(X_{0}, U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right) \tag{28}
\end{align*}
$$

where the first equality again uses the fact that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}$.

Step 3: Putting everything together

Let us continue from (26). Plugging (27) and (28) into (26),

$$
\begin{aligned}
& \left.\frac{d}{d t} f\left(A\left(t R_{j}, j\right)\right)\right|_{t=0} \\
= & 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(U_{\Sigma} X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right|_{t=0}(I-M)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(i)}{=} 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right|_{t=0}(I-M)\right)\right] \\
& =2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \mathbf{E}_{U}\left[\left.\frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right|_{t=0}\right](I-M)\right)\right] \\
& \stackrel{(i i)}{=} 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right]\right)\right|_{t=0}(I-M)\right)\right] \\
& =2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t \cdot r_{j} \Sigma^{-1}\right)\right|_{t=0}(I-M)\right)\right] \\
& =\left.\frac{d}{d t} f\left(A\left(t \cdot r_{j} \Sigma^{-1}, j\right)\right)\right|_{t=0},
\end{aligned}
$$

where $r_{j}:=\frac{1}{d} \operatorname{Tr}\left(\Sigma^{1 / 2} R_{j} \Sigma^{1 / 2}\right)$. In the above, (i) uses 1. (27) and (28), as well as the fact that $U_{\Sigma}^{\top} \Sigma^{-1} U_{\Sigma}=\Sigma^{-1}$. (ii) uses the fact that $\left.\frac{d}{d t} G\left(X_{0}, A_{j}+t C\right)\right|_{t=0}$ is affine in C. To see this, one can verify from the definition of G, e.g. using similar algebra as (28), that $\frac{d}{d t} G\left(X_{0}, A_{j}+C\right)$ is affine in C. Thus $\mathbf{E}_{U}\left[G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right]=G\left(X_{0}, A_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right]$.

B. 3 Proof of Theorem 5

The proof of Theorem 5 is similar to that of Theorem 4, and with a similar setup. However to keep the proof self-contained, we will restate the setup. Once again, we drop the factor of $\frac{1}{n}$ which was present in the original update (51). This is because the constant $1 / n$ can be absorbed into A_{i} 's. Doing so does not change the theorem statement, but reduces notational clutter.
Let us consider the reformulation of the in-context loss f presented in Lemma 9. Specifically, let \bar{Z}_{0} be defined as

$$
\bar{Z}_{0}=\left[\begin{array}{lllll}
x^{(1)} & x^{(2)} & \cdots & x^{(n)} & x^{(n+1)} \\
y^{(1)} & y^{(2)} & \cdots & y^{(n)} & y^{(n+1)}
\end{array}\right] \in \mathbb{R}^{(d+1) \times(n+1)},
$$

where $y^{(n+1)}=\left\langle w_{\star}, x^{(n+1)}\right\rangle$. Let \bar{Z}_{i} denote the output of the $(i-1)^{\text {th }}$ layer of the linear transformer (as defined in (51), initialized at \bar{Z}_{0}). For the rest of this proof, we will drop the bar, and simply denote \bar{Z}_{i} by $Z_{i} \cdot{ }^{3}$ Let $X_{i} \in \mathbb{R}^{d \times n+1}$ denote the first d rows of Z_{i} and let $Y_{i} \in \mathbb{R}^{1 \times n+1}$ denote the $(d+1)^{t h}$ row of Z_{k}. Under the sparsity pattern enforced in (11), we verify that, for any $i \in\{0 \ldots k\}$,

$$
\begin{align*}
& X_{i+1}=X_{i}+B_{i} X_{i} M X_{i}^{\top} A_{i} X_{i} \\
& Y_{i+1}=Y_{i}+Y_{i} M X_{i}^{\top} A_{i} X_{i}=Y_{0} \prod_{\ell=0}^{i}\left(I+M X_{\ell}^{T} A_{\ell} X_{\ell}\right) . \tag{29}
\end{align*}
$$

We adopt the shorthand $A=\left\{A_{i}\right\}_{i=0}^{k}$ and $B=\left\{B_{i}\right\}_{i=0}^{k}$. Let $\mathcal{S} \subset \mathbb{R}^{2 \times(k+1) \times d \times d}$, and $(A, B) \in \mathcal{S}$ if and only if for all $i \in\{0 \ldots k\}$, there exists scalars $a_{i}, b_{i} \in \mathbb{R}$ such that $A_{i}=a_{i} \Sigma^{-1}$ and $B_{i}=b_{i} I$. Throughout this proof, we will work with the following formulation of the in-context loss from Lemma 9:

$$
\begin{equation*}
f(A, B):=\mathbf{E}_{\left(X_{0}, w_{\star}\right)}\left[\operatorname{Tr}\left((I-M) Y_{k+1}^{\top} Y_{k+1}(I-M)\right)\right] . \tag{30}
\end{equation*}
$$

(note that the only randomness in Z_{0} comes from X_{0} as Y_{0} is a deterministic function of X_{0}). The theorem statement is equivalent to the following:

$$
\begin{equation*}
\inf _{(A, B) \in \mathcal{S}} \sum_{i=0}^{k}\left\|\nabla_{A_{i}} f(A, B)\right\|_{F}^{2}+\left\|\nabla_{B_{i}} f(A, B)\right\|_{F}^{2}=0 \tag{31}
\end{equation*}
$$

where $\nabla_{A_{i}} f$ denotes derivative wrt the Frobenius norm $\left\|A_{i}\right\|_{F}$.

[^1]Our goal is to show that, if $(A, B) \in \mathcal{S}$, then for any $(R, S) \in \mathbb{R}^{2 \times(k+1) \times d \times d}$, there exists $(\tilde{R}, \tilde{S}) \in$ \mathcal{S}, such that, at $t=0$,

$$
\begin{equation*}
\frac{d}{d t} f(A+t \tilde{R}, B+t \tilde{S}) \leq \frac{d}{d t} f(A+t R, B+t S) \tag{32}
\end{equation*}
$$

In fact, we show that $\tilde{R}_{i}:=r_{i} I$, for $r_{i}=\frac{1}{d} \operatorname{Tr}\left(\Sigma^{1 / 2} R_{i} \Sigma^{1 / 2}\right)$ and $\tilde{S}_{i}=s_{i} I$, for $s_{i}=$ $\frac{1}{d} \operatorname{Tr}\left(\Sigma^{-1 / 2} S_{i} \Sigma^{1 / 2}\right)$. This implies (31) via the following simple argument: Consider the $" \mathcal{S}$ constrained gradient flow": let $A(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{(k+1) \times d \times d}$ and $B(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{(k+1) \times d \times d}$ be defined as

$$
\begin{array}{ll}
\frac{d}{d t} A_{i}(t)=-r_{i}(t) \Sigma^{-1}, & r_{i}(t):=\operatorname{Tr}\left(\Sigma^{1 / 2} \nabla_{A_{i}} f(A(t), B(t)) \Sigma^{1 / 2}\right) \\
\frac{d}{d t} B_{i}(t)=-s_{i}(t) \Sigma^{-1}, & s_{i}(t):=\operatorname{Tr}\left(\Sigma^{-1 / 2} \nabla_{B_{i}} f(A(t), B(t)) \Sigma^{1 / 2}\right)
\end{array}
$$

for $i=0 \ldots k$. By (32), we verify that

$$
\begin{equation*}
\frac{d}{d t} f(A(t), B(t)) \leq-\left(\sum_{i=0}^{k}\left\|\nabla_{A_{i}} f(A(t), B(t))\right\|_{F}^{2}+\left\|\nabla_{B_{i}} f(A(t), B(t))\right\|_{F}^{2}\right) \tag{33}
\end{equation*}
$$

We verify from its definition that $f(A, B) \geq 0$; if (31) does not hold then (33) will ensure unbounded descent as $t \rightarrow \infty$, contradicting the fact that $f(A, B)$ is lower-bounded. This concludes the proof.

Step 0: Proof outline

The remainder of the proof will be devoted to showing (32), which we outline as follows:

- In Step 1, we reduce the condition in (32) to a more easily verified layer-wise condition. Specifically, we only need to verify (32) in one of the two cases: (I) when R_{i}, S_{i} are all zero except for R_{j} for some fixed j (see (35)), or (II) when R_{i}, S_{i} are all zero except for S_{j} for some fixed j (see (34)).
We focus on the proof of (II), as the proof of (I) is almost identical. At the end of Step 1, we set up some additional notation, and introduce an important matrix G, which is roughly "a product of attention layer matrices". In (36), we study the evolution of $f(A, B(t))$ when $B(t)$ moves in the direction of S, as X_{0} is (roughly speaking) randomly transformed. This motivates the subsequent analysis in Steps 2 and 3 below.
- In Step 2, we study how outputs of each layer (29) changes when X_{0} is randomly transformed. There are two main results here: First we provide the expression for X_{i} in (37). Second, we provide the expression for $\frac{d}{d t} X_{i}(B(t))$ in (38).
- In Step 3, we use the results of Step 2 to to study G (see (42)) and $\frac{d}{d t} G(B(t))$ (see (43)) under random transformation of X_{0}.
The idea in (43) is that "randomly transforming X_{0} " has the same effect as "randomly transforming $S^{\prime \prime}$ (recall S is the perturbation to B).
- In Step 4, we use the results from Steps 2 and 3 to the expression of $\frac{d}{d t} f(A, B(t))$ in (36). We verify that \tilde{S} in (32) is exactly the expected matrix after "randomly transforming S ". This concludes our proof of (II).
- In Step 5, we sketch the proof of (I), which is almost identical to Steps 2-4.

Step 1: Reduction to layer-wise condition

To prove (32), it suffices to show the following simpler condition: Let $j \in\{0 \ldots k\}$. Let $R_{j}, S_{j} \in$ $\mathbb{R}^{d \times d}$ be arbitrary matrices. For $C \in \mathbb{R}^{\mathbf{d} \times d}$, let $A(t C, j)$ denote the collection of matrices, where $A(t C, j)_{j}=A_{j}+t C$, and for $i \neq j, A(t C, j)_{i}=A_{i}$. Define $B(t C, j)$ analogously. We show that for all $j \in\{0 \ldots k\}$ and all $R_{j}, S_{j} \in \mathbb{R}^{d \times d}$, there exists $\tilde{R}_{j}=r_{j} \Sigma^{-1}$ and $\tilde{S}_{j}=s_{j} \Sigma^{-1}$, such that, at $t=0$,

$$
\begin{align*}
& \frac{d}{d t} f\left(A\left(t \tilde{R}_{j}, j\right), B\right) \tag{34}
\end{align*} \leq^{d t} f\left(A\left(t R_{j}, j\right), B\right),
$$

We can verify that (32) is equivalent to (34)+(35) by noticing that for any $(R, S) \in \mathbb{R}^{2 \times(k+1) \times d \times d}$, at $t=0, \frac{d}{d t} f(A+t R, B+t S)=\sum_{j=0}^{k}\left(\frac{d}{d t} f\left(A\left(t R_{j}, j\right), B\right)+\frac{d}{d t} f\left(A, B\left(t S_{j}, j\right)\right)\right)$.

We will first focus on proving (35) (the proof of (34) is similar, and we present it in Step 5 at the end), for some index j that is arbitrarily chosen but fixed throughout. Notice that X_{i} and Y_{i} in (29) are in fact functions of A, B and X_{0}. For most of our subsequent discussion, A_{i} (for all i) and B_{i} (for all $i \neq j$) can be treated as constant matrices. We will however make the dependence on X_{0} and B_{j} explicit (as we consider the curve $B_{j}+t S$), i.e. we use $X_{i}(X, C)$ (resp $Y_{i}(X, C)$) to denote the value of $X_{i}\left(\operatorname{resp} Y_{i}\right)$ from (29), with $X_{0}=X$, and $B_{j}=C$.

By (30) and (29),

$$
\begin{aligned}
& f\left(A, B\left(t S_{j}, j\right)\right) \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) Y_{k+1}\left(X_{0}, B_{j}+t S\right)^{\top} Y_{k+1}\left(X_{0}, B_{j}+t S_{j}\right)(I-M)\right)\right] \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, B_{j}+t S_{j}\right)^{\top} w_{\star}^{\top} w_{\star} G\left(X_{0}, B_{j}+t S_{j}\right)(I-M)\right)\right] \\
= & \mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, B_{j}+t S_{j}\right)^{\top} \Sigma^{-1} G\left(X_{0}, B_{j}+t S_{j}\right)(I-M)\right)\right]
\end{aligned}
$$

where $G(X, C):=X \prod_{i=0}^{k}\left(I-M X_{i}(X, C)^{T} A_{i} X_{i}(X, C)\right)$. The second equality follows from plugging in (29).
For the rest of this proof, let U denote a uniformly randomly sampled orthogonal matrix. Let $U_{\Sigma}:=\Sigma^{1 / 2} U \Sigma^{-1 / 2}$. Using the fact that $X_{0} \stackrel{d}{=} U_{\Sigma} X_{0}$, we can verify

$$
\begin{align*}
& \left.\frac{d}{d t} f\left(A, B\left(t S_{j}, j\right)\right)\right|_{t=0} \\
= & \left.\frac{d}{d t} \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, B_{j}+t S_{j}\right)^{\top} \Sigma^{-1} G\left(X_{0}, B_{j}+t S_{j}\right)(I-M)\right)\right]\right|_{t=0} \\
= & \left.\frac{d}{d t} \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left((I-M) G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)^{\top} \Sigma^{-1} G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)(I-M)\right)\right]\right|_{t=0} \\
= & 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(U_{\Sigma} X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right|_{t=0}(I-M)\right)\right] . \tag{36}
\end{align*}
$$

Step 2: X_{i} and $\frac{d}{d t} X_{i}$ under random transformation of X_{0}

In this step, we prove that when X_{0} is transformed by U_{Σ}, X_{i} for $i \geq 1$ are likewise transformed in a simple manner. The first goal of this step is to show

$$
\begin{equation*}
X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right) \tag{37}
\end{equation*}
$$

We will prove this by induction. When $i=0$, this clearly holds by definition. Suppose that (37) holds for some i. Then

$$
\begin{aligned}
& X_{i+1}\left(U_{\Sigma} X_{0}, B_{j}\right) \\
= & X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)+B_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) M X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) \\
= & U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)+U_{\Sigma} B_{i} X_{i}\left(X_{0}, B_{j}\right) M X_{i}\left(X_{0}, B_{j}\right)^{T} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
= & U_{\Sigma} X_{i+1}\left(X_{0}, B_{j}\right)
\end{aligned}
$$

where the second equality uses the inductive hypothesis, and the fact that $A_{i}=a_{i} \Sigma^{-1}$, so that $U_{\Sigma}^{T} A_{i} U_{\Sigma}=A_{i}$, and the fact that $B_{i}=b_{i} I$, from the definition of \mathcal{S} and our assumption that $(A, B) \in \mathcal{S}$. This concludes the proof of (37).

We now present the second main result of this step. Let $U_{\Sigma}^{-1}:=\Sigma^{1 / 2} U^{T} \Sigma^{-1 / 2}$, so that it satisfies $U_{\Sigma} U_{\Sigma}^{-1}=U_{\Sigma}^{-1} U_{\Sigma}=I$. For all i,

$$
\begin{equation*}
\left.U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right|_{t=0}=\left.\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right|_{t=0} \tag{38}
\end{equation*}
$$

To reduce notation, we will not write $\left.\cdot\right|_{t=0}$ explicitly in the subsequent proof. We first write down the dynamics for the right-hand-side term of (38): From (29), for any $\ell \leq j$, and for any $i \geq j+1$, and
for any $C \in \mathbb{R}^{d \times d}$,

$$
\begin{align*}
& \frac{d}{d t} X_{\ell}\left(X_{0}, B_{j}+t C\right)=0 \\
& \frac{d}{d t} X_{j+1}\left(X_{0}, B_{j}+t C\right)=C X_{j}\left(X_{0}, B_{j}\right) M X_{j}\left(X_{0}, B_{j}\right)^{\top} A_{j} X_{j}\left(X_{0}, B_{j}\right) \\
& \frac{d}{d t} X_{i+1}\left(X_{0}, B_{j}+t C\right)=\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right) \\
& \\
& \quad+B_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right)\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
& \tag{39}\\
& \quad+B_{i} X_{i}\left(X_{0}, B_{j}\right) M\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right)\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
& \\
& \quad+B_{i} X_{i}\left(X_{0}, B_{j}\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right)\right)
\end{align*}
$$

We are now ready to prove (38) using induction. For the base case, we verify that for $\ell \leq j$, $U_{\Sigma}^{-1} \frac{d}{d t} X_{\ell}\left(U_{\Sigma} X_{0}, B_{k}+t S_{j}\right)=0=\frac{d}{d t} X_{\ell}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)$ (see first equation in (39)). For index $j+1$, we verify that

$$
\begin{align*}
U_{\Sigma}^{-1} \frac{d}{d t} X_{j+1}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right) & =U_{\Sigma}^{-1} S_{j} U_{\Sigma} X_{j}\left(X_{0}, B_{j}\right) M X_{j}\left(U_{\Sigma} X_{0}, B_{j}\right)^{\top} A_{j} \\
& =\frac{d}{d t} X_{j+1}\left(U_{\Sigma} X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma} X_{j}\right) \tag{40}
\end{align*}
$$

where we use two facts: 1. $X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)$ from (37), 2. $A_{i}=a_{i} \Sigma^{-1}$, so that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}$. We verify by comparison to the second equation in (39) that $U_{\Sigma}^{-1} \frac{d}{d t} X_{j}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)=0=\frac{d}{d t} X_{j}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)$. These conclude the proof of the base case.

Now suppose that (38) holds for some i. We will now prove (38) holds for $i+1$. From (29),

$$
\begin{aligned}
& U_{\Sigma}^{-1} \frac{d}{d t} X_{i+1}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right) \\
&=U_{\Sigma}^{-1} \frac{d}{d t}\left(X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) \\
&+U_{\Sigma}^{-1} \frac{d}{d t}\left(B_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right) M X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)^{\top} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) \\
&=U_{\Sigma}^{-1} \frac{d}{d t}\left(X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) \\
&+U_{\Sigma}^{-1} B_{i}\left(\frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) M X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)^{\top} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) \\
&+U_{\Sigma}^{-1} B_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) M\left(\frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right)^{\top} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) \\
&+U_{\Sigma}^{-1} B_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right) M X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)^{\top} A_{i}\left(\frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) \\
&+B_{i}\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
&+B_{i} X_{i}\left(X_{0}, B_{j}\right) M\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
&-B_{i} X_{i}\left(X_{0}, B_{j}\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i}\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right) \\
& \stackrel{(i i)}{=} \frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)
\end{aligned}
$$

$$
\begin{align*}
& +B_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
& +B_{i} X_{i}\left(X_{0}, B_{j}\right) M\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right)^{\top} A_{i} X_{i}\left(X_{0}, B_{j}\right) \\
& +B_{i} X_{i}\left(X_{0}, B_{j}\right) M X_{i}\left(X_{0}, B_{j}\right)^{\top} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right) \tag{41}
\end{align*}
$$

In (i) above, we crucially use the following facts: $1 . B_{i}=b_{i} I$ so that $U_{\Sigma}^{-1} B_{i}=B_{i} U_{\Sigma}^{-1}, 2$. $X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)$ from (37), 3. $A_{i}=a_{i} \Sigma^{-1}$, so that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}, 4 . U_{\Sigma} U_{\Sigma}^{-1}=$ $U_{\Sigma}^{-1} U_{\Sigma}=I$. (ii) follows from our inductive hypothesis. The inductive proof is complete by verifying that (41) exactly matches the third equation of (39) when $C=U_{\Sigma}^{-1} S U_{\Sigma}$.

Step 3: G and $\frac{d}{d t} G$ under random transformation of X_{0}

We now verify that $G\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} G\left(X_{0}, B_{j}\right)$. This is a straightforward consequence of (37) as

$$
\begin{align*}
& G\left(U_{\Sigma} X_{0}, B_{j}\right) \\
= & U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)\right) \\
= & U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{i}\left(X_{0}, B_{j}\right)^{T} A_{i} X_{i}\left(X_{0}, B_{j}\right)\right) \\
= & U_{\Sigma} G\left(X_{0}, B_{j}\right) \tag{42}
\end{align*}
$$

where the second equality uses (37), as well as the fact that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}$. Next, we will show that

$$
\begin{equation*}
\left.U_{\Sigma}^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right|_{t=0}=\left.\frac{d}{d t} G\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right|_{t=0} \tag{43}
\end{equation*}
$$

$$
\begin{aligned}
& U_{\Sigma}^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right) \\
&= U_{\Sigma}^{-1} \frac{d}{d t}\left(U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right)\right) \\
&= X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(U_{\Sigma} X_{0}, B_{j}\right)^{T} A_{\ell} X_{i}\left(U_{\Sigma} X_{0}, B_{\ell}\right)\right)\right) \\
& \cdot M \frac{d}{d t}\left(X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(U_{\Sigma} X_{0}, B_{j}\right)^{T} A_{\ell} X_{i}\left(U_{\Sigma} X_{0}, B_{\ell}\right)\right)\right) \\
& \stackrel{(i)}{=} X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(X_{0}, B_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, B_{\ell}\right)\right)\right) \\
& \cdot M\left(\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right)^{T} A_{i} X_{i}\left(X_{0}, B_{j}\right)+M X_{i}\left(X_{0}, B_{j}\right)^{T} A_{i}\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(X_{0}, B_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, B_{\ell}\right)\right)\right) \\
& \stackrel{(i i)}{=} X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(X_{0}, B_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, B_{\ell}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad \cdot M\left(\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right)^{T} A_{i} X_{i}\left(X_{0}, B_{j}\right)+M X_{i}\left(X_{0}, B_{j}\right)^{T} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(X_{0}, B_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, B_{\ell}\right)\right)\right) \\
& \stackrel{(i i i)}{=} \frac{d}{d t} G\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)
\end{aligned}
$$

In (i) above, we the following facts: 1. $X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)$ from (37), 2. $A_{i}=a_{i} \Sigma^{-1}$, so that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}, 3 . U_{\Sigma} U_{\Sigma}^{-1}=U_{\Sigma}^{-1} U_{\Sigma}=I$. (ii) follows from (38). (iii) is by definition of G.

Step 4: Putting everything together

Let us now continue from (36). We can now plug (42) and (43) into (36):

$$
\begin{aligned}
&\left.\frac{d}{d t} f\left(A, B\left(t S_{j}, j\right)\right)\right|_{t=0} \\
&= 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(U_{\Sigma} X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, B_{j}+t S_{j}\right)\right|_{t=0}(I-M)\right)\right] \\
& \stackrel{(i)}{=} 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right|_{t=0}(I-M)\right)\right] \\
&= 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \mathbf{E}_{U}\left[\left.\frac{d}{d t} G\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right|_{t=0}\right](I-M)\right)\right] \\
& \stackrel{(i i)}{=} 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, B_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right]\right)\right|_{t=0}(I-M)\right)\right] \\
&= 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, B_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, B_{j}+t s_{j} I\right)\right|_{t=0}(I-M)\right)\right] \\
&=\left.\frac{d}{d t} f\left(A, B\left(t s_{j} I, j\right)\right)\right|_{t=0}
\end{aligned}
$$

where $s_{j}:=\frac{1}{d} \operatorname{Tr}\left(\Sigma^{-1 / 2} S_{j} \Sigma^{1 / 2}\right)$. In the above, (i) uses 1. (42) and (43), as well as the fact that $U_{\Sigma}^{\top} \Sigma^{-1} U_{\Sigma}=\Sigma^{-1}$. (ii) uses the fact that $\left.\frac{d}{d t} G\left(X_{0}, B_{j}+t C\right)\right|_{t=0}$ is affine in C. To see this, one can verify from (39), using a simple induction argument, that $\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right)$ is affine in C for all i. We can then verify from the definition of G, e.g. using similar algebra as the proof of (43), that $\frac{d}{d t} G\left(X_{0}, B_{j}+C\right)$ is affine in $\frac{d}{d t} X_{i}\left(X_{0}, B_{j}+t C\right)$. Thus $\mathbf{E}_{U}\left[G\left(X_{0}, B_{j}+t U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right]=$ $G\left(X_{0}, B_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{-1} S_{j} U_{\Sigma}\right)\right]$.
With this, we conclude our proof of (35).

Step 5: Proof of (34)

We will now prove (34) for fixed but arbitrary j, i.e. there is some r_{j} such that

$$
\frac{d}{d t} f\left(A\left(t \cdot r_{j} \Sigma^{-1}, j\right), B\right) \leq \frac{d}{d t} f\left(A\left(t R_{j}, j\right), B\right)
$$

The proof is very similar to the proof of (35) that we just saw, and we will essentially repeat the same steps from Step 2-4 above.

Let us introduce a redefinition: let $X_{i}(X, C)$ (resp $Y_{i}(X, C)$) to denote the value of X_{i} (resp Y_{i}) from (29), with $X_{0}=X$, and $A_{j}=C$ (previously it was with $B_{j}=C$). Once again, let $G(X, C):=X \prod_{i=0}^{i}\left(I+M X_{i}(X, C)^{T} \bar{A}_{i} X_{i}(X, C)\right)$, where $\bar{A}_{j}=A_{j}+t C$, and $\bar{A}_{\ell}=A_{\ell}$ for all $\ell \in\{0 \ldots k\} \backslash\{j\}$.
We first verify that

$$
\begin{align*}
& X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right) \\
& G\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} G\left(X_{0}, B_{j}\right) \tag{44}
\end{align*}
$$

The proofs are identical to the proofs of (37) and (42) so we omit them. Next, we show that for all i,

$$
\begin{equation*}
\left.U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right|_{t=0}=\left.\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right|_{t=0} \tag{45}
\end{equation*}
$$

We establish the dynamics for the right-hand-side of (45):

$$
\begin{align*}
& \frac{d}{d t} X_{\ell}\left(X_{0}, A_{j}+t C\right)=0 \\
& \frac{d}{d t} X_{j+1}\left(X_{0}, A_{j}+t C\right)=B_{j} X_{j}\left(X_{0}, A_{j}\right) M X_{j}\left(X_{0}, A_{j}\right)^{\top} C X_{j}\left(X_{0}, A_{j}\right) \\
& \frac{d}{d t} X_{i+1}\left(X_{0}, A_{j}+t C\right)=\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right) \\
& \quad+B_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right)\right) M X_{i}\left(X_{0}, A_{j}\right)^{\top} A_{i} X_{i}\left(X_{0}, A_{j}\right) \\
& \\
& \quad+B_{i} X_{i}\left(X_{0}, A_{j}\right) M\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right)\right)^{\top} A_{i} X_{i}\left(X_{0}, A_{j}\right) \tag{46}\\
& \\
& \quad+B_{i} X_{i}\left(X_{0}, A_{j}\right) M X_{i}\left(X_{0}, A_{j}\right)^{\top} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right)\right)
\end{align*}
$$

Similar to (40), we show that for $i \leq j$,

$$
\begin{aligned}
U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right) & =0=U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t U_{\Sigma} R_{j} U_{\Sigma}\right) \\
U_{\Sigma}^{-1} \frac{d}{d t} X_{j+1}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right) & =U_{\Sigma}^{-1} B_{j} U_{\Sigma} X_{j}\left(X_{0}, A_{j}\right) M X_{j}\left(U_{\Sigma} X_{0}, A_{j}\right)^{\top} A_{j} \\
& =\frac{d}{d t} X_{j+1}\left(U_{\Sigma} X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma} X_{j}\right) .
\end{aligned}
$$

Finally, for the inductive step, we follow identical steps leading up to (41) to show that

$$
\begin{align*}
& U_{\Sigma}^{-1} \frac{d}{d t} X_{i+1}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right) \\
&=\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right) \\
&+B_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right) M X_{i}\left(X_{0}, A_{j}\right)^{\top} A_{i} X_{i}\left(X_{0}, A_{j}\right) \\
&+B_{i} X_{i}\left(X_{0}, A_{j}\right) M\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right)^{\top} A_{i} X_{i}\left(X_{0}, A_{j}\right) \\
&+B_{i} X_{i}\left(X_{0}, A_{j}\right) M X_{i}\left(X_{0}, A_{j}\right)^{\top} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right) \tag{47}
\end{align*}
$$

The inductive proof is complete by verifying that (47) exactly matches the third equation of (46) when $C=U_{\Sigma}^{-1} S U_{\Sigma}$. This concludes the proof of (45).
Next, we study the time derivative of $G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)$ and show that

$$
\begin{equation*}
U_{\Sigma}^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)=\frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right) \tag{48}
\end{equation*}
$$

This proof differs significantly from that of (43) in a few places, so we provide the whole derivation below. By chain-rule, we can write

$$
U_{\Sigma}^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)=\boldsymbol{\phi}+\odot
$$

where

$$
\boldsymbol{\oplus}:=U_{\Sigma}^{-1} \frac{d}{d t}\left(U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right)\right)
$$

$$
\begin{aligned}
& \diamond:=U_{\Sigma}^{-1} U_{\Sigma} X_{0}\left(\prod_{i=0}^{j-1}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)\right)\right) \\
& \cdot M X_{j}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} R_{j} X_{j}\left(U_{\Sigma} X_{0}, A_{j}\right) \\
& \cdot\left(\prod_{i=j+1}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)\right)\right) .
\end{aligned}
$$

We will separately simplify $\boldsymbol{\phi}$ and Ω, and verify at the end that summing them recovers the right-hand-side of (48). We begin with $\boldsymbol{\oplus}$, and the steps are almost identical to the proof of (43).

$$
\begin{align*}
& =U_{\Sigma}^{-1} \frac{d}{d t}\left(U_{\Sigma} X_{0} \prod_{i=0}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right)\right) \\
& =X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{\ell} X_{i}\left(U_{\Sigma} X_{0}, A_{\ell}\right)\right)\right) \\
& \cdot M \frac{d}{d t}\left(X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{\ell} X_{i}\left(U_{\Sigma} X_{0}, A_{\ell}\right)\right)\right) \\
& \stackrel{(i)}{=} X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \\
& \cdot M\left(\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right)^{T} A_{i} X_{i}\left(X_{0}, A_{j}\right)+M X_{i}\left(X_{0}, A_{j}\right)^{T} A_{i}\left(U_{\Sigma}^{-1} \frac{d}{d t} X_{i}\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \\
& \stackrel{(i i)}{=} X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \\
& \cdot M\left(\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right)^{T} A_{i} X_{i}\left(X_{0}, A_{j}\right)+M X_{i}\left(X_{0}, A_{j}\right)^{T} A_{i}\left(\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \\
& =X_{0} \sum_{i=0}^{k}\left(\prod_{\ell=0}^{i-1}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \\
& \cdot M \frac{d}{d t}\left(X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)^{T} A_{i} X_{i}\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right) \\
& \cdot\left(\prod_{\ell=i+1}^{k}\left(I+M X_{\ell}\left(X_{0}, A_{j}\right)^{T} A_{\ell} X_{\ell}\left(X_{0}, A_{\ell}\right)\right)\right) \tag{49}
\end{align*}
$$

In (i) above, we the following facts: 1. $X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)$ from (44), 2. $A_{i}=a_{i} \Sigma^{-1}$,
so that $U_{\Sigma}^{\top} A_{i} U_{\Sigma}=A_{i}, 3 . U_{\Sigma} U_{\Sigma}^{-1}=U_{\Sigma}^{-1} U_{\Sigma}=I$. (ii) follows from (45).

We will now simplify \oslash.

$$
\begin{align*}
& \stackrel{\ominus}{=U_{\Sigma}^{-1} U_{\Sigma} X_{0}\left(\prod_{i=0}^{j-1}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)\right)\right)} \\
& \quad \cdot M X_{j}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} R_{j} X_{j}\left(U_{\Sigma} X_{0}, A_{j}\right) \\
& \quad \cdot\left(\prod_{i=j+1}^{k}\left(I+M X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(U_{\Sigma} X_{0}, A_{j}\right)\right)\right) \\
& \stackrel{(i)}{=} X_{0}\left(\prod_{i=0}^{j-1}\left(I+M X_{i}\left(X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(X_{0}, A_{j}\right)\right)\right) M X_{j}\left(X_{0}, A_{j}\right)^{\top} U_{\Sigma}^{\top} R_{j} U_{\Sigma} X_{j}\left(X_{0}, A_{j}\right) \\
& \quad \cdot\left(\prod_{i=j+1}^{k}\left(I+M X_{i}\left(X_{0}, A_{j}\right)^{T} A_{i} X_{i}\left(X_{0}, A_{j}\right)\right)\right)
\end{align*}
$$

where (i) uses the fact that $X_{i}\left(U_{\Sigma} X_{0}, B_{j}\right)=U_{\Sigma} X_{i}\left(X_{0}, B_{j}\right)$ from (44) and the fact that $A_{i}=$ $a_{i} \Sigma^{-1}$.
By expanding $\frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)$, we verify that

$$
\frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)=(49)+(50)=\boldsymbol{\uparrow}+\odot=U_{\Sigma}^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)
$$

this concludes the proof of (48).
The remainder of the proof is similar to what was done in (36) in Step 4:

$$
\begin{aligned}
& \frac{d}{d t} f\left(A\left(t R_{j}, j\right),\left.B\right|_{t=0}\right. \\
&= 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(U_{\Sigma} X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(U_{\Sigma} X_{0}, A_{j}+t R_{j}\right)\right|_{t=0}(I-M)\right)\right] \\
& \stackrel{(i)}{=} 2 \mathbf{E}_{X_{0}, U}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right|_{t=0}(I-M)\right)\right] \\
& \stackrel{(i i)}{=} 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right]\right)\right|_{t=0}(I-M)\right)\right] \\
&= 2 \mathbf{E}_{X_{0}}\left[\operatorname{Tr}\left(\left.(I-M) G\left(X_{0}, A_{j}\right)^{\top} \Sigma^{-1} \frac{d}{d t} G\left(X_{0}, A_{j}+t \cdot r_{j} \Sigma^{-1}\right)\right|_{t=0}(I-M)\right)\right] \\
&=\left.\frac{d}{d t} f\left(A\left(t \cdot r_{j} \Sigma^{-1}, j\right), B\right)\right|_{t=0},
\end{aligned}
$$

where $r_{j}:=\frac{1}{d} \operatorname{Tr}\left(\Sigma^{1 / 2} R_{j} \Sigma^{1 / 2}\right)$. In the above, (i) uses 1. (44) and (48), as well as the fact that $U_{\Sigma}^{\top} \Sigma^{-1} U_{\Sigma}=\Sigma^{-1}$. (ii) uses the fact that $\left.\frac{d}{d t} G\left(X_{0}, A_{j}+t C\right)\right|_{t=0}$ is affine in C. To see this, one can verify using a simple induction argument, that $\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right)$ is affine in C for all i. We can then verify from the definition of G, e.g. using similar algebra as the proof of (48), that $\frac{d}{d t} G\left(X_{0}, A_{j}+C\right)$ is affine in $\frac{d}{d t} X_{i}\left(X_{0}, A_{j}+t C\right)$ and C. Thus $\mathbf{E}_{U}\left[G\left(X_{0}, A_{j}+t U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right)\right]=$ $G\left(X_{0}, A_{j}+t \mathbf{E}_{U}\left[U_{\Sigma}^{\top} R_{j} U_{\Sigma}\right]\right)$.
This concludes the proof of (34), and hence of the whole theorem.

B. 4 Equivalence under permutation

Lemma 7. Consider the same setup as Theorem 4. Let $A=\left\{A_{i}\right\}_{i=0}^{k}$, with $A_{i}=a_{i} \Sigma^{-1}$. Let $f(A):=f\left(\left\{Q_{i}=\left[\begin{array}{cc}A_{i} & 0 \\ 0 & 0\end{array}\right], P_{i}=\left[\begin{array}{cc}0_{d \times d} & 0 \\ 0 & 1\end{array}\right]\right\}_{i=0}^{k}\right)$. Let $i, j \in\{0 \ldots k\}$ be any two arbitrary indices, and let $\tilde{A}_{i}=A_{j}, \tilde{A}_{j}=A_{i}$, and let $\tilde{A}_{\ell}=A_{\ell}$ for all $\ell \in\{0 \ldots k\} \backslash\{i, j\}$. Then $f(A)=f(\tilde{A})$

Proof. Following the same setup leading up to (21) in the proof of Theorem 4, we verify that the in-context loss is

$$
f(A)=\mathbf{E}\left[\operatorname{Tr}\left((I-M) G\left(X_{0}, A\right)^{\top} \Sigma^{-1} G\left(X_{0}, A\right)(I-M)\right)\right]
$$

where $G\left(X_{0}, A\right):=X_{0} \prod_{\ell=0}^{k}\left(I+M X_{0}^{T} A_{\ell} X_{0}\right)$.
Consider any fixed index ℓ. We will show that

$$
\left(I+M X_{0}^{T} A_{\ell} X_{0}\right)\left(I+M X_{0}^{T} A_{\ell+1} X_{0}\right)=\left(I+M X_{0}^{T} A_{\ell+1} X_{0}\right)\left(I+M X_{0}^{T} A_{\ell} X_{0}\right)
$$

The lemma can then be proven by repeatedly applying the above, so that indices of A_{i} and A_{j} are swapped.
To prove the above equality,

$$
\begin{aligned}
& \left(I+M X_{0}^{T} A_{\ell} X_{0}\right)\left(I+M X_{0}^{T} A_{\ell+1} X_{0}\right) \\
= & I+M X_{0}^{T} A_{\ell} X_{0}+M X_{0}^{T} A_{\ell+1} X_{0}+M X_{0}^{T} A_{\ell} X_{0} M X_{0}^{T} A_{\ell+1} X_{0} \\
= & I+M X_{0}^{T} A_{\ell} X_{0}+M X_{0}^{T} A_{\ell+1} X_{0}+M X_{0}^{T} a_{\ell} \Sigma^{-1} X_{0} M X_{0}^{T} a_{\ell+1} \Sigma^{-1} X_{0} \\
= & I+M X_{0}^{T} A_{\ell} X_{0}+M X_{0}^{T} A_{\ell+1} X_{0}+M X_{0}^{T} a_{\ell+1} \Sigma^{-1} X_{0} M X_{0}^{T} a_{\ell} \Sigma^{-1} X_{0} \\
= & \left(I+M X_{0}^{T} A_{\ell+1} X_{0}\right)\left(I+M X_{0}^{T} A_{\ell} X_{0}\right) .
\end{aligned}
$$

This concludes the proof. Notice that we crucially used the fact that A_{ℓ} and $A_{\ell+1}$ are the same matrix up to scaling.

C Auxiliary Lemmas

C. 1 Reformulating the in-context loss

In this section, we will develop a re-formulation in-context loss, defined in (5), in a more convenient form (see Lemma 9).

For the entirety of this section, we assume that the transformer parameters $\left\{P_{i}, Q_{i}\right\}_{i=0}^{k}$ are of the form defined in (11), which we reproduce below for ease of reference:

$$
P_{i}=\left[\begin{array}{cc}
B_{i} & 0 \\
0 & 1
\end{array}\right], \quad Q_{i}=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & 0
\end{array}\right] .
$$

Recall the update dynamics in (4), which we reproduce below:

$$
\begin{equation*}
Z_{i+1}=Z_{i}+\frac{1}{n} P Z_{i} M Z_{i}^{\top} Q Z_{i}, \tag{51}
\end{equation*}
$$

where M is a mask matrix given by $M:=\left[\begin{array}{cc}I_{n \times n} & 0 \\ 0 & 0\end{array}\right]$. Let $X_{k} \in \mathbb{R}^{d \times n+1}$ denote the first d rows of Z_{k} and let $Y_{k} \in \mathbb{R}^{1 \times n+1}$ denote the $(d+1)^{t h}$ (last) row of Z_{k}. Then the dynamics in (51) is equivalent to

$$
\begin{align*}
& X_{i+1}=X_{i}+\frac{1}{n} B_{i} X_{i} M X_{i}^{T} A_{i} X_{i} \\
& Y_{i+1}=Y_{i}+\frac{1}{n} Y_{i} M X_{i}^{T} A_{i} X_{i} . \tag{52}
\end{align*}
$$

We present below an equivalent form for the in-context loss from (5):
Lemma 9. Let p_{x} and p_{w} denote distributions over \mathbb{R}^{d}. Let $x^{(1)} \ldots x^{(n+1)} \stackrel{i i d}{\sim} p_{x}$ and $w_{\star} \sim p_{w}$. Let $Z_{0} \in \mathbb{R}^{d+1 \times n+1}$ is specifically defined in (1) as

$$
Z_{0}=\left[\begin{array}{llllc}
x^{(1)} & x^{(2)} & \cdots & x^{(n)} & x^{(n+1)} \\
y^{(1)} & y^{(2)} & \cdots & y^{(n)} & 0
\end{array}\right] \in \mathbb{R}^{(d+1) \times(n+1)} .
$$

Let Z_{k} denote the output of the $(k-1)^{\text {th }}$ layer of the linear transformer (as defined in (51), initialized at $\left.Z_{0}\right)$. Let $f\left(\left\{P_{i}, Q_{i}\right\}_{i=0}^{k}\right)$ denote the in-context loss defined in (5), i.e.

$$
\begin{equation*}
f\left(\left\{P_{i}, Q_{i}\right\}_{i=0}^{k}\right)=\mathbf{E}_{\left(Z_{0}, w_{\star}\right)}\left[\left(\left[Z_{k}\right]_{(d+1),(n+1)}+w_{\star}^{\top} x^{(n+1)}\right)^{2}\right] \tag{53}
\end{equation*}
$$

Let \bar{Z}_{0} be defined as

$$
\bar{Z}_{0}=\left[\begin{array}{lllll}
x^{(1)} & x^{(2)} & \cdots & x^{(n)} & x^{(n+1)} \\
y^{(1)} & y^{(2)} & \cdots & y^{(n)} & y^{(n+1)}
\end{array}\right] \in \mathbb{R}^{(d+1) \times(n+1)},
$$

where $y^{(n+1)}=\left\langle w_{\star}, x^{(n+1)}\right\rangle$. Let \bar{Z}_{k} denote the output of the $(k-1)^{\text {th }}$ layer of the linear transformer (as defined in (51), initialized at \bar{Z}_{0}). Assume $\left\{P_{i}, Q_{i}\right\}_{i=0}^{k}$ be of the form in (11). Then the loss in (5) has the equivalent form

$$
f\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}\right)=f\left(\left\{P_{i}, Q_{i}\right\}_{i=0}^{k}\right)=\mathbf{E}_{\left(\bar{Z}_{0}, w_{\star}\right)}\left[\operatorname{Tr}\left((I-M) \bar{Y}_{k}^{\top} \bar{Y}_{k}(I-M)\right)\right]
$$

where $\bar{Y}_{k} \in \mathbb{R}^{1 \times n+1}$ is the $(d+1)^{\text {th }}$ row of \bar{Z}_{k}.
Before proving Lemma 9, we first establish an intermediate result (Lemma 10 below). To facilitate discussion, let us define a function $F_{X}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right)$ and $F_{Y}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right)$ to be the outputs, after k layers of linear transformers respectively. I.e.

$$
\begin{aligned}
& F_{X}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right)=X_{k+1} \\
& F_{Y}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right)=Y_{k+1},
\end{aligned}
$$

as defined in (52), given initialization X_{0}, Y_{0}.
We now prove a useful lemma showing that $\left[Y_{0}\right]_{n+1}=y^{(n+1)}$ influences X_{i}, Y_{i} in a very simple manner:
Lemma 10. Let X_{i}, Y_{i} follow the dynamics in (52). Then

1. $\left[X_{i}\right]$ is are independent of $\left[Y_{0}\right]_{n+1}$.
2. For $j \neq n+1,\left[Y_{i}\right]_{j}$ is independent of $\left[Y_{0}\right]_{n+1}$.
3. $\left[Y_{i}\right]_{n+1}$ depends additively on $\left[Y_{0}\right]_{n+1}$.

In other words, for $C:=[0,0,0 \ldots, 0, c] \in \mathbb{R}^{d+1 \times 1}$,

$$
\begin{aligned}
1: F_{X}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}+C\right) & =F_{X}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right) \\
2+3: F_{Y}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}+C\right) & =F_{Y}\left(\left\{A_{i}, B_{i}\right\}_{i=0}^{k}, X_{0}, Y_{0}\right)+C
\end{aligned}
$$

Proof of Lemma 10. The first and second items follows directly from observing that the dynamics for X_{i} and Y_{i} in (52) do not involve $\left[Y_{i}\right]_{n+1}$, due to the effect of M.
The third item again uses the fact that $Y_{i+1}-Y_{i}$ does not depend on $\left[Y_{i}\right]_{n+1}$.
We are now ready to prove Lemma 9
Proof of Lemma 9. Let $Z_{0}, Z_{k}, \bar{Z}_{0}, \bar{Z}_{k}$ be as defined in the lemma statement. Let \bar{X}_{k} and \bar{Y}_{k} denote first d rows and last row of \bar{Z}_{k}. Then by Lemma $10, \bar{X}_{k}=X_{k}$ and $\bar{Y}_{k}=$ $Y_{k}+\left[\begin{array}{lllll}0 & 0 & \cdots & 0 & \left\langle w_{\star}, x^{(n+1)}\right\rangle\end{array}\right]$. Therefore, (53) is equivalent to

$$
\begin{aligned}
& \mathbf{E}_{\left(\bar{Z}_{0}, w_{\star}\right)}\left[\left(\left[\bar{Z}_{k}\right]_{(d+1),(n+1)}\right)^{2}\right] \\
= & \mathbf{E}_{\left(\bar{Z}_{0}, w_{\star}\right)}\left[\left(\left[\bar{Y}_{k}\right]_{(n+1)}\right)^{2}\right] \\
= & \mathbf{E}_{\left(\bar{Z}_{0}, w_{\star}\right)}\left[\left\|(I-M) \bar{Y}_{k}^{\top}\right\|^{2}\right] \\
= & \mathbf{E}_{\left(\bar{Z}_{0}, w_{\star}\right)}\left[\operatorname{Tr}\left((I-M) \bar{Y}_{k}^{\top} \bar{Y}_{k}(I-M)\right)\right] .
\end{aligned}
$$

This concludes the proof.

C. 2 Proof of Lemma 2 (Equivalence to Preconditioned Gradient Descent)

Proof of Lemma 2. Consider fixed samples $x^{(1)} \ldots x^{(n)}$, and fixed w_{\star}. Let $P=\left\{P_{i}\right\}_{i=0}^{k}, Q=$ $\left\{Q_{i}\right\}_{i=0}^{k}$ denote fixed weights. Let Z_{i} evolve as described in (4). Let X_{i} denote the first d rows of Z_{k} (under (9), $X_{i}=X_{0}$ for all I) and let Y_{i} denote the $(d+1)^{t h}$ row of Z_{i}. Let $g(x, y, k): \mathbb{R}^{d} \times \mathbb{R} \times \mathbb{Z} \rightarrow$ \mathbb{R} be a function defined as follows: let $x^{n+1}=x$ and let $y_{0}^{n+1}=y$, then $g(x, y, k):=y_{k}^{n+1}$. Note that $y_{k}^{n+1}=\left[Y_{k}\right]_{n+1}$.
We verify that, under (9), the formula for updating $y_{k}^{(n+1)}$ is given by

$$
Y_{k+1}=Y_{k}-\frac{1}{n} Y_{k} M X_{0}^{\top} A_{k} X_{0}
$$

where M is a mask given by $\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$. We can verify the following facts

1. $g(x, y, k)=g(x, 0, k)+y$. To see this, notice first that for all $i \in\{1 \ldots n\}$,

$$
y_{k+1}^{(i)}=y_{k}^{(i)}-\frac{1}{n} \sum_{j=1}^{n} x^{(i)^{T}} A_{k} x^{(j)} y_{k}^{(j)}
$$

In other words, $y_{k}^{(i)}$ does not depend on $y_{t}^{(n+1)}$ for any t. Next, for $y_{k}^{(n+1)}$ itself,

$$
y_{k+1}^{(n+1)}=y_{k}^{(n+1)}-\frac{1}{n} \sum_{j=1}^{n} x^{(n+1)^{T}} A_{k} x^{(j)} y_{k}^{(j)},
$$

which depends on y_{k}^{n+1} only additively. We can verify under a simple induction that $g(x, y, k+1)-y=g(x, y, k)-y$.
2. $g(x, 0, k)$ is linear in x. To see this, notice first that for $j \neq n+1, y_{k}^{(j)}$ is does not depend on $x_{t}^{(n+1)}$ for all t, j, k. Consequently, the update formula for $y_{k+1}^{(n+1)}$ depends only linearly on $x^{(n+1)}$ and $y_{k}^{(n+1)}$. Finally, $y_{0}^{(n+1)}=0$ is linear in x, so the conclusion follows by induction.

With these two facts in mind, we verify that for each k, there exists a $\theta_{k} \in \mathbb{R}^{d}$, such that

$$
g(x, y, k)=g(x, 0, k)+y=\left\langle\theta_{k}, x\right\rangle+y
$$

for all x, y. It follows from definition that $g(x, y, 0)=y$, so that $\left\langle\theta_{0}, x\right\rangle=g(x, y, 0)-y=0$, so that $\theta_{0}=0$.

We now turn our attention to the third crucial fact: for all i,

$$
g\left(x^{(i)}, y^{(i)}, k\right)=y_{k}^{(i)}=\left\langle\theta_{k}, x^{(i)}\right\rangle+y^{(i)}
$$

To see this, suppose that we let $x^{(n+1)}:=x^{(i)}$ for some $i \in 1 \ldots n$. Then

$$
\begin{aligned}
& y_{k+1}^{(i)}=y_{k}^{(i)}-\frac{1}{n} \sum_{j=1}^{n} x^{(i)^{T}} A_{k} x^{(j)} y_{k}^{(j)} \\
& y_{k+1}^{(n+1)}=y_{k}^{(n+1)}-\frac{1}{n} \sum_{j=1}^{n} x^{(n+1)^{T}} A_{k} x^{(j)} y_{k}^{(j)},
\end{aligned}
$$

thus $y_{k+1}^{(i)}=y_{k+1}^{(n+1)}$ if $y_{k}^{(i)}=y_{k}^{(n+1)}$, and the induction proof is completed by noting that $y_{0}^{(i)}=$ $y_{0}^{(n+1)}$ by definition. Let $\bar{X} \in R^{d \times n}$ be the matrix whose columns are $x^{(1)} \ldots x^{(n)}$, leaving out $x^{(n+1)}$. Let $\bar{Y}_{k} \in \mathbb{R}^{1 \times n}$ denote the vector of $y_{k}^{(1)} \ldots y_{k}^{(n)}$. Then it follows that

$$
\bar{Y}_{k}=\bar{Y}_{0}+\theta_{k}^{T} \bar{X}
$$

771 Using the above fact, the update formula for $y_{k}^{(n+1)}$ can be written as

$$
\begin{aligned}
y_{k+1}^{(n+1)} & =y_{k}^{(n+1)}-\frac{1}{n}\left\langle A_{k} X^{\top} Y_{k}, x^{(n+1)}\right\rangle \\
\Rightarrow \quad\left\langle\theta_{k+1}, x^{(n+1)}\right\rangle & =\left\langle\theta_{k}, x^{(n+1)}\right\rangle-\frac{1}{n}\left\langle A_{k} \bar{X}\left(\bar{X}^{T} \theta_{k}+\bar{Y}_{0}\right), x^{(n+1)}\right\rangle \\
& =\left\langle\theta_{k}, x^{(n+1)}\right\rangle-\frac{1}{n}\left\langle A_{k} \bar{X}\left(\bar{X}^{T}\left(\theta_{k}+w_{\star}\right)\right), x^{(n+1)}\right\rangle
\end{aligned}
$$

Since the choice of $x^{(n+1)}$ is arbitrary, we get the more general update formula

$$
\theta_{k+1}=\theta_{k}-\frac{1}{n} A_{k} \bar{X} \bar{X}^{T}\left(\theta_{k}+w_{\star}\right) .
$$

773 We can treat A_{k} as a preconditioner. Let $f(\theta):==\frac{1}{2 n}\left(\theta+w_{\star}\right)^{T} \bar{X} \bar{X}^{T}\left(\theta+w_{\star}\right)$, then

$$
\theta_{k+1}=\theta_{k}-\frac{1}{n} A_{k} \nabla f(\theta)
$$

774 Finally, let $w_{k}^{\mathrm{gd}}:=-\theta_{k}$. We verify that $f(-w)=R_{w_{\star}}(w)$, so that

$$
w_{k+1}^{\mathrm{gd}}=w_{k}^{\mathrm{gd}}-\frac{1}{n} A_{k} \nabla R_{w_{\star}}\left(w_{k}^{\mathrm{gd}}\right)
$$

775 We also verify that for any $x^{(n+1)}$, the prediction of $y_{k}^{(n+1)}$ is

$$
g\left(x^{(n+1)}, y^{(n+1)}, k\right)=y^{(n+1)}-\left\langle\theta, x^{(n+1)}\right\rangle=y^{(n+1)}+\left\langle w_{k}^{\mathrm{gd}}, x^{(n+1)}\right\rangle
$$

776 This concludes the proof.

[^0]: ${ }^{2}$ This use of Z_{i} differs the original definition in (1). But we will not refer to the original definition anywhere in this proof.

[^1]: ${ }^{3}$ This use of Z_{i} differs the original definition in (1). But we will not refer to the original definition anywhere in this proof.

