
Algorithm 1: GNNs with the CIT mechanism
Input :Graph G = (A,X), label Y
Params : the probability of transfer p, the epochtimes k,

the number of clusters m, total iterations T
Initialize :GNN model fGNN ,

classifier fθ (usually the last layer of GNN)
Output :GNN model fGNN , classifier fθ

1 for epoch = 1 to T do
2 Node representation Z(l) from Eq. (1)
3 Cluster representation Hc from Eq. (2) and Eq. (6)
4 Clustering loss Lu from Eq. (5)
5 if epoch % k == 0 then
6 Randomly sample n× p nodes to calculate Eq. (9)
7 Get the new representation Z′(l)

8 else
9 Keep the node representation Z′(l) ← Z(l)

10 end
11 Classification loss Lf from Eq. (12)
12 Update fGNN , fθ with Eq. (13)
13 end

A More details of Section 3

A.1 Three-Fold optimization

In this section, we detail the process of our CIT mechanism in three-fold optimization, shown in
Algorithm1.

A.2 Computational complexity

Our CIT mechanism has two parts of computation: Clustering process and Cluster Information
Transfer process. Let N represent the number of nodes, and K represent the number of clusters. The
computational complexity of clustering process is O(N2K +NK2) = O(NK(N +K)). Since the
adjacency matrix is usually sparse, the computational complexity can be reduced to O(EK), where
E is the number of non-zero edges in the adjacency matrix. The computational complexity of Cluster
Information Transfer process is O(pN), where p is the probability of transfer. So the computational
complexity is O(K(E +NK) + pN). The space complexity which depends on the dimension of
the assignment matrix is O(NK).

A.3 Proof of Theorem1

Specifically, we simplify Z(l) in Eq. (1) as Z, and assume that label Y ∈ {0, 1}. There are two
clusters e ∈ {D,R}. We give the statistics of data. The mean of node representations in cluster D is
E(Z|e = D) = µD, and the variance of node representations in cluster D is V ar(Z|e = D) = Σ2

D.
Similarly, E(Z|e = R) = µD, V ar(Z|e = R) = Σ2

R. We define the probability of label 0 as
π0 = P (Y = 0), label 1 as π1 = P (Y = 1), and then the cluster probability πD = P (e = D) and
πR = P (e = R). The conditional probability of label given cluster D as π0|D = P (Y = 0|e = D),
π1|D = P (Y = 1|e = D) and the conditional probability of label given cluster R as π0|R = P (Y =
0|e = R), π1|R = P (Y = 1|e = R). For analysis, we use E(Z|Y = 1) = µ1 to represent the
mean of node representations with label 1, and E(Z|Y = 0) = µ0 to represent the mean of node
representations with label 0. We assume that there is statistic spurious correlation between clusters
and labels, i.e., all label information can be obtained through the label information in each cluster as
µD

π1|D
+ µR

π1|R
= µ1. At first, we calculate the form of the decision boundary through the data statistics

given above and find that the label distribution in clusters affects the decision boundary. And then, we

13



make our transfer on the original data and find that the label distribution in clusters has less influence
on it.

Proof. Firstly, we use the statistics of node representations in different clusters and clusters probability
to calculate the variance:

V ar(Z) = E(Z2|e = D)πD + E(Z2|e = R)πR − E(Z)2

= (V ar(Z|e = D) + E(Z|e = D)2)πD

+ (V ar(Z|e = R) + E(Z|e = R)2)πR − E(Z)2

= (Σ2
D + µ2

D)πD + (Σ2
R + µ2

R)πR − (µDπD + µRπR)
2.

(14)

Then we calculate the covariance of Z and Y based on the correlation assumption:

Cov(Z, Y ) = E(ZY )− E(Y )E(Z)− E(Y )E(Z) + E(Z)E(Y )

= E[E(ZY |Y )− Y E(Z)− E(Y )E(Z|Y ) + E(X)E(Y )]

= E[(E(Z|Y )− E(E(Z|Y )))(Y − E(Y ))]

= Cov((
µD

π1|D
+

µR

π1|R
− µD

π0|D
− µR

π0|R
)Y, Y )

= (
µD

π1|D
+

µR

π1|R
− µD

π0|D
− µR

π0|R
)π0π1.

(15)

Combining Eq. (14) and Eq. (15) we can see that, the label distribution in cluster πY |e affects the
covariance Cov(Z, Y ). So in this case, the decision boundary is directly influenced by cluster
information.

A.4 Proof of Theorem2

Proof. For analysis, we assume that there are nD nodes belonging to cluster D and nR nodes
belonging to cluster R. So after the transfer, the probability of cluster D is π′

D = nD+nRp
nD+nR

and
probability of cluster R is π′

R = nR−nRp
nD+nR

. The new variance can be calculated as follows:

V ar(Z) = (Σ′2
D + µ2

D)π′
D + (Σ′2

R + µ2
R)π

′
R − (µDπ′

D + µRπ
′
R)

2

= (
Σ2

DnD

nD + nRp
+

nD

nD + nRp
µ2
D +

nRp

nD + nRp
µ2
R

− (
nD

nD + nRp
µD +

nRp

nD + nRp
µR)

2 + µ2
D)(

nD + nRp

nD + nR
)

+ (Σ2
R + µ2

R)
nR − nRp

nD + nR
− (µD

nD + nRp

nD + nR
+ µR

nR − nRp

nD + nR
)2.

(16)

We use π′
Y |e to represent new label distribution in each clusters. Then the new covariance can be

represented as follows:

Cov(Z, Y ) = (
µD

π′
1|D

+
µR

π′
1|R
− µD

π′
0|D
− µR

π′
0|R

)π0π1. (17)

From Eq. (16) and Eq. (17) we can see, the label distribution in cluster still have no effect on V ar(Z).
So we analyze the π′

Y |e which affects the Cov(Z, Y ). We take cluster D as an example. We use
nD0 and nR0 to represent the number of nodes with label 0 in each cluster. Similarly, nD1 and
nR1 to represent the number of nodes with label 1 in each cluster. After the transfer, we calculate
the probability of new label-0 in cluster π′

0|D =
nD0+pnRπ0|R

nD+nRp = nD0+pnR0

nD+nRp . We can see that the
conditional probability π′

0|D approaches to π0, which is as same as label 1, meaning that the effect
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Table 3: Data statistics.

Datasets Nodes Edges Features Classes Structures
Cora 2708 5429 1433 7 1
Citeseer 3327 4732 3703 6 1
Pubmed 19717 44324 500 3 1

ACM 3025 29281
2210761 1830 3 PAP

PSP

IMDB 3550 66428
13788 1007 3 MAM

MDM

Twitch-Explicit

9498
7126
4648
6549
4385
2772

153138
35324
59382

1123666
37304
63462

3170 2

DE
ENGB

ES
FR
RU
TW

between the decision boundary of classifier and cluster information is weakened. When p = 1,
π′
0|D = π0 and π′

1|D = π1. In this case, the Cov(Z, Y ) = µD(π1 − π0), which has no relations
about cluster information.

B More details of Section 4

B.1 Data statistics

• Cora [20]: The Cora is a citation network. The nodes represent papers and are classified
into three classes. The edges represent their citation relationships. Node attributes are
bag-of-words representations of the papers and the nodes are labeled based on the paper
topics.

• Citeseer [20]: The Citeseer is a link dataset bulit from citeseer web dataset. The nodes are
publications and are divided into six areas. Node attributes are representations of the papers.
The edges are citation links.

• Pubmed [30]: The Pubmed is a searchable database in the medical field. It consists of
nearly twenty thousand nodes. All nodes are divided into three classes. Edges represent
papers citation relationship. Node attributes are bag-of-words of the papers.

• ACM [27]: This network is extracted from ACM dataset where nodes represent papers and
there is an edge between two papers if they have the same author or same subject. So the
nodes have two relations which are Papers-Authors-Papers (PAP) and Papers-Subject-Papers
(PSP). All the papers are divided into three classes. The features are the bag-of-words
representations of paper keywords.

• IMDB [27]: IMDB is a movie network dataset where nodes represent movies and there is
an edge between two movies if they have the same director or same actor. So the nodes have
two relations which are Movie-Actor-Movie (MAM) and Movie-Director-Movie (MDM).
All the movies are divided into three classes and features are the bag-of-words of reviews
and movie information.

• Twitch-Explicit [17]: Twitch datasets contain several networks where nodes represent
Twitch users and edges represent their mutual friendships. Each network is collected from
a particular region. Different networks have different size, densities and maximum node
degrees. All nodes are divided into two classes.

B.2 Additional results

For more comparison, we show result of deleting edges in Table 4.
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Table 4: Quantitative results (%±σ) on node classification for perturbation on graph structures data
while the superscript refers to the results of paired t-test (* for 0.05 level and ** for 0.01 level).

Method
Dele-0.2

Cora Citeseer Pubmed
Acc Macro-f1 Acc Macro-f1 Acc Macro-f1

GCN 80.04±0.48 78.86±0.62 69.68±0.38 67.29±0.49 77.48±0.71 77.32±0.65
SR-GCN 79.80±0.61 78.31±0.55 70.03±0.87 67.62±0.80 78.10±1.10 77.63±1.21
EERM-GCN 78.57±0.78 76.32±0.81 69.95±0.42 67.97±0.60 - -
CIT-GCN(w/o) 80.36±0.34 79.03±0.40 71.38±0.38∗∗ 68.61±0.38∗∗ 79.38±0.37∗∗ 78.85±0.34∗∗
CIT-GCN 80.70±0.42 79.67±0.51 71.20±0.51 68.52±0.46 78.40±0.62 77.96±0.50
GAT 80.22±0.41 79.27±0.35 69.10±0.46 66.20±0.39 76.35±0.62 75.95±0.58
SR-GAT 80.25±0.65 79.29±0.57 68.80±0.49 66.28±0.32 76.55±0.47 75.39±0.56
EERM-GAT 79.15±0.38 77.92±0.29 68.15±0.37 65.31±0.45 - -
CIT-GAT(w/o) 80.98±0.60 80.07±0.46 69.98±0.62 67.32±0.67 76.21±0.48 75.12±0.56
CIT-GAT 81.35±0.35∗ 80.27±0.44∗ 70.11±0.47∗ 67.77±0.57∗ 76.05±0.54 75.65±0.46
APPNP 80.84±0.54 80.13±0.61 70.62±0.96 67.86±0.64 79.41±0.37 78.87±0.36
SR-APPNP 80.11±0.65 80.06±0.77 69.27±0.43 67.77±0.39 75.85±0.55 75.43±0.58
EERM-APPNP 79.17±0.77 79.72±0.59 71.30±0.61 67.92±0.57 - -
CIT-APPNP(w/o) 81.46±0.40 80.57±0.47 72.06±0.28∗∗ 69.01±0.32∗∗ 79.35±0.52 78.68±0.51
CIT-APPNP 81.43±0.39 80.78±0.44 71.84±0.51 68.57±0.55 79.88±0.37 79.29±0.46
GCNII 82.82±0.48 81.03±0.47 71.58±0.50 68.24±0.61 78.65±0.64 77.92±0.53
SR-GCNII 81.75±0.41 81.09±0.38 70.24±0.76 66.87±0.83 78.10±0.52 76.76±0.61
EERM-GCNII 80.05±0.67 79.12±0.53 71.11±0.63 68.02±0.79 - -
CIT-GCNII(w/o) 82.41±0.43 81.07±0.35 71.70±0.92 68.56±0.88 78.85±0.33 79.19±0.23∗
CIT-GCNII 83.20±0.58 81.70±0.63 72.38±0.62∗ 69.13±0.31∗ 79.80±0.73∗ 79.17±0.66

Dele-0.5
GCN 77.28±0.47 75.30±0.56 68.52±0.33 65.59±0.36 77.04±0.32 76.64±0.38
SR-GCN 76.70±0.81 74.59±0.67 67.72±1.10 64.58±1.22 76.35±0.56 76.54±0.63
EERM-GCN 77.30±0.31 75.18±0.45 68.65±0.45 65.55±0.36 - -
CIT-GCN(w/o) 77.05±0.47 75.17±0.38 70.02±0.49 67.10±0.44 77.83±0.21 77.63±0.36∗
CIT-GCN 77.50±0.51 75.58±0.66 70.12±0.55∗∗ 66.81±0.56∗∗ 77.90±0.46 77.23±0.53
GAT 77.22±0.37 75.81±0.32 68.94±0.47 65.98±0.55 75.92±0.63 75.61±0.66
SR-GAT 77.38±0.42 75.86±0.43 68.27±0.73 64.24±0.92 75.31±0.67 74.24±0.78
EERM-GAT 76.62±0.73 74.38±0.68 67.12±0.54 64.01±0.62 - -
CIT-GAT(w/o) 77.52±0.46 76.07±0.42 69.38±0.57 66.24±0.59 76.01±0.47 75.97±0.46
CIT-GAT 77.72±0.55 76.43±0.57 69.44±0.56∗ 66.58±0.47∗ 76.79±0.77∗ 76.43±0.67∗
APPNP 78.52±0.66 77.12±0.67 69.41±0.63 66.43±0.60 77.80±0.63 77.43±0.61
SR-APPNP 77.55±0.49 76.97±0.42 70.81±0.47 66.78±0.61 76.45±0.51 76.37±0.58
EERM-APPNP 77.31±0.55 76.87±0.61 69.91±0.59 66.32±0.62 - -
CIT-APPNP(w/o) 78.80±0.53 77.31±0.43 70.41±0.42 67.30±0.39 78.08±0.34 77.73±0.32
CIT-APPNP 79.02±0.52 78.27±0.48 71.06±0.55∗ 67.57±0.58∗ 77.60±0.61 77.38±0.53
GCNII 80.48±0.45 78.65±0.39 70.04±0.89 66.61±0.83 78.40±0.68 78.18±0.78
SR-GCNII 80.03±0.60 78.38±0.53 70.19±0.71 67.01±0.82 77.98±1.01 76.89±0.92
EERM-GCNII 78.52±0.82 77.02±0.93 69.40±0.67 66.81±0.91 - -
CIT-GCNII(w/o) 79.84±0.43 78.04±0.47 70.72±0.69 67.41±0.57 78.58±0.38 78.24±0.44
CIT-GCNII 80.58±0.62 78.94±0.45 71.32±0.44∗ 68.04±0.33∗ 78.13±0.61 77.89±0.70

B.3 Implementation details

For every GNNs method, we follow the parameter settings from their original paper. SR-GNN and
EERM-GNN are initialized with same parameters suggested by their papers and we also further
carefully turn parameters to get optimal performance.

For our CIT-GNN, we do not change the parameters of the previous part of GNN backbones and only
make an adjustment on our module. Although our transfer process is conducted every k epochs, the
clustering process proceeds all the training procedure. For GCN, GAT and GCNII, we put our CIT
mechanism before the last layer of GNN. For APPNP, we put it in features extract process, that is,
before the last layer of linear transform. We search on the probability of transfer p from 0.05 to 0.3
with step 0.05 and tune epochtimes k of CIT from 2 to 50. For dropout rate, we test ranging is from
0.1 to 0.6. Moreover, we tune the numbers of clusters which is the parameter from spectral clustering
from [10, 20, 30, 40, 50, 100, 200]. We set classification loss coefficient, cutloss coefficient and
orthogonality loss coefficient as 0.5, 0.3, 0.2 respectively. For all models, we randomly run 5 times
and report the average results. For every dataset, we only use original attributes of target nodes, and
assign one-hot id vectors to nodes of other types. We report our experiment setting and parameters in
supplement.

B.3.1 Experiment settings

All experiments are conducted with the following setting:
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• Operating system: CentOS Linux release 7.6.1810
• CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
• GPU: GeForce RTX 2080 Ti with 11GB and GeForce RTX 3090 with 24GB
• Software versions: Python 3.8; Pytorch 1.10.1; Cuda 11.1;

B.3.2 Baselines

The publicly available implementations of Baselines can be found at the following URLs:

• GCN: https://github.com/tkipf/pygcn
• GAT: https://github.com/Diego999/pyGAT
• APPNP: https://github.com/gasteigerjo/ppnp
• GCNII: https://github.com/chennnM/GCNII
• SR-GNN: https://github.com/GentleZhu/Shift-Robust-GNNs
• EERM: https://github.com/qitianwu/GraphOOD-EERM

For a fairly comparison, we plug the three methods in same code of GNNs model referred from their
papers.

B.3.3 Hyper parameter settings

Our CIT-GNN contains four hyper-parameter, the probability of transfer p, epochtimes k, the number
of clusters m and dropout.

B.3.4 Settings for Section Perturbation on graph structures data

For Cora, Citeseer and Pubmed, our hyper-parameter settings are as follows respectively:

• CIT-GCN: p=0.2/0.1/0.02, k=5/5/20,
m=100/20/100, dropout=0.5/0.1/0.5 .

• CIT-GAT: p=0.1/0.1/0.02, k=5/5/5,
m=100/20/100, dropout=0.6/0.5/0.3 .

• CIT-APPNP: p=0.2/0.2/0.02, k=20/20/20,
m=200/10/200, dropout=0.6/0.1/0.5 .

• CIT-GCNII: p=0.1/0.02/0.1, k=5/10/20,
m=100/40/200, dropout=0.5/0.3/0.3 .

B.3.5 Settings for Section Multiplex networks data

For ACM and IMDB (two relations), our hyper-parameter settings are as follows respectively:

• CIT-GCN: p=0.2/0.02/0.1/0.05, k=10/5/20/5,
m=10/100/40/200, dropout=0.5/0.3/0.6/0.3 .

• CIT-GAT: p=0.2/0.1/0.2/0.1, k=10/5/5/5,
m=10/50/40/50, dropout=0.1/0.1/0.1/0.5 .

• CIT-APPNP: p=0.2/0.1/0.1/0.1, k=5/5/5/5,
m=10/20/40/40, dropout=0.5/0.5/0.5/0.3 .

• CIT-GCNII: p=0.02/0.1/0.1/0.1, k=5/5/5/20,
m=40/100/100/200, dropout=0.1/0.3/0.3/0.1 .

B.3.6 Settings for Section Multigraph data

• CIT-GCN: p=0.02, k=20, m=200, dropout=0.3 .
• CIT-GAT: p=0.05, k=20, m=200, dropout=0.3 .
• CIT-APPNP: p=0.02, k=5, m=200, dropout=0.3 .
• CIT-GCNII: p=0.05, k=20, m=200, dropout=0.5 .
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